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SUMMARY

Protein translocation into the endoplasmic reticulum (ER) occurs either co- or post-translationally through

the Sec translocation system. The Arabidopsis Sec post-translocon is composed of the protein-conducting

Sec61 complex, the chaperone-docking protein AtTPR7, the J-domain-containing proteins AtERdj2A/B and

the yet uncharacterized AtSec62. Yeast Sec62p is suggested to mainly function in post-translational translo-

cation, whereas mammalian Sec62 also interacts with ribosomes. In Arabidopsis, loss of AtSec62 leads to

impaired growth and drastically reduced male fertility indicating the importance of AtSec62 in protein

translocation and subsequent secretion in male gametophyte development. Moreover, AtSec62 seems to be

divergent in function as compared with yeast Sec62p, since we were not able to complement the ther-

mosensitive yeast mutant sec62-ts. Interestingly, AtSec62 has an additional third transmembrane domain in

contrast to its yeast and mammalian counterparts resulting in an altered topology with the C-terminus fac-

ing the ER lumen instead of the cytosol. In addition, the AtSec62 C-terminus has proven to be indispensable

for AtSec62 function, since a construct lacking the C-terminal region was not able to rescue the mutant phe-

notype in Arabidopsis. We thus propose that Sec62 acquired a unique topology and function in protein

translocation into the ER in plants.

Keywords: AtSec62, Sec translocon, post-translational translocation, endoplasmic reticulum, male fertility,

Arabidopsis thaliana.

INTRODUCTION

Membrane as well as secretory proteins are synthesized on

cytosolic ribosomes and need to be transported across or

into the endoplasmic reticulum (ER) membrane for

processing and for further transport through the Golgi

apparatus. Translocation of pre-proteins can occur either

co-translationally or in a post-translational manner

(reviewed by Rapoport, 2007; Cross et al., 2009; Zimmer-

mann et al., 2011; Linxweiler et al., 2017).

Co-translational protein transport into the ER involves

the signal recognition particle (SRP) which is binding to

the N-terminal signal sequence of the emerging polypep-

tide chain at the ribosomes thereby arresting elongation

(Saraogi and Shan, 2011). Subsequently, the SRP binds the

SRP receptor which is localized to the ER membrane and is

composed of the soluble subunit SRa and the membrane

anchoring SRb (Tajima et al., 1986; Schwartz and Blobel,

2003). Binding of the SRP to its receptor enables an inter-

action of the ribosome, still harbouring the nascent

polypeptide chain, and the Sec translocation complex (Sar-

aogi and Shan, 2011). Translation continues after dissocia-

tion of the SRP, while the emerging polypeptide is

simultaneously translocated through the Sec61 channel

(Saraogi and Shan, 2011).

However, most small pre-secretory proteins in yeast and

mammals are imported post-translationally due to their

signal sequence being transcribed only shortly before pro-

tein translation is entirely completed (Lakkaraju et al.,

2012; Ast and Schuldiner, 2013). Fully translated pre-pro-

teins are bound by cytosolic chaperones including heat

shock proteins (HSPs) like HSP70, which prevent molecular

crowding as well as premature folding of the polypeptide

and facilitate guidance of the pre-protein to the Sec

translocation complex (Zimmermann et al., 1988; Ng et al.,

1996; Ngosuwan et al., 2003). In yeast, the Sec translocon

is composed of the heterotrimeric complex Sec61 (com-

posed of Sec61p, Sbh1p and Sss1p) forming the transloca-

tion channel and a tetrameric complex of Sec62p, Sec63p,
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Sec71p and Sec72p (Deshaies et al., 1991; Panzner et al.,

1995; Harada et al., 2011). The Sec61 complex and Sec63p

are involved in co-and post-translational protein transloca-

tion, whereas Sec62p, Sec71p and Sec72p are associated

with post-translational translocation only (Deshaies et al.,

1991; Brodsky and Schekman, 1993; Panzner et al., 1995).

Together, Sec62p, Sec71p and Sec72p, probably act as a

signal peptide receptor with Sec72p enabling interaction

through its tetratricopeptide repeat (TPR) domain (Fang

and Green, 1994; Feldheim and Schekman, 1994; Lyman

and Schekman, 1997; Plath et al., 1998; Schlegel et al.,

2007). Moreover, Yim et al. (2018) proposed that Sec62p,

Sec63p, Sec71p and Sec72p associate in different combina-

tions depending on the signal sequence characteristics of

the translocation substrate. The positively charged Sec62p

N-terminus is important for its interaction with Sec63p

(Wittke et al., 2000; Willer et al., 2003; M€uller et al., 2010;

Jung et al., 2014) and recent studies even suggested a role

for the Sec62p–Sec63p complex in membrane protein

insertion and topogenesis of signal anchor proteins (Rei-

thinger et al., 2013; Jung et al., 2014, 2019). Moreover, the

Sec62p–Sec63p complex has been shown to interact with

Sec61 through Sec63p thereby causing lateral channel

opening and activating Sec61 for post-translational protein

translocation (Harada et al., 2011; Itskanov and Park, 2019;

Wu et al., 2019). For successful import into the ER the

luminal HSP70-like chaperone Kar2p/BiP binds to the

polypeptide chain, while it is still translocated by Sec61 to

prevent it from sliding back into the cytosol (Brodsky and

Schekman, 1993; Brodsky et al., 1995; Panzner et al., 1995;

Osborne et al., 2005; Rapoport, 2007). For this purpose,

Kar2p/BiP interacts with the J-domain of Sec63p activating

its ATPase domain and thereby closing its peptide binding

pocket (Brodsky and Schekman, 1993; Brodsky et al., 1995;

Osborne et al., 2005; Rapoport, 2007). After complete

translocation, peptide-bound Kar2p/BiP is released by ADP-

ATP exchange (Osborne et al., 2005; Rapoport, 2007).

For mammalian cells, favouring co-translational protein

import, the homologous Sec62 has been shown to be

interacting with the ribosomal exit tunnel, suggesting a

role of Sec62 in co-translational protein transport as well

and therefore a gain of function in comparison with its

yeast homologue (M€uller et al., 2010). This interaction is

enabled by two oligopeptide motifs that are exclusively

found in mammalian Sec62 but not in its yeast or plant

homologues (M€uller et al., 2010). Nevertheless, Lang et al.

