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Summary

� Arabidopsis thaliana contains 13 fibrillins (FBNs), which are all localized to chloroplasts.

FBN1 and FBN2 are involved in photoprotection of photosystem II, and FBN4 and FBN5 are

thought to be involved in plastoquinone transport and biosynthesis, respectively. The func-

tions of the other FBNs remain largely unknown.
� To gain insight into the function of FBN6, we performed coexpression and Western analy-

ses, conducted fluorescence and transmission electron microscopy, stained reactive oxygen

species (ROS), measured photosynthetic parameters and glutathione levels, and applied tran-

scriptomics and metabolomics.
� Using coexpression analyses, FBN6 was identified as a photosynthesis-associated gene.

FBN6 is localized to thylakoid and envelope membranes, and its knockout results in stunted

plants. The delayed-growth phenotype cannot be attributed to altered basic photosynthesis

parameters or a reduced CO2 assimilation rate. Under moderate light stress, primary leaves of

fbn6 plants begin to bleach and contain enlarged plastoglobules. RNA sequencing and

metabolomics analyses point to an alteration in sulfate reduction in fbn6. Indeed, glutathione

content is higher in fbn6, which in turn confers cadmium tolerance of fbn6 seedlings.
� We conclude that loss of FBN6 leads to perturbation of ROS homeostasis. FBN6 enables

plants to cope with moderate light stress and affects cadmium tolerance.

Introduction

Fibrillins (FBNs) owe their name to filament-like structures,
called fibrils, that are involved in carotenoid storage in the chro-
moplasts of bell pepper fruits, in which they were first identified
(Deruere et al., 1994). The fibrils of bell pepper are formed from
chloroplast plastoglobules during the chloroplast-to-chromoplast
transition (Rottet et al., 2015). Meanwhile, FBNs are generally
described as plastid lipid-associated proteins (PAPs) which form
a protein family found in photosynthetic organisms ranging from
cyanobacteria to higher plants (Kessler et al., 1999; Singh &
McNellis, 2011; Nacir & Brehelin, 2013). Arabidopsis thaliana
codes for 13 FBNs (Singh & McNellis, 2011); and as a 14th

FBN, Singh & McNellis (2011) suggested FBN11 (At5g53450),
whereas Lundquist et al. (2012) propose another FBN-like pro-
tein (At1g18060). All FBNs have been localized to chloroplasts,
some of them more particularly to plastoglobules (Vidi et al.,
2006; Ytterberg et al., 2006; Lundquist et al., 2012). Plastoglob-
ules are thylakoid-associated lipoprotein particles containing
glycerolipids and several dozen proteins, whose functions were
for long mostly unknown (Brehelin et al., 2007; Singh &

McNellis, 2011; Lundquist et al., 2012). Evidence has accumu-
lated that plastoglobules are strongly associated with plastid
metabolism, developmental transitions, and environmental adap-
tation (van Wijk & Kessler, 2017). Plastoglobules can be released
from the thylakoid membrane by sonication, and purification
based on their low density has facilitated the analysis of the
metabolites and proteins they contain (Vidi et al., 2006; Ytter-
berg et al., 2006; Zbierzak et al., 2010; Lundquist et al., 2012).
Plastoglobule proteome analyses have provided a clearer picture
of the sub-chloroplast localization of FBNs (Vidi et al., 2006;
Ytterberg et al., 2006; Lundquist et al., 2012). Thus, FBN3a
(At3g26070), FBN3b (At3g26080), FBN6 (At5g19940), FBN-
like (At1g18060), and probably FBN9 (At4g00030) were found
to be thylakoid-localized, FBN5 (At5g09820) and a truncated
version of FBN7a (At3g58010) are located in the chloroplast
stroma, and FBN10 (At1g51110) in thylakoids and plastoglob-
ules. The remaining seven FBNs are localized to the plastoglobule
core proteome, which in total comprises 30 proteins (Lundquist
et al., 2012). Furthermore, FBN6 is the only isoform that was
found to be enriched in purified envelope fractions (Ferro et al.,
2010; Bouchnak et al., 2019).

� 2019 The Authors
New Phytologist � 2019 New Phytologist Trust

New Phytologist (2020) 225: 1715–1731 1715
www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Research

https://orcid.org/0000-0001-9512-349X
https://orcid.org/0000-0001-9512-349X
https://orcid.org/0000-0003-1897-8421
https://orcid.org/0000-0003-1897-8421
https://orcid.org/0000-0001-6455-3470
https://orcid.org/0000-0001-6455-3470


Plastid types vary in their FBN composition, suggesting that
the various FBNs might have specialized functions in different
classes of plastids (Singh & McNellis, 2011). Moreover, the
FBNs have diverse molecular properties. Their molecular masses
range from 21 to 42 kDa, their pI values vary between 4 and 9,
and they possess different hydrophobicity profiles. This diversity
suggests that each FBN family member has specific biological
function(s) (Singh & McNellis, 2011; Lundquist et al., 2012).
The first role assigned to members of the FBN family was an
involvement in fibril structure formation. Thus, its founder
member FBN1, which was purified from bell pepper chromo-
plasts together with carotenoids and polar lipids, can reconstitute
the complete fibril structure in vitro (Deruere et al., 1994).
Another proposed FBN function is based on the observation that
some of the FBNs contain lipocalin domains, suggesting that
FBNs may also play a role in metabolite transport (Singh &
McNellis, 2011). Indeed, there is strong evidence that FBN4
(At3g23400) is involved in the partitioning of plastoquinone-9
(2,3-dimethyl-6-solanesyl-1,4-benzoquinone; PQ-9) between the
plastoglobules and the rest of the chloroplast (Singh et al., 2012).
Reduced PQ-9 levels are also found in Arabidopsis fbn5 knock-
out mutants, and interaction experiments, together with the
seedling-lethal phenotype of fbn5 mutants, suggest that Ara-
bidopsis FBN5 plays a critical role in PQ-9 biosynthesis, is essen-
tial for plant development (Kim et al., 2015), and plays a role as
a transmitter of singlet oxygen (O) in the chloroplast stroma
(Otsubo et al., 2018).

In addition to their proposed roles in structure formation
and transport, it has been suggested that FBNs are involved
in resistance to biotic stress (Singh et al., 2012) and in pro-
tecting PSII against photooxidative stress (Yang et al., 2006;
Youssef et al., 2010; Otsubo et al., 2018). Thus, in Arabidop-
sis, ABA triggers accumulation of FBN1a (At4g04020), and
ABA treatment and FBN1a overexpression both protect pho-
tosystem II (PSII) against photoinhibition triggered by light
stress (Yang et al., 2006). Because no visually discernible
growth phenotype was observed in Arabidopsis plants with
either down or upregulated FBN1a levels, it was postulated
that closely related members of the FBN family might func-
tionally substitute for each other (Youssef et al., 2010). Con-
sequently, RNA interference (RNAi) was employed to
simultaneously downregulate FBN1a, FBN1b (At4g22240),
and FBN2 (At2g35490) (Youssef et al., 2010). Under a com-
bined high light and cold treatment, these plants display
higher PSII photoinhibition, retarded shoot growth, lower
anthocyanin accumulation, and an abnormal expression pat-
tern of jasmonate-inducible genes. All these deficiencies can
be neutralized by jasmonate treatment of RNAi plants, sug-
gesting that FBN1 and FBN2 proteins modulate jasmonate
biosynthesis during exposure to certain abiotic stresses
(Youssef et al., 2010).

