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SUMMARY

Lincomycin (LIN)-mediated inhibition of protein synthesis in chloroplasts prevents the greening of seed-

lings, represses the activity of photosynthesis-related genes in the nucleus, including LHCB1.2, and induces

the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun)

mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast

development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants,

we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance

to LIN, exhibiting de-repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations

responsible were identified by whole-genome single-nucleotide polymorphism (SNP) mapping, and most

were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be

directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent

holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and compara-

tive analysis of this and other cell-wall mutants establishes a link between secondary cell-wall integrity and

early chloroplast development, possibly involving altered ABA metabolism or sensing.
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INTRODUCTION

The vast majority of the several thousand proteins found

in plastids are encoded by nuclear genes (Timmis et al.,

2004). As endosymbiotic descendants of cyanobacteria,

however, plastids still contain 80–230 genes, most of which

are involved in essential plastid functions like energy pro-

duction and plastid gene expression (PGE) (Ponce-Toledo

et al., 2017). As a result, plastid multiprotein complexes (in-

cluding the photosystems and ribosomes) consist of sub-

units encoded by both the nuclear and plastid genomes.

This in turn accounts for the need for coordination of PGE

and nuclear gene expression (NGE). Thus, the nucleus

influences activity in the plastids, including PGE, via ‘an-

terograde control/signaling’ (Stern et al., 2010), whereas

plastids communicate their developmental and metabolic

status to the nucleus via ‘retrograde signaling’, allowing

the nucleus to adjust NGE appropriately (Kleine et al.,

2009; Chi et al., 2013; Terry and Smith, 2013; Chan et al.,

2016; Kleine and Leister, 2016). Plastid-derived retrograde

signals can be divided into two classes: signals related to

the operation of the plastid under changing environmental

conditions (operational control) and signals triggered by

changes in plastid and photosystem biogenesis (biogenic

control) (Chan et al., 2016).

Forward-genetic screens have permitted the identifica-

tion of components involved in retrograde signaling path-

ways (Kleine and Leister, 2016). They have exploited the

fact that the expression of nuclear genes for plastid pro-

teins like LHCB1.2 (a major light-harvesting chlorophyll a/

b-binding protein) is reduced in seedlings exposed to inhi-

bitors of PGE (e.g. lincomycin, LIN) or carotenoid biosyn-

thesis (e.g. norflurazon, NF) (Oelmuller and Mohr, 1986;

Oelmuller et al., 1986). The first mutant screen specifically

designed to characterize components of biogenic plastid

signaling was performed with Arabidopsis thaliana seed-

lings grown on NF (Susek et al., 1993), and identified

mutant seedlings that continued to accumulate LHCB1.2

transcripts. Five different genomes uncoupled (gun)
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mutants were initially isolated (Susek et al., 1993; Mochi-

zuki et al., 2001). GUN1 codes for a nucleic-acid-binding

chloroplast protein (Koussevitzky et al., 2007), whereas

GUN2–GUN5 encode enzymes of the tetrapyrrole biosyn-

thesis pathway (Mochizuki et al., 2001; Larkin et al., 2003).

Subsequent investigations of the gun mutants led to con-

tradictory conclusions as to a putative plastid signaling

function of the tetrapyrrole pathway intermediate Mg-pro-

toporphyrin IX (Strand et al., 2003; Mochizuki et al., 2008;

Moulin et al., 2008). To resolve these discrepancies, a gain-

of-function screen based on activation tagging was con-

ducted in the reporter line that was used in the original

gun mutant screen (Woodson et al., 2011). This screen

identified the gun6-1D mutant, which overexpresses fer-

rochelatase 1 (FC1), and prompted the proposal that the

tetrapyrrole heme – specifically the fraction produced by

FC1 – might function as a biogenic retrograde signal

(Woodson et al., 2011; Terry and Smith, 2013). With the

intention of identifying additional mutants with more sub-

tle gun phenotypes than those detected in the original

screen (Susek et al., 1993), a transgenic line in which the

LHCB1.1 promoter was fused to the more sensitive repor-

ter luciferase was used in a further screen (Ruckle et al.,

2007), and mutants that exhibited a gun phenotype on NF

were also tested on LIN-containing medium. As a result,

four cryptochrome 1 (cry1) alleles and long hypocotyl 5

(hy5) were identified (Ruckle et al., 2007). More recently,

overexpressors of GLK1 or GLK2 have been shown to

behave like strong gun mutants when challenged with NF

or LIN (Leister and Kleine, 2016; Martin et al., 2016).

Inhibitors like NF and LIN have numerous secondary

effects, however: for example, the massive accumulation

of anthocyanins (Cottage et al., 2010; Voigt et al., 2010). A

modified version of the gun mutant screen was therefore

designed, which used less NF and a lower light intensity,

and resulted in fewer side effects, primarily by avoiding

anthocyanin accumulation (Saini et al., 2011). Unlike the

original gun mutants and wild-type (WT) plants, the happy

on norflurazon (hon) mutants recovered in this screen

remained green in the presence of (lower doses of) NF.

The hon mutations were mapped to ClpR4, a nucleus-en-

coded subunit of the plastid-localized Clp protease com-

plex, and to a putative chloroplast translation elongation

factor, and thus are likely to interfere with PGE and plastid

protein homeostasis (Saini et al., 2011).

Lincomycin and NF have similar effects on gun1, hy5

and cry1 (Ruckle et al., 2007) mutants, as well as on the

GLK overexpressors (Leister and Kleine, 2016; Martin et al.,

2016), but gun2, gun4 and gun5 mutants differ in their

responses to these agents (Gray et al., 2003). This distinc-

tion suggests that NF and LIN trigger at least partially dif-

ferent signaling pathways.

In an effort to isolate additional gun mutants specifi-

cally for the LIN pathway(s), we screened an ethyl

methanesulfonate (EMS)-mutagenized A. thaliana Col-0

population grown in the presence of a greater than four-

fold lower dose of LIN than that used in the earlier screens.

In this way, happy on lincomycin (holi) mutants that are

able to green in the presence of LIN were identified. In a

second screen with a fivefold lower NF concentration rela-

tive to that used in the original screens, we identified addi-

tional hon mutants. Characterization of these mutants

suggested that: (i) there is no correlation between gun sig-

naling and anthocyanin biosynthesis; and (ii) early chloro-

plast development is linked to cell-wall integrity.

