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Abstract
Fluorescent dyes used for single-molecule spectroscopy can undergomillions of excitation-emission
cycles before photobleaching. Due to the upconcentration of light in a plasmonic hotspot, the
conditions for fluorescent dyes are evenmore demanding inDNAorigami nanoantennas. Here, we
briefly review the current state offluorophore stabilization for single-molecule imaging and reveal
additional factors relevant in the context of plasmonic fluorescence enhancement.We show that
despite the improved photostability of single-molecule fluorophores byDNAorigami nanoantennas,
their performance in the intense electricfields in plasmonic hotspots is still limited by the underlying
photophysical processes, such as formation of dim states and photoisomerization. These photo-
physical processes limit the photon count rates, increase heterogeneity and aggravate quantification of
fluorescence enhancement factors. These factors also reduce the time resolution that can be achieved
in biophysical single-molecule experiments. Finally, we showhow the photophysics of aDNAhairpin
assaywith a fluorophore-quencher pair can be influenced by plasmonicDNAorigami nanoantennas
leading to implications for their use influorescence-based diagnostic assays. Especially, we show that
such assays can produce false positive results by premature photobleaching of the dark quencher.

Introduction

Formany years, researchers have been pushing organic
fluorophores to their limits—simply because the
fluorophore is the main bottleneck in most experi-
ments involving fluorescence [1]. Photobleaching
processes limit both the observation time of the
molecule and the achievable time resolution of an
experiment. This is especially relevant for observables
that cannot be obtained from quasi-ensemble mea-
surements such as nanosecond-fluorescence correla-
tion spectroscopy (ns-FCS) [2] and require true single-
molecule data, e.g. the observation of transition paths
in conformational dynamics of biomolecules [3].
Furthermore, preliminary bleaching of fluorophores
and quenchers can also influence the reliability of

fluorescence-based diagnostic assays. This push for
more photons and stable fluorescence signal has led to
newmechanistic insights of fluorophore photobleach-
ing pathways as well as to the discovery of a plethora of
suitable photostabilization strategies [1, 4–8]. In this
paper, we briefly review the processes governing
photostability and strategies to increase photostability
with a focus on quenching intermediate states on the
photobleaching pathway. We then place this discus-
sion into the context of fluorophores next to plasmo-
nic nanostructures. Based on our experimental data of
photophysical effects and photostabilization in optical
nanoantennas we reason that dim states of fluoro-
phores are strikingly reducing the linear excitation
intensity-dependent brightness of fluorophores and
increase heterogeneity of fluorescence enhancement
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values. In addition, the increased excitation fields and
nonlinear bleaching pathways lead to photodestruc-
tion of fluorescence quencher molecules potentially
leading to false positive results in basic assays of
molecular diagnostics.

The total number of photons that can be detected
from a given fluorophore is limited by its intrinsic
photophysics and photochemistry [1, 9, 10]. An ideal
fluorophore would cycle between its ground (S0) and
singlet excited (S1) states emitting photons and report-
ing on the position or the state of the fluorescently
labelledmolecule (scheme 1(a)). At the high excitation
rates required for single-molecule detection other
photophysical processes come into play [11–13].
Intersystem crossing to the triplet excited state (T1)
can lead to long-lived and reactive triplet species. Fur-
thermore, reduction or (photo)oxidation of the singlet
or triplet excited state can lead to the formation of
even longer-lived dark radical intermediates. While
the triplet excited state is efficiently quenched by
molecular oxygen, it leads to the generation of singlet
oxygen as well as other reactive oxygen species capable
of further accelerating the photobleaching reactions.
Hence, established photostabilization approaches
used to address these instabilities rely on combining
the removal of oxygen (often via the use of enzymatic
oxygen scavengers) with the addition of photo-
stabilization additives that act as quenchers of reactive
triplet and radical intermediates [8, 14].