In this study, FBN6 was identified as a photosynthesis-associ-
ated gene by mining coexpression databases. To gain further
insight into FBN6 function, an fbn6-1 transfer DNA (T-DNA)
insertion mutant and artificial microRNA lines were character-
ized. Under normal growth conditions, fbn6 plants display

delayed growth, have slightly reduced Chl contents, shorter pri-
mary roots, and are late flowering under long-day conditions. An
FBN6-enhanced green fluorescent protein (eGFP) protein local-
izes to thylakoid and envelope membrane fractions, and FBN6 is
needed to acclimate plants to moderate light stress. RNA
sequencing (RNA-Seq) and metabolomics analyses point to accu-
mulation of glutathione (GSH) in fbn6, which in turn confers
cadmium (Cd) tolerance of fbn6 seedlings.

Materials and Methods

Plant material and growth conditions

The mutant lines fbn6-1 (GK_159E10; Col-0 background),
fbn6-2, and fbn6-3 (GT_5_46738 and GT_5_46794; Ler back-
ground) were identified in the SIGnAL database (Alonso et al.,
2003). Insertions were confirmed with the primers listed in Sup-
porting Information Table S1.

Arabadopsis thaliana plants were grown on potting soil
(Stender, Schermbeck, Germany) under controlled glasshouse
conditions (daylight supplemented with illumination from
HQI Powerstar 400W/D, providing a total photon fluence of
c. 120 µmol m�2 s�1 on leaf surfaces; 16 h : 8 h, light : dark
cycle). Where indicated, seedlings were grown on agar
(Sigma-Aldrich) plates containing half-strength Murashige and
Skoog (MS) medium, 1.5% (w/v) sucrose and 0.3% (w/v)
gelrite (Roth, Karlsruhe, Germany) at 22°C under
100 µmol m�2 s�1 provided by white fluorescent lamps. To
investigate the effect of Cd on seedling growth, seeds were
sown on MS medium supplemented with 50 or 250 µM cad-
mium chloride (CdCl2), based on Cd concentrations applied
in Chen et al. (2015).

Nucleic acid extraction

For DNA isolation, leaf tissue was homogenized in extraction
buffer containing 200 mM Tris hydrochloride (Tris-HCl), pH
7.5, 25 mM NaCl, 25 mM EDTA, and 0.5% (w/v) sodium
dodecyl sulfate (SDS). After centrifugation, DNA was precipi-
tated from the supernatant by adding isopropanol. After washing
with 70% (v/v) ethanol, the DNA was dissolved in distilled
water.

For RNA isolation, frozen tissue was ground in liquid nitrogen
(N). Total RNA was extracted with the RNeasy Plant Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. RNA quality and concentration and the A260/A280

ratio were assessed by agarose gel electrophoresis and spectropho-
tometry. Isolated RNA was stored at �80°C prior to use.

Complementary DNA synthesis and real-time PCR analysis

Complementary DNA (cDNA) synthesis and real-time PCR
analysis was performed as described (Scharfenberg et al., 2015)
with the primers listed in Table S1. Whenever possible, primers
were designed to flank intron sites to make it possible to discrimi-
nate amplification of genomic DNA.
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Generation of artificial microRNA-mediated knockdown
lines

Knockdown fbn6-amiR mutants were generated using an artificial
microRNA (amiRNA)-mediated knockdown technique (Schwab
et al., 2006). The Web MicroRNA Designer program (http://
wmd3.weigelworld.org/) was applied to generate two amiRNA
constructs targeting different regions of FBN6. The amiR con-
structs were generated by PCR from pRS300 template vector
with each primer combination of A + IV, III + II, and I + B men-
tioned in Table S1. The three products were amplified via PCR
with A + B primers. The final products were cloned into
pDONR207 via BP reactions (Thermo Fisher Scientific,
Waltham, MA, USA) and were subsequently cloned via LR reac-
tions (Thermo Fisher Scientific) into pALLIGATOR3 (Bernaudat
et al., 2011). Arabidopsis transformation was conducted by the
floral dip method using Agrobacteruim tumefaciens GV3101
strain (Clough & Bent, 1998). The individual T1 seeds were
selected by GFP fluorescence, and independent T2 or T3 trans-
genic lines were used for phenotypic analysis. Knockdown levels
of T2 fbn6-amiR lines were confirmed by reverse transcription
(RT)-PCR and real-time PCR with the gene-specific primers
listed in Table S1.

Expression and intracellular localization of fluorescence
fusions

For overexpression of FBN6 in Col-0, the AT5G19940.1 coding
region was amplified from cDNA by PCR (see Table S1 for
primer information). The PCR product was cloned with
GATEWAY technology into pB7FWG2 to generate a fusion
with eGFP under the control of the Cauliflower mosaic virus 35S
promoter. The construct was introduced into Col-0 plants by flo-
ral dip (Clough & Bent, 1998).

For co-transformation experiments, the VTE1 coding region
was amplified from cDNA with primers listed in Table S1. The
NcoI-digested product was cloned in frame 5 to the dsRED gene
in the vector pGJ1425 (Jach et al., 2001). Intact A. thaliana pro-
toplasts were prepared as described (Dovzhenko et al., 2003). For
transient gene expression assays, 59 105 protoplasts were trans-
fected with 20 lg of plasmid DNA by polyethylene glycol-medi-
ated DNA uptake (Koop et al., 1996) and cultured for 16 h at
22°C in the dark.

Fluorescence visualization was done as described (Xu et al.,
2017).

Leaf pigment analyses

For Chl extraction, approximately 10 mg of leaf tissue from 4-
wk-old plants was ground in liquid N in the presence of 80% (v/
v) acetone. After removal of cell debris by centrifugation, absorp-
tion was measured with an Ultrospec 3100 pro spectrophotome-
ter (Amersham Biosciences, Freiburg, Germany). Pigment
concentrations were calculated following Lichtenthaler (1987).

Relative anthocyanin levels were determined as described pre-
viously (Neff & Chory, 1998).