RESULTS

Isolation of happy on lincomycin (holi) mutants

Seedlings grown on LIN experience severe photo-oxidative

damage, plastid biogenesis is arrested at a proplastid-like

stage, even under normal light conditions (Oelmuller and

Mohr, 1986), and the expression of nuclear genes encoding

chloroplast proteins is altered (Oelmuller et al., 1986). In

screens intended to isolate mutants displaying the gun

phenotype on LIN, a concentration of 220 lg ml�1 LIN

(high LIN) and light intensities of 100–125 lmol pho-

tons m�2 sec�1 were used (Koussevitzky et al., 2007;

Ruckle et al., 2007). Under such conditions, 5-day-old

A. thaliana Col-0 seedlings were retarded in growth, failed

to green and accumulated appreciable concentrations of

anthocyanins (Figure 1a). Using the same light intensity as

in previous screens, we gradually reduced the LIN concen-

tration until the coloration of the seedling population

turned from purple (as a result of anthocyanin production)

to greenish or white. Although some seedlings turned light

green with a concentration of 25 lg ml�1 LIN, growth on

50 lg ml�1 LIN (low LIN) produced uniformly purple-col-

ored seedlings (Figure 1a). The latter concentration was

still sufficient to reduce the accumulation of the nucleus-

encoded transcripts encoding the chloroplast proteins

Lhcb1.2 and CA1 to 8.0% (high LIN, 1.5%) and 6% (high

LIN, 1.0%), respectively, of the levels seen in MS-grown

seedlings (Figure 1b). Thus, this low LIN dose still activates

retrograde signaling. The gun1-1 mutant used as a control

accumulated fewer anthocyanins than the WT when grown

on high LIN, confirming a previous finding (Cottage et al.,

2010). Approximately half of the gun1-1 seedlings grown

on low LIN displayed whitish cotyledons, which were lar-

ger than those of the WT (Figure 1a).

Based on these observations, a screen was set up to

identify mutants with an altered, visually discernible phe-

notype on low LIN. To this end, Col-0 seeds were mutage-

nized with EMS. The M1 plants were grown to maturity to

produce M2 seeds, and ~20 000 4- to 5-day-old M2 seed-

lings were grown on low LIN and screened for alterations

in the color or size of cotyledons. This led to the isolation

of six holi mutants (Figure 2). The mutants holi1 and holi3
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had yellowish cotyledons and did not accumulate antho-

cyanins. Cotyledons of the other mutants turned light

green and accumulated anthocyanins to various levels.

When grown on high levels of LIN, holi2 displayed smaller

cotyledons and hyperaccumulation of anthocyanins com-

pared with all other mutants and the WT (Figure 2). A simi-

lar screen in which low LIN was replaced by low NF (1 lm,

instead of the 5 lm NF used in the original gun mutant

screen; Susek et al., 1993) aimed to identify new hon

mutants. This screen yielded hon mutants (hon24, hon33

and hon41) with completely white cotyledons. On low LIN,

the cotyledons of these hon mutants also appeared yel-

low–greenish, like those of the holi mutants (Figure 2). To

confirm that the greenish color was caused by chlorophyll

accumulation, autofluorescence was monitored after UV

excitation of seedlings grown on low LIN (Figure 2). Col-0,

Figure 1. Effects of different lincomycin (LIN) doses on seedling development and nuclear transcript levels. (a) Pictures of wild-type (WT) and gun1-1 seedlings

grown for 5 days on MS supplemented with the indicated concentrations of LIN. (b) Quantitative reverse-transcriptase PCR was used to determine LHCB1.2 and

CA1 mRNA levels in WT seedlings grown under continuous light (100 lmol photons m�2 sec�1) on MS plates without inhibitor or supplemented with either

50 lg ml�1 LIN or 220 lg ml�1 LIN. The levels of LHCB1.2 and CA1 mRNA are expressed relative to those in the WT control (grown in the absence of inhibitor),

which was set to 1. The results were normalized to the expression level of AT4G36800. Mean values were derived from two independent experiments, each with

three technical replicates. Error bars indicate standard deviations.

Figure 2. Phenotypes of identified holi and hon mutants grown in the presence of lincomycin (LIN) or norflurazon (NF). Wild-type (WT), holi and hon mutant

seedlings were grown for 5 days under continuous light (100 lmol photons m�2 sec�1) on MS plates supplemented with either LIN (50 or 220 lg ml�1) or NF (1

or 5 lM). Autofluorescence after UV excitation was monitored in seedlings grown on MS plates supplemented with 50 lg ml�1 LIN. The red autofluorescence

was used as an indicator for chlorophyll accumulation.
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holi3 and hon24 seedlings displayed no autofluorescence,

as expected when chlorophyll is absent; however, four

mutants (holi2, hol1i4, holi5 and holi6) displayed marked

levels of autofluorescence, whereas three others (holi1,

hon33 and hon41) displayed weaker autofluorescence.

Notably, none of the hon or holi mutants appeared greener

on either high or low NF (Figure 2), in agreement with the

absence of chlorophyll autofluorescence observed under

these conditions.

Several holi mutants display a gun phenotype on low LIN

The chlorophyll-autofluorescence phenotype of some of

the hon and holi mutants prompted us to test whether their

continued plastid development despite growth on LIN was

associated with altered signaling to the nucleus. To this

end, RNA was prepared from 5-day-old Col-0, gun1-1, and

the various hon and holi mutant seedlings grown on low

LIN, and subjected to Northern analysis to determine the

steady-state levels of LHCB1.2 mRNA. Following exposure

to the low LIN concentration, the gun1-1 mutant showed, as

expected, higher LHCB1.2 mRNA expression than the WT

(Figure 3). Remarkably, LHCB1.2 mRNA levels in the holi2,

holi4, holi5 and holi6 mutants were comparable with, or

even higher than, that of the gun1-1 mutant. Under control

conditions (without inhibitor treatment), however, LHCB1.2

mRNA levels were already slightly elevated in the holi2,

holi3, holi5 and holi6 mutants, which means that the gun

phenotype on low LIN was relativized by around 1.7-fold

(Figure 3). Grown on low NF, some of the holi mutants also

displayed very weak gun phenotypes. But none of the iden-

tified hon and holi mutants behaved like a gun mutant

when grown on high NF or high LIN (Figure 3).

The majority of HOLI and HON loci encode proteins

involved in the flavonoid pathway

In order to explain the ability of some of the identified

mutants to accumulate chlorophyll and maintain LHCB1.2

transcript accumulation in the presence of low LIN, the M4

generation of the mutant plants was back-crossed to their

parent Col-0, and seedlings displaying recessive and semi-

dominant (in the case of holi2) mutant phenotypes were

identified in the F2 generation. The underlying mutations

were localized by next-generation sequencing (see Experi-

mental procedures) and confirmed by Sanger sequencing.

