Contents

Volume 41, Number 1, July 1994

1 Review The role of growth hormone in male infertility: Z. SHOHAM, Y. ZALEL and H. S. JACOBS

7 Commentary Prediction of post-partum thyroiditis: A. P. WEETMAN

15 Prediction of post-partum Graves' thyrotoxicosis by measurement of thyroid stimulating antibody in early pregnancy: Y. HIDAKA, H. TAMAKI, Y. IWATANI, H. TADA, N. MITSUDA and N. AMINO

21 Amylin/islet amyloid polypeptide expression in medullary carcinoma of the thyroid: correlation with the expression of the related calcitonin/CGRP genes: M. ALEVIZAKI, K. DAI, S. I. GRIGORAKIS, S. LEGON and A. SOUVATZOGLU

27 Seasonal variation in the diagnosis of Graves' disease: S. A. WESTPHAL

41 Renal leak of calcium in post-menopausal osteoporosis: B. E. C NORDIN, M. HOROWITZ, A. NEED and H. A. MORRIS

47 Effect of bisphosphonate therapy and parathyroidectomy on the urinary excretion of galactosylhydroxylysine in primary hyperparathyroidism: V. LOCASCO, V. BRAGA, F. BERTOLDO, P. BETTICA, A. F. PASINI, L. STEFANI and L. MORO

53 A hormonal and radiological evaluation of adrenal gland in patients with acute or chronic pulmonary tuberculosis: F. KELESTIMUR, Y. ÜNLÜ, M. ÖZMESLİ and I. TOLU

57 Gonadal function and response to human chorionic and menopausal gonadotrophin therapy in male patients with idiopathic hypogonadotropic hypogonadism: J. M. W. KIRK, M. O. SAVAGE, D. B. GRANT, P. M. G. BOULOUX and G. M. BESSER

65 Less acidic forms of luteinizing hormone are associated with lower testosterone secretion in men on haemodialysis treatment: R. MITCHELL, C. BAUERFELD, F. SCHAEBER, K. SCHRÄR and W. R. ROBERTSON

75 Characterization of 24-hour growth hormone secretion in acromegaly: implications for diagnosis and therapy: K. K. Y. HO and A. J. WEISSBERGER

85 The ratio between serum levels of insulin-like growth factor (IGF)-I and the IGF binding proteins (IGFBP-1, 2 and 3) decreases with age in healthy adults and is increased in acromegalic patients: A. JUUL, K. MAIN, W. F. BLUM, J. LINDHOLM, M. B. RANKE and N. E. SKAKKEBÆK

95 Determinants of clinical outcome and survival in acromegaly: C. RAJASOORYA, I. M. HOLDAWAY, P. WRIGHTSON, D. J. SCOTT and H. K. IBBERTSON

103 Treatment with octreotide and bromocriptine: an open pharmacodynamic interaction study: L. FREDSTORP, K. KUTZ and S. WERNER

109 Low dose continuously infused growth hormone results in increased lipoprotein(a) and decreased low density lipoprotein cholesterol concentrations in middle-aged men: J. OSCARSSON, M. OTTOSSON, O. WIKLUND, P. MÄRIN, K. VIKMAN-ADOLFSSON, P. BJÖRNSTORP and S. EDÉN

117 Relation between growth hormone and cortisol spontaneous secretion in children: C. E. MARTINELLI and A. C. MOREIRA

123 Endocrinology audit An audit of the insulin tolerance test in adult subjects in an acute investigation unit over one year: S. L. JONES, P. J. TRAINER, L. PERRY, J. A. H. WASS, G. M. BESSER and A. GROSSMAN

137 Letter to the Editors

138 Book review

Volume 41, Number 2, August 1994

139 Review 5α-Reductase inhibitors and prostatic disease: F. H. SCHRÖDER

149 Commentary Wherefore art thou brown fat?: R. JUNG

151 Commentary Inhibin as a tumour marker: H. G. BURGER
155 Inhibin as a marker for hydatidiform mole: a comparative study with the determinations of intact human chorionic gonadotrophin and its free β-subunit: Y. BADONNEL, F. BARBÈ, H. LEGAGNEUR, E. PONCELET and M. SCHWEITZER

163 Radiation and neuroregulatory control of growth hormone secretion: A. L. OGILVY-STUART, W. H. B. WALLACE and S. M. SHALET

169 Comparative effects of GH, IGF-I and insulin on serum sex hormone binding globulin: M. GAFNY, A. SILBERGELD, B. KLINGER, M. WASSERMAN and Z. LARON

177 Glycoprotein hormone α-subunit secretion in prolactinomas and in non-functioning adenomas: relation with the tumour size: A. WARNET, I. PORSOVA-DUTOIT, N. LAHLOU, D. SERET-BEGUE, E. LAJEUNIE, P. CHANSON, F. WOLMANT, G. LOT, P-J. GUILLAUSSEAU and M. ROGER

199 Hypothalamic–pituitary ageing: progressive increase in FSH and LH concentrations throughout the reproductive life in regularly menstruating women: N. A. AHMED EBBIARY, E. A. LENTON and I. D. COOKE

207 Osmoregulation of vasopressin and thirst: comparison of 20% mannitol with 5% saline as osmotic stimulants in healthy man: E. M. G. PHILLIPS, T. BUTLER and P. H. BAYLIS

217 Insulin sensitivity and insulin clearance in cystic fibrosis patients with normal and diabetic glucose tolerance: S. LANNG, B. THORSTEINSSON, M. E. RØDER, J. NERUP and C. KÖCH

225 Insulin-like growth factor binding protein 1 response to acute insulin induced hypoglycaemia in Type 1 diabetes: J. D. QUIN, B. M. FISHER, A. C. MACCUISH, G. H. BEASTALL, M. SMALL, J. M. P. HOLLY and A. M. COTTERILL

231 A prospective study of the prevalence of clear-cut endocrine disorders and polycystic ovaries in 350 patients presenting with hirsutism or androgenic alopecia: J. B. O'DRISCOLL, H. MAMTORA, J. HIGGINSON, A. KANE and D. C. ANDERSON