Chl fluorescence analysis

In vivo Chla fluorescence of whole plants was recorded using an
ImagingPAM Chl fluorometer (Heinz Walz GmbH, Effeltrich,
Germany). Plants adapted to dark (for 20–30 min) were exposed
to a pulsed, blue measuring beam (1 Hz, intensity 4; F0) and a
saturating light flash (intensity 4) to obtain Fv/Fm = (Fm� F0)/
Fm (maximum quantum yield of PSII). Plants were exposed to
actinic light (111 lmol m�2 s�1) to record the induction curve of
the effective quantum yield of PSII (ɸII). To quantify nonphoto-
chemical quenching (NPQ) of Chl fluorescence (NPQ;
ðFm � F 0

mÞ=F 0
m), in vivo Chla fluorescence was measured using

the ImagingPAM as well as the Dual-PAM 100 (Heinz Walz
GmbH).

Protein isolation and immunoblot analyses

Proteins were homogenized in 29 SDS sample buffer (62.5 mM
Tris-HCl, pH 6.8, 20% (v/v) glycerol, 4% (w/v) SDS, 100 mM
DTT, 0.05% (w/v) bromophenol blue), incubated for 7 min at
75°C and centrifuged for 15 min. Proteins were fractionated in a
10% (w/v) SDS polyacrylamide gel and transferred to polyvinyli-
dene fluoride membranes (Millipore). Filters were then incubated
with antibodies specific for the respective photosystem I (PSI)
and PSII proteins (all obtained from Agrisera, V€ann€as, Sweden).
Signals were detected by enhanced chemiluminescence (ECL kit;
Amersham Bioscience, Freiburg, Germany) using an ECL reader
system (Fusion FX7; PeqLab, Life Science, VWR, Ismaning,
Germany) and quantified using IMAGEJ (http://rsbweb.nih.gov/
ij).

Chloroplast fractionation

Intact chloroplasts were isolated from fresh leaf material from
c. 200 4-wk-old CaMV35S::FBN6-GFP (Col-0) plants grown
under short-day conditions (16 h : 8 h, dark : light) according to
Kauss et al. (2012). Fractionation of intact chloroplasts into thy-
lakoids, stroma, and envelope was performed as described
(Bouchnak et al., 2018), as was the fractionation into plastoglob-
ules and thylakoid membranes (Espinoza-Corral et al., 2019).

RNA sequencing and data analysis

Total RNA from plants was isolated using Trizol (Invitrogen)
and purified using Direct-zolTM RNA MiniPrep Plus columns
(Zymo Research, Irvine, CA, USA) according to the manufac-
turer’s instructions. RNA integrity and quality were assessed by
an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA).
Ribosomal RNA depletion, generation of RNA-Seq libraries,
and 150 bp paired-end sequencing on an Illumina HiSeq 2500
system (Illumina, San Diego, CA, USA) were conducted at
Novogene Biotech (Beijing, China) with standard Illumina pro-
tocols. Three independent biological replicates were used per
genotype.

RNA-Seq reads were analyzed on the Galaxy platform (Afgan
et al., 2016) as described in Xu et al. (2019). Sequencing data
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have been deposited in National Center for Biotechnology
Information’s Gene Expression Omnibus (Edgar et al., 2002)
and are accessible through GEO Series accession no.
GSE125515.

Gas exchange measurements

CO2 exchange measurements were conducted on whole rosettes
from 4-wk-old plants using the portable GFS-3000 system
(Heinz Walz GmbH). Conditions within the cuvette were set to
22°C, 60% relative humidity, and ambient CO2 concentrations.
The impeller speed was set to 7 and the flow rate to 750 µmol s–
1. Monitoring of the light curve was started with darkened
rosettes. When the CO2 and water system parameters had stabi-
lized, the light level was progressively increased. The CO2 assimi-
lation rate per unit weight was calculated with the software GFS-
WIN v.3.50b (Heinz Walz GmbH).

Transmission electron microscopy

Pieces of primary leaves were fixed with 2.5% (v/v) glutaralde-
hyde in fixative buffer (75 mM sodium cacodylate, 2 mM magne-
sium chloride, pH 7.0) and ultrathin sections were prepared as
described (Romani et al., 2015).

Metabolite analysis

Fresh material (25 mg) was ground in 180 µl cold (�20°C)
methanol containing 5 ll ribitol (0.2 mg ml�1 in water) and
5 ll 13C-sorbitol (0.2 mg ml�1 in water) as internal standards
for the relative quantification. Samples (at least five independent
replicates) were processed as described (Roessner et al., 2001;
Lisec et al., 2006; Erban et al., 2007). Finally, 1 ll of each sam-
ple was injected into a GC–time-of-flight MS system (Pegasus
HT; Leco, St Joseph, MO, USA). Sample derivatization and
injection were performed by an autosampler system (Combi
PAL; CTC Analytics AG, Zwingen, Switzerland). Helium was
used as carrier gas at a constant flow rate of 1 ml min�1. Gas
chromatography was conducted on an Agilent GC (7890A; Agi-
lent) using a 30 m VF-5ms column with 10 m EZ-Guard col-
umn. The injection temperature of the split/splitless injector
was set to 250°C, as well as the transfer line and the ion source.
The initial oven temperature (70°C) was continuously increased
to a final temperature of 350°C by a ramp of 9°Cmin�1. Sol-
vent delay was set to 340 s. Metabolites were ionized and frac-
tionated by an ion pulse of 70 eV, and mass spectra were
recorded at a rate of 20 s�1 within a scan range of 35–800 m/z.
Chromatograms and mass spectra were evaluated using
CHROMATOF 4.5 and TAGFINDER 4.1 software (Luedemann
et al., 2008). Nonpolar compounds were extracted as described
(Espinoza-Corral et al. 2019).

Reactive oxygen species staining of rosette leaves

Reactive O species (ROS) staining was done essentially as
described before (Lundquist et al., 2013).

Quantification of glutathione

Extraction and determination of total and oxidized GSH content
was essentially done as described (Queval & Noctor, 2007). Stan-
dard curves of GSH and oxidized GSH disulfide (GSSG) were
prepared, and 25 mg of plant material was used.

Data analysis

The significance of differences in gene expression in real-time
PCR, root length, flowering time, and GSH content was evalu-
ated by Duncan’s multiple range test, Holm–Sidak test, or by
Student’s t-test, as indicated in the figure legends.