With respect to triplet excited state quenchers, two
mechanistically distinct approaches have been utilized

(scheme 1(a)). On the one hand, triplet excited states
can be quenched via a photophysical pathway (i.e.
energy transfer) by photostabilizers like cyclooctate-
traene (COT) [8, 14] or Ni2+ ions [7, 15, 16]. On the
other hand, triplet excited states can also be quenched
via photoinduced electron transfer (PeT) with a redu-
cing (e.g. ascorbic acid [5], Trolox [4, 6, 8], β-mercap-
toethanol (β-ME) [6]) or an oxidizing agent (e.g.
methyl viologen [5], Trolox quinone [4],
4-nitrobenzyl alcohol) which results in the formation
of a radical anion or a radical cation, respectively. The
resulting radical intermediates are rescued by the
simultaneous use of both reducing and oxidizing
agents—an approach that is known as reducing and
oxidizing system (ROXS) [5]. The formation of long-
lived radical intermediates and requirement of the
complementary redox partner can be avoided if the
PeT is followed by fast back electron transfer [17]. This
requires a redox partner capable of assisting an inter-
system crossing in the triplet geminate radical ion pair
that is formed following the PeT step (scheme 1(a))
[18]. While these solution-based photostabilization
approaches have significantly advanced single-mole-
cule fluorescence studies by allowing to extend the
experiments from few seconds to tens of minutes and
providing photon budgets reaching millions [5, 7],
one always has to keep in mind the potential influence
of the photostabilizers on the biological system under
investigation. One strategy that has been realized over
the last decade to address this issue relies on direct
coupling of photostabilizers with the fluorophores to

Scheme 1. Illustration of differentmechanistic approaches used to improve the photostability of thefluorophores in single-molecule
fluorescence applications. (a)Established photostabilization strategies: quenching the reactive fluorophore intermediates (triplet
excited and radical species) via photophysical (energy transfer, orange) and photochemical (PeT, green) pathways. (b)Plasmonic
nanostructures: photostability is improved by acceleration of the radiative decay rate depicted by bold arrows andminimizing the
time the fluorophore spends in higher excited (reactive) states. Left: sketch of aDNAorigami optical nanoantenna; fluorophore
positioned in the hotspot between twometal nanoparticles. Right: simplified Jablonski diagramhighlighting the photophysical rates
(red) accelerated by nanoantennas. Here kexc is the excitation rate, kr the radiative and and knr non-radiative rate, kisc the intersystem
crossing rate, kRed/Ox the reduction (or oxidation) rate, kesc the escape rate for the geminate radical ion pair (GRIP) to the free radical
(R·+/R·−), and kgr is the geminate recombination rate to the ground state.
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obtain ‘self-healing’ dyes [19]. Several small molecules
have been conjugated or proximally linked to different
single-molecule dyes that include COT [20–24], Tro-
lox [20–24], 4-nitrobenzyl alcohol (NBA) [20], nitro-
phenylalanine (NPA) [21, 22, 25, 26], or a trisNTA
moiety containing threeNi2+ ions [16].

The conventional approaches revolve around sal-
vaging the pristine, fluorescent state from its reactive
and non-emissive triplet or radical forms by supplying
the appropriate reaction partner. Recently, another
strategy for photostabilization has evolved which is
complementary to these approaches. Plasmonic
nanostructures have been shown to have a drastic
influence on radiative and non-radiative rate con-
stants [27] (scheme 1(b)), an effect that is generally
attributed to changes in the local electric field strength
in vicinity of the metal surface [28]. Additionally, the
plasmonic nanostructure can also act as an optical
antenna on the nanoscale focusing incident excitation
light into zeptoliter volumes. When a fluorophore is
positioned in such a volume (often referred to as a hot-
spot) its excitation and emission rates can be enhanced
up to several hundred-fold, which allows to enhance
its fluorescence signal as well as the photon count rates
that can be obtained for single fluorescent molecules.
The overall effect of a plasmonic nanostructure on the
fluorescence properties of the dye depends on a num-
ber of different parameters, such as the distance to the
metal surface, the spectral overlap between the excita-
tion and emission spectra of the fluorophore and the
plasmon resonance, the size and shape of the plas-
monic nanostructure and, in the case ofmore complex
nanoantennas, their spatial arrangement [28–30].