237 Oestrogen formation in genital and non-genital skin fibroblasts cultured from patients with hypospadias: P. STAIB, N. KAU, G. ROMALO and H-U. SCHWEIKERT

245 Comparison of changes in bone mineral in idiopathic and secondary osteoporosis following therapy with cyclical disodium etidronate and high dose calcium: supplementation: S. M. ORME, M. SIMPSON, S. P. STEWART, B. OLDROYD, C. F. WESTMACOTT, M. A. SMITH and P. E. BELCHETZ

251 Malignancy-associated hypercalcaemia: resolution of controversies over vitamin D metabolism by a pathophysiological approach to the syndrome: D. H. SCHWEITZER, N. A. T. HAMDY, M. FRÖLICH, A. H. ZWINDERMAN and S. E. PAPAPOULOS

257 Case report Calcitonin-producing insulinoma: clinical, immunocytochemical and cytogenetical study: M. J. G. M. BUGALHO, L. ROQUE, L. G. SOBRINHO and H-U. SCHWEIKERT

259 Case report Secondary hypoadrenalism presenting with hypercalcaemia: S. D. VASIKARAN, G. A. TALLIS and W. J. BRAUND

263 Commentary M. DAVIES

265 Notices

Volume 41, Number 3, September 1994

267 Review Endocrine adaptation to intensive physical training during growth: G. E. THEINZ

273 Commentary Glucocorticoid induced osteoporosis: C. GENNARI

275 Effect of treatment on established osteoporosis in young women with amenorrhoea: B. GULEKIL, M. C. DAVIES and H. S. JACOBS

283 Is a low skinfold thickness an indicator of osteoporosis?: S. M. ORME and P. E. BELCHETZ

289 Whole body composition and regional bone mass in women with insulin-dependent diabetes mellitus: J. E. COMPSTON, E. M. SMITH, C. MATTHEWS and P. SCHOFIELD

295 High dose topical calcipotriol consistently reduces serum parathyroid hormone levels: J. F. BOURKE, J. BERTH-JONES, R. MUMFORD, S. J. IQBAL and P. E. HUTCHINSON

299 Suramin in adrenocortical cancer: limited efficacy and serious toxicity: W. ARLT, M. REINCKE, L. SIEKMANN, W. WINKELMANN and B. ALLOLIO
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>Glucose and fat metabolism in adults with growth hormone deficiency</td>
<td>F. Salomon, R. C. Cuneo, A. M. Uempleby and P. H. Sønksen</td>
</tr>
<tr>
<td>323</td>
<td>Body composition in active acromegaly during treatment with octreotide: double-blind, placebo-controlled cross-over study</td>
<td>T. B. Hansen, J. Gram, P. Bjerre, C. Hagen and J. Bøllerslev</td>
</tr>
<tr>
<td>331</td>
<td>Age as a determinant of the impact of growth hormone therapy on predicted adult height</td>
<td>Z. Hochberg, E. Leiberman, H. Landau, R. Koren and Z. Zadik</td>
</tr>
<tr>
<td>337</td>
<td>Metabolic effects of growth hormone administered subcutaneously once or twice daily to growth hormone deficient adults</td>
<td>T. Laursen, J. O. L. Jørgensen and J. S. Christiansen</td>
</tr>
<tr>
<td>351</td>
<td>Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin</td>
<td>K. Landin-Wilhelmsen, L. Wilhelmsen, G. Lappas, T. Rosén, G. Lindstedt, P.A. Lundingberg and B.-Å. Bengtsson</td>
</tr>
<tr>
<td>359</td>
<td>Age-related and gender-related occurrence of pituitary adenomas:</td>
<td>T. Mindermann and C. B. Wilson</td>
</tr>
<tr>
<td>375</td>
<td>Thyroid function and thyroid size in normal pregnant women living in an iodine replete area:</td>
<td>A. Berghout, E. Endert, A. Ross, H. V. Hogerzeil, N. J. Smits and W. M. Wiersinga</td>
</tr>
<tr>
<td>381</td>
<td>Susceptibility to autoimmune thyroiditis in Down's syndrome is associated with the major histocompatibility class II DQA 0301 allele:</td>
<td>L. B. Nicholson, F. S. Wong, D. L. Ewins, J. Butler, A. Holland, A. G. Demaine and A. M. Mcgregor</td>
</tr>
<tr>
<td>385</td>
<td>Audit in Endocrinology Imaging in endocrinology:</td>
<td>M. J. Davies and T. A. Howlett</td>
</tr>
<tr>
<td>391</td>
<td>Case report Multiple spuriously abnormal thyroid function indices due to heterophilic antibodies:</td>
<td>T. M. Fiad, J. Duffy and T. J. McKenna</td>
</tr>
<tr>
<td>397</td>
<td>Case report A case of hepatoma associated with hypoglycaemia and overproduction of IGF-II (E-21): beneficial effects of treatment with growth hormone and intrahepatic adriamycin:</td>
<td>S. J. Hunter, W. H. Daughaday, M. E. Callender, J. A. McKnight, E. M. McIlrath, J. D. Teale and A. B. Atkinson</td>
</tr>
<tr>
<td>402</td>
<td>Commentary Non-islet-cell tumour hypoglycaemia:</td>
<td>J. Zapf</td>
</tr>
<tr>
<td>403</td>
<td>Book review</td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>Notices</td>
<td></td>
</tr>
</tbody>
</table>