(2012) demonstrated that silencing of SEC62 impairs the

post-translational import of a small, pre-secretory protein

into the human ER, while co-translational translocation as

well as post-translational insertion of tail-anchored pro-

teins remained unaffected indicating that ribosome bind-

ing of Sec62 might only be relevant in coordinating protein

translocation across the ER membrane. Furthermore,

Lakkaraju et al. (2012) found that mammalian Sec62

ensures efficient post-translational translocation of pro-

teins shorter than around 160 amino acids and is crucial

for proteins up to a length of 100 amino acids. Mammalian

Sec62 and Sec63 are associated with the Sec61 channel

(Meyer et al., 2000; Tyedmers et al., 2000) (composed of

Sec61a, Sec61b and Sec61c being the mammalian homo-

logues of Sec61p, Sbh1p and Sss1p, compare with

Mart�ınez-Gil et al., 2011) and might also be involved in

recruiting BiP as well as translocation substrates to the

translocon (M€uller et al., 2010; Lakkaraju et al., 2012). The

interaction between Sec62 and Sec61 is Ca2+-sensitive and

mammalian Sec62, possessing a potential C-terminal EF

hand motif, is important for Ca2+ homeostasis (Linxweiler

et al., 2013). An additional role of Sec62 in stress recovery

has recently been shown by demonstrating that a C-termi-

nal region of human Sec62 is required for delivering ER

proteins to the autolysosomal system (Fumagalli et al.,

2016).

However, there is only scarce knowledge concerning the

ER protein translocation in plants. The Arabidopsis thali-

ana genome encodes three isoforms of the channel-form-

ing Sec61a homologue, two isoforms of the Sec63

homologue, named AtERdj2A and AtERdj2B (Yamamoto

et al., 2008), but only one Sec62 homologue (Schweiger

and Schwenkert, 2013). Yamamoto et al. (2008) demon-

strated the importance of AtERdj2A in protein translocation

reflected by drastic pollen germination defects in the

respective T-DNA insertion line probably due to defective

protein secretion, whereas AtERdj2B was proposed to have

an auxiliary role only. Interestingly, neither AtERdj2A nor

AtERdj2B was able to rescue the thermosensitive growth

phenotype of the respective yeast mutant (Yamamoto

et al., 2008). The ER localized TPR protein AtTPR7 has

recently been described and its interaction with the cytoso-

lic chaperones HSP70 and HSP90 was demonstrated,

implying a role in guiding pre-proteins to the Sec post-

translocon (Schweiger et al., 2012, 2013; Schweiger and

Schwenkert, 2013). Strikingly, AtTPR7 was able to restore

post-translational protein import in a Dsec71 yeast knock-

out mutant and was proposed to functionally replace

Sec71p and the TPR protein Sec72p (Schweiger et al.,

2012). An interaction between AtTPR7 and AtERdj2A/B as

well as AtSec62 has additionally been shown providing

further information regarding the composition of the Ara-

bidopsis Sec post-translocon (Schweiger et al., 2012; Sch-

weiger and Schwenkert, 2013).

In this study, we characterize the ER membrane localized

protein AtSec62 (At3g20920), which shares only 12%

sequence identity with yeast Sec62p and 15% with its

mammalian counterpart (Schweiger and Schwenkert,

2013). We demonstrate that AtSec62 interestingly has a

third transmembrane domain in contrast with its yeast and

mammalian homologues (Deshaies and Schekman, 1989,

1990; M€uller et al., 2010) resulting in its C-terminus being
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exposed to the ER lumen. The atsec62 T-DNA insertion line

displays defects in pollen development and pollen tube

germination implying an important role of AtSec62 for

male fertility probably due to influencing protein secretion

similar to AtERdj2A (Yamamoto et al., 2008). Furthermore,

we show that AtSec62 is not able to rescue the thermosen-

sitive growth phenotype of the respective sec62-ts yeast

mutant and that its C-terminus is essential for AtSec62

function. We therefore propose that the AtSec62 C-termi-

nus acquired a unique function in plants and that AtSec62,

as part of the Sec post-translocon in Arabidopsis, is critical

for plant growth and male fertility.

RESULTS

atsec62 displays vegetative and generative growth defects

We identified an atsec62 T-DNA insertion line with an

insertion in exon 1 of AtSEC62 and homozygous mutant

plants were selected by PCR using the oligonucleotides

AtSEC62-50UTR-f, AtSEC62-Exon2-r and Gabi-LB8409 (Fig-

ure 1a,b). Even though no obvious aerial phenotype was

observable during initial growth, atsec62 plants clearly dis-

played an impaired growth in comparison with wild-type

plants after 4 weeks (Figure 1c). However, 2-week-old at-

sec62 seedlings already showed an altered root morphol-

ogy in contrast with Col-0 with their primary root length

being reduced by 31% but a nearly 50% increase regarding

the number of lateral roots (Figure S1). RNA was extracted

from leaves of 4-week-old plants and the absence of

AtSEC62 transcript in atsec62 was confirmed by RT-PCR

(Figure 1d). Immunodetection using an AtSec62 specific

antibody also revealed the absence of AtSec62 protein in

microsomal membranes isolated from atsec62 leaves (Fig-

ure 1e). For complementation analysis, we generated a

construct coding for the full-length AtSEC62 under the con-

trol of the endogenous promoter. Following stable trans-

formation and selection of plants, we isolated two lines of

homozygous atsec62 plants carrying the construct coding

for endogenous AtSEC62, pAtSEC62::AtSEC62 #14-6 and

pAtSEC62::AtSEC62 #27-2 (Figure 1b,d). In both lines, the

atsec62 growth phenotype was completely rescued by

expression of endogenous AtSec62 (Figure 1c).

During initial screening for atsec62 plants, we observed a

very low number of homozygous mutant plants and conse-

quently examined the segregation pattern of progeny

plants derived from heterozygous atsec62 plants (+/�). Nor-

mal Mendelian segregation would imply 50% heterozygous

progeny, 25% wild-type and 25% homozygous progeny.