Many studies have focused on the capacity of plas-
monic nanoantennas to enhance the fluorescence sig-
nal of single emitters, while only a few of them have
addressed their unique ability to improve the photo-
stability and the total number of emitted photons
[31–34]. Here, the improvement in photostability is
typically attributed to an increased radiative rate
which, in turn, reduces the time a fluorophore spends
in the first excited singlet state and minimizes the
probability of photobleaching. In fact, in the simplest
approximation where only photobleaching via one
photon processes is considered, the total number of
photons emitted (N), can be expressed as the ratio of
fluorescence quantum yield (Ff ) and fluorophore
bleaching yield (Fb) [33, 35]:
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Where, kr—radiative rate constant, kb—bleaching rate
constant, and kall—sum of all rate constants for
photophysical processes occurring from the fluoro-
phore singlet excited state (radiative decay, non-
radiative decay, intersystem crossing, and bleaching).
Equation (1) illustrates how the photostability of a
fluorescent molecule can be improved by either
accelerating the radiative rate or decreasing the rate of

photobleaching. While traditional photostabilization
approaches discussed earlier (scheme 1(a)) are aimed
at slowing down the bleaching processes, photostabili-
zation by plasmonic nanostructures (scheme 1(b))
offers an alternative and, perhaps even complementary
approach to improve N by accelerating the radiative
rate constant. Additionally, the plasmonic nanoparti-
cles have also been shown to increase the radiative and
non-radiative decay rates from the triplet excited states
also suppressing the time the fluorophore spends in
the excitedT1 state (scheme 1(b)) [32, 36, 37]. Depend-
ing on the efficiency of this triplet suppression, this
offers an additional possibility to further improve the
total photon budget (N) of organic fluorophores when
coupled to plasmonic nanoantennas.

Plasmonic hotspots formed by a linear arrange-
ment of two metallic nanoparticles exhibit an even
greater electric field enhancement [38, 39], with repor-
ted values reaching up to 100-fold acceleration of the
radiative decay [38]. For a decade now plasmonic
dimer nanoantennas have been successfully fabricated
via ion or electron beam lithography [40], but this
approach suffers from uncontrolled positioning of a
fluorophore in the hotspot: usually dyes are either
fixed in an aid polymer coating [38] or they are
observed as they diffuse freely through the hotspot
region [41]. This not only drastically increases the time
and the amount of materials spent for a single experi-
ment but creates a large heterogeneity in the enhance-
ment that is achieved for kex and kr, as the enhanced
electric field varies a lot within a hotspot [42].

Both problems can be addressed by employing an
alternative approach of fabricating nanoantennas—
self-assembly using DNA origami. In this technique a
long single-stranded DNA (ssDNA) with known
sequence is shaped with the help of multiple unique
ssDNA to a desired configuration [43]. Labelling of a
specific strand with a molecule of interest or a func-
tional group (e.g. fluorophore, biotin, amino group)
allows to spatially arrange it on a designed structure
[44]. This approach has justified itself for performing
detailed studies at the single-molecule level of changes
in quantum yield and photophysical rates of fluor-
ophores [27], the distance-dependent quenching of
fluorescence [45], Förster resonance energy transfer
(FRET) [46, 47] and finally, controlled reduction of
photobleaching [31, 33] in proximity of metal nano-
particles. These optical antennas have already been
employed for single-molecule detection at 25 μMcon-
centration [48] and in diagnostic assays [31, 33, 49]. in
proximity ofmetal nanoparticles.

Nevertheless, the influence of the nanoantenna on
the photophysical properties of fluorophores remains
to be fully understood.While it is agreed upon that the
increase of the radiative decay rates can effectively lead
to enhanced quantum yield of fluorophores, their
improved photostability, and higher count rates that
can be achieved in single-molecule fluorescence stu-
dies [31], we discovered that the achievable photon
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output of the dye is not only limited by photobleach-
ing but also by other photoinduced processes. By
examining the photophysical properties of three dyes
(ATTO 542, ATTO 647 N, and AlexaFluor 647) com-
monly used for single-molecule spectroscopy when
placed in the hotspots of dimer 100 nm Ag DNA ori-
gami nanoantennas, we demonstrate that despite their
improved photostability by the nanoantenna, the
maximum photon count rate that can be achieved is
still limited by their intrinsic photophysics, such as
formation of dim states or increased rate of photo-
isomerization. Additionally, we show that the
enhanced electric field in the hotspot region also poses
challenges to the use of non-fluorescent molecules
absorbing light, e.g. dark quenchers which are used in
fluorescence-based diagnostic assays.