The holi1 and hon41 mutations turned out to be allelic,

and both were mapped to the gene for the transcription

factor MYB DOMAIN PROTEIN 75 (MYB75; PRODUCTION

OF ANTHOCYANIN PIGMENT 1, PAP1). The C�T substitu-

tion at nucleotide (nt) 902 (relative to the start codon, as

also in the following) in holi1 results in the replacement of

an Arg by an Lys residue and permits some anthocyanin

accumulation, whereas in hon41 a C�T substitution at

nt 39 introduces a stop codon in the first exon (Figure 4),

completely blocking anthocyanin accumulation (Figure 2).

Moreover, in holi3 a Trp codon is replaced by a stop in the

gene for the transcription factor TRANSPARENT TESTA

GLABRA 1 (TTG1, required for purple anthocyanin accu-

mulation). The G�A substitution at nt 10 in hon24 and the

C�T substitution at nt 987 in hon33 caused non-sense

mutations in DIHYDROFLAVONOL 4-REDUCTASE (DFR;

TRANSPARENT TESTA 3, TT3) and ANTHOCYANIDIN

Figure 3. LHCB1.2 transcript levels found in WT, gun1-1, holi and hon

mutant seedlings grown without inhibitor or in the presence of lincomycin

(LIN) or norflurazon (NF). Seedlings were grown for 5 days under continu-

ous light (100 lmol photons m�2 sec�1) on MS plates without inhibitor or

supplemented with either LIN (50 or 220 lg ml�1) or NF (1 or 5 lM). LHCB1.2
mRNA levels were determined by Northern blot analyses. The methylene

blue-stained blots served as loading controls (M.B.).
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SYNTHASE (ANS; LEUCOANTHOCYANIDIN DIOXYGEN-

ASE, LDOX; TANNIN DEFIFIENT SEED 4, TDS4; TT18),

respectively. The mutation that most probably causes the

holi2 mutant phenotype is located at nt 4125, and replaces

a Val by an Ile residue in REDUCED EPIDERMAL

FLUORESCENCE 4 (REF4; MEDIATOR COMPLEX MED 5B,

MED5B; MED33B). The G�A substitution in holi6 intro-

duces a premature stop in exon 7 of IRREGULAR XYEM 3

(IRX3; CELLULOSE SYNTHASE 7, CESA7; MURUS 10,

MUR10). The mutations responsible for the holi4 and holi5

phenotypes could not be identified. With the exception of

IRX3, all affected proteins have previously been shown to

be involved in phenylpropanoid metabolism (Figure S1;

Stout et al., 2008; Appelhagen et al., 2014). MYB75 and

TTG1 are transcription factors, and DFR and ANS are

enzymes that convert dihydroquercetin to leucocyanidin

(DFR) and leucocyanidin to cyanidin, respectively (Fig-

ure S1). REF4 is required for phenylpropanoid homeostasis

and has been shown to interact directly with the conserved

transcriptional coregulatory complex Mediator (Bonawitz

et al., 2012).

Disturbances in the phenylpropanoid pathway do not

confer a gun phenotype

Anthocyanins are produced via the flavonoid pathway,

which is a branch of the general phenylpropanoid biosyn-

thetic pathway (Tohge et al., 2005; Appelhagen et al.,

2014). The gun1-1 mutant clearly accumulates less antho-

cyanin than the WT when grown on both low and high LIN

concentrations (Figure 1a), and it was noted previously that

gun2, gun4 and gun5 mutants accumulate less antho-

cyanin than WT plants when grown on high NF (Voigt

et al., 2010). Therefore, the growth of 5-day-old gun1, gun4

and gun5 mutant seedlings was also tested under our

reduced inhibitor conditions (Figure S2). In the WT, gun1-1

and gun1-102 seedlings, anthocyanin accumulation was

clearly discernible in seedlings grown on low and high NF

in continuous white light; however, on high NF, the

Figure 4. Schematic representation of the positions of identified HOLI and HON mutation sites. Exons (black boxes), introns (black lines), and the 50 and 30

untranslated regions (UTRs; grey boxes) are shown. Numbers are given relative to the start codon ATG.
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stronger gun1 allele (gun1-102) displayed slightly less

anthocyanin accumulation than the weaker allele (gun1-1)

(Figure S2). In contrast, gun4-1 and gun5-1 accumulated

less anthocyanin on both NF concentrations, whereas they

accumulated WT levels of anthocyanins on high LIN. It has

previously been speculated that plastid signals that require

GUN2–GUN5 might stimulate anthocyanin biosynthesis,

although anthocyanin content and LHCB1.2 mRNA accu-

mulation in gun mutants are not strictly correlated (Voigt

et al., 2010). As these authors considered only the accumu-

lation of visible anthocyanins, reverse-phase ultra-perfor-

mance liquid chromatography (UPLC) was used to profile

the accumulation of phenylpropanoids in 5-day-old Col-0,

gun1-1, gun2-1, gun4-1 and gun5-1 seedlings grown on

MS in the absence or presence of high NF or high LIN. In

the WT, high NF and high LIN caused approximately 2.0-

and 1.5-fold increases in the total phenylpropanoid con-

tent, respectively (Figure S3; Table S1). Total phenyl-

propanoids were similarly boosted in the gun2-1, gun4-1

and gun5-1 mutants, but in gun1-1 they were approxi-

mately 1.5-fold induced after NF treatment and not

induced at all by treatment with high LIN. A closer look

at the accumulation of specific phenylpropanoid compo-

nents revealed that the difference between gun1-1 and

the WT is mainly attributable to a lack of induction of

kaempferol derivatives in gun1-1 (Figure S3; Table S1). In

particular, kaempferol 3-O-[6″-O-(rhamnosyl) glucoside] 7-

O-rhamnoside (k3; see also Figure S1) was less effec-

tively induced in all investigated gun mutants after NF

treatment, as well as in gun1-1 after LIN treatment; none

of the other detected compounds showed any consistent

alteration in the gun mutants relative to the WT (Fig-

ure S3; Table S1). Levels of k3 are also reduced in the

UDP-glucosyl transferase ugt78d1 ugt78d2 mutant (Yin

et al., 2014). To definitively clarify whether disturbances

in the phenylpropanoid pathway are linked to chloroplast

development and/or a gun phenotype in the presence of

inhibitors, 5-day-old ugt78d1 ugt78d2 mutants, together

with mutants impaired in enzymatic steps of the general

phenylpropanoid pathway (Figure S1), or regulatory fac-

tors of flavonoid biosynthesis and transporters involved

in proanthocyanidin accumulation (Appelhagen et al.,

2014), were first tested for chlorophyll autofluorescence

on low LIN (Figure 5). Because cry1 mutants were previ-

ously identified as weak gun mutants on high LIN

(Ruckle et al., 2007), the mutants cry1-304 and cry1-

304 cry2-1, and the constitutive photomorphogenesis

mutant cop1-4, were included as controls together with

gun1-1. Chlorophyll autofluorescence could be detected

in gun1-1, cry1-304, cry1-304 cry2-1, as well as in the

cop1-4 mutant (Figure 5). All transport-related and regu-

lation mutants showed some chlorophyll fluorescence,

although this was restricted to the hypocotyl in ttg1-22,

ttg2-5 and tt8-6 mutants. The biosynthesis mutants

tt4-15, tt5-2, tt7-7, tt3-1 and tds4-2 showed the greenish

fluorescence typical of kaempferol derivatives (Appelha-

gen et al., 2014) and only very weak or no chlorophyll

autofluorescence (Figure 5). These mutants are defective

in steps in the main pathway leading from chalcone

synthase (tt4-15) to the conversion of leucocyanidin to

cyanidin (tds4-2), which is the branch point for the pro-

duction of anthocyanins and oxidized tannins (Figure S1).