Results

FBN6 is co-regulated with photosynthesis genes

One means of identifying genes coding for proteins in particular
pathways is the mining of coexpression data over a range of tis-
sues and conditions (Usadel et al., 2009). Here, we used photo-
synthesis genes as query genes in the ATTED-II COEXSEARCH
tool (Aoki et al., 2016) in an attempt to identify previously
unrecognized photosynthesis-associated genes. We found that
FBN6 is coexpressed preferentially with genes coding for compo-
nents of the photosynthetic machinery, like PSI reaction-center
proteins, and components of the O-evolving and light-harvesting
complexes (e.g. PsbY, PsbO1 and O2, Lhcb2.4, and Lhcb6)
(Fig. 1a; Table S2). Furthermore, we used the CORrelation
NETworks tool CORNET2.0 (De Bodt et al., 2012), with which
we constructed a condition-independent coexpression network
(i.e. one based on the screening of all deposited microarray data,
with no bias towards any particular type of condition/treatment)
for 10 of the 14 FBNs (FBN1a, FBN1b and FBN3a and FBN3a
were disregarded by CORNET2.0 because of their sequence simi-
larity) and the FBN-like gene At1G18060 (Lundquist et al.,
2012) (Fig. 1b). The FBN11 gene is an outlier in this network
and is only coexpressed with one gene of unknown function. The
genes FBN5 and FBN8 are predominantly coexpressed with
genes for chloroplast protein homeostasis and gene expression,
respectively. Other FBN genes are coexpressed with genes for
chloroplast proteins that are involved in several processes. The
FBN6 gene is the only FBN that is coexpressed chiefly with genes
for photosynthesis proteins (Fig. 1b).

To assess to what extent FBN messenger RNA (mRNA) levels
are regulated in response to various experimental perturbations,
the GENEVESTIGATOR Perturbations Tool was applied. FBN11
expression is most susceptible to perturbations: 285 conditions
provoke at least a two-fold change in transcript level (Fig. 2).
FBN7a and FBN2 are least susceptible to perturbations, respond-
ing to only 30 and 38 conditions, respectively. FBN6 is changed
in 188 conditions, and most closely resembles FBN5, 8, 10, and
FBN-LIKE (Fig. 2). FBN6 is preferentially repressed upon treat-
ment with flagellin 22 (a bacterial elicitor), lincomycin (an
inhibitor of organellar translation), or norflurazon (an inhibitor
of carotenoid synthesis) and under cold and high light
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Fig. 1 The FIBRILLIN6 (FBN6) transcript signature and coregulation network of FBN and FBN-like genes in Arabidopsis thaliana. (a) FBN6 is preferentially
coexpressed with genes encoding photosynthesis proteins. Correlations of FBN6 expression with coexpressed genes with a mutual rank (MR) score of < 28
and a supportive value of at least 2 were clustered with the complete linkage method (see the Materials and Methods section). The degree of coexpression
was measured with the MR parameter. Low distance values indicate high coexpression. Full names and accession numbers of corresponding encoded
proteins are provided in Supporting Information Table S2. (b) Coregulation gene network derived from condition-independent coexpression analysis using
the CORrelation NETworks tool (CORNET 2.0; https://bioinformatics.psb.ugent.be/cornet; De Bodt et al., 2012). Only strong coregulations of the top 10
genes with a Pearson correlation coefficient (corr. coeff.) ≥0.8 are shown. The relative size of a sector on the pie chart represents how much a protein is
predicted to be localized to the compartment indicated. FBN1a, FBN1b, FBN3a, and FBN3b were ignored by CORNET 2.0, as no reliable probe sets were
identified with this program. mRNA, messenger RNA; PS, photosystem; (x/y), x out of y genes are encoding proteins related to the process category
indicated.
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conditions. This expression profile is shared with numerous pho-
tosynthesis-associated genes.

Identification and phenotypic analysis of the fbn6-1mutant
and fbn6 artificial microRNA lines

To learn more about the physiological functions of FBN6, loss-
of-function fbn6-1, fbn6-2, and fbn6-3 mutants were identified.
In all mutants, the T-DNA insertion (fbn6-1) and the
Dissociation (Ds) transposon (fbn6-2, GT_5_46738, and fbn6-3,
GT_5_46794) were supposed to be located in the first exon of
FBN6. However, we could only isolate homozygous fbn6-1
mutants (Fig. 3a), and the Ds transposon insertions could not
be confirmed. In fbn6-1, FBN6 transcripts comprising sequences
5 of the insertion point were reduced to 1% of Col-0 levels and
none were detectable 3 of the insertion (Fig. S1a). Growth of
fbn6-1 plants was retarded, as reflected in smaller rosettes and a
reduction in rosette fresh weight to less than half that of Col-0
in 26-d-old plants (Fig. 3b). Moreover, fbn6-1 plants were late
flowering under long-day photoperiods (Fig. 3b), though not
under short-day conditions (8 h : 16 h, light : dark cycles;
Fig. S1b). Furthermore, leaves of fbn6-1 appeared slightly paler
than those of the wild-type (WT). Indeed, their Chl content
was slightly but significantly reduced in fbn6-1 plants, whereas
the Chla/Chlb ratio was increased (Fig. 3d). Segregation analysis
of the F2 offspring of fbn6-1 back-crossed to Col-0 indicated
that only one T-DNA inserted in fbn6-1 was causing the fbn6-
1-specific phenotype (Table S3). To ultimately confirm that the
altered activity of AT5G19940 was responsible for the mutant
phenotype of fbn6-1, independent knockdown mutants of
FBN6 were generated by amiRNA (Schwab et al., 2006) target-
ing the second (amiR1) and third exon of AT5G19940 (amiR2)
(Fig. S2a). Knockdown of FBN6 was confirmed by RT-PCR
(Fig. S2b) and real-time PCR analysis (Fig. S2c). Subsequent
phenotypic analysis showed that amiR1 and amiR2 behaved like
fbn6 plants (Figs 3b,c, S2d,e). This indicates that the fbn6 phe-
notype is indeed caused by knockout or knockdown of the
AT5G19940 gene.

Photosynthetic properties of fbn6-1mutant plants

To examine the effect of FBN6 disruption on photosynthesis,
Chla fluorescence parameters were investigated. Under normal
growth conditions, basic photosynthetic parameters, such as max-
imum (Fv/Fm) and effective (ΦII) quantum yields of PSII, were
slightly elevated in all developmental stages relative to Col-0
investigated (Fig. 4a,b), indicating that PSII and the electron
transport chain are fully functional in fbn6-1 and amiR1 and
amiR2 plants. Also, a minor increase in NPQ was observed in
fbn6-1 mutants, both at the level of induction kinetics
(111 µmol m�2 s�1) and in response to increases in light inten-
sity (Fig. S3a,b). This indicates that a slightly larger fraction of
the absorbed light energy is dissipated as heat, but it does not
explain the growth phenotype of plants lacking FBN6.

To determine the abundances of photosynthetic proteins in
fbn6-1, immunoblot analysis was performed on total protein
extracts from Col-0 and fbn6-1 leaves. Representative subunits of
PSI and PSII accumulated to similar levels in Col-0 and the
fbn6-1 mutant (Fig. 4c) – including PsaD and PsbO, whose
genes are also coexpressed with FBN6 (see Fig. 1a). Only levels of
RbcL, the large subunit of Rubisco, were reduced in fbn6-1 to
approximately 75% of WT amounts (Fig. 4c). We therefore mea-
sured CO2 assimilation rates in Col-0 and fbn6-1 plants exposed
to different light intensities up to 1000 µmol m�2 s�1. However,
no differences in CO2 assimilation rates could be detected
between Col-0 and fbn6-1 rosettes (Fig. 4d).