Volume 41, Number 4, October 1994

<table>
<thead>
<tr>
<th>Page</th>
<th>Commentary The investigation of hypercalcaemia:</th>
<th>I. R. Reid</th>
</tr>
</thead>
<tbody>
<tr>
<td>407</td>
<td>Parathyroid hormone and parathyroid hormone-related protein in the investigation of hypercalcaemia in two hospital populations</td>
<td>J. Walls, W. A. Ratcliffe, A. Howell and N. J. Bundred</td>
</tr>
<tr>
<td>415</td>
<td>Familial isolated primary hyperparathyroidism:</td>
<td>M. Kassem, X. Zhang, S. Brask, E. F. Eriksen, L. Mosekilde and T. A. Kruse</td>
</tr>
<tr>
<td>421</td>
<td>Bone metabolism during anti-thyroid drug treatment of endogenous subclinical hyperthyroidism</td>
<td>A. H. Medde, A. J. H. M. Houben and A. C. N. Kruseman</td>
</tr>
<tr>
<td>425</td>
<td>Bone mineral density in thyroxine treated females with or without a previous history of thyrotoxicosis:</td>
<td>J. Franklyn, J. Betteridge, R. Holder, J. Daykin, J. Lilley and M. Sheppard</td>
</tr>
<tr>
<td>433</td>
<td>Increased insulin sensitivity in patients with aldosterone producing adenoma:</td>
<td>M. Ishimori, N. Takeda, S. Okumura, T. Murai, H. Inouye and K. Yasuda</td>
</tr>
<tr>
<td>439</td>
<td>Mineralocorticoid and glucocorticoid status in idiopathic haemochromatosis:</td>
<td>C. H. Walsh, A. L. Murphy, S. Cunningham and T. J. McKenna</td>
</tr>
<tr>
<td>445</td>
<td>Augmented 17a-hydroxyprogesterone response to ACTH stimulation as evidence of decreased 21-hydroxylase activity in patients with incidentally discovered adrenal tumours ('incidentalomas'):</td>
<td>T. Seppel and R. Schlaghecke</td>
</tr>
</tbody>
</table>
453 Development and validation of a radioimmunoassay for follistatin in human serum: C. P. GILFILLAN and D. M. ROBERTSON

463 Serum lipoprotein lipid profile in women with the polycystic ovary syndrome: relation to anthropometric, endocrine and metabolic variables: J. HOLTE, T. BERGH, C. BERNE and H. LITHELL

473 The independent effects of polycystic ovary syndrome and obesity on serum concentrations of gonadotrophins and sex steroids in premenopausal women: J. HOLTE, T. BERGH, G. GENNARELLI and L. WIDE

487 Treatment with GHRH(1-29)NH$_2$ in children with idiopathic short stature induces a sustained increase in growth velocity: J. M. W. KIRK, P. J. TRAINER, W. H. MAJROWSKI, J. MURPHY, M. O. SAVAGE and G. M. BESSER

495 Inverse correlation between insulin-like growth factor binding protein-1 and insulin in patients with acromegaly during treatment with the somatostatin analogue octreotide: L. FREDSTORP, S. WERNER, P. BANG and K. HALL

503 Effects of insulin-like growth factor-I on growth hormone and prolactin secretion and cell proliferation of human somatotrophinomas and prolactinomas in vitro: S. L. ATKIN, A. M. LANDOLT, R. V. JEFFREYS, L. HIPKIN and M. C. WHITE

511 The severity of growth hormone deficiency in adults with pituitary disease is related to the degree of hypopituitarism: A. T. TOOGOOD, C. G. BEARDWELL and S. M. SHALET

525 Endocrine profiles during administration of the new non-steroidal anti-androgen Casodex in prostate cancer: J. VERHELST, L. DENIS, P. VAN VLIET, H. VAN POPPEL, J. BRAECKMAN, P. VAN CANGH, J. MATTIELAER, D. D'HULSTER and CH. MAHLER

538 Commentary M. T. SEYMOUR

539 Rapid communication Growth hormone releasing activity by intranasal administration of a synthetic hexapeptide (hexarelin): Z. LARON, J. FRENKEL, I. GIL-AD, B. KLINER, E. LUBIN, P. WUTHRICH, F. BOUTIGNON, V. LENGERTS and R. DEGHENGI

Volume 41, Number 5, November 1994

543 Voluntary support for pituitary patients

545 Review Lymphocytic traffic and homing into target tissue and the generation of endocrine autoimmunity: P. POZZILLI, P. CAROTENUTO and G. DELITALA

555 Commentary Ovarian stromal hypertrophy: A. KYEL-MENSAH and H. S. JACOBS

557 Ovarian stromal hypertrophy in hyperandrogenic women: D. DEWAILLY, Y. ROBERT, I. HELIN, Y. ARDAENS, P. THOMAS-DESROUSSEAUX, L. LEMAITRE and P. FOSSATI

563 Luteinizing hormone secretion and hypoandrogenaemia in critically ill men: effect of dopamine: G. VAN DEN BERGHE, F. DE ZEGHER, P. LAUWERS and J. D. VELDHUIS

581 Two mutations causing vitamin D resistant rickets: modelling on the basis of steroid hormone receptor DNA-binding domain crystal structures: A. R. RUT, M. HEWISON, K. KRISTJANSSON, B. LUISI, M. R. HUGHES and J. L. H. O'RIORDAN

591 Optimal frequency of administration of pamidronate in patients with hypercalcaemia of malignancy: S. J. WIMALAWANSA

597 Does acromegaly really predispose to an increased prevalence of gastrointestinal tumours?: S. D. LADAS, N.C. THALASSINOS, G. IOANNIDES and S. A. RAPTIS
603 Serum lipoproteins in acromegaly before and 6–15 months after transsphenoidal adenomectomy: J. Oscarsson, O. Wiklund, K. E. Jakobsson, B. Petruson and B.-Å. Bengtsson

609 Growth hormone administration stimulates energy expenditure and extrathyroidal conversion of thyroxine to triiodothyronine in a dose-dependent manner and suppresses circadian thyrotrophin levels: studies in GH-deficient adults: J. O. L. Jørgensen, J. Møller, T. Laursen, H. Ørskov, J. S. Christansen and J. Weeke

615 Short and long-term cardiovascular effects of growth hormone therapy in growth hormone deficient adults: L. Thuesen, J. O. L. Jørgensen, J. R. Müller, B. Ø. Kristensen, N. E. Skakkebæk, N. Vahi and J. S. Christansen

631 IGF-I treatment of adult patients with Laron syndrome: preliminary results: Z. Laron and B. Klinger

649 Inhibition of growth hormone release after the combined administration of GHRH and GHRP-6 in patients with Cushing’s syndrome: A. Leal-Cerro, A. Pumar, E. García-Garcia, C. Dieguez and F. F. Casanueva