Thus, these mutants do not accumulate anthocyanins.

The ban-5, tt15-4, tt6-2 and fls1-3 mutants displayed simi-

lar levels of chlorophyll fluorescence to the gun1-1 and

cry1-304 mutants and the transport-related aha10-6

mutant. The tt10-8 mutant showed the strongest chloro-

phyll autofluorescence, which was reflected in a light

greenish cotyledon phenotype, with some cotyledons

even exhibiting a brighter green color (Figure 5).

When grown in the presence of low LIN or high NF,

gun1-1, cry1-304 and cry1-304 cry2-1 seedlings accumu-

lated LHCB1.2 in the presence of the inhibitors but, in

accordance with Ruckle et al. (2007), the cop1-4 mutant did

not (Figure 6a). It is noteworthy here that cry1 and

cry1 cry2 seedlings grown on low LIN accumulated even

higher levels of LHCB1.2 mRNA than gun1-1. The

ugt78d1 ugt78d2 mutant (in which k3 is diminished) and

the other phenylpropanoid mutants did not accumulate

LHCB1.2 mRNA, with the sole exception of the tt10-8

mutant, which continued to express LHCB1.2 in the pres-

ence of low LIN but not in the presence of high NF (Fig-

ure 6b). TT10/LAC15 is similar to laccase-like polyphenol

oxidases and is involved in lignin biosynthesis (Liang

et al., 2006).

Taken together, these data imply that there is no direct

link between phenylpropanoid accumulation and gun sig-

naling.

A defect in the secondary cell wall promotes seedling

greening

The holi6 mutant was among the identified mutants that

displayed the strongest chlorophyll autofluorescence when

grown on MS plates supplemented with low LIN (Figure 2).

To confirm that the premature stop in IRX3 (CESA7) found

in holi6 was responsible for this phenotype, two additional

irx3 mutant alleles, irx3-2 (confirmation of the T-DNA inser-

tion and a lack of the full-length transcript is shown in Fig-

ure S4) and irx3-4 (Brown et al., 2005), were grown on low

LIN. Indeed, the cotyledons of irx3-2 and irx3-4 were visibly

greener and displayed higher autofluorescence than the

cotyledons of the WT (Figure 7a), which is reflective of a

higher chlorophyll content (Figure 7b). Moreover, although

attempts to determine the maximum quantum yield of

photosystem II (Fv/Fm) with an Imaging PAM fluorometer

were unsuccessful in WT grown on low LIN, this parameter

could be measured in holi6, and irx3-2 and irx3-4 displayed

even higher Fv/Fm values (Figure 7a).
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IRX3/CESA7 is a member of the cellulose synthase (CESA)

family. The CESA complexes required for the synthesis of

primary and secondary cell walls differ in composition:

IRX3, together with IRX1/CESA8 and IRX5/CESA4, is needed

specifically for the synthesis of cellulose in the secondary

cell wall, which also contains lignin (Meents et al., 2018;

Polko and Kieber, 2019). CESA1/RADIALLY SWOLLEN 1

(RSW1), CESA3 and CESA6-like proteins (CESA2, CESA5,

CESA6 and CESA9) are involved in primary cell-wall synthe-

sis (Meents et al., 2018; Polko and Kieber, 2019).

These findings raise the question of whether the holi phe-

notype might be caused by: (i) a general reduction in cellu-

lose content in the secondary cell wall; (ii) reduced cellulose

content in the primary cell wall; or (iii) a lack of hemicellu-

loses in the secondary cell wall. To clarify this issue, mutants

with reduced cellulose content in the secondary cell wall

(irx1-2, irx1-3 and irx5-4), together with a mutant with

reduced cellulose content in the primary cell wall (rsw1-1;

Williamson et al., 2001) and a mutant with reduced content

of the hemicellulose xylan in the secondary cell wall (irx9-2;

Bauer et al., 2006), were germinated on low LIN medium.

The irx1 seedlings displayed comparably high autofluores-

cence to holi6 seedlings, whereas irx5-4 displayed weaker

autofluorescence, and rsw1-1 and irx9-2 behaved like the WT

(Figure 7c). Moreover, Fv/Fm could not be detected in the

additionally investigated mutants. Reduced cellulose produc-

tion can affect growth and morphogenesis in various plant

parts, as exemplified by the swollen roots of rsw1 mutants

grown at 31°C (Arioli et al., 1998; Williamson et al., 2001). To

test for any temperature dependency of the Fv/Fm phenotype,

rsw1-1 together with the other cell wall mutants was germi-

nated at 31°C on control MS plates and on MS plates supple-

mented with low LIN. Cotyledons of the rsw1-1 mutant were

smaller under both conditions, confirming the heat growth

phenotype observed previously (Williamson et al., 2001),

but, as in all other tested mutants, Fv/Fm was WT-like (Fig-

ure S5a). Interestingly, both the greening and the elevated

Fv/Fm phenotypes were barely detectable under low LIN

Figure 5. Phenotypes of the wild type (WT), gun1,

cry1, cry1 cry2, cop1-4 and mutants associated with

phenylpropanoid biosynthesis grown on low lin-

comycin (LIN). WT, gun1-1 and mutant seedlings

with defects in the photomorphogenesis pathway

(cry1, cry1 cry2 and cop1-4), the biosynthesis path-

way (tt4-15, tt5-2, tt6-2, tt7-7, tt3-1, tds4-2, ban-5,

tt10-8 and tt15-4), transport (aha10-6, tt12-2 and

tt19-8) and regulation (ttg1-22, ttg2-5, tt1-3, tt8-6

and tt16-5) of various phenylpropanoids were

grown for 5 days under continuous light

(100 lmol photons m�2 sec�1) on MS plates sup-

plemented with 50 lg ml�1 LIN. Autofluorescence

after UV excitation was monitored. The red fluores-

cence served as an indicator for chlorophyll accu-

mulation.
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conditions in holi6/irx3 and irx1 seedlings (Figure S5b),

implying that the higher temperature overrides the capability

of secondary cell wall mutants to green on LIN. Moreover,

the potential greening capacity of rsw1-1 seedlings on LIN

might be masked by the temperature sensitivity of this

mutant.

