Parallel Homochiral and Anti-Parallel Heterochiral Hydrogen-Bonding Interfaces in Multi-Helical Abiotic Foldamers

Daniela Mazzier, Soumen De, Barbara Wicher, Victor Maurizot, and Ivan Huc*

Abstract: A hydrogen-bonding interface between helical aromatic oligoamide foldamers has been designed to promote the folding of a helix-turn-helix motif with a head-to-tail arrangement of two helices of opposite handedness. This design complements an earlier helix-turn-helix motif with a head-to-head arrangement of two helices of identical handedness. The two motifs were shown to have comparable stability and were combined in a unimolecular tetra-helix fold constituting the largest abiotic tertiary structure to date.

Foldamer research has shown that secondary structures, such as isolated helices or β-strands, occur in a great variety of synthetic backbones. In contrast, the design of tertiary folds is a considerable challenge. This challenge is worth pursuing because tertiary folding is the level at which sophisticated functions emerge in proteins and the same may be expected for foldamers. The way is being paved by impressive progress in protein design and increasing mastery in programming binding interfaces between peptidic structures, in particular within peptide helix bundles. For instance, helix bundles have been reported in peptidomimetics, such as β-peptides and β-ureas. We have recently introduced the first abiotic tertiary folds, that is, from backbones that do not relate to peptides or nucleotides. We used the stable helices formed by aromatic oligoamides of 8-amino-quinolinecarboxylic acid (Q in Figure 1) and 6-aminomethylpyridine carboxylic acid as well-defined modules and introduced hydroxy groups at precise positions at their periphery (X and Y in Figure 1) to promote inter-helix hydrogen bonding with amide carbonyl groups (Figure 2a). Various types of helix bundling were observed, including parallel trimers and dimers, and tilted dimers. As opposed to biotic tertiary folds that form in water and are often driven by hydrophobic effects, these folds form in organic solvents. All these assemblies were homochiral, that is, they involved helices that have the same handedness. Further progress in tertiary structures design will primarily rest on the orchestration of interactions between secondary folds, a far-from-trivial endeavor. Herein we introduce a binding interface between helices of opposite handedness. Unlike what was recently shown in heterochiral peptide bundling, we demonstrate the equivalence of parallel homochiral and anti-parallel heterochiral abiotic helix association. We also show how the...
two patterns can be combined within the same tertiary fold without having to consider the stereochemistry at each unit, as it would in a peptide.

Turn unit T1 (Figure 1) has been shown to promote homochiral parallel helix bundling between two identical helical segments attached at their C-terminus, as for example in sequence 1 (Figure 1).[6] Molecular modelling was used to design T1: it allowed us to adjust the positions of hydrogen-bond donors and led to the replacement of some X units by Y to avoid possible steric repulsions. A diagram of the helix–helix interface illustrates how the hydrogen-bond donors and acceptors may face each other (Figure 2c, left). This diagram also shows that hydrogen bonding occurs despite the helices having the same handedness: the slope of the main chain (i.e. the angle between its tangent and a plane perpendicular to the axis) should in principle result in some distance between hydrogen-bond donors and acceptors placed on two helices of identical handedness. Yet the large helix diameter and the resulting moderate slope (ca. 15°) are such that hydrogen bonding takes place. An extension of this observation is that an anti-parallel heterochiral helix dimer (Figure 2c, right) should not only give rise to a similar hydrogen-bonding pattern, but in fact lead to a better match between the positions of the donors and acceptors because the helical chains have their tangent parallel to each other at the interface, that is, their slopes have opposite signs (Figure 2c).[11] To test this prediction, we designed turn unit T2 and sequence 2 (Figure 1). It should be noted that sequence 2 contains the very same nonameric helix segment as 1 but that one of the two is now attached to the turn at its N-terminus.

The synthesis of the Fmoc-protected version of T2 is described in the Supporting Information. In anticipation of the preparation of long oligomers, we developed a solid-phase fragment condensation (SPFC) approach (Figure 3a). Fragments A and B were synthesized using previously reported solid-phase synthesis (SPS) methods.[8c,12] Fragment A was then cleaved from the resin, purified and coupled to T2-terminated fragment B still on the resin. To prepare 2a, two identical fragments were condensed. Using mild resin cleavage conditions, oligomer 4 was obtained as a free carboxylic acid with its side chains protections, and was then converted into the corresponding methyl ester 2a.