Interestingly, plants displayed only 8.83% homozygous pro-

geny, but 40.38% wild-type and 50.79% heterozygous pro-

geny (n = 317), significantly differing from the expected

ratio (Table 1a). When grown on half-strength Murashige

and Skoog (½MS) medium containing 10 lg ml�1 sulfadi-

azine, only plants carrying the T-DNA insertion should be

resistant, resulting in 75% of resistant progeny plants

derived from atsec62 (+/�). However, we observed only

Figure 1. atsec62 T-DNA insertion line and complementation. (a) AT3G20920 (AtSEC62) gene structure and location of the T-DNA insertion in exon 1, also indi-

cating the T-DNA left (LB) and right border (RB). (b) Genotyping PCR using the oligonucleotides AtSEC62-50UTR-f, AtSEC62-Exon2-r and Gabi-LB8409. Oligonu-

cleotide binding sites in AtSEC62 are indicated in (a). (c) Phenotyping of 4-week-old plants of the atsec62 T-DNA insertion line and the complemented lines

pAtSEC62::AtSEC62 #14-6 (#14-6) as well as pAtSEC62::AtSEC62 #27-2 (#27-2) in comparison with Col-0. Scale bar represents 2 cm. (d) RT-PCR for AtSEC62 and

the control AtBIP2. Oligonucleotide binding sites for AtSEC62-Exon1-f and AtSEC62-Exon5-r in AtSEC62 are indicated in (a). (e) Immunodetection of Col-0 and at-

sec62 microsomal membranes using an AtSec62 antibody (upper panel) and Coomassie stain (lower panel).
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58.63% and therefore assumed that the transmission of the

AtSEC62 mutation was affected (Table 1b). Male or female

gametophyte mutants typically display a segregation ratio

of 1:1 (Liu and Qu, 2008; Drews and Koltunow, 2011), but

progeny plants derived from atsec62 (+/�) rather segre-

gated in a 3:2 ratio (Table 1b).

Defects in pollen development and tube germination lead

to decreased male fertility in atsec62

Besides the distorted segregation ratio, we observed

aborted and mostly empty siliques for atsec62 providing

further evidence for a gametophytic defect in the mutant

(Figure 2a). For further analysis of potential gametophytic

defects, we examined the siliques of atsec62 (+/�), which

should display a reduced seed set or defective seeds if the

female gametophyte was non-functional (Liu and Qu, 2008;

Drews and Koltunow, 2011). As we observed no difference

between wild-type siliques and those of heterozygous

mutant plants, we conclude that female gametophytes in

atsec62 are still functional.

We then tested pollen viability by Alexander staining

which allows discriminating between viable (violet stain-

ing) and non-functional, greenish pollen grains (Alexander,

1969). When staining anthers of opening buds, the major-

ity of atsec62 anthers appeared rather greenish with only

occasionally faint violet staining and no pollen-like struc-

tures visible, whereas viable pollen grains were present in

Col-0 and the complemented lines (Figure 2b). Strikingly,

when staining anthers of already open flowers, corre-

sponding to dehiscent wild-type anthers, we observed

some pollen-like structures clustered together in atsec62

anthers (Figure 2b). Besides general defects in pollen

development probably resulting in coherent pollen-like

structures, we therefore propose that in atsec62 anther

and pollen development are severely delayed in compar-

ison with the female gametophyte and therefore proper

pollination does not occur. In vitro pollen germination was

subsequently examined by incubating pollen grains on

solid medium for 22 h at either 25°C or 37°C. Interestingly,
less pollen were released from atsec62 than from Col-0

anthers and the germination rate of atsec62 pollen at 25°C
was reduced by 57% in comparison to wild-type pollen,

while mutant pollen were hardly germinating at 37°C
(Table 2). We therefore assume that the absence of

AtSec62 also has a great impact on pollen tube germina-

tion, which is likewise reflected in the expression pattern

of AtSEC62 with the highest expression being observed in

the mature pollen (Arabidopsis eFP browser, http://bar.utor

onto.ca/, Winter et al., 2007). Due to defective pollen devel-

opment and pollen tube germination, atsec62 displays a

drastically reduced male fertility resulting in only

3.79 � 2.42 mg seeds/plant (n = 28) in comparison with

Col-0 plants yielding 440.50 � 26.33 mg seeds/plant

(n = 7) (shown as mean � SD, P = 4.86 9 10�40, compare

with Figure 2c).

atsec62 is sensitive towards high-temperature and ER

stress

For further investigation of heat sensitivity of atsec62, we

conducted a high-temperature stress treatment according

to Yang et al. (2009). Seeds on ½MS medium were strati-

fied for 3 days at 4°C, germinated at 37°C for 48 h and then

transferred to 22°C. Germination was monitored 5 days

after stress treatment, while survival rate was determined

after 12 days growth at 22°C. Without heat treatment, the

germination rate of atsec62 seeds is already reduced by

15% in comparison with Col-0 seeds, while there is no fur-

ther effect on the germination rate upon high-temperature

stress (Table 2). Whereas 25.96% of germinated atsec62

plants suffered and died from the previous treatment, wild-

type plants survived (Table 2). In addition to the reduced

tolerance of atsec62 against heat, we observed an

increased susceptibility towards ER stress, when growing

plants on ½MS medium containing dithiothreitol (DTT)

(Figure S2).

AtSec62 localizes to the ER membrane and has three

transmembrane domains

Besides its role during plant growth and development, we

were interested in the orientation of AtSec62 within the ER

membrane. It has recently been suggested that AtSec62

has a third predicted transmembrane domain (Schweiger

and Schwenkert, 2013), which would alter its topology in

comparison with its yeast and mammalian counterparts

(Deshaies and Schekman, 1989, 1990; M€uller et al., 2010).

For further investigation, we compared the amino acid

sequences of different Sec62 homologues including higher

plants (A. thaliana, Oryza sativa and Zea mays), the moss

Table 1 Segregation analysis for heterozygous atsec62 (+/�)
plants. (a) Segregation of atsec62 (+/�) in comparison with Col-0
and pAtSEC62::AtSEC62 #14-6 (#14-6) as well as pAtSEC62::
AtSEC62 #27-2 (#27-2). Progeny genotype was determined by PCR
using AtSEC62 and T-DNA specific oligonucleotides. (b) Segrega-
tion on sulfadiazine (10 lg ml�1) was examined by investigating
the number of resistant (SulfaR) and sensitive (SulfaS) plants.
P-value for expected segregation, validation by chi-squared
analysis

(a) Segregation

Genotype
Wild-type
progeny

Heterozygous
progeny

Homozygous
progeny p1:2:1

atsec62 (+/-) 128 161 28 1.92 9 10-4

(b) Segregation on sulfadiazine
Genotype SulfaR SulfaS SulfaR [%] p3:1 p1:1 p3:2

Col-0 0 100 0 � � �
atsec62 (+/-) 163 115 58.63 2.94 x 10-10 0.0040 0.6418
#14-6 98 0 100 � � �
#27-2 103 0 100 � � �
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Physcomitrella patens, the unicellular green algae Chlamy-

domonas reinhardtii as well as mammals (Homo sapiens

and Mus musculus), Drosophila eugracilis and yeast (Sac-

charomyces cerevisiae). Interestingly, AtSec62 shares only

12% and 15% sequence identity with its yeast and mam-

malian counterparts (Schweiger and Schwenkert, 2013).