667 Evidence for the effect of antibodies to TSH receptors on the thyroid ultrasonographic volume in patients with Graves’ disease: M. Rieu, A. Raynaud, A. Richard, S. Laplanche, B. Sambor and J.-L. Berrod

673 Turner's syndrome with X-isochromosome and Hashimoto's thyroiditis: M. de Kerdanet, J. Lucas, F. Lemee and M. Lecornu

677 Corticotrophin-releasing factor immunostaining is present in placenta and fetal membranes from the first trimester onwards and is not affected by labour or administration of mifepristone: E. S. Cooper, A. N. Brooks, M. R. Miller and I. A. Greer

685 Case report Hyperthyroidism associated with metastatic thyroid carcinoma: F. H. Steffensen and N. A. Aunsholt

689 Case report Growth hormone deficiency coupled with hypogonadism in AIDS: T. T. C. Ng, I. P. M. O'Connell and E. G. L. Wilkins

693 Commentary J. M. Parkin

695 Letters to the Editors

699 Book reviews

700 Notices

700 Erratum

Volume 41, Number 6, December 1994

701 Endocrine Investigation Series

702 A Registry for Resistance to Thyroid Hormone

703 Endocrine Investigation Investigation of obesity: P. G. Kopelman

709 Commentary Cabergoline: an advance in dopaminergic therapy: J. S. Bevan and J. R. E. Davis

713 Commentary Radioiodine therapy of non-toxic multinodular goitre: D. Gliober

715 Acute changes in thyroid volume and function following 131I therapy of multinodular goitre: B. Nygaard, J. Faber and L. Hегедус

731 Dopamine and the sick euthyroid syndrome in critical illness: G. Van Den Berghe, F. De Zegher and P. Lauwers

739 Oral progesterone-only contraception may protect against loss of bone mass in breast-feeding women: L. E. Caird, V. Reid-Thomas, W. J. Hannan, S. Gow and A. F. Glasier
747 Bone mineral density and metabolism in premenopausal women taking L-thyroxine replacement therapy: M. GARTON, I. REID, N. LOVERIDGE, S. ROBINS, L. MURCHISON, G. BECKETT and D. REID
815 Gα and Gi2α mutations in clinically non-functioning pituitary tumours: E. A. WILLIAMSON, M. DANIELS, S. FOSTER, W. F. KELLY, P. KENDALL-TAYLOR and P. E. HARRIS

821 Quinagolide efficacy and tolerability in hyperprolactinaemic patients who are resistant to or intolerant of bromocriptine: L. VILAR and C. W. BURKE

831 Case report Primary hyperparathyroidism masked by antituberculous therapy-induced vitamin D deficiency: C. S. KOVACS, G. JONES and E. R. YENDT

837 Commentary: E. B. MAWER

839 Letters to the Editors

841 Book reviews

843 Notices

844 Referees

846 Erratum

847 Author index

857 Subject index
Suramin in adrenocortical cancer: limited efficacy and serious toxicity

Wiebke Arlt*, Martin Reincke*, Lothar Siekmann†, Werner Winkelmann‡ and Bruno Allolio*
Departments of *Internal Medicine, Julius-Maximilians-University, Würzburg, †Clinical Biochemistry, Friedrich-Wilhelms-University, Bonn, and ‡Internal Medicine II, University of Cologne, Cologne, Germany

(Received 14 December 1993; returned for revision 31 January 1994; finally revised 1 March 1994; accepted 17 March 1994)

Summary

OBJECTIVE No satisfactory treatment for adrenocortical carcinoma (ACC) is available. We investigated the efficacy and toxicity of suramin in the treatment of metastatic ACC since suramin has been recently reported to be active as a single agent therapy for patients with ACC and prostatic carcinoma.

DESIGN We collected data on 9 patients with metastatic ACC treated with suramin in four centres in Germany between 1987 and 1992.

PATIENTS Nine patients (5 women, 4 men; age range 32–67 years) were included. Biochemical evidence of steroid excess was found in 6/9, in three leading to clinical symptoms (hypertension, hyperglycaemia, hirsutism, gynaecomastia).

MEASUREMENTS Tumour responses were assessed by radiological and biochemical evaluation. Other investigations included regular measurements of blood cell counts, coagulation, hepatic and renal function parameters, and serum suramin concentrations.

RESULTS The patients received cumulative doses ranging from 8·2 to 30·2 g suramin over periods of 1–15 months. 3/9 achieved a partial response, 2/9 disease stabilization and 4/9 experienced progressive disease. Tumour responses were transient. Suramin treatment was without direct influence on steroid excess. Serious side-effects included coagulopathy (6/9), thrombocytopenia (6/9), polyneuropathy (2/9) and allergic skin reactions (4/9); the death of two patients was possibly related to suramin therapy. Both toxicity and tumour response were strongly associated with serum level or cumulative dose of suramin.

CONCLUSIONS (1) Suramin is of antineoplastic efficacy in the treatment of metastatic adrenocortical carcinoma. (2) The clinical use of suramin is limited by a narrow therapeutic window with the risk of serious and possibly lethal toxicity at one extreme, and loss of efficacy at the other. Strict monitoring of suramin serum levels is mandatory aiming at levels between 200 and 250 mg/l. Suramin should not be considered as first-line treatment for metastatic adrenocortical carcinoma. (3) To improve treatment options in adrenocortical carcinoma as well as for further investigation on the usefulness of suramin, controlled prospective trials are urgently needed.

Adrenocortical carcinoma (ACC) is a rare neoplasm with high malignancy. Because of its low incidence, well designed prospective therapeutic trials involving large numbers of patients are lacking. Thus treatment has not been standardized and the prognosis is usually poor. Most patients with metastatic disease are treated with mitotane, an adrenolytic drug, introduced into clinical use by Bergenstal et al. (1960). It has never been proved that the use of mitotane in patients with ACC leads to significant prolongation of life and the drug is associated with significant side-effects (Luton et al., 1990). Since trials with cytotoxic chemotherapy or radiotherapy did not improve treatment results and even patients who responded experienced only transient palliative effects (Johnson & Greco, 1986; Percarpio & Knowlton, 1976), other treatment options for adrenocortical cancer are urgently needed.