Figure 6. Analysis of LHCB1.2 transcript levels of the wild type (WT), gun1, cry1, cry1 cry2, cop1-4 and mutants associated with phenylpropanoid biosynthesis

grown in the presence of inhibitors. WT and the mutants described in the legend to Figure 6 were grown for 5 days under continuous light (100 lmol pho-

tons m�2 sec�1) on MS plates supplemented with (a) 50 lg ml�1 lincomycin (LIN) or (b) 5 lM norflurazon (NF). LHCB1.2 mRNA levels were determined by North-

ern blot analyses. The methylene blue-stained blots served as loading controls (M.B.).
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In sum, it can be concluded that cellulose defects specifi-

cally in the secondary cell wall promote seedling greening,

and that deactivation of IRX3 results in the strongest

greening phenotype.

The irx3 mutant behaves like a gun mutant on low LIN

A defect in IRX1 or IRX5, both of which are specific for the

secondary cell wall CESA complex, results in the upregula-

tion of ABA-responsive genes (Hernandez-Blanco et al.,

2007). Moreover, LHCB1.2 mRNA expression is higher

when the holi6 mutant is grown on low LIN, as well as in

control conditions (Figure 3). To investigate the behavior

of ABA-responsive genes and nuclear genes for chloroplast

proteins on a transcriptome-wide level in irx3 mutants,

RNA-Seq analysis was performed on RNA isolated from 5-

day-old WT and irx3-2 seedlings grown in the absence of

LIN (control) or on low LIN. Low LIN elicited substantial

(more than twofold) changes in gene expression in the WT

(915 up; 2313 down) and irx3-2 (1139 up; 1978 down) seed-

lings (Figure 8a,b; Table S2). Of the genes up- and down-

regulated in WT seedlings upon LIN treatment, 39 and

36%, respectively, were dependent on the presence of

functional IRX3, namely those that were not more than

twofold differentially expressed in irx3-2. Gene ontology

(GO) analysis (Huang et al., 2009) of these IRX3-dependent

genes identified an enrichment for the cellular component

category ‘mitochondria’ among the 39% upregulated genes

(Figure 8c), and in the categories ‘chloroplast stroma’, ‘thy-

lakoid’, ‘chloroplast envelope’, ‘integral component of

plasma membrane’ and ‘chloroplast’ among the 36%

downregulated genes (Figure 8d). This showed that, in

addition to LHCB1.2, other photosynthesis-related genes

were de-repressed in irx3 seedlings.

When grown under control conditions (without LIN), the

transcriptome of the irx3-2 mutant showed only moderate

changes relative to the WT: the mRNA levels of 20 (41) or

46 (70) genes were significantly reduced or elevated (by

more than 2.0- and 1.5-fold, respectively) (Figure 8a,b;

Table S2). Analyses of the 1.5-fold changes revealed that in

the downregulated gene set, only ‘chloroplast’ was signifi-

cantly enriched in the cellular component category (CC),

whereas the biological process (BP) categories ‘glucosino-

late biosynthesis’, ‘leucine biosynthesis’ and ‘response to

insect’ were more than 60-fold enriched (Figure 8e). In the

upregulated gene set, the CC category ‘protein storage vac-

uole’ and several chloroplast-associated categories like

Figure 7. Phenotypes of the wild type (WT), holi6

and mutants associated with cell-wall synthesis

grown on low lincomycin (LIN). (a) WT, holi6, irx3-2

and irx3-4 mutants were grown for 5 days under

continuous light (100 lmol photons m�2 sec�1) on

MS plates supplemented with low LIN (50 lg ml�1).

Autofluorescence after UV excitation was moni-

tored. The red fluorescence served as an indicator

for chlorophyll accumulation. The maximum quan-

tum yield of photosystem II (Fv/Fm) was measured

with an imaging Chl fluorometer (Imaging PAM).

(b) Determination of the total chlorophyll

(Chl a + b) content of 5-day-old seedlings. Pig-

ments were acetone-extracted, measured spec-

trophotometrically and concentrations were

determined as described by Porra et al. (1989). Data

are shown as mean values � SDs from three bio-

logical replicates. Each replicate pool contained

more than 20 seedlings. Significant differences

were identified by Tukey’s test (P < 0.05). (c) WT,

holi6, irx1-2, irx1-3, irx5-4, irx9-2 and rsw1-1

mutants were grown for 5 days under continuous

light (100 lmol photons m�2 sec�1) on MS plates

supplemented with low LIN (50 lg ml�1). Autofluo-

rescence after UV excitation was monitored. The

red fluorescence served as an indicator for chloro-

phyll accumulation. The initial Chl a fluorescence

(F0) and the maximum quantum yield of photosys-

tem II (Fv/Fm) were measured with an imaging Chl

fluorometer (Imaging PAM).
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‘plastoglobule’, ‘thylakoid’, ‘envelope’ and ‘stroma’ were

enriched, and in the BP category ‘response to freezing’ and

‘glucosinolate catabolism’ were enriched approximately

40-fold, and ‘seed germination’, ‘photosynthesis’, ‘re-

sponse to jasmonic acid’ and ‘response to abscisic acid’

were enriched approximately 10-fold, respectively (Fig-

ure 8e; Table 1). Among the abscisic acid (ABA)-responsive

genes were the genes for the chloroplast-localized proteins

COLD-REGULATED 15a (COR15a) and COR15b. Of note is

also the slight (approximately 1.4-fold) but significant

induction of genes encoding several Lhcb proteins and

subunits of photosystems I and II (Figure 3; Tables S2 and

S3), which was reflected in an approximately 1.5-fold

higher chlorophyll content in 5-day-old holi6 and irx3

mutant seedlings (Figure 8f).

Taken together, these results suggest a role for the sec-

ondary cell wall in seedling greening, even under normal

growth conditions. Moreover, a defect in IRX3 results in a

weak gun phenotype on low LIN and leads to altered ABA

metabolism or sensitivity.