Two transmembrane domains were predicted for all ana-

lyzed Sec62 homologues, whereas a third transmembrane

domain was only predicted for plant Sec62 containing

many hydrophobic amino acids (Figure 3a, for complete

sequence alignment see Figure S3). Furthermore, the C-ter-

minal region of AtSec62 harbours predicted N-glycosyla-

tion sites with the consensus motif N-X-S/T (with X being

any amino acid except proline) (compare with Marshall,

1972), which are absent in yeast and mammals (compare

with Figure S3). We investigated AtSec62 topology by

using the full-length AtSec62 as well as a truncated

AtSec62 lacking the C-terminal region and the third trans-

membrane domain (D248�365), named AtSec62�DTMD3/C

(Figure 3b).

We initially expressed N- and C-terminal GFP-fusion con-

structs in tobacco, named GFP�AtSEC62 and

AtSEC62�GFP, to test whether GFP-fusion would affect

AtSec62 targeting and to confirm its ER localization. Both

constructs and a construct coding for an ER marker protein

fused to mCherry (compare with Nelson et al., 2007) were

transformed into Agrobacterium and bacterial cells carry-

ing the respective constructs were co-infiltrated into

tobacco leaves. Fluorescence was monitored in intact

leaves or isolated protoplasts. Both GFP-fusion proteins

were localized to the ER, indicating that fusion of a GFP-tag

would not affect AtSec62 targeting (Figures 4a–c and S4).

To confirm the altered topology of AtSec62, we made

use of a Split-GFP Gateway system including plasmids

coding for cytosolic or ER luminal GFP1–10 (Xie et al.,

2017). In addition, we generated constructs with an N- or

C-terminal fusion of the eleventh GFP b-sheet to AtSec62,

named GFP11–AtSec62 and AtSec62�GFP11, or to

AtSec62�DTMD3/C, named GFP11–AtSec62-DTMD3/C and

AtSec62�DTMD3/C�GFP11. After co-infiltration into

tobacco leaves, we detected fluorescent signals in intact

leaves as well as in isolated protoplasts (Figures 4d and

S5). Only upon co-expression with the cytosolic GFP1–10,
there was an ER localized fluorescent signal detectable for

GFP11�AtSec62, whereas fluorescence for AtSec62�GFP11

was only observable when co-expressed with the ER lumi-

nal GFP1–10�HDEL. In contrast, GFP11�AtSec62�DTMD3/

C and AtSec62�DTMD3/C�GFP11 produced a detectable

signal only with cytosolic GFP1–10. We therefore demon-

strated that AtSec62 has three transmembrane domains

Figure 2. Reduced male fertility in atsec62. (a) Sili-

ques of atsec62 in comparison with Col-0 and com-

plemented lines pAtSEC62::AtSEC62 #14-6 (#14-6)

as well as pAtSEC62::AtSEC62 #27-2 (#27-2). Scale

bars represent 5 mm. (b) Alexander staining of

anthers from opening buds or open flowers of Col-

0, atsec62 and the complemented lines #14-6 and

#27-2. Scale bars represent 100 lm. (c) Amount of

Col-0 and atsec62 seeds obtained from one plant.

Scale bar represents 5 mm.

Table 2 Comparison of Col-0 and atsec62 pollen tube germina-
tion, seed germination and survival upon high-temperature stress.
Numbers indicate percentage of germinated pollen and seeds or
percentage of germinated plants that survived high-temperature
stress

Line

Pollen tube
germination [%]a

Seed
germination [%]b Survival [%]c

25°C 37°C 22°C 37°C 22°C 37°C

Col-0 24.56 15.78 97.80 96.12 100.00 99.24
atsec62 10.50 0.82 83.46 81.40 96.43 74.04

aCol-0 at 25°C (n = 950), Col-0 at 37°C (n = 928), atsec62 at 25°C
(n = 203), atsec62 at 37°C (n = 164).
bCol-0 at 22°C (n = 139), Col-0 at 37°C (n = 129), atsec62 at 22°C
(n = 133), atsec62 at 37°C (n = 129).
cCol-0 at 22°C (n = 133), Col-0 at 37°C (n = 131), atsec62 at 22°C
(n = 112), atsec62 at 37°C (n = 104).
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resulting in its N-terminus facing the cytosol, while its C-

terminus is located in the ER lumen (Figure 4e).

AtSec62 cannot rescue the growth phenotype of the yeast

mutant sec62-ts

As we have shown that AtSec62 has an altered topology

compared to its yeast homologue, we further tested

whether AtSec62 and Sec62p are conserved on a functional

level. For this purpose, we conducted complementation

analysis using the thermosensitive yeast mutant sec62-ts

and the wild-type strain W303. Due to a thermosensitive

Sec62p version, normal growth of sec62-ts is only enabled

at permissive temperature (28°C) but not at restrictive tem-

perature (37°C). We tried to complement this mutant with

full-length AtSEC62, AtSEC62–DTMD3/C as well as with

endogenous Sec62p as positive control. Strikingly, growth

of sec62-ts at 37°C was still inhibited for mutants carrying

the construct coding for AtSec62 and AtSec62�DTMD3/C or

the empty vector control, whereas growth was fully restored

upon expression of the endogenous Sec62p (Figure 5a).

The presence of AtSEC62 and AtSEC62–DTMD3/C transcript

was confirmed by RT-PCR (Figure 5b).

AtSec62 C-terminus is required for its function in plants

As the AtSec62 C-terminus is facing the ER lumen in con-

trast to yeast and mammalian Sec62 homologues, we were

interested in whether the C-terminus has an essential func-

tion in protein translocation across the ER membrane in

Arabidopsis. To investigate the role of the AtSec62 C-termi-

nus, we performed complementation studies of atsec62

with a construct coding for AtSEC62�DTMD3/C (compare

with Figures 3 and 6a) driven by the endogenous pro-

moter. We identified two lines of homozygous mutant

plants carrying the respective construct, pAtSEC62::

AtSEC62–DTMD3/C #30-23 and pAtSEC62::AtSEC62–
DTMD3/C #12-22 (Figure 6b). Strikingly, the atsec62 pheno-

type was not rescued in these lines (Figure 6c,d), demon-

strating that AtSec62�DTMD3/C cannot complement

atsec62 and thereby indicating an essential role of the

AtSec62 C-terminus in Arabidopsis. The presence of

respective AtSEC62–DTMD3/C transcripts was confirmed

by RT-PCR (Figure 6e), proving that the observed pheno-

type was not caused by lack of gene expression.