Suramin, a polysulphonated naphtylurea, has been used successfully in the treatment of African sleeping sickness since 1923. In 1986 its clinical use as an anti-HIV agent revealed remarkable adrenotoxicity leading to adrenocortical insufficiency (Levine et al., 1986; Kaplan et al., 1987). In contrast, we recently found that lower doses of suramin in sleeping sickness improve the adrenocortical function which had been impaired by acute parasitic disease (Reincke et al., 1994). In animal experiments with Cynomolgus monkeys adrenocortical destruction with lymphocytic infiltration was seen after the administration of suramin (Feuillan et al., 1987).

These findings led to the use of suramin in the treatment of ACC. In recent studies, the therapeutic efficacy of suramin as a single agent was shown in patients with ACC (Stein et al., 1989; LaRocca et al., 1990a) and with prostatic
Table 1 Clinical data of patients (n = 9) prior to suramin therapy

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Sex</th>
<th>Age (years)</th>
<th>Site of disease</th>
<th>Prior therapy</th>
<th>Survival after diagnosis (months)</th>
<th>Survival after onset of metastases (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m</td>
<td>46</td>
<td>lung, liver</td>
<td>s, rad(a), cyt(a), m</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>f</td>
<td>32</td>
<td>lung, lc</td>
<td>s</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>f</td>
<td>57</td>
<td>lc, liver, node</td>
<td>s</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>52</td>
<td>lung, lc</td>
<td>s, ag, m</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>m</td>
<td>34</td>
<td>lung, liver, lc</td>
<td>s, m, cyt(b), rad(b)</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>f</td>
<td>53</td>
<td>liver, node, lc</td>
<td>s, ag, m</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>f</td>
<td>64</td>
<td>node, lc</td>
<td>s, m</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>f</td>
<td>47</td>
<td>lung</td>
<td>s, ag, m</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>m</td>
<td>63</td>
<td>bone</td>
<td>s, m</td>
<td>70</td>
<td>2</td>
</tr>
</tbody>
</table>

Site of disease (in order of occurrence): lc, local recurrence.
Prior therapy (in chronological order): s, surgery; m, mitotane; ag, aminoglutethimide, rad, radiotherapy; rad(a), 40 Gy to tumour bed (post-operative); rad(b), 10 Gy for local recurrence; cyt, cytostatic polychemotherapy; cyt(a), cisplatin + etoposide + bleomycin (2 cycles); cyt(b), vindesin + ifosfamide (5) and cisplatin + etoposide (3).

carcinoma (LaRocca et al., 1991; Myers et al., 1992). In this paper we report the results of suramin treatment in nine patients with metastatic ACC treated between 1987 and 1992.

Patients and methods

Patients

Between July 1987 and September 1982 we collected data on 9 patients (5 females, 4 males, mean age 50 years, range 32–67 years) treated with suramin in four hospitals. Patient details are shown in Table 1. All patients suffered from histologically proven metastatic adrenocortical carcinoma. At the start of suramin therapy elevated steroid concentrations were found in six patients, three of whom had clinical signs of steroid excess (Table 2).

In all patients primary treatment consisted in tumour removal by unilateral adrenalectomy; one patient also underwent ipsilateral nephrectomy and post-operative tumour bed irradiation. Treatment after onset of metastases included, in 7 of 9 patients, the use of mitotane with a median daily dose of 6-0 g (range 2-5–8-0 g) and a median duration of therapy of 2 months (range 1–7 months). This led to significant toxicity in all cases (including nausea, vertigo, hallucinations, abnormal liver function tests, allergic skin reactions and leucopenia). Other treatments used were aminoglutethimide (n = 3), cytotoxic polychemotherapy (n = 2) and local radiotherapy (n = 1). Irrespective of treatment, all patients experienced disease progression.

All patients gave written informed consent to suramin therapy after the experimental nature of the treatment had been explained. All former treatment was stopped at least 4 weeks before initiation of suramin therapy except in patient 9 who received additional radiotherapy for bone metastases.

Table 2 Endocrine tumour activity at start of suramin therapy (n = 9)

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Endocrine activity</th>
<th>Pathologically elevated steroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(+)</td>
<td>17a-hydroxyprogesterone</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>cortisol</td>
</tr>
<tr>
<td>4</td>
<td>(+)</td>
<td>17a-hydroxyprogesterone, dehydroepiandrosterone sulphate, oestradiol</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(+)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Endocrine activity: +Biochemical and clinical evidence of steroid excess, (+) only biochemical evidence of steroid excess; – no sign of steroid excess.
during the first 4 weeks of his suramin regimen. Two of the nine patients (nos 2 and 3) were treated with suramin after surgery without having received additional therapy for metastases encouraged by very promising initial results in two patients in this series (Allolio et al., 1989a; Baldus et al., 1990) and in the series of the NIH group (Stein, personal communication, 1987; Stein et al., 1989; LaRocca et al., 1990a). Both patients were suffering from rapidly progressing disease.

Before initiation of suramin therapy all patients were in a general state equivalent to a Karnofsky index of at least 50. All patients had normal coagulation parameters, platelet counts above 120 × 10⁹/l and sufficient renal and hepatic function as assessed by a creatinine clearance above 0·7 ml/s and a serum total bilirubin concentration below 25 μmol/l. In patients 4–9 maximum motor conduction velocity measurements in upper and lower limbs showed values within the normal range.

Treatment

Suramin (Germanin, Bayer, FRG) was diluted in 0·9% saline solution and administered intravenously.

On day 0 all patients received a test dose of 200 mg suramin in a bolus injection in order to minimize the risk of anaphylactic reactions. Five patients (nos 1–4, 9) received suramin by bolus injections according to a dose regimen similar to standard therapy in sleeping sickness patients (Hawking, 1978) but achieving a higher cumulative dose during a shorter period. As more data on the toxicity and on target serum concentrations of suramin became available (Stein et al., 1989), the schedule was changed and in patients 5–8 suramin was given by continuous infusion (0·35 g/m² body surface/day during 10–16 days) aiming at suramin serum levels around 200 mg/l. After the initial course treatment was interrupted for 14 days in all patients and maintenance doses were then given in weekly to two-weekly intervals depending on serum suramin concentrations.