Results and discussion

Improved photon budgets offluorophores in
plasmonicDNAorigami nanoantennas
To demonstrate the ability of nanoantennas to even
further push the performance and improve the photon
budgets of fluorophores in single-molecule fluores-
cence applications, we performed the photobleaching
experiments with one of the most photostable single-
molecule dyes—ATTO 647 N. We evaluated the
photostability of this dye when placed in the hotspot of
a 100 nm Ag DNA origami nanoantenna and

compared it to the same dye when placed in the
reference DNA origami structure containing no nano-
particles (figure 1(a)). The DNA origami structures
were immobilized on BSA-biotin coated glass surfaces
via biotin/neutravidin interactions using biotinylated
DNA strands on the base of the nanostructure. After
this step, the nanoantennas were formed by incorpor-
ating DNA functionalized 100 nm Ag nanoparticles.
This nanofabrication protocol leads to the mixture of
DNA origami structures containing two Ag nanopar-
ticles (dimer) and only one Ag nanoparticle (mono-
mer). The fluorescence intensity of single ATTO
647 N dyes in the nanoantenna and reference struc-
tures was monitored over time in a single-molecule
wide field microscope in total internal reflection
mode. Due to the enhanced local electric field in the
nanoantenna hotspot the nanoantenna samples
experience higher photon fluxes under the same
irradiation intensity. Therefore, in these photobleach-
ing experiments, the nanoantenna samples were
excited at 647 nmusing a laser power of 1.6 mW,while
references samples were excited at a higher laser power
of 9 mW [50].

Our single-molecule photobleaching studies
demonstrate that even if the photostability of ATTO
647 N is remarkable it can be further improved with
the help of a 100 nm Ag nanoantenna without any
additional photostabilizers or the need for oxygen
removal. Figure 1(a) shows fluorescence images of

Figure 1.Photostabilization of ATTO647 N in the hotspot of anAgDNAnanoantenna. (a)Widefieldfluorescence images of ATTO
647 N in the reference (left) and in the nanoantenna (right) samples after 0 s and 30 s of illumination. Scale bar: 10 μm (b)
Representative fluorescence intensity versus time trajectories of ATTO647 N inDNAorigami structure (reference, red) and in
100 nmAgDNAorigami nanoantennas (blue)measured at 9 mWand 1.6 mW, respectively; (c)Total number of counts collected
fromATTO647 N in the reference (red) and nanoantenna (blue) samples. 207 and 590molecules were analyzed for reference and
nanoantenna samples, respectively. Inset: average fluorescence intensity over time for the reference (mono-exponential decayfit) and
nanoantenna (bi-exponential decayfit) samples.
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ATTO 647 N in the reference and Ag nanoantenna
samples acquired at the beginning of the photobleach-
ing experiment (0 s) and after 30 s of illumination.
While most of the dyes in the reference sample are
photobleached, the fluorescence of ATTO 647 N in
the nanoantenna sample is preserved despite the
higher fluorescence signal under these excitation pow-
ers (see also figure 1(c), inset). Single-molecule fluor-
escence intensity versus time trajectories were
extracted from these photobleaching experiments (see
figure 1(b) for exemplary single-molecule trajectories)
and the total number of counts until photobleaching
was calculated for several hundreds of molecules from
the reference and nanoantenna samples. The histo-
grams of total counts detected until photobleaching
(figure 1(c)) reveal on average ~10-fold, up to 40-fold
for the most efficient nanoantennas improvement in
ATTO 647 N photostability when in the hotspot of
100 nmAg nanoantennas. Here, it is also worth noting
that the heterogeneous distribution of total photon
counts arises from the heterogeneous fluorescence
enhancement and photostabilization efficiencies
[39, 51]. The heterogeneous sample composition
(monomer and dimer nanoantennas) also results in a
bi-exponential photobleaching behavior when com-
pared to the mono-exponential bleaching behavior of
the reference sample (figure 1(c), inset).

Based on equation (1) and the radiative rate
enhancement estimated by comparing fluorescence
intensities normalized by power in nanoantenna sam-
ples to reference samples, one would expect a larger
improvement in total number of detected photons for
ATTO 647 N in the dimer Ag nanoantennas. Previous
studies by Pellegrotti et al [33]. have shown that at least
for monomer Au nanoantennas, the total number of
emitted photons by the fluorophore Cy5 was directly
proportional to the changes in radiative rate of the
fluorophore. However, one also has to consider that
due to the electric field enhancement in dimer
nanoantennas, fluorophores can experience an order
of magnitude higher excitation rates when compared
to monomer nanoantennas. Under these excitation
conditions higher order photobleaching pathways,
such as absorption of a second photon in the S1 or T1

states, might become relevant and the approximation
made to derive equation (1)might not hold anymore.
An indication for this is that no correlation can be seen
between fluorescence intensity and total number of
emitted photons (See figure S1 is available online at
stacks.iop.org/MAF/8/024003/mmedia).