Hence, loss of FBN6 has only a marginal effect on basic pho-
tosynthetic parameters, and CO2 assimilation capacity is unal-
tered.

FBN6 is localized to thylakoid and envelope membranes

FBN6, together with FBN3a, FBN3b, FBN-like, and most prob-
ably FBN9, was found to be thylakoid localized (Lundquist et al.,
2012). Moreover, FBN6 is the only FBN isoform that was found
to be enriched in purified envelope fractions (Ferro et al., 2010),
a localization that was recently supported by Bouchnak et al.
(2019). To experimentally test for the subcellular location of
FBN6, the fluorescence distribution in Col-0 protoplasts overex-
pressing the FBN6-eGFP fusion was investigated. The eGFP flu-
orescence signals colocalized with the Chl autofluorescence
(Fig. 5a), confirming the localization of the FBN6 fusion protein
to chloroplasts. However, the fluorescence signals were detected
only occasionally as evenly distributed signals, and more often or
exclusively as small dots suggestive of plastoglobules (Fig. 5a). To
define the nature of the dots, and thereby confirm its localization
to plastoglobules, FBN6-eGFP was cotransformed into
A. thaliana protoplasts with a VTE1-dsRED construct. The
localization of VTE1 (VITAMIN E DEFICIENT 1; a toco-
pherol cyclase) to plastoglobules was previously established in
studies involving mass spectrometry and yellow fluorescent pro-
tein fusions (Vidi et al., 2006; Lundquist et al., 2012). Indeed,
FBN6-eGFP signals were found in dots together with the dsRED
signal of VTE1. Merging of both signals confirmed colocalization
of FBN6 and VTE1, and thus suggested a localization of FBN6
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to plastoglobules (Fig. 5a). However, FBN6 was found before to
be localized to both thylakoids (Lundquist et al., 2012) and
envelope (Ferro et al., 2010; Bouchnak et al., 2019) fractions.

To further explore the issue of FBN6’s localization, chloro-
plasts from Col-0 plants overexpressing FBN6-eGFP were pre-
pared and thylakoid, stroma, and envelope-enriched fractions
were isolated (Fig. 5b). These fractions were subjected to
immunoblot analysis, and the enrichment of chloroplast subcom-
partments was tested by monitoring thylakoid light-harvesting
Chla/b-binding protein (LHCP), stromal RbcL, plastoglobular
protein 18 (PG18; Espinoza-Corral et al., 2019), and the translo-
con at the inner and outer envelope membrane proteins Tic110
and Toc64, respectively. RbcL was detected mainly in the stromal
fraction, Tic110 and Toc64 mainly in the envelope fraction,
PG18 nearly exclusively in the thylakoid fraction, and LHCP was
most prominent in the thylakoids, but was also detected to a
weaker extent in the envelope fraction (Fig. 5b), showing a con-
tamination of the envelope fraction with thylakoids, but overall

corroborating the enrichment of the respective fractions. Using
this approach, FBN6-eGFP was mainly detected in the thylakoid
and, to a lesser extent, envelope membrane fractions. Comparing
relative intensities of eGFP signals with those of LHCP, it was
concluded that FBN6 was localized to thylakoids and the
envelope, albeit to a weaker extent to the latter subcompartment.
In a second fractionation approach, enrichment of selected frac-
tions from a sucrose gradient used to fractionate into thylakoids
and plastoglobules was tested by monitoring LHCP and PG18.
LHCP was detected mainly in fractions 25–33 (Fig. 5c) and
PG18 mainly in fraction 1. However, FBN6 was only detected in
fractions co-migrating with LHCP, suggesting that FBN6 is not
localized to plastoglobules, corroborating the previous finding of
Lundquist et al. (2012).

Because FBN6-eGFP was localized to thylakoid and envelope
membranes, we asked whether the growth phenotype of fbn6-1
plants might be related to alterations in chloroplast ultrastruc-
ture. However, transmission electron microscopy (TEM) of
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ultrathin sections of primary leaves showed that the ultrastruc-
tures of chloroplasts and also that of plastoglobules were virtually
indistinguishable between Col-0 and fbn6-1 (Fig. S4).

In summary, FBN6-eGFP expression leads to localization of
the fusion protein to thylakoid and envelope membranes, but
chloroplast ultrastructure in fbn6-1 mutants is indistinguishable
from WT under normal growth conditions.

FBN6 is needed to acclimate plants to moderate light stress

GENEVESTIGATOR analysis indicated that FBN6 mRNA levels are
downregulated after 1200 µmol m�2 s�1 (HL) treatment. To
confirm this, 29-d-old Col-0 plants grown under standard light-
ing conditions (120 µmol m�2 s�1; GL) were exposed for 2 h to
the 10-fold higher light level (HL) and real-time PCR analysis

showed that FBN6 transcripts were indeed downregulated after
HL treatment (Fig. S5a). Apparently, FBN6 transcripts must be
downregulated to accommodate the plant to the unfavorable HL
condition, and we therefore asked whether a complete lack of
FBN6 might help the plants to cope even better with HL stress.
However, Fv/Fm values of fbn6-1 plants exposed to 2 h of HL
stress were only slightly lower than in Col-0 plants (Fig. S5b).

Moreover, ROS accumulation in plants grown in GL and
transferred to 2 h of HL was visualized with nitroblue tetrazolium
(NBT) and diaminobenzidine (DAB), stains specific for superox-
ide (O2

•�) and hydrogen peroxide (H2O2), respectively
(Fig. S5c). Under GL conditions, rosette leaves of Col-0, fbn6-1,
amiR1, and amiR2 plants stained equally with NBT and DAB
(Fig. S5c). After HL treatment, the NBT and DAB precipitates
increased in Col-0 rosettes, whereas fbn6-1 rosettes did not
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display darker stains (Fig. S5c). This might suggest that plants
lacking FBN6 cannot properly adjust their ROS levels to HL
conditions. However, under prolonged light stress, both geno-
types responded in a similar manner (Fig. S5d).

Plants at 26 d old were also exposed to more moderate light
stress (400 µmol m�2 s�1; ML) combined with mild heat stress
of 28°C for several days. After 6 d of ML, the leaf petioles of
Col-0, fbn6-1, amiR1, and amiR2 plants were shortened, leaf area
expanded, and the maximum quantum yield of PSII was mildly
reduced, but otherwise Col-0 plants still looked healthy (Fig. 6a).
By contrast, the primary leaves of plants lacking FBN6 displayed
small necrotic lesions and the reduction in Fv/Fm was more pro-
nounced (Fig. 6a). Furthermore, older leaves of fbn6 mutant lines

almost completely failed to induce anthocyanin accumulation:
anthocyanin content was only 10% of WT levels (Fig. 6a).