Baseline and follow-up studies

All patients were evaluated prior to therapy and thereafter at regular intervals (4–8 weeks) by chest X-ray, abdominal sonography, and chest and abdominal computed tomography. Additionally they underwent serial ophthalmological examinations including slit lamp studies. In patients 4–9 monthly measurements of maximum motor conduction velocity in upper and lower limbs were performed. Weekly laboratory studies included blood cell counts, coagulation tests (partial thromboplastin time, prothrombin time (given as Quick value) and thrombin time) as well as renal and hepatic function parameters.

Serum suramin concentration

Serum suramin levels were determined by high-performance liquid chromatography (HPLC) using the method reported by Klecker and Collins (1985) with minor modifications. Measurements were carried out at least twice weekly during the treatment.

Response criteria

A tumour response to suramin was defined as complete (complete response, CR) if there was no sign of measurable disease for at least 6 months. Partial response (PR) was equivalent to a more than 25% decrease, and progressive disease (POD) to a more than 25% increase of the radiologically measurable extent of disease. Stable disease (SD) was defined as ≤ 25% increase or decrease of measurable disease.

Statistical analysis

Linear and exponential regression analyses were used to determine the correlation between blood or coagulation parameters and suramin serum level or cumulative dose. A correlation was considered statistically significant with a P value less than 0·05.

Results

During treatment periods varying from 1 to 15 months cumulative doses of suramin ranging from 8·2 to 30·2 g were administered (see Table 3).

Efficacy

Three patients achieved a partial response (PR) during suramin therapy. Almost complete disappearance of multiple lung metastases was observed for 5 months in patient 1 and for 7 months in patient 8. In the third patient an extensive vertebral bone lesion (maximum diameter 8 cm) decreased in size by more than 50%. This patient also received local radiotherapy during the first 4 weeks of suramin treatment. There may have been an additive effect but regression of the lesion only became apparent 3 months after cessation of radiation therapy suggesting that the tumour regression was induced largely by continuous suramin therapy. Two of the nine patients showed transient disease stabilization (SD) during suramin treatment and
Table 3 Suramin therapy and tumour response (n = 9)

<table>
<thead>
<tr>
<th>Pat. no.</th>
<th>Tumour response</th>
<th>max. serum level (mg/l)</th>
<th>serum levels continuously for ≥4 weeks</th>
<th>cumulative dose (g)</th>
<th>duration of therapy (months)</th>
<th>Survival after start of suramin therapy (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PR(5)</td>
<td>476</td>
<td>+</td>
<td>24.7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>PR(7)</td>
<td>361</td>
<td>+</td>
<td>30.2</td>
<td>15</td>
<td>≥36</td>
</tr>
<tr>
<td>9</td>
<td>PR(5)</td>
<td>232</td>
<td>+</td>
<td>18.2</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>SD(3)</td>
<td>283</td>
<td>+</td>
<td>26.1</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>SD(1)</td>
<td>246</td>
<td>-</td>
<td>11.6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>POD</td>
<td>199</td>
<td>-</td>
<td>10.0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>POD</td>
<td>169</td>
<td>-</td>
<td>11.5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>POD</td>
<td>93</td>
<td>-</td>
<td>12.3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>POD</td>
<td>64</td>
<td>-</td>
<td>8.2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Tumour response: PR, partial response; SD, stable disease; POD, progressive disease (definitions see 'Response criteria'). Duration of response (months) is given in parentheses.

Of four of nine presented with progressive disease (POD) in spite of suramin therapy. PR or SD was associated with serum suramin levels ≥200 mg/l whereas in the four patients with POD serum levels ≥200 mg/l were measured only on single occasions (1/4) or never (3/4) (see Fig. 1). In all three cases with PR tumour regression was observed after a minimum of 4 weeks with serum suramin levels ranging continuously between 180 and 250 mg/l.

In patient 1 (additionally suffering from 21-hydroxylase deficiency) radiologically visible shrinkage of tumour mass was paralleled by a decline in elevated 17α-OH-progesterone levels, returning to elevated levels after relapse. In none of the five other patients with steroid-secreting tumours was an influence of suramin on steroid production detected.

Treatment was terminated in two patients (1 PR, 1 SD) because of major toxicity (see below), in three patients because of relapse after initial tumour response (2 PR, 1 SD) and in four patients because of lack of response to suramin treatment. Relapse occurred in two of the three patients with PR after a period of at least 4 weeks with serum suramin levels continuously below 100 mg/l. In both cases reinduction therapy leading to serum concentrations above 200 mg/l was without effect on tumour progression. Two patients (nos 4 and 8) with initial response to suramin received additional cytotoxic polychemotherapy after they had relapsed. However, no tumour regression was found. The survival after initiation of suramin therapy varied between 1 and more than 36 months (median 9 months); patient 8 is still alive despite progressive disease.

Toxicity (see Table 4)

Renal and hepatic function impairment was only mild and transient: elevation of serum alkaline phosphatase (4/9) and albuminuria (2/9) were reversible during ongoing treatment. Elevation of serum creatinine (177 μmol/l) was seen in the patient with unilateral nephrectomy (patient 1) and was reversible after cessation of treatment.