DISCUSSION

In this study, we demonstrated that AtSec62 has three

transmembrane domains and is critical for plant growth

and male fertility in Arabidopsis. Moreover, the luminal

exposed C-terminus is crucial for AtSec62 function and

probably acquired a unique function in protein transloca-

tion into the ER, which was also indicated by unsuccessful

complementation in yeast and sequence comparison with

other Sec62 homologues.

The isolated atsec62 T-DNA insertion line displayed

delayed pollen development and impaired pollen tube ger-

mination leading to defects in male transmission. This phe-

notype resembles other mutant lines possessing a

defective secretory pathway (Jakobsen et al., 2005; Yama-

moto et al., 2008; Conger et al., 2011; Maruyama et al.,

2014; Vu et al., 2017). For example, aterdj2a and atsec24a-1

display drastic defects in pollen germination leading to

male sterility (Yamamoto et al., 2008; Conger et al., 2011).

AtSEC24A is probably part of the COPII coat thereby play-

ing an important role in the secretory pathway in plants by

being involved in selective cargo binding during ER export

(Kuehn et al., 1998; Conger et al., 2011). The quadruple

mutant cnx1 crt1 crt2 crt3, lacking ER resident calreticulin

and calnexin, both involved in protein quality control,

shows reduced fertility due to reduced pollen viability and

tube growth (Vu et al., 2017). Moreover, fusion of polar

nuclei in female gametophytes and pollen tube growth in

bip1 bip2 are affected, whereas bip1 bip2 bip3 pollen are

not even viable (Maruyama et al., 2010, 2014). Jakobsen

et al. (2005) showed that MIA, involved in vesicle traffick-

ing from the ER to the plasma membrane, is required for

proper protein secretion and mia-1 has smaller leaves in

Figure 3. Predicted transmembrane domains for Sec62 homologues and

AtSec62 constructs. (a) Alignment of AtSec62 with homologues of O. sativa,

Z. mays, P. patens, C. reinhardtii, H. sapiens, M. musculus, D. eugracilis and

S. cerevisiae. Conserved amino acids are shaded in black/grey. Predicted

transmembrane domains (TMD) are indicated in dark blue (TMD1), light

blue (TMD2) and green (TMD3). (b) Scheme of AtSec62 (amino acids 1�365)

and AtSec62-DTMD3/C (amino acids 1�247) TMD organization. The inserted

stop codon in AtSec62-DTMD3/C is indicated in red in (a).
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comparison with wild-type plants and defective pollen

which are not released and not germinating in vitro lead-

ing to reduced fertility. mia-1 still harbours remnants of

the pollen mother cell and the callosic wall attached to pol-

len grains preventing proper development and release of

the pollen (Jakobsen et al., 2005). Degradation of callose

and the pollen mother cell wall is indispensable for male

gametophyte development and depends on proper secre-

tion from tapetal cells (Stieglitz, 1977; Rhee et al., 2003; Lu

et al., 2014). Huang et al. (2013) have previously shown

that lipid transfer proteins, which are secreted from the

tapetum to become part of the microspore surface, are

required for pollen exine formation. We assume that the

lack of AtSec62 not only disturbs ER protein translocation

of various polypeptides but subsequently also leads to

defects in secretion during vegetative growth and male

gametophyte development as already proposed for

AtERdj2A by Yamamoto et al. (2008). Defective pollen

development and reduced seed germination match the

AtSEC62 expression pattern with the highest expression

level observed in mature pollen and higher expression in

seeds and during anther development than in vegetative

tissue (Arabidopsis eFP browser, http://bar.utoronto.ca/,

Winter et al., 2007). The altered root morphology in

Figure 4. AtSec62 localization and topology. (a) Tobacco leaves were co-transformed with Agrobacterium carrying constructs for GFP�AtSec62 or AtSec62�GFP

and an ER marker (mCherry). Fluorescent signals were detected by confocal microscopy in intact leaves. Scale bars represent 10 lm. Line histograms along the

yellow arrow, indicated in the overlay images in (a), depicting the relative fluorescence intensity of GFP�AtSec62 (b) or AtSec62�GFP (c) as well as the ER mar-

ker. (d) Fluorescent signals were monitored in tobacco leaves expressing either GFP11�AtSec62, AtSec62�GFP11, GFP11�AtSec62-DTMD3/C or

AtSec62�DTMD3/C�GFP11 and cytosolic GFP1�10 or ER luminal GFP1�10�HDEL. Scale bars represent 10 lm. (e) Topology model for AtSec62 and

AtSec62�DTMD3/C in comparison with yeast Sec62p (ScSec62p) and human Sec62 (HsSec62).

© 2019 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2020), 101, 5–17

Role of AtSec62 in plant development 11

http://bar.utoronto.ca/


atsec62 might likewise be a result of disturbed ER protein

translocation also interfering with hormone signalling and

root nutrient uptake, for example regarding phosphate

(compare with P�erez-Torres et al., 2008; Malhotra et al.,

2018), which in return also affects growth of aerial plant

tissues thereby contributing to the observed phenotype.

However, in contrast with aterdj2a (Yamamoto et al.,

2008), we still obtained homozygous atsec62 plants and

observed atsec62 (+/�) progeny plants not segregating in

the expected ratio of 1:1 for usual gametophytic mutants.

We therefore presume that the defects caused by the

absence of AtSec62 can partially be bypassed or compen-

sated by an alternative pathway.

Another Arabidopsis mutant line, Atget1-1, has a similar,

though more severe vegetative phenotype in comparison

with atsec62, when additionally overexpressing AtGET3a

(Xing et al., 2017). Respective plants display a dwarf phe-

notype, shorter roots as well as a reduced number of sili-

ques and seeds (Xing et al., 2017). AtGET1 and AtGET3a

are both part of the cytosolic/ER Guided Entry of Tail-an-

chored proteins (GET) pathway in Arabidopsis, which facil-

itates the membrane insertion of tail-anchored proteins

into the ER membrane (Srivastava et al., 2017; Xing et al.,

2017). As no severe phenotype is observable for Atget1-1

alone (Srivastava et al., 2017; Xing et al., 2017), Xing et al.