To determine the impact of FBN6 deficiency on the ultra-
structure of chloroplasts after 6 d of ML, TEM of ultrathin sec-
tions of Col-0 and fbn6-1 primary leaves was conducted
(Fig. 6b). Col-0 leaves showed well-developed lenticular chloro-
plasts with starch accumulating. Occasionally, grana thylakoids
were somewhat distorted, indicating that Col-0 chloroplasts were
under mild stress, but plastoglobules were present in normal
numbers and size. The fbn6-1 chloroplasts tended to be more
nearly spherical in shape and contained no starch, and the diame-
ter of grana stacks was smaller than in the WT. Obviously, the
number of plastoglobules in fbn6-1 chloroplasts increased, the
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plastoglobules clustered, were larger, and variable in size. Along
with the larger size, the core of the plastoglobules stained lighter,
whereas the periphery was electron dense (Fig. 6b), indicating
that fbn6-1 chloroplasts in primary leaves already experience
stress under moderate higher light conditions.

Identification of other mutants with an fbn6-1-like pheno-
type

To identify mutants with an fbn6-1-like phenotype, we filtered a
comprehensive dataset of genes with a loss-of-function mutant
phenotype in A. thaliana published in 2012 (Lloyd & Meinke,
2012) and identified 16 mutants (Table S4). The majority (12)
of the mutants are impaired in genes for chloroplast-localized pro-
teins. One of the mutants harbors a T-DNA insertion in LHCB6,
which is coexpressed with FBN6 (see Fig. 1b). Nearly half of the
tagged genes encode proteins involved in ROS production/home-
ostasis, like the chloroplast ferredoxin AtFD2 and the chloroplast
NADPH-dependent thioredoxin reductase NTRC, and the
cytosolic ascorbate peroxidase APX1 which scavenges H2O2

(Dietz et al., 2016). Indeed, genes encoding the following ROS-
associated proteins are among the top 30 genes coexpressed with
FBN6: thioredoxin F2, the GSH peroxidase GPX1, and the (ca-
tion exchanger) CAT1-interacting protein CXIP1 (AtGRXcp),
which is a chloroplast glutaredoxin and is critical for protection
against protein oxidative damage (Cheng et al., 2006). Further-
more, mutants defective in tocopherol (vitamin E) biosynthesis,
specifically vte2 and vte4 (Bergmuller et al., 2003; Sattler et al.,
2004), have an fbn6-like phenotype. Here, it is interesting to note
that VTE5 is also coexpressed with FBN6 (see Fig. 1).

Taken together, these data suggest that changes in ROS home-
ostasis might be responsible for impaired light acclimation and
the delayed growth phenotype of fbn6-1.

Transcriptome changes point to an alteration of sulfate
reduction in fbn6 plants

To obtain molecular insights into a potential function of FBN6
in ROS homeostasis and to follow the general RNA expression
pattern of nucleus- and organelle-encoded genes, RNAs isolated
from 3-wk-old WT and fbn6-1 plants were subjected to RNA-
Seq. The mRNA levels of 194 and 118 genes were significantly
(more than 1.5-fold) reduced or elevated, respectively (Table S5).
Expression changes of several transcripts were confirmed by real-
time PCR analysis of 3-wk-old Col-0, fbn6-1 and fbn6-amiR1
and amiR2 plants (Fig. 7a). Plastid and mitochondria-encoded
transcripts were not changed. Gene Ontology (GO) analysis with
DAVID (da Huang et al., 2009) identified among the nuclear-en-
coded upregulated genes in fbn6-1 no enriched GO terms in the
‘cellular component’ and ‘molecular function’ categories. But
enrichment of genes encoding proteins for the ‘biological process’
GOs ‘removal of superoxide radicals’, ‘chaperone-mediated pro-
tein folding’, and those associated with response to stresses like
high light, chitin, heat, cold, and salt stress were identified
(Fig. S6a). This corroborates the aforementioned assumption that
ROS homeostasis is perturbed in fbn6 plants. For the

downregulated genes in fbn6-1, DAVID detected as highest fold
enriched GOs in the three categories ‘cellular component’, ‘bio-
logical process’, and ‘molecular function’ as being ‘chloroplast thy-
lakoid’, ‘sulfate reduction’, and ‘adenylyl-sulfate reductase
activity’, respectively (Fig. S6b). In particular, the 80 and 120-fold
enrichment of ‘sulfate reduction’ and ‘adenylyl-sulfate reductase
activity’ was remarkable. Eighteen transcripts that were in several
transcriptomics studies upregulated by sulfate deficiency were
identified (Kopriva et al., 2015), and11 of these were not up but
downregulated in the fbn6-1 mutant (Fig. 7b). This might indi-
cate that the sulfate assimilation status in fbn6 is not deficiency
but an excessive supply. Fig. 7(c) shows the transcriptome changes
in the sulfate assimilation pathway in more detail. Sulfate assimila-
tion is partitioned between the cytosol and chloroplast (Takahashi
et al., 2011; Bohrer et al., 2014); and in fbn6-1, in particular, the
transcripts for the chloroplast-localized ATP sulfurylase, adenosine
50-phosphosulfate kinase, adenosine 50-phosphosulfate reductase
(APR), and sulfite reductase were downregulated. Those enzymes
act in the sulfate assimilation pathway (Fig. 7c).

Taken together, these transcriptome changes point to an alter-
ation of sulfate reduction when FBN6 is lacking.

Lack of FBN6 leads to higher glutathione accumulation and
confers cadmium tolerance

To examine the metabolic consequences of a lack of fbn6, GC–
MS analysis was conducted on 3-wk-old Col-0 and fbn6-1
mutant plants and 180 metabolites were identified (Table S6).
Among the 36 metabolites that were significantly changed (> 1.5-
fold change; P < 0.05) in fbn6-1 compared with WT, glycine was
1.9-fold increased. Glycine is incorporated into c-glutamylcys-
teine to yield GSH (Fig. 7c). Because suppressed APR mRNA
expression has been found previously to be caused by increased
GSH levels (Koprivova & Kopriva, 2014; Fu et al., 2018), and
indeed all three chloroplast-localized APRs were downregulated
in fbn6-1 (Fig. 7c; Table S5), we speculate that the increased
glycine levels in fbn6 might result in increased GSH levels. To
test this, GSH content of 3-wk-old Col-0, fbn6-1, and fbn6-
amiR1 and amiR2 plants was measured with a plate reader assay
(Queval & Noctor, 2007). Indeed, all fbn6 lines contained more
total GSH (which is the sum of the reduced form of GSH and
the oxidized GSSG) (Fig. 8a).