A coagulopathy with a prolongation of partial thromboplastin time (PTT) and an alteration of prothrombin time...
Table 4 Toxicity during suramin therapy (n = 9) and association with mode of administration, serum concentration or cumulative dose of suramin

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>n</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal function impairment</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>albuminuria (> 0.2 g/day)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>creatinine elevation (> 133 μmol/l)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hepatic dysfunction</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>alkaline phosphatase elevation (> 200 U/l)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>6</td>
<td>serum level</td>
</tr>
<tr>
<td>Myelotoxicity</td>
<td>6</td>
<td>cumulative dose</td>
</tr>
<tr>
<td>thrombocytopenia (< 120 × 10^9/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>haemoglobin decrease (> 30 g/l)</td>
<td>2</td>
<td>cumulative dose</td>
</tr>
<tr>
<td>Neurological disorders</td>
<td>3</td>
<td>bolus injection</td>
</tr>
<tr>
<td>paraesthesia and/or dyseusia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>polyneuropathy</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>including sensorimotor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guillain-Barré-like syndrome</td>
<td>1</td>
<td>serum level</td>
</tr>
<tr>
<td>motor polyneuropathy</td>
<td>1</td>
<td>cumulative dose</td>
</tr>
<tr>
<td>Skin reactions</td>
<td>3</td>
<td>bolus injection (n = 2)</td>
</tr>
<tr>
<td>generalized exanthema</td>
<td></td>
<td></td>
</tr>
<tr>
<td>toxic epidermal necrolysis</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Vortex keratopathy</td>
<td>3</td>
<td>cumulative dose</td>
</tr>
</tbody>
</table>

(given as Quick value) was found in six of nine patients. Its incidence was positively correlated to suramin serum levels (PTT: r = 0.61, P < 0.01; Quick: r = 0.75, P < 0.01) (see Fig. 2a and b).

Additionally, six patients presented with thrombocytopenia after doses of 8.2–11.6 g suramin while three patients received similar doses without developing thrombocytopenia. However, this side-effect was significantly correlated with the cumulative dose of suramin (r = 0.69, P < 0.01; see Fig. 3). The coincidence of coagulopathy and thrombocytopenia did not result in bleeding complications. In two patients who underwent cytotoxic polychemotherapy prior to suramin a haemoglobin decrease was found after doses of 20.6 and 21.7 g, respectively.

Neurological impairment was noted in five patients. Three presented with paraesthesia and/or dyseusia shortly after bolus injection reversible within minutes to hours. Patient 1 developed a severe Guillain-Barré-like sensorimotor polyneuropathy (PNP) following a period with serum suramin levels between 340 and 470 mg/l. While motor function gradually improved the patient experienced sudden death by acute cardiac failure. Whether autonomic polyneuropathy or progressive disease was involved remains uncertain. In patient 4 a clinically silent motor PNP was detected after a total dose of 19.6 g suramin with serum levels ranging between 120 and 230 mg/l. After cessation of therapy PNP did not improve during a follow-up period of 7 months.

Skin reactions were seen in four patients, two patients showing a generalized rash shortly after bolus injection of suramin reversible within hours. Patient 8 presented with generalized exanthema independent of bolus injection reversible after the administration of steroids and transient interruption of suramin therapy. An additional patient (no. 6) died after 6 weeks of treatment after the sudden development of toxic epidermal necrolysis while suramin

![Fig. 2 Correlation between a, Quick value and b, partial thromboplastin time (PTT) respectively, and serum suramin concentration (ssc) (n = 9). Quick vs ssc: r = 0.75, P < 0.01; PTT vs ssc: r = 0.61, P < 0.01.](image-url)
concentrations ranged from 170 to 246 mg/l (May & Allolio, 1991).

Vortex keratopathy was observed as a minor complaint in the three patients with the longest duration of therapy, occurring after a minimum of 8 weeks of treatment. It progressed slowly during ongoing treatment and remained unchanged during follow-up after cessation of suramin.

Discussion

The response rate in our patients is similar to the findings of Stein et al. (1989) and LaRocca et al. (1990a) in patients with ACC. In our series we observed a dramatic regression of disseminated lung metastases in two patients and a reduction of extensive bone metastases in one patient. The tumour response was related to serum suramin concentrations ≥ 200 mg/l (target concentration). In our patients PR occurred only after 4 weeks with serum suramin levels near the target concentration. This is supported by in-vitro results in two adrenocortical carcinoma cell lines NCI-H295 and SW13 showing cytotoxic effects of suramin only at concentrations above 200 mg/l (Allolio et al., 1989b; LaRocca et al., 1990a).

Unfortunately, in accordance with the results of LaRocca et al. (1990a) the partial responses were transient. In our patients a relapse was seen 4–6 weeks after suramin levels declined below 100 mg/l. Reinduction therapy with suramin concentrations above 200 mg/l resulted in a high incidence of side-effects without tumour response. This escape phenomenon remains to be explained.

Stein et al. (1989) reported that in patients with high tumour bulk it took far higher doses to reach the target serum concentrations and they suggested an accumulation of suramin in tumour tissue. Four of our nine patients suffered from extensive metastases (≥ 3 sites of disease) and target concentrations were achieved in none of these. All experienced progressive disease.

Initially the adrenotoxic properties of suramin (Feuillan et al., 1987) provided the rationale for the use of this drug in adrenal cancer. However, there is increasing evidence that suramin interferes with a variety of regulatory processes involved in malignant cell transformation and growth. Because of its polyanionic molecular structure suramin binds to positively charged proteins and may lead to disturbances of cellular energy balance by inhibition of ATPase (Fortes et al., 1973) or LDL-receptor binding (Schneider et al., 1982). Suramin is known also to influence cell replication by inhibition of RNA- and DNA-polymerases (Basu & Modak, 1985; Jindal et al., 1990).

Furthermore, the suramin molecule shows structural similarities to sulphated glycosaminoglycans (GAGs) which are ubiquitous on cell surfaces and in matrix tissue and take part in cell contact, recognition and growth control (Dietrich & Montes de Oca, 1978). Some GAG-degrading enzymes produced by tumour cells facilitating invasion and metastases are inhibited by suramin (Nakajima et al., 1991). This also leads to GAG accumulation in serum and tissue (Constantopoulos et al., 1980).

The most likely explanation for the anti-tumour activity of suramin may be its interaction with growth factors (GFs) which are able to promote tumour growth by autocrine or paracrine stimulation. Direct binding of the suramin molecule to GFs and/or to their receptors has been described for platelet-derived growth factor (PDGF) (Williams et al., 1984; Hosang, 1985), epidermal growth factor (EGF) (Betscholtz et al., 1986), transforming growth factor beta (TGF-\(\beta\)) (Coffey et al., 1987) as well as for GFs with angiogenic capacity (AFs) (Vaisman et al., 1990; Sato & Rifkin, 1988). An important role for EGF and bFGF and for AFs in promoting malignant growth has been suggested for adrenocortical carcinoma by in-vitro studies (Kamio et al., 1990, 1991; Wellstein et al., 1990; Plouet & Moukadiri, 1990).