(2017) proposed that overexpression of AtGET3a in the

Atget1-1 background caused trapping of tail-anchored pro-

teins in the cytosol and consequently also disturbed a

potential alternative insertion pathway, which might be the

post-translational Arabidopsis Sec translocon also involv-

ing AtSec62. In atsec62, the GET pathway should still be

functional and we speculate that it might therefore partially

compensate the lack of AtSec62 in post-translational

translocation and insertion of membrane proteins explain-

ing the less severe vegetative growth phenotype in com-

parison with plants overexpressing AtGET3a in the

Atget1-1 background. We assume that the GET pathway

might be more root specific, reflected by the root hair

phenotype only observable for Atget1-1 but not for at-

sec62 (Xing et al., 2017; Figure S1d). Moreover, the GET

pathway can probably not compensate for lack of AtSec62

regarding the protein import of pre-secretory proteins

resulting in impaired growth and drastic defects during

male gametophyte development in atsec62. However, it

still remains unclear whether there are indeed several dis-

tinct, maybe even overlapping ER translocation pathways

in plants.

Besides impaired growth under normal conditions, we

observed that atsec62 plants are more sensitive towards

high-temperature stress than wild-type plants as shown by

reduced pollen tube germination and survival after heat

treatment. These observations might be due to a generally

reduced fitness of atsec62 or due to an involvement of

AtSec62 in plant thermotolerance. Yet, we observed no

effect of high-temperature treatment on atsec62 seed ger-

mination rate probably due to storage compounds already

being present in seeds and therefore low ER import rates,

which increase during further vegetative growth. As we

additionally observed a higher susceptibility towards ER

stress, we assumed that AtSec62 might also be involved in

the unfolded protein response in plants (reviewed by Stras-

ser, 2018), probably by translocating respective compo-

nents across or into the ER membrane. However, it might

also play a more substantial role during ER stress (recov-

ery) similar to its mammalian homologues (Linxweiler

et al., 2013; Fumagalli et al., 2016).

Former studies have already pointed out the low homol-

ogy between AtSec62 and Sec62p as well as mammalian

Sec62 (Schweiger and Schwenkert, 2013), especially

regarding the diverse C-terminus which features potential

N-glycosylation sites in plants, indicating exposition to the

ER lumen rather than the cytosol. Indeed, we demon-

strated that AtSec62 has a third transmembrane domain in

contrast to its yeast and mammalian homologues

(Deshaies and Schekman, 1989, 1990; M€uller et al., 2010)

resulting in the AtSec62 C-terminus facing the ER lumen.

As AtSec62�DTMD3/C is not sufficient for proper AtSec62

function as shown by unsuccessful complementation in at-

sec62, we propose that the C-terminus plays an essential

role in protein translocation into the ER, maybe by interact-

ing with other Sec translocon components or even translo-

cation substrates. Identifying additional AtSec62

Figure 5. Complementation analysis in the thermosensitive yeast mutant sec62-ts. (a) Wild-type yeast (W303) and the thermosensitive yeast mutant sec62-ts

were transformed with constructs for expression of yeast Sec62p (ScSec62p), AtSec62, AtSec62�DTMD3/C or the empty vector control. Following serial dilution

and dropping onto solid medium plates, transformed yeast cells were grown at either a permissive (28°C) or restrictive (37°C) temperature for 48 h. (b) RT-PCR

for ScSEC62, AtSEC62 and AtSEC62–DTMD3/C. RNA was isolated from Col-0 plants or from sec62-ts yeast transformed with constructs as described in (a).

© 2019 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), 101, 5–17

12 Melanie Jasmine Mitterreiter et al.



interaction partners besides AtTPR7 (Schweiger and Sch-

wenkert, 2013) within the Sec translocation complex or

beyond will be a challenging task in the future providing

further insights into ER protein translocation in Arabidop-

sis thereby also explaining the observed atsec62 pheno-

type. In addition, future studies might reveal whether

AtSec62, similar to Sec62p (compare with Panzner et al.,

1995), functions solely in the post-translational transloca-

tion pathway or also contributes to the co-translational

pathway as proposed for mammalian Sec62 (M€uller et al.,

2010).

We showed that AtSec62 as well as AtSec62�DTMD3/C

cannot rescue the thermosensitive growth phenotype of

the yeast mutant sec62-ts in contrast to the endogenous

Sec62p, whereas recent studies by Zhou et al. (2016)

have proven that Sec62 is conserved at least in other fun-

gal species like the phytopathogen Magnaporthe oryzae

with MoSec62 restoring growth of thermosensitive

Dsec62 yeast. Human and Drosophila Sec62 homologues

were also able to complement respective yeast mutants

(Noёl and Cartwright, 1994; M€uller et al., 2010). Due to

the cytosol exposed C-terminus of Sec62p having an

essential function in yeast, probably by contributing to

signal peptide recognition (Deshaies and Schekman,

1990; Wittke et al., 2000), AtSec62 as well as

AtSec62�DTMD3/C might be unable to restore growth of

sec62-ts, even though AtSec62-DTMD3/C topology resem-

bles the one of Sec62p. This might also be due to their

inability to form proper complexes with other compo-

nents of the yeast Sec translocon as already proposed by

Yamamoto et al. (2008) after performing complementa-

tion analysis of sec63-1 yeast mutants using AtERdj2A.

AtERdj2A and AtERdj2B display only around 20%

sequence identity to their yeast and human counterparts,

similar to AtSec62 sharing only 12% and 15% sequence

identity with Sec62p and human Sec62 (Yamamoto et al.,

2008; Schweiger and Schwenkert, 2013). Even regarding

the predicted Sec62 domain (compare with Schweiger

and Schwenkert, 2013), AtSec62 shows only 14%

sequence identity with its yeast and human homologues.

Figure 6. atsec62 complementation analysis using AtSEC62�DTMD3/C. (a) Scheme of AtSEC62 and AtSEC62–DTMD3/C constructs used for complementation

analysis. (b) Genotyping PCR using the oligonucleotides AtSEC62-50UTR-f, AtSEC62-Exon2-r and Gabi-LB8409. Oligonucleotide binding sites in AtSEC62 are indi-

cated in Figure 1(a). (c) Phenotyping of 5-week-old Col-0 and atsec62 plants in comparison with atsec62 lines carrying a construct for AtSEC62�DTMD3/C expres-

sion, pAtSEC62::AtSEC62�DTMD3/C #30-23 (#30-23) and pAtSEC62::AtSEC62�DTMD3/C #12-22 (#12-22). Scale bar represents 2 cm. (d) Siliques of Col-0 and

atsec62 in comparison with lines #30-23 and #12-22. Scale bars represent 5 mm. (e) RT-PCR for AtSEC62 or AtSEC62�DTMD3/C and the control AtBIP2. Oligonu-

cleotide binding sites for AtSEC62-Exon1-f, AtSEC62�DTMD3/C-r and AtSEC62-Exon5-r in AtSEC62 or AtSEC62�DTMD3/C are indicated in (a).
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Notably, also yeast Sec62p and the well studied human

Sec62 share only 19% sequence identity with respect to

the conserved Sec62 domain.