GSH is a key player in antioxidant mechanisms (Noctor et al.,
2018) and plays, for example, a pivotal role in Cd detoxification
and tolerance (Liu et al., 2016). We reasoned that the higher
GSH content in fbn6 might lead to enhanced Cd tolerance. To
test this, Col-0, fbn6-1, and fbn6-amiR1 and amiR2 mutant seeds
were germinated on control MS medium and on MS medium
containing 50 or 250 µM CdCl2, and phenotypes were scored
after 14 d (Fig. 8b,c). When grown on MS plates, the primary
root length of seedlings lacking FBN6 was reduced relative to
Col-0 (Fig. 8c). By contrast, on MS supplemented with 50 µM
CdCl2, root lengths of fbn6-1 and fbn6-amiR lines were approxi-
mately two-fold longer than for Col-0 (Fig. 8c), and growth of
fbn6 seedlings was significantly better than that of WT seedlings
on plates supplemented with 250 µM CdCl2. Thus, the mutants
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were more resistant to Cd stress. Of note is that the increased
GSH content of fbn6 lines became even more prominent under
250 µM CdCl2 stress than under control conditions (Fig. 8a,d).

In sum, these data show that a lack of FBN6 results in
increased GSH levels and increased tolerance to Cd.

Discussion

Using coexpression information to identify new pathway
components

Approaches to the identification of novel associated genes with
pathways of interest include guilt-by-association approaches
(Higashi & Saito, 2013). This approach is based on the

assumption that genes which are coexpressed (i.e. show similar
expression patterns over a range of different tissues and conditions)
are likely to encode proteins that act in the same or closely related
biological pathway(s) (Higashi & Saito, 2013; Yonekura-Sakak-
ibara & Saito, 2013). For example, transcriptome and coexpression
network analyses were exploited to identify HEAT INDUCIBLE
LIPASE1 (HIL1) as a remodeler of chloroplastic monogalactosyl-
diacylglycerol under heat stress, and to show that HIL1 homologue
expression levels in various plants are tightly associated with chloro-
plastic heat stress responses (Higashi et al., 2018).

With the ongoing expansion of public gene expression reposi-
tories, the predictive power and usefulness of coexpression infor-
mation increases (Rung & Brazma, 2013), and many more
studies have since made use of the abundance of microarray data
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Fig. 6 Behavior of Arabidopsis thaliana wild-
type (Col-0) and fibrillin6-1 (fbn6-1) and
two artificial microRNA (amiR1 and amiR2)
mutant plants under moderate light stress.
(a) Plants were first grown for 26 d under
normal growth light (120 µmol m�2 s�1) and
then exposed to 400 µmol m�2 s�1 for the
time periods indicated. Primary leaves of
plants lacking FBN6 displayed small necrotic
lesions (yellow arrow pointing to the
enlargement of primary leaves displayed in
square pictures) and maximum quantum
yield of photosystem II (Fv/Fm) was more
pronounced. The data are shown as mean
values� SD of 8–10 different leaves.
Significant differences between the data
pairs were identified by the Student’s t-test,
and the asterisks denote significant
differences (P < 0.05) with respect to Col-0.
The abaxial surface of leaves of plants grown
under moderate light stress for 6 d reveals
reduced anthocyanin accumulation in fbn6-1

plants. Anthocyanins were extracted and
measured photometrically; amounts are
reported in arbitrary units (au). The asterisks
indicate that values are statistically different
between Col-0 and mutant plants based on
Student’s t-test (P < 0.05). (b) Representative
transmission electron micrographs of
ultrathin sections illustrate responses to
moderate light stress in Col-0 and fbn6-1
leaves. Primary leaves as accentuated for the
fbn6-1mutant in (a) were harvested directly
after onset of the light period. The Col-0
leaves show well-developed lenticular
chloroplasts and plastoglobules of normal
size. Plastoglobuli in fbn6-1 chloroplasts stain
with a biphasic contrast, are numerous,
bigger, and variable in size. Moreover, the
diameter of grana stacks is smaller, and
chloroplasts have a globular shape. Starch
grains are not accumulating in fbn6-1
chloroplasts. G, grana; P, plastoglobule; S,
starch grain. Bars, 4 µm.
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to identify new pathway components based on their coexpression
with known elements. Here, we have used this methodology to
identify FBN6 as a putative photosynthesis and redox-associated
gene. Subsequent definition of a coexpression network with all
FBN genes and the FBN-LIKE gene showed that, of all FBNs,
FBN6 is the gene that is coexpressed with the largest number of
photosynthesis genes (see Fig. 1a). Thus, it is coexpressed with
various genes coding for the core photosynthetic apparatus and

regulators of photosynthesis, such as CURT1B (TMP14; see
Table S2) or the O subunit of PSI that helps to balance excitation
pressure between the two photosystems (Jensen et al., 2004). The
case of psao is an example of a mutant that fails to display a dra-
matic phenotype under normal-growth light conditions,
although it is impaired in a photosynthesis-associated protein.
Similarly, absence of Lhcb1 and Lhcb2 in antisense plants
induces no significant growth phenotype, although Chl levels are
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Fig. 7 Analysis of transcriptome changes in Arabidopsis thaliana fibrillin6-1 (fbn6-1) mutant plants. (a) Real-time PCR analysis of 3-wk-old wild-type
(Col-0), fbn6-1, and fbn6-amiR1 and amiR2mutant plants. PCR was performed with primers specific for the genes of interest and AT4G36800, encoding
an RUB1-conjugating enzyme (RCE1) as a control. The messenger RNA (mRNA) levels are expressed relative to that in the Col-0 control, which was set to
1. The results were normalized to the expression level of AT4G36800. Bars indicate SD. The asterisks indicate that values are statistically different between
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phosphorylated to 30-phosphoadenosine 50-phosphosulfate (PAPS) by APS kinase (APK) or reduced to sulfide by APS reductase (APR). The sulfide branch
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reduced (Andersson et al., 2003). The fbn6-1 mutant does show
a phenotype under normal light conditions: it is stunted, contains
slightly less Chl than Col-0, and is late flowering (see Figs 3, S1).
But the fbn6-1 growth phenotype cannot be accounted for either
by altered basic photosynthesis parameters or by a reduced CO2

assimilation rate (see Fig. 4).