In accord with its multitude of possible anti-tumour actions suramin also leads to a variety of side-effects. In our patients alterations of renal and hepatic function parameters were only mild and seemed to be associated with the loading period and/or bolus injection. The incidence of renal
dysfunction noted by Stein et al. (1989) was far higher (10/10) than in our patients (2/9); this may be explained by the fact that all patients presented by Stein et al. had undergone unilateral nephrectomy (in our patients only 1/9). Other mild side-effects possibly related to transient peaks of suramin concentration after bolus injection were generalized rash (2/9) and paraesthesiae (3/9).

A serious toxicity positively correlated with suramin serum concentration was coagulopathy seen in six of our nine patients. Similar to Horne et al. (1988) significant changes of clotting parameters became measurable at suramin serum levels around 250 mg/l. We found an involvement of both intrinsic and extrinsic clotting systems. Horne et al. (1988) studied plasma from suramin treated patients and found an accumulation of the GAGs heparan sulphate and dermatan sulphate exhibiting a heparin-like anticoagulant activity. In a recent study Horne et al. (1992) found direct inhibitory effects of suramin on procoagulant proteins (factors XII, XI, VIII, X, V) explaining the involvement of the intrinsic clotting system. Such direct effects have already been described by Eisen and Loveday (1973) who also found an anti-thrombin activity of suramin. In contrast to the patients reported by Stein et al. (1989) no significant bleeding complications were observed in our patients. A correlation between tumour response and incidence of suramin-induced coagulopathy (Stein et al., 1989) was also not seen in our patients. Another toxicity associated with GAG accumulation was vortex keratopathy. It resulted in minor complaints but may bear the risk of visual function impairment as histological examination of lens epithelia and retinal cells from suramin treated patients revealed significant GAG accumulation (Holland et al., 1988). In our patients keratopathy seemed to be related to the cumulative dose of suramin.

The incidence of myelotoxicity during suramin treatment also seemed to depend on cumulative dose. A specific accumulation of suramin in bone marrow cells has been described repeatedly and may lead to direct interference of the drug with haemopoietic growth factors as is known for heparan sulphate (Buys et al., 1978; Constantopoulos et al., 1980; Roberts et al., 1980; Roberts et al., 1988). This suggests that suramin induced myelotoxicity will be reversible paralleling tissue clearance. Suramin related thrombocytopenia may also be caused by complement activation following the formation of drug–antibody complexes; a case of severe immune mediated thrombocytopenia has been reported recently by Seidman et al. (1993).

Another possibly immune mediated toxicity is Guillain-Barré-like polyneuropathic syndrome (GBS) which developed in one of our patients while serum suramin concentrations varied between 300 and 400 mg/l. LaRocca et al. (1990b) found a 40% risk of GBS in patients with serum concentrations above 350 mg/l and noted a good response to plasmapheresis. In one additional patient we observed a clinically silent motor polyneuropathy slowly progressing with increasing cumulative dose of suramin, an association that has not been described yet.

An immunosuppressive influence of the drug was proposed by O'Donnell et al. (1992) who described two patients who developed keratoacanthoma during suramin therapy. As a possible mechanism for immunosuppression Mills et al. (1990) described an inhibitory effect of suramin on the interleukin-2 binding to lymphoid cells possibly leading to altered proliferation and differentiation.

In our series allergic skin reactions were frequent (4/9) and may be serious, as one patient experienced a lethal toxic epidermal necrolysis (May & Allolio, 1991). A history of drug-induced allergic skin reactions was reported by three of the four symptomatic patients and perhaps should be considered an exclusion criterion for suramin treatment. In a recent letter Falkson and Rapoport (1992) suggested the administration of 200 mg hydrocortisone preceding each suramin injection and reported promising reduction of allergic skin reactions. As Wilks et al. (1991) demonstrated in vitro, combination treatment with steroids and suramin may also support the anti-tumour efficacy by increased inhibition of angiogenesis.

The incidence of serious side-effects (polyneuropathy and coagulopathy) associated with serum suramin concentrations above 300 mg/l and the anti-tumour activity of suramin being found to depend on serum concentrations above 200 mg/l, demonstrate a narrow therapeutic window. This suggests mandatory strict serum level monitoring during suramin therapy.

Suramin treatment is hampered by the unique pharmacokinetic characteristics of the drug: an extremely strong protein binding (99-7%), an extensive lysosomotropic tissue accumulation (>90%), and a lack of metabolism leading to a slow renal clearance and a plasma half-life of 44–54 days (Buys et al., 1978; Collins et al., 1986). Recent studies suggested a computer-assisted Bayesian approach for development of individualized dosing schemes (Scher et al., 1992; Cooper et al., 1992; van Rijswijk et al., 1992).

The use of suramin in combination therapies may lead to a dose reduction and thereby to a reduction of toxicity and/or an enhancement of anti-tumour efficacy. Vierhapper et al. (1989) reported on a patient with ACC presenting with partial response during combined treatment with suramin and mitotane. Furthermore, there are in-vitro data suggesting synergistic activities of suramin with cytotoxic drugs like cyclophosphamide (Osswald & Youssef, 1979) and tumour
necrosis factor alpha (Fruehauf et al., 1990). Another possibility for avoiding toxicity may be the use of structural analogues of suramin (Baghdiguian et al., 1990; 1991).

In conclusion, suramin is of limited efficacy in patients with metastatic adrenocortical carcinoma and its use is complicated by a high incidence of serious toxicity. The unique properties of suramin demand further research. At the moment it is not a first-line treatment for metastatic adrenocortical carcinoma. Controlled prospective trials are urgently needed to improve the treatment options for this malignancy.

Acknowledgements

We are grateful to Dr M. Baldus, Ludwigshafen, Professor Dr J. Beyer, Mainz, and Dr T. Geer, Schwäbisch-Hall, for allowing us to analyse the data from one of their patients.

BA is supported by the Deutsche Forschungsgemeinschaft (Al 203/4-1).

References