DISCUSSION

Norflurazon is an inhibitor of phytoene desaturase and

blocks carotenoid biosynthesis, whereas LIN binds to the

50S subunit of the plastid ribosome, thus inhibiting protein

synthesis in the organelle. Treatment of seedling plants

Figure 8. RNA-Seq analysis of 5-day-old WT and

irx3-2 seedlings.Seedlings were grown for 5 days

on MS or on MS plates supplemented with

50 lg ml�1 LIN (LIN). Venn diagrams depict the

degree of overlap between the sets of genes whose

expression levels were down- (a) or up-regulated

(b) by at least twofold in the indicated compar-

isons.Gene ontology (GO) analysis of genes whose

expression was down- (c) or upregulated (d) in the

indicated comparisons. GO annotations for the cel-

lular component category were extracted from

DAVID (Huang da et al., 2009). GO terms for genes

with a >1.5-fold change and a Benjamini corrected

value of <0.05 are shown. (e) Gene ontology (GO)

analysis of genes whose expression was down- or

upregulated in irx3 seedlings grown on MS (with-

out LIN) compared to WT. GO annotations for the

cellular component and biological process cate-

gories were extracted from DAVID (Huang da et al.,

2009). GO terms with a Benjamini corrected value

of <0.05 are shown. (f) Determination of the total

chlorophyll (Chl a + b) content of 5-day-old seed-

lings. Pigments were acetone-extracted, measured

spectrophotometrically, and concentrations were

determined as described (Porra et al., 1989). Data

are shown as mean values � SD from three biologi-

cal replicates. Each replicate pool contained more

than 20 seedlings. Significant differences were

identified by Tukey’s test (P < 0.05).
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with NF or LIN prevents greening, promotes anthocyanin

accumulation and suppresses the light-induced transcrip-

tion of nuclear genes for photosynthesis, such as LHCB1.2.

In all known gun mutants, LHCB1.2 expression is partly de-

repressed in the presence of NF, but only a subset of gun

mutants display this phenotype in the presence of LIN

(Koussevitzky et al., 2007; Ruckle et al., 2007). We

attempted to isolate further mutants that can better cope

with LIN. High concentrations of LIN (220 lg ml�1) were

used in previous studies (Koussevitzky et al., 2007; Ruckle

et al., 2007; Choy et al., 2008; Cottage et al., 2010; Sun

et al., 2016), and we found that a greater than fourfold

lower concentration (50 lg ml�1) of LIN still repressed

nucleus-encoded photosynthesis genes (Figure 1b). More-

over, the use of low LIN uncovered a clear phenotypical

difference between gun1-1 and WT seedlings, as cotyle-

dons were larger and anthocyanin accumulation was less

pronounced in the gun1-1 mutant (Figure 1a). With the

exception of the hon mutant screen, in which lower NF

and light dosages were used (Saini et al., 2011), all previ-

ous gun mutant screens used reporter genes to identify

mutants with de-repressed LHCB expression (Kleine and

Leister, 2016). In contrast, we attempted to isolate mutants

based on visually discernible differences from the WT

when grown on low LIN. Although the earlier hon mutant

screen identified mutants that are affected in chloroplast

protein homeostasis, our low-LIN screen led to the identifi-

cation of ‘holi’ and additional ‘hon’ mutants for proteins

involved in: (i) the flavonoid pathway; and (ii) secondary

cell wall formation (Figure 4).

We used 5-day-old seedlings grown on MS supple-

mented with sucrose to investigate phenylpropanoid accu-

mulation and parameters associated with chloroplast

development, i.e. the maximum quantum yield of photo-

system II, LHCB1.2 expression levels and greening. In

1992, it was found that several transcripts for enzymes of

the flavonoid biosynthetic pathway reached a maximum in

3-day-old Arabidopsis seedlings grown in continuous light.

The authors concluded that the peak anthocyanin content

appeared to coincide with the maturation of chloroplasts,

and the associated switch to photoautotrophic growth

(Kubasek et al., 1992). Subsequent work showed that, in

the presence of 2% sucrose, and in the absence of inhibi-

tors, anthocyanin accumulation reaches a maximum in 5-

day-old seedlings (Cottage et al., 2010). In addition to the

presence of disaccharides, the induction of anthocyanins

depends on a functional photosynthetic electron transport

chain and on light (Jeong et al., 2010). Thus, the light-sig-

naling mutants cry1 and hy5 exhibit significant inhibition

of anthocyanin accumulation (Ahmad et al., 1995; Jeong

et al., 2010). Notably, cry1 and hy5 mutants have been

identified as gun mutants (Ruckle et al., 2007), and lower

levels of anthocyanins were noted in the original set

(gun1–gun5) in this present study and in other studies

(Cottage et al., 2010; Voigt et al., 2010). The idea that

changes in anthocyanin accumulation might trigger de-re-

pression of LHCB1.2 in gun mutants has previously been

rejected (Voigt et al., 2010); however, the consistent obser-

vation of lowered anthocyanin accumulation in mutants

showing the gun phenotype prompted us to re-evaluate

Table 1 Differential expression of ABA-responsive genes, and
genes involved in chloroplast biogenesis and light reactions in 5-
day-old irx3-2 mutant seedlings, compared with Col-0

Locus
identifier

Fold
change Description

Gene
symbol

Chloroplast
AT2G20570 1.47 GOLDEN2-LIKE 1 GLK1
AT1G61520 1.33 PSI CHLOROPHYLL A/B

BINDING PROTEIN 3
LHCA3

AT3G47470 1.39 PSI CHLOROPHYLL A/B
BINDING PROTEIN A4

LHCA4

AT1G29910 1.36 PSII CHLOROPHYLL A/B
BINDING PROTEIN 3

LHCB1.2

AT2G34430 1.41 PSII CHLOROPHYLL A/B
BINDING PROTEIN B1

LHCB1.4

AT2G05100 1.51 PSII CHLOROPHYLL A/B
BINDING PROTEIN 2.1

LHCB2.1

AT2G05070 1.63 PSII CHLOROPHYLL A/B
BINDING PROTEIN 2.2

LHCB2.2

AT3G27690 1.53 PSII CHLOROPHYLL A/B
BINDING PROTEIN 2.3

LHCB2.3

AT5G54270 1.47 PSII CHLOROPHYLL A/B
BINDING PROTEIN 3

LHCB3.1

AT4G10340 1.33 PSII CHLOROPHYLL A/B
BINDING PROTEIN 5

LHCB5

AT4G27440 1.32 PROTOCHLOROPHYLLIDE
OXIDOREDUCTASE B

PORB

AT4G28750 1.46 PSI SUBUNIT E-1 PSAE-1
AT1G52230 1.40 PSI SUBUNIT H2 PSAH2
AT1G08380 1.40 PSI SUBUNIT O PSAO
ATCG00220 1.40 PSII SUBUNIT M PSBM
AT4G05180 1.36 PSII SUBUNIT Q-2 PSBQ-2
AT2G30570 1.33 PSII SUBUNIT W PSBW
AT1G67740 1.35 PSII SUBUNIT Y PSBY