Power saturation and its implications in achieving
high count rates required for studying fast dynamics
By providingmeans to enhance the fluorescence signal
and fluorophore photostability, self-assembled DNA
nanoantennas hold tremendous promise for advan-
cing single-molecule experiments that require high
photon count rates, e.g. studies of single-molecule

dynamics that occur on ms to μs time scales. Naively,
one would expect that the fluorescence enhancement
values provided by nanoantennas directly translate
into increased photon count rates. However, by study-
ing the photophysical properties of three common
dyes used in single-molecule spectroscopy, e.g. ATTO
542 (rhodamine), ATTO 647 N (carbopyronine), and
AlexaFluor 647 (cyanine) when placed in the nanoan-
tenna hotspot, we learned that the picture is more
complex. As the dye molecules in the plasmonic
hotspot experience a different photophysical environ-
ment and much higher photon fluxes, their saturation
behavior changes. Figure 2(a) shows the global satur-
ation behavior: in all cases, the onset of saturation is
clearly visible for the nanoantenna samples. In the
reference samples, however, ATTO 542 and ATTO
647 N showno visible saturation at the same excitation
powers, only for AlexaFluor 647 we observe saturation
in the reference sample which can be attributed to an
accelerated cis-trans isomerization [52] as it will be
shown later. Figure 2(b) contains the normalized
intensity distribution histograms (per nW of excita-
tion power, calculated by integration of the intensity of
a confocal spot) obtained for the three dyes in
nanoantenna hotspots. At low excitation powers (100
nW) a wide distribution of intensities is observed
assigned to heterogeneous fluorescence enhancement
in monomer and dimer nanoantennas. However, as
the excitation power is increased (500 nWand 3 μWin
figure 2(b)) the distributions become narrower and
shift to lower intensities suggesting that the most
enhanced and thus the brightest fluorophores are the
most sensitive to this saturation behavior.

In contrast to earlier studies on plasmonic
enhanced light harvesting complexes [34], we found
that this saturation is not originating from any funda-
mental emission limit of the fluorophore but rather
from populating a second emissive state that is less
bright in nature. While at low excitation intensities,
the formation of this dim state is observed upon longer
irradiation times, under increased excitation inten-
sities and, in particular, in the hotspot of nanoantenna
where the photon flux is highly increased, these dim
states form rather readily. This is illustrated by the sin-
gle-molecule fluorescence trajectory obtained for
ATTO 647 N in the hotspot of a dimer Ag nanoan-
tenna acquired at increasing excitation intensity.
Reversible switching between dim and bright states
can already be observed at 250 nW, while at 500 nW
only the dim state of the dye is visible. A similar photo-
induced formation of dim states was observed when
analyzing single-molecule trajectories of ATTO 542
andAlexaFluor 647 (see figure S2).

Further mechanistic studies are required to con-
firm the exact nature of these dim states, however, we
propose that it might be related to the formation of
spectrally-shifted emissive forms of the fluorophores.
Such spectral shifts leading to the formation of blue-
and red-shifted emissive forms of fluorophores have
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previously been observed in single-molecule fluores-
cence studies of rhodamine [53, 54], oxazine [53], cya-
nine [53], carbopyronine [5], terrylene diimide [55],
and amino-triangulenium [56] dyes. The most exten-
sive mechanistic studies of such spectral instabilities
have been carried out for rhodamine class of dyes,
where the spectral shift and formation of photo bluing
products have been associated with N-dealkylation of
tertiary amine groups which proceeds via formation of
a radical cation [57, 58]. In this respect, elegant strate-
gies have been developed to overcome these spectral
instabilities, e.g. by suppressing the formation of twis-
ted intramolecular charge transfer excited states
involved in the N-dealkylation [11, 58–62]. Better
understanding of themechanisms leading to these dim
states and development of strategies to mitigate them,
combined with the ability of plasmonic nanoantennas
to enhance fluorescence signal and photostability,
could provide exciting opportunities to push organic
fluorophores beyond their current limits.