Summarizing, presented findings support the idea of

plant Sec62 having acquired a unique function during evo-

lution. Although we prove the importance of the luminal

exposed AtSec62 C-terminus, especially in plant male fer-

tility, its exact function in ER protein translocation still

remains unclear and will be an interesting issue to address

in future studies.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Wild-type A. thaliana (ecotype Columbia, Col-0) and the atsec62 T-
DNA insertion line were grown on soil either under greenhouse
conditions or in the climate chamber under a 16 h light/8 h dark
cycle at 22°C/18°C and 100 lmol photons m�2 sec�1. Plants for
segregation analysis and high-temperature treatment were grown
on ½MS medium (pH 5.7) with or without 10 lg ml�1 sulfadiazine,
additionally containing vitamins, 1% sucrose and 0.6% (w/v) Gel-
rite, whereas plants for root analysis were grown on ½MS med-
ium (pH 5.7) and 1.0% (w/v) Phytoagar, additionally supplemented
with DTT (1.5 mM, 2 mM) for ER stress treatment. Seeds were ster-
ilized (70% (v/v) ethanol, 0.05% (v/v) Triton X-100), prior to three
times washing in 100% (v/v) ethanol. Seeds were stratified at 4°C
for 2–3 days in the dark. For complementation analysis, we gener-
ated constructs under the control of the endogenous promoter
(base pairs 800-1899 of genomic AT3G20920), which was nar-
rowed down by using PlantPAN2.0 (http://plantpan2.itps.ncku.edu.
tw/), coding for the full-length genomic AtSEC62 or the truncated
AtSEC62–DTMD3/C (amino acids 1–247). Stable transformation of
Arabidopsis plants was conducted by floral dip according to
Clough and Bent (1998) using Agrobacterium tumefaciens
GV3101. Nicotiana benthamiana was grown in soil under green-
house conditions.

The atsec62 T-DNA insertion line (GK-871A06) was obtained
from the European Arabidopsis Stock Centre (http://arabidopsis.inf
o/). Homozygous mutant plants were identified by PCR using the
oligonucleotides AtSEC62-50UTR-f (50-CTTGAAATGTGAGAAAAAT
GAAATAC-30), AtSEC62-Exon2-r (50-ATCGTCTGTGTCAAGGTCTTT
ATC-30) and Gabi-LB8409 (50-ATATTGACCATCATACTCATTGC-30).
For complementation analysis AtSEC62-30UTR-r (50-GAATACTTC
AGATGTTGCCAC-30) was used to distinguish between wild-type
and mutant plants carrying respective constructs.

RNA extraction and RT-PCR analysis

RNA was isolated from leaves of 4- to 5-week-old plants or from
10 ml overnight yeast cultures using the RNeasy (Plant) Mini Kit
(Qiagen, https://www.qiagen.com) according to manufacturer’s
instructions, however 2 mg ml�1 zymolase was used for genera-
tion of spheroplasts and DNase I digest was performed for 30 min
at RT. cDNA was synthesized using the M-MLV reverse transcrip-
tase (Promega, https://www.promega.com). Subsequent reverse
transcription PCR (RT-PCR) was performed using the oligonu-
cleotides AtSEC62-Exon1-f (50-ATGAAGAAGCCGGTCGGAGCCG
AG-30), AtSEC62-Exon5-r (50-TTATGTTTTAAGATCAGAGTCAGTC
C-30), AtSEC62-DTMD3/C-r (50-GGGGACCACTTTGTACAAGAAAGC
TGGGTCTTAGTCTTTCTTTGGCCAGAAAC-30), AtSEC62-stop-r (50-
GGGGACCACTTTGTACAAGAAAGCTGGGTCTTATGTT-30), AtSEC
62–DTMD3/C-no-stop-r (50-CGATCTCGAGGTCTTTCTTTGGCCAG

AAAC-30), AtBIP2-ATG-f (50-GTACGGGCCCATGGCTCGCTCGTTTG
GAG-30), AtBIP2-no-stop-r (50-GTACGCGGCCGCAGAGCTCATCG
TGAGACTCATC-30) as well as ScSEC62-for (50-GGGGACAAGTTT
GTACAAAAAAGCAGGCTATGTCAGCCGTAGGTCCAGG-30) and
ScSEC62-rev (50-GGGGACCACTTTGTACAAGAAGCTGGGTCTCA
GTTTTGTTCGGCTTTTTC-30).

Preparation of microsomal membranes

Microsomal membranes were prepared from 4-week-old Ara-
bidopsis plants. All steps were carried out at 4°C. Plant material
was frozen in liquid nitrogen, ground in 50 mM Tris�HCl (pH
7.5), 2 mM MgCl2, 100 mM KCl and 0.5 M sucrose and filtered
through gauze. To remove chloroplasts and mitochondria, the
plant lysate was centrifuged once at 4 200 g for 10 min, at
10 000 g for 10 min and at 22 000 g for 30 min. To pellet
microsomal membranes the remaining supernatant was cen-
trifuged at 100 000 g for 1 h. For further purification of micro-
somal membranes, the resulting pellet was resuspended in
50 mM Tris�HCl (pH 7.5), 2 mM MgCl2, 100 mM KCl and 12%
(w/v) sucrose, loaded onto a step gradient (50%, 30% and 20%
sucrose) and centrifuged at 100 000 g for 1 h. The fraction
between 50% and 30% sucrose was transferred to a new tube
and washed once at 100 000 g for 1 h. Microsomal membranes
were resuspended in 25 mM Tris�HCl (pH 7.5), 0.33 M sucrose
and 0.5 mM DTT.

SDS-PAGE and immunoblotting

Proteins were separated on 12% polyacrylamide. Subsequently,
proteins were transferred onto PVDF membranes by semi-dry
blotting and immunodetection was visualized using enhanced
chemiluminescence. AtSec62 antibody was raised against the
recombinant AtSec62 N-terminus (amino acids 1�160) fused to a
C-terminal His-tag and was generated in rabbits by BioGenes
(https://www.biogenes.de/).