ABA-responsive
AT2G42540 3.44 COLD-REGULATED 15A COR15A
AT2G42530 3.17 COLD REGULATED 15B COR15B
AT1G29395 2.83 COLD REGULATED 314

INNER MEMBRANE 1
COR413IM1

AT5G15970 1.98 Stress-induced protein
KIN2/COLD-
REGULATED 6.6

KIN2

AT1G52400 2.19 BETA GLUCOSIDASE 18 BGLU18
AT4G04020 1.61 FIBRILLIN FBN1A
AT4G23600 2.74 CORONATINE INDUCED 1 CORI3
AT4G28520 4.52 CRUCIFERIN 3 CRU3
AT5G25980 3.52 GLUCOSIDE

GLUCOHYDROLASE 2
TGG2

AT5G44120 4.67 CRUCIFERINA CRA1

Seedlings were grown on MS without supplementation of LIN.
Differential expression was determined with RNA-Seq analysis
(Tables S2 and S3) and fold changes are represented. PS, photo-
system.
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this putative link. Because anthocyanins represent the only

visibly perceptible products of the phenylpropanoid path-

way, we performed reverse-phase UPLC to profile the

accumulation of phenylpropanoids that absorb in the UV

region (280 nm) of the spectrum (Figure S3; Table S1) and

found that the kaempferol derivative k3 is less abundant in

gun mutants after inhibitor treatment. A second approach

using various mutants blocked at different steps in the

phenylpropanoid pathway (Figures 6 and 7) strongly sug-

gests that neither the abundance of k3 nor that of any

other intermediate of the phenylpropanoid pathway is cor-

related with LHCB1.2 expression, however. Therefore, our

data suggest that changes in phenylpropanoid levels can-

not account for LHCB1.2 de-repression in inhibitor-treated

gun mutants.

Of all the mutants identified here, holi6 displayed the

strongest chlorophyll autofluorescence when grown in the

presence of low LIN (Figures 2 and 8). HOLI6 encodes the cel-

lulose synthase subunit CESA7, also named IRX3, because in

irx mutants the xylem collapses (Brown et al., 2005). Further

results indicated that perturbation of cellulose formation

specifically in the secondary cell wall leads to a happy-on-lin-

comycin phenotype (Figure 7). This may seem counterintu-

itive, but the weakening of the cell wall caused by defects in

IRX1, IRX3 or IRX5 also confers enhanced resistance to some

pathogens (Hernandez-Blanco et al., 2007; Miedes et al.,

2014). In analogy to our findings that the rsw1-1 mutant with

a defect in the primary cell wall is not able to green on LIN

(Figure 7), susceptibility to these pathogens was not altered

in mutants that affect the primary cell wall, like the cesa3 and

rsw1 mutants (Hernandez-Blanco et al., 2007), although ce-

sa3 mutants can be more resistant to other pathogens (Ellis

et al., 2002). Could this mean that a weakened secondary cell

wall might confer resistance to lincomycin? Presumably not,

because the chlorophyll content of irx3 mutants is already

higher than that of the WT under normal growth conditions

(Figure 8). Moreover, the disease resistance phenotype of

irx1, irx3 and irx5 mutants has been attributed in part to the

constitutive activation of plant immune responses rather

than to alterations in the passive wall barrier. In irx1-6 and

irx5-5 plants a large number of ABA-regulated genes are con-

stitutively upregulated (Hernandez-Blanco et al., 2007), which

is in agreement with an increased accumulation of ABA in

the irx1-6 mutant (Chen et al., 2005). Accordingly, we found

that, in the irx3-2 mutant, ABA-responsive genes are upregu-

lated under normal growth conditions (Figure 8). ABA has

previously been shown to have an impact on LHCB1.2, plas-

tid-encoded gene expression (Koussevitzky et al., 2007; Voigt

et al., 2010; Yamburenko et al., 2013) and plastid differentia-

tion (Rohde et al., 2000; Penfield et al., 2006; Kim et al., 2009).

ABA seems to affect plastid differentiation in opposing ways.

High concentrations suppress the expression of certain

nucleus-encoded chloroplast proteins as well as plastid for-

mation in etiolated and light-grown seedlings, and in

seedlings grown in the presence of NF (Penfield et al., 2006;

Koussevitzky et al., 2007), whereas lower concentrations

stimulate these processes (Voigt et al., 2010; Kim et al.,

2012). The tetrapyrrole biosynthesis proteins GUN4 and

GUN5 (Voigt et al., 2010), the PPR protein GUN1 (Cottage

et al., 2010) and GREENING AFTER EXTENDED DARKNESS 1

(GED1) (Choy et al., 2008) all enhance seedling development

in the presence of ABA. Interestingly, the ged1 mutant was

identified in a further attempt to isolate gun1-like mutants

(Gray et al., 2003; Choy et al., 2008); however, like holi6, ged1

is not a true gun mutant, because RBCS and LHCB1 mRNA

levels are already elevated in the absence of inhibitors, and

ged1 shows only a very subtle gun phenotype upon treat-

ment with NF or LIN (Choy et al., 2008).

The phenomenon of signaling from an altered cell wall

to influence seedling photomorphogenesis in the dark has

been recognized in the case of sugar- (Li et al., 2007) and

zinc-responsive (Sinclair et al., 2017) growth and develop-

ment. Our results suggest that defects in secondary cell

walls also generate signals that modify nuclear gene

expression and promote seedling greening, possibly via

altered ABA metabolism or sensing.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

The mutant lines used in this study are listed in Table S4. The
irx3-2 mutant was genotyped with the following primers:
SAIL_885_D10_LP, 50-AAGGTTGGATCATGCAAGATG-30; SAIL_885_
D10_RP, 50-CCAGCTGCAATTTCGAGATAC-30, and LB, 50- ATTTT
GCCGATTTCGGAAC-30. Surface-sterilized seeds were sown on
Murashige and Skoog plates containing 0.8% (w/v) agar (pH 5.8),
and stratified for at least 2 days at 4°C. The growth medium con-
tained 1% (w/v) sucrose, unless indicated otherwise. Seedlings
were grown at 22°C under continuous illumination (100 lmol pho-
tons m�2 sec�1) provided by white fluorescent lamps or at 31°C
under continuous illumination (80 lmol photons m�2 sec�1

provided by LEDs, which corresponds to 100 lmol pho-
tons m�2 sec�1 provided by white fluorescent lamps). For inhibitor
experiments, MS medium was supplemented with the indicated
concentration of lincomycin (Sigma-Aldrich, https://www.sigmaald
rich.com/united-kingdom.html) or norflurazon (Sigma-Aldrich).