The 1H NMR spectrum of 2a in CDCl₃ shows two sets of signals, suggesting the coexistence of PM and PP/MM conformers in solution (Figure S1a in the Supporting Information), as was previously observed for structures containing T1.[8a–9] On the contrary, the deprotected sequence 2b shows one set of sharp NMR signals including for OH resonances (Figure 3c). The spectrum is similar to that of 1 (Figure 3b).
and indicative of a well-folded helix-turn-helix motif. A crystal structure of 2b confirmed the formation of the anti-parallel heterochiral helix dimer (Figure 4b). The resemblance of the hydrogen-bonding interface in this structure with that of 1 (Figure 4a), is striking. Despite the change of one helix handedness and orientation, the hydrogen-bond donors and acceptors are found at very similar positions (Figures S2–S3). The stability of the hydrogen-bonding interfaces was then assessed upon monitoring the effect adding [D$_6$]DMSO into CDCl$_3$ solutions. Because of the rigidity of the aromatic helices, chelate effects are observed between the hydrogen-bonding units that results in an all-or-nothing behavior: the six hydrogen bonds are disrupted all at once through a small change of DMSO concentration. Remarkably, this transition occurred with identical amounts of DMSO (ca. 20% vol/vol, Figures S4–S7) for 1 and 2b, showing comparable strengths of the parallel homochiral and anti-parallel heterochiral hydrogen-bonding interfaces.

Differences from peptide helical bundles should be noted: in peptides, bundling is mostly known between α-helices of identical handedness which, to best match at their binding interfaces, generally coil around one another. Studies on heterochiral peptide helix bundling\cite{10} and in particular some recent work by Gellman et al.\cite{10a,10b} show that homochiral and heterochiral peptide helix interfaces are not equivalent, notably because coil-coiling is not conducive of better complementarity in heterochiral bundles. In contrast, the rigidity of the aromatic helices hampers coiling, at least over short distances, and strictly parallel arrangements form when mediated by turn units, such as T1 and T2. However, aromatic helices may slightly change their local curvature, so as to optimize inter-helix interactions: helix curvature in the structures of 1 and 2b is not rigorously constant and identical to that of relaxed helices not involved in bundling.

In compounds 1 and 2b, helix handedness control is relative, not absolute, and guided only by strand orientation as imposed by the turn unit, and by hydrogen-bonding complementarity. This should in principle allow for the combination of both parallel-homochiral and anti-parallel-heterochiral motifs in the same tertiary structure without having to consider the nature of stereogenic centers at each unit as it would in peptides. We challenged this possibility through the design of sequence 3b (Figure 1). As shown in Figure 4c,d, 3b is expected to fold in a sequence of four contiguous helices having either identical or opposite handedness depending on whether they are separated by T1 or T2, with the central YXXQhYW helical segments each bearing two independent hydrogen-bonding interfaces, one homochiral, and

![Figure 4. Crystal structures of compounds 1 and 2b.](image-url)
and one heterochiral. In the design of 3b, we made use of helices of different length to avoid creating an extended aromatic surface that might promote aggregation and reduce solubility. Similarly, we introduced Q8 units with a longer branched alky chain inside the sequence to promote solubility (Figure 1). Oligomer 3a was synthesized combining SPFC (Figure 3a) and solution-phase synthesis for the final coupling of T1 with 5. The 1H NMR spectrum of protected compound 3a was complex due to the presence of multiple turn units (Figure S1b) and thus of different conformational stereoisomers (PMMP, PMMM, MMMM, PMPM, PMPP, MMPP and their enantiomers). After removal of the side chain protecting groups, a sharp spectrum with only one set of signals was observed for 3b (Figure 3d). Even though an unambiguous structure elucidation could not be achieved in solution or in the solid state, these observations altogether suggest that 3b is present in solution in a well-defined folded conformation.

In conclusion, we have introduced a new well-defined abiotic helix-helix hydrogen-bonding interface and showed that tertiary structures combining different interfaces can be designed, resulting in predictable helix-turn-helix structures composed of helices of different handedness and orientation, a pattern difficult to reach with simple peptides. We are currently expanding this work to interfaces between tilted, that is, non-parallel, helix multimers and will report our progress in due course.

Acknowledgements

This work was supported by the European Research Council under the European Union’s Seventh Framework Programme (Grant Agreement No. ERC-2012-AdG-320892). It benefited from the facilities and expertise of the Biophysical and Structural Chemistry platform at IECB, CNRS UMS3033, INSERM US001, Université de Bordeaux. We thank Dr. B. Kauffman (IECB) for assistance with X-ray data collection and Ms. F. Menke for NMR measurements.

Conflict of interest

The authors declare no conflict of interest.

Keywords: foldamers · helix bundles · molecular design · structure elucidation · tertiary structures

How to cite: Angew. Chem. Int. Ed. 2020, 59, 1606–1610

Angew. Chem. 2020, 132, 1623–1627

[11] For the sake of simplicity, Figure 2e approximates that the hydrogen-bond donors and acceptors do not exactly belong to two planes. Instead, because of the helix curvature, each of them
is either in front of or behind the planar helical net diagrams shown. Complementarity also exists with respect to this positioning: when one donor lies below the plane shown in the scheme, the acceptor to which it hydrogen bonds lies above the other plane. The transformation that consists in inverting both the handedness and the C–N orientation of a helix also preserves the positioning of the acceptors and donors above or below the planes shown in the schemes.