Pollen staining and germination assay

Alexander staining solution was prepared according to Alexander
(1969). For in vitro pollen germination assays, pollen grains from
8-week-old plants were spread onto solidified germination med-
ium (1 mM MgCl2, 0.16 mM H3BO3, 1 mM CaCl2, 1 mM Ca(NO3)2,
18% sucrose (w/v), 0.65% (w/v) Phytoagar) and incubated for 22 h
at high humidity in the dark at 25°C and 37°C.

Agrobacterium-mediated transient expression of

fluorescent proteins in tobacco

Infiltration of leaves from 4- to 6-week-old Nicotiana benthamiana
plants, isolation of protoplasts and subsequent detection of fluo-
rescence signals were performed as described previously (Koop
et al., 1996; Schweiger and Schwenkert, 2014). However, cell cul-
tures of Agrobacterium tumefaciens Agl1 carrying respective con-
structs were resuspended in infiltration medium containing 10 mM

MgCl2, 10 mM MES (pH 6) but only 100 lM acetosyringone. For
transient expression of respective fluorescent proteins, leaves of
Nicotiana benthamiana were infiltrated with Agrobacterium. Fluo-
rescence signals in leaves or isolated protoplasts were detected
after 2–3 days of incubation by confocal laser scanning micro-
scopy (Leica TCS SP5 CLSM, imaging medium: glycerol, Soft-
ware: Leica Application Suite/Advanced Fluorescence) at RT
(compare with Schweiger and Schwenkert, 2014). For localization
and topology studies, the AtSEC62 or AtSEC62–DTMD3/C coding
region was cloned into the binary Gateway vectors pB7FWG2 and
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pK7WGF2 (Karimi et al., 2002) or the appropriate Split-GFP Gate-
way vectors (Xie et al., 2017). The constructed Split-GFP plasmids
encode the GFP b-sheets 1�10 (compare with Cabantous et al.,
2005) being expressed either in the cytosol (GFP1�10) or in the
ER lumen by an integrated ER retention signal (GFP1�10�HDEL)
(Xie et al., 2017). The Gateway vectors also facilitate N- or C-ter-
minal fusion of the eleventh b-sheet to AtSec62 (compare with
Xie et al., 2017). The C-terminal AtSEC62–DTMD3/C fusion con-
struct contained an additional C-terminal His-tag. The ER marker
has been described recently (Nelson et al., 2007; Schweiger et al.,
2012).

Yeast strains and complementation analysis

Complementation analysis in yeast was performed using the wild-
type strain W303 and the thermosensitive mutant sec62-ts
(BY4741; MATa; ura3D0; leu2D0; his3D1; met15D0; sec62-ts:
kanMX; obtained from EUROSCARF, http://euroscarf.de/). Yeast
cells were grown in YPD medium (1% (w/v) bacto yeast extract,
2% (w/v) bacto peptone, 2% (w/v) glucose) or in SCD medium
(0.7% (w/v) yeast nitrogen base without amino acids, 2% (w/v) glu-
cose, 0.2% (w/v) dropout mix without leucine). Solid media were
supplemented with 2% (w/v) bacto agar. For complementation
analysis, the yeast SEC62 and AtSEC62 coding region were cloned
into the Gateway vector pAG425GPD-ccdB (Alberti et al., 2007).
Yeast genomic DNA was isolated as previously described (L~ooke
et al., 2011), however, 70% (v/v) ethanol was used for DNA precip-
itation.

Competent yeast cell preparation and subsequent transforma-
tion were modified based on Staudinger et al. (1995). For genera-
tion of competent cells, yeast cells were grown in 50 ml YPD
medium at 30°C and cells were harvested at OD600 0.5–0.6 by cen-
trifugation for 5 min at 700 g and 4°C. Cells were washed in 50 ml
sterile water, prior to washing in 12.5 ml LiSorb (100 mM LiOAc,
10 mM Tris�HCl pH 8, 1 mM ethylene diamine tetraacetic acid
(EDTA) pH 8, 1 M sorbitol). Yeast cells were subsequently resus-
pended in 300 ll LiSorb and 42 ll carrier DNA (2 mg ml�1 dena-
tured and sheared herring sperm DNA) were added. For yeast
transformation, 5 ll plasmid DNA and 300 ll LiPEG (100 mM

LiOAc, 10 mM Tris�HCl pH 8, 1 mM EDTA pH 8, 40% (w/v) PEG
3350) were added to 50 ll competent cells and the mixture was
incubated for 20 min at RT. 35 ll dimethyl sulphoxide (DMSO)
were added prior to a heat shock at 42°C for 15 min. Yeast cells
were pelleted at 700 g for 90 sec, resuspended in 0.9% (w/v) NaCl
and spread on SCD medium plates. Yeast transformants were
then grown in SCD medium at 30°C, OD600 was adjusted to 1.0
and serial dilutions of each strain were spotted onto SCD medium
plates. Yeast cells were then grown for 48 h at 28°C or 37°C.

Sequence analysis

Transmembrane domains of Sec62 homologues were defined
based on predictions by TMHMM2.0 (http://www.cbs.dtu.dk/ser
vices/TMHMM/), TMpred (https://embnet.vital-it.ch/software/
TMPRED_form.html), Phobius (http://phobius.sbc.su.se/) and DAS-
TMfilter (http://www.enzim.hu/DAS/DAS.html). The conserved
Sec62 domain was identified using NCBI Conserved Domain
Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).
Alignments were generated using ClustalW software.

Statistical analysis

Chi-squared test was used to assess deviations of the observed
segregation pattern from the expected Mendelian ratios, whereas
root and seed yield analysis were performed using Student’s t-test

(two-sided, equal variance). The significance threshold was set at
P ≤ 0.05. Box plots were generated using BoxPlotR software
(http://shiny.chemgrid.org/boxplotr/).

ACCESSION NUMBERS

Sequence data used in this study can be found in the NCBI

data libraries (https://www.ncbi.nlm.nih.gov/) under follow-

ing accession numbers: At3g20920 (AtSec62), XP_

015627309 (Oryza sativa Sec62), XP_008681002 (Zea mays

Sec62), XP_024398141 (Physcomitrella patens Sec62), XP_

001701717 (Chlamydomonas reinhardtii Sec62), NP_003253

(Homo sapiens Sec62), NP_081292 (Mus musculus Sec62),

NP_015231 (Saccharomyces cerevisiae Sec62p) and XP_

017075746 (Drosophila eugracilis Sec62) as well as

At5g42020 (AtBiP2).
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