EMS mutagenesis and whole-genome resequencing

Col-0 seeds were mutagenized using 0.2% (v/v) EMS (Sigma-
Aldrich). The mutagenized M1 plants were grown in pools of 500
to produce the M2 generation of seeds. M2 plants were screened
for holi or hon phenotypes. Segregating F2 populations were gen-
erated by backcrossing holi or hon mutants with the parental Col-
0 line. To identify the causative mutations, positive pools of 50
plants each were selected based on their holi or hon mutant phe-
notype. DNA was extracted with the DNeasy Plant Mini kit (QIA-
GEN, https://www.qiagen.com). Preparation of 350-bp insert DNA
libraries and 150-bp paired-end sequencing was carried out at
Novogene Biotech (https://en.novogene.com) on an Illumina
HiSeq 2500 system (Illumina, https://www.illumina.com) with stan-
dard Illumina protocols. The sequencing depth was at least 7 G of
raw data per sample, which corresponds to a more than 50-fold
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coverage of the A. thaliana genome. After grooming FASTQ files,
adaptors were removed with TRIMMOMATIC (Bolger et al., 2014),
reads were mapped with BWA (Li and Durbin, 2009), with parame-
ters ‘mem -t 4 -k 32 -M’ to the TAIR10 annotation, and duplicates
were removed by SAMTOOLS (Li et al., 2009) with the RMDUP tool. Sin-
gle-nucleotide polymorphisms (SNPs) were identified using SAM-

TOOLS (Li et al., 2009) with the parameter ‘mpileup -m 2 -F 0.002 -d
1000’. Only SNPs that were supported by more than four reads
with a mapping quality of > 20 were retained. To identify the SNPs
specific for the holi and hon mutants, the SNPs between each of
the holi and hon mutants were compared with the SNPs of our
Col-0 strain. The resulting holi- and hon-specific SNP lists were
subjected to the web application CandiSNP (Etherington et al.,
2014), which generates SNP density plots. The output list of Can-
diSNP was screened for non-synonymous amino acid changes
and for the G/C�A/T transitions that were likely to be caused by
EMS, with a special focus on the chromosome with the highest
SNP density with an allele frequency of > 0.75.

Detection of chlorophyll autofluorescence

Chlorophyll autofluorescence of cotyledons was recorded with a
Lumar V12 microscope equipped with the filter set Lumar 09 (no.
485009) connected to an AxioCam digital camera (Zeiss, https://
www.zeiss.com).

Chlorophyll fluorescence measurements

Chlorophyll fluorescence was detected using an imaging Chl fluo-
rometer (Imaging PAM, M-Series; Walz, https://www.walz.com)
equipped with the computer-operated PAM control unit IMAGE-MAXI,
as described previously (Xu et al., 2019).

Chlorophyll concentration measurements

For chlorophyll extraction, the cotyledons were blotted with filter
paper to remove excess water, and hypocotyls were removed to
ensure that only chlorophyll from the cotyledons was extracted.
Briefly, 50-mg (fresh weight) cotyledon samples were ground and
chlorophyll was extracted by adding 4 ml of 80% (v/v) acetone to
each sample. The extract was centrifuged at 17 900 g for 10 min
and the pigments were quantified as described previously (Porra
et al., 1989).

Determination of phenylpropanoid levels

Extraction, detection and analysis of phenylpropanoid contents
was done as described in Appendix S1.

cDNA synthesis and quantitative RT-PCR analysis

Total RNA was extracted with the RNeasy Plant Mini kit (QIAGEN)
according to the manufacturer’s protocol, and 2 lg of the RNA
was employed to synthesize cDNA using the iScript cDNA Synthe-
sis Kit (Bio-Rad, https://www.bio-rad.com). RT-qPCR analysis was
performed on a Bio-Rad iQ5 real-time PCR instrument with the iQ
SYBR Green Supermix (Bio-Rad). Each sample was quantified in
triplicate and normalized using AT4G36800, which codes for a
RUB1 conjugating enzyme (RCE1), as an internal control. The fol-
lowing primers were used: RCE1-RT-F, 50-CTGTTCACGGAACC-
CAATTC-3; RCE1-RT-R, 5-GGAAAAAGGTCTGACCGACA-3; LHCB1.
2-RT-F, 5-CCGTGAGCTAGAAGTTATCC-3; LHCB1.2-RT-R, 5-GTTTC
CCAAGTAATCGAGTCC-3; CA1-RT-F, 5-GAGAAATACGAAACCAA
CCCT-3; CA1-RT-R, 5-ACATAAGCCCTTTGATCCCA-3; IRX3-exon1-
2-RT-F, 5-AACCATGAAGAGCCAAAGCC-3; IRX3-exon1-2-RT-R, 5-
TCGTACTCATAGCAAGGTCTACAC-3; IRX3-exon11-12-RT-F, 5-ATC

ATGCCACCGATAAGCAC-3; and IRX3-exon11-12-RT-R, 5-GAGGGA
TCAGCAGTGTTGTC-3.

RNA gel-blot analysis

Total RNA was purified using the TRIzol reagent (Invitrogen, now
ThermoFisher Scientific, https://www.thermofisher.com). To elimi-
nate contaminating genomic DNA, RNA was treated with DNase I
(New England BioLabs, https://www.neb.com). Total RNA (5 lg)
was fractionated on a denaturing agarose gel, blotted onto a
nylon membrane (Hybond-XL; GE Healthcare, https://www.gehea
lthcare.com) and subsequently cross-linked by UV light. Hybridiza-
tions were performed at 65°C according to standard protocols.
Details of these probes have been described previously (Kacprzak
et al., 2019).

RNA sequencing (RNA-Seq) and data analysis

Total RNA from plants was isolated using Trizol (Invitrogen,
now ThermoFisher Scientitfic) and purified using Direct-zolTM

RNA MiniPrep Plus columns (Zymo Research, https://www.zy
moresearch.com) according to the manufacturer’s instructions.
RNA integrity and quality were assessed with an Agilent 2100
Bioanalyzer (Agilent, https://www.agilent.com). Ribosomal RNA
depletion, the generation of RNA-Seq libraries and 150-bp
paired-end sequencing on an Illumina HiSeq 2500 system (Illu-
mina) were conducted at Novogene Biotech with standard Illu-
mina protocols. Three independent biological replicates were
used per genotype.

RNA-Seq reads were analyzed on the Galaxy platform (Afgan
et al., 2016), as described by Xu et al. (2019). Sequencing data
have been deposited in the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) (Edgar et al.,
2002) and are accessible through the GEO series accession num-
ber GSE130337.

Data analysis and statistical tests

One-way analysis of variance (ANOVA) was performed to deter-
mine statistical significances between genotypes (P < 0.05), fol-
lowed by Tukey’s test for differences of group means at a 95%
confidence interval using SPSS STATISTICS 17.0.
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