For the cyanine dye AlexaFluor 647 an additional
saturation process is present, which was attributed to
photoisomerization from fluorescent trans state to a
non-fluorescent cis state [52, 63]. figure 2(d), shows
single-molecule fluorescence trajectories and

corresponding autocorrelation curves obtained for
AlexaFluor 647 at increasing excitation intensities.
The enhanced photoisomerization at increasing exci-
tation intensities is evident from the increase in the
amplitude and the rate of the μs-time component.
This additional non-radiative relaxation pathway in
cyanines together with photoinduced formation of
dim states results in a pronounced saturation behavior
observed for both reference and nanoantenna samples
of AlexaFluor 647 (figure 2(a)). These results suggest
that when it comes to achieving high photon count
rates, non-rigidified cyanine dyes are not the best
fluorophores of choice.

The formation of dim states is the limiting factor
in all experiments requiring very high photon count
rates, such as single-molecule FRET experiments on
fast timescales. Additionally, the power dependence
shown in figure 2(a), also implies that one should be
cautious when quantifying the fluorescence enhance-
ment values provided by the nanoantenna. As illu-
strated in figure 2(b), the fluorescence intensity of the
dye in the nanoantenna, hence, the calculated fluores-
cence enhancement, is very sensitive to the excitation
intensity chosen for a given experiment. This photo-
induced transition to the dark statesmight also impact

Figure 2.Effect of excitation intensity on the count rates as well as photophysical properties of single ATTO542 (rhodamine),
AlexaFluor 647 (cyanine), andATTO647 N (carbopyronine) dyeswhen placed in the hotspots of plasmonicDNAorigami
nanoantennas. (a)Power saturation curves obtained for three different dyes from the samples containing 100 nmAgmonomer and
dimer nanoantennas. Each data point contains statistics of at least 200molecules. (b) Intensity distribution histograms normalized per
nWof excitation power for the three dyes examined here obtained at three different excitation powers. (c)Top: single-molecule
fluorescence trajectory of ATTO647 N acquired at increasing excitation powers; Bottom: the same single-molecule fluorescence
trajectory normalized by excitation power (d)Autocorrelation of thefluorescence signal of anAlexaFluor 647 dye in the nanoantenna
measured at different excitation intensities.
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the results of novel biosensing assays in the hotspots of
DNA nanoantennas, which rely on a sufficiently high
contrast between enhanced and non-enhanced signal.
It is therefore of utmost importance to ensure that the
dye is emitting from its bright state in order to realize
the full potential of plasmonic fluorescence
enhancement.

Bleaching of dark quenchers in nanoantenna
hotspot and its implications in diagnostics
The modular nature of DNA origami allows the
introduction of biorecognition units into the hotspot
region of nanoantennas, which offers means to
improve the signal-to-noise ratio and overall perfor-
mance of bioassays. For the successful application of

Figure 3. Fluorescence-quenching hairpin (FQH) and accelerated photobleaching of dark quenchers in the hotspot. (a) Schematic
representation of FQHconstruct (for sequence, see SI) bearing ATTO647 Non the 5′-end andBlack BerryQuencher (BBQ650) on
the 3′-end. Fluorescence signal fromATTO647 N (‘opened’ FQH) is observed either after detection of the targetDNA and opening
(specific signal) or due to bleaching of BBQ650 (false signal); (b)Confocalfluorescence scans of theDNAorigami reference (red) and
100 nmAgnanoantenna samples bearing an FQH in the hotspot (blue) before addition of the target DNA. Scans are acquired at
different powers while excitingwith a 639 nmpulsed laser. TheDNAorigami is labeledwith anATTO542 dye to allow co-localization
ofDNAorigami and opened FQH. (c)Quantification of the false signal from the confocalfluorescence scans of theDNAorigami and
DNAorigami nanoantennas containing an FQHat different excitation powers, calculated by division of the yellow spots (DNA
origami with ‘opened’ FQH) by the sumof the yellow and green spots (DNAorigamiwith ‘closed’ FQH). 260 to 440 spots were
analyzed for each excitation power. Error bars represent the standard deviation from themean of the three different scans analyzed.
(d)Representative single-molecule trajectories of an FQH illuminatedwith a 639 nm laser (2 μWfor reference (red), 1 μWfor
nanoantenna (blue)) demonstrating a bleaching event of BBQ650 indicated by the onset of ATTO647 Nfluorescence.
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this concept, it is important to fully understand the
photophysical behavior of the reporting unit, which
usually consists of one ormultiple fluorophores, in the
plasmonic hotspot. In our efforts to utilize DNA
nanoantennas for diagnostics, we discovered that the
performance of diagnostic assays can be significantly
influenced by photoinstabilities of dark quenchers
when subjected to strong electric fields in the plasmo-
nic hotspot.