FBN6 affects glutathione levels and cadmium tolerance

A large fraction of the mutants with an fbn6-1-like phenotype (see
Table S3) are defective in ROS production/homeostasis. The
chloroplast is considered to be the major source of ROS in plant
cells. As a chloroplast-localized protein, FBN6 might be part of the
ROS scavenging machinery. This would be compatible with our
data, which point to an altered ROS homeostasis under HL condi-
tions and altered transcript levels of genes for proteins involved in
the removal of superoxide radicals in fbn6-1 plants even under stan-
dard growth conditions (see Figs S5, S6). This suggests that an
ROS-dependent signaling pathway is activated in the fbn6-1
mutant under normally adequate growth conditions. Furthermore,
anthocyanin levels in older fbn6-1 leaves are reduced to 10% of
WT levels under moderate light stress, whereas younger leaf tissue

of fbn6-1 mutants appears to accumulate normal levels of antho-
cyanins. This phenotype is reminiscent of that of the k1 k3 mutant,
which is devoid of the plastoglobule kinases ABC1K1 and
ABC1K3 (Lundquist et al., 2013), and of the behavior of the npq1
mutant (which lacks the xanthophyll cycle enzyme violaxanthin de-
epoxidase; (Havaux et al., 2000) and a mutant perturbed in two
ascorbate peroxidases (Giacomelli et al., 2007).

The perturbation in ROS homeostasis and the higher GSH
content might explain the delayed growth phenotype of fbn6
plants, as in the case of the apx1 mutant, in which GSH is also
increased (Jiang et al., 2016). Indeed, the late-flowering (Pnueli
et al., 2003) and short-root phenotypes of apx1 (Correa-Ara-
gunde et al., 2013) are also recapitulated by fbn6-1 (see Figs 3,
8). Notably, flowering time is delayed by exogenous and endoge-
nous GSH supply (Cheng et al., 2015). GSH is used in several
stress response pathways to detoxify ROS, xenobiotics, and cer-
tain heavy metals (Noctor & Foyer, 1998). Thus, it is most likely
that the increased GSH content provokes Cd tolerance of fbn6
plants (see Fig. 8). Accordingly, plants lacking APX1 are more
tolerant to selenium (Jiang et al., 2016), and the sultr1;1 sultr1;2
mutant with lower GSH content is more sensitive to Cd (Liu
et al., 2016).
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In general, oxidative stress – induced by treatment with paraquat,
for instance – inhibits primary root elongation (Suzuki et al., 2013).
Among the other fbn6-like mutants identified in the filtered dataset
referred to earlier (Lloyd & Meinke, 2012) are the mutants vte2
(Sattler et al., 2004) and vte4 (Bergmuller et al., 2003). Notably,
root elongation is severely reduced in vte2 plants and mildly com-
promised in the vte1 mutant (Sattler et al., 2004). Furthermore,
VTE5 is coexpressed with FBN6 (see Fig. 1). Tocopherols are
lipophilic antioxidants that are synthesized in all photosynthetic
organisms; in plants, they are synthesized in plastids (Hussain et al.,
2013). To mitigate the harmful effects of elevated ROS, plants pos-
sess a complex network of enzymatic and nonenzymatic antioxidant
defense systems, of which the latter involves low-molecular-weight
antioxidants such as tocopherol, ascorbate, and GSH (Hussain
et al., 2013). When vte1 or vte2 leaf discs are simultaneously
exposed to HL and low-temperature stress, they bleach and suffer
from lipid photodestruction. Interestingly, this is not observed in
whole plants exposed to long-term high light stress, unless the stress
conditions are extreme (very low temperature and very HL), sug-
gesting the availability of compensatory mechanisms for vitamin E
deficiency under more physiological conditions (Havaux et al.,
2005). The fbn6-1 mutant phenotype behaves very similarly to the
WT under HL stress (see Fig. S5). It is conceivable that disruption
of another part of the ROS network in combination with a lack of
FBN6 might lead to a stronger phenotype, as has already been
observed in other stress studies (Kanwischer et al., 2005; Giacomelli
et al., 2007). For example, in vte1, ascorbate and GSH levels are
increased. Whereas growth, Chl content, and photosynthetic quan-
tum yield were very similar to WT in vte1, vtc1 (ascorbate defi-
cient), cad2 (GSH deficient) and vte1vtc1 mutants, they were clearly
reduced in vte1cad2 mutants, indicating that the simultaneous loss
of tocopherol and GSH results in moderate oxidative stress, which
in turn affects the stability and efficiency of the photosynthetic
apparatus (Kanwischer et al., 2005).

FBN6 is important for acclimation to light stress

Interestingly, VTE1 has been localized to plastoglobules; and,
moreover, comparative analysis of chloroplast membrane frac-
tions shows that plastoglobules are a site of vitamin E accumula-
tion in chloroplasts (Vidi et al., 2006). Meanwhile, it is clear that
plastoglobules are not merely lipid stores, but are metabolically
active, taking part in prenyl lipid metabolism, plastid biogenesis,
environmental adaptation, and probably in other pathways (Vidi
et al., 2006; Ytterberg et al., 2006; Brehelin et al., 2007;
Lundquist et al., 2012; Nacir & Brehelin, 2013; Rottet et al.,
2015; van Wijk & Kessler, 2017). Under abiotic stress conditions
like HL, heat, or cold, plastoglobules increase in size and number
(Szymanska & Kruk, 2010; Zhang et al., 2010; Heyneke et al.,
2013; Lundquist et al., 2013).

Under a fluence of 400 µmol m�2 s�1, although it has to be
noted that FBN6 is not localized to plastoglobules (see Fig. 5),
the plastoglobules in the fbn6-1 mutant become larger than in
the WT, which is a further indication that FBN6 is needed to
acclimate Arabidopsis to moderate light stress. Apple trees or
Arabidopsis with reduced mounts of FBN4 are also susceptible

to abiotic and biotic stresses (Singh et al., 2010). In leaves of
apple fbn4 knockdown plants, the partitioning of PQ-9 between
plastoglobules and the rest of the chloroplast seems to be dis-
rupted; therefore, a failure to accumulate this antioxidant in
plastoglobules might contribute to the increased stress sensitivity
of fbn4 knockdown trees (Singh et al., 2012). Furthermore,
plants in which mRNAs for FBN1a, FBN1b, and FBN2 were
simultaneously downregulated by RNAi display higher PSII
photoinhibition, retarded shoot growth, and lower anthocyanin
accumulation under a combined HL and cold treatment
(Youssef et al., 2010), and it was recently shown that FBN5 is
involved in the acclimation to photooxidative stress (Otsubo
et al., 2018).

Another example for the involvement of FBNs in plant growth
regulation even under relatively nonstressful conditions is the FBN1
homologue C40.4 in potato. Under standard growth conditions,
potato plants with reduced expression of C40.4 have reduced tuber
size and yield, and their growth is stunted (Monte et al., 1999). On
the other hand, overexpression of bell pepper FBN1 in tobacco
results in a greater plant height and accelerated flowering under
higher light intensities (300 µmolm–2 s–1), but not under lower
light intensities (100 µmolm–2 s–1) conditions (Rey et al., 2000).

Thus, overall, a picture is emerging in which FBNs have
important roles in plant responses to stresses.
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