Previously, we demonstrated the successful incor-
poration of a fluorescence-quenching hairpin (FQH)
in DNA origami monomer nanoantennas and its
application for single-molecule based detection of
Zika virus nucleic acids [49]. An FQH, or a molecular
beacon, is a self-hybridized nucleic acid sequence con-
taining a fluorescent dye on the one end and a dark
quencher on the other end (figure 3(a)). In its closed
state, energy transfer from the fluorophore to the
quencher occurs due to their close proximity. Upon
the detection of the nucleic acid target, which is com-
plementary to a part of the FQH, the hairpin opens
increasing the distance between the fluorophore and
the quencher and leading to onset of the fluorescence
signal (specific signal) [64]. However, we report that
photobleaching of the quencher can lead to false posi-
tive signal in single-molecule DNAhairpin assays. Due
to non-quantitative labelling efficiency and possible
photobleaching during handling or measurement
steps not every FQH contains a dark quencher. This
leads to emission of ATTO 647 N signal (false signal)
(figure 3(a)) and therefore decreases the effectiveness
of the assay. Although dark quenchers are less likely to
take part in different photochemical reactions due to
the very short excited state lifetime [65], their photo-
physics have not been studied under the conditions
created in a plasmonic hotspot.Moreover, the effect of
these photophysical processes to the bioassay perfor-
mance has not been assessed.

To perform studies of FQH at the single-molecule
level in a hotspot, DNA origami structures were
labeled with a green dye (ATTO 542) for initial locali-
zation of the construct. The detection efficiency
(opening of FQH) in the nanoantenna can be calcu-
lated by dividing the number of yellow spots in a fluor-
escence scan (co-localized signal from ATTO 542 and
ATTO647 N) by the total amount of spots in a fluores-
cence scan. Even before addition of the target, a small
percentage of co-localized spots can be observed due
to the reasons mentioned above. Fluorescence scans
performed with different excitation powers at 639 nm
excitation laser (100 nW—1000 nW) demonstrate an
increase in the amount of ‘opened’ FHQ both for the
reference sample (4%–24%) as well as for the 100 nm
Ag nanoparticles nanoantenna (15%–45%)
(figures 3(b) and (c)). The higher level of false positive
signal in the nanoantenna sample can be related to the
photobleaching of the dark quencher. From this result
it is possible to estimate the quencher survival time
knowing the time of exposure for each spot as it is

explained in the SI and shown in figure S3. To investi-
gate the photostability of the dark quencher, we illu-
minated green spots detected in the fluorescence scan
with a 639 nm laser at an intensity of 2 μW (reference,
red) and 1 μW (nanoantenna, blue). After some time,
we observed the occurrence of a signal in the red chan-
nel for both, the reference and the nanoantenna sam-
ple, which corresponds to the donor fluorescence
(figure 3(d)). The reduced quencher survival time is
visible in the nanoantenna even at lower excitation
power due to the tight focusing of the light. A similar
photobleaching behavior has been reported earlier for
anATTO532/BBQ650 FRETpair [65].

Although the photostability of conventional fluor-
ophores in a plasmonic hotspot is increased [31, 33],
the behavior we observed for a fluorophore/quencher
reporting unit was very different. In the present study
we demonstrated that the dark quencher serving as an
energy acceptor in a hotspot can be selectively photo-
bleached in dimer nanoantennas leading to the strong
false positive signal and decrease of the overall contrast
of the assay.

Conclusion

By using plasmonic nanoantennas, we drastically
reduced conventional photobleaching pathways and
revealed additional photoinduced processes that limit
the maximum photon output of three classes of
fluorophores tested here. During our study, we
encountered two problems related to the intrinsic
photophysics of these dyes: population of weakly
fluorescent, dim states - which seems to be a general
feature of all tested fluorophores - as well as accelera-
tion of photoisomerization rates at higher excitation
powers for cyanine derivatives. Both problems pose a
limit on the photon count rates that can be achieved in
the plasmonic hotspot. The formation of the dim
states could be potentially overcome by utilizing
spectrally stable fluorophores [11, 59, 60] The second
problem can be circumvented relatively easy by
employing fluorophores that do not undergo photo-
induced isomerization (e.g. carbopyronines or rhoda-
mines) or by altering the molecular structure of the
cyanine dye in order to sterically hinder the isomeriza-
tion [66].

Here, we also demonstrated that the enhanced
excitation rate in the nanoantenna hotspot can affect
non-fluorescent chromophores, e.g. dark quenchers.
Once placed in a hotspot, the dark quencher experi-
ences not only an efficient energy transfer from the
donor dye but also an enhanced electric field and thus
an increased excitation rate, which together leads to
accelerated photobleaching. This premature photo-
bleaching can be an issue when using fluorogenic
probes in a hotspot for different biosensing assays. As
illustrated in this work, fast quencher photobleaching
can also lead to high false positive signal and decrease
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of the overall contrast of the assay. In our case, the
photobleaching could be substantially reduced when
using lower excitation powers. Alternatively, one
could also consider utilizing more stable and robust
fluorescence quenchers, such as small gold
nanoparticles.

To conclude, we showed that plasmonic hotspots
can be employed to substantially enhance the photo-
stability of conventional fluorophores. This enables
exciting new applications for fluorescent molecules in
which photostability and photon count rate are of cru-
cial importance, such as low-cost single-molecule
detectors for point-of-care diagnostics [49], where
even the cheapest cameras could potentially be used to
detect an infectious disease, or single-molecule bio-
physics, where the time resolution for FRET experi-
ments could be increased substantially [67]. Here, we
show that despite this improved photostability, the
performance of conventional dyes used in single-
molecule spectroscopy when combined with plas-
monic nanoantennas is still limited by their under-
lying photophysical processes, such as formation of
dim states or photoinduced isomerization. We envi-
sion that better mechanistic understanding of these
limitations and mitigation of the unwanted photo-
physical pathways, such as the ones described in this
work, will contribute to further advancing single-
moleculefluorescence applications.

Materials andmethods

Fabrication ofDNAorigami nanoantennas
DNA origami structures were designed in caDNAno2
[68] and assembled and purified using protocols based
on Wagenbauer et al [69]. In brief, 25 μl of p8064
scaffold (produced in-house) at 100 nM were mixed
with 18 μl of unmodified staples pooled from 100 μM
original concentration and 2 μl of modified staples,
pooled from 100 μM original concentration. All
staples were purchased from Eurofins Genomics
GmbH (Germany). 5 μl of folding buffer (200 mM
MgCl2, 50 mM Tris, 50 mM NaCl, 10 mM EDTA)
were added and themixture was subjected to a thermal
annealing ramp (table S1). Samples were purified
using 100 kDa MWCO Amicon Ultra filters (Merck,
Germany) with 4 washing steps with a lower ionic
strength buffer (5 mMMgCl2, 5 mMTris, 5 mMNaCl,
1 mMEDTA) for 5 min at 10000 rpm, 20 °C.

LabTek-II chambers (Thermo Fisher Scientific,
USA) were cleaned with 1M KOH for at least 20 min,
washed three times with PBS buffer and then incu-
bated with BSA-Biotin (0.5 mg mL−1, Sigma-Aldrich,
USA) and streptavidin (0.2 mg mL−1, Thermo Fisher
Scientific, USA). The origami was immobilized on the
biotin-streptavidin surfaces using covalently attached
biotin modifications on the six staple strands on the
base. Density of DNA origami nanoantennas on the

surface suitable for single-molecule measurements
was checked on amicroscope.

100 nm silver nanoparticles were functionalized
with ssDNA based on previously described procedures
[49]. 100 nm Silver Nanospheres (Citarate, Biopure)
were purchased from nanoComposix (USA). 2 ml
nanoparticles (330-fold diluted in MiliQ water) were
mixed with 20 μl Tween20 (10%) and 20 μl of a 4:5 (v:
v) mixture of 1 M monobasic and dibasic potassium
phosphate buffers (Sigma Aldrich, USA) and 20 μl of a
100 μM solution of 3‘-thiolated T25 oligonucleotides
(Ella Biotech, Germany) and stirred for 1 h at 40 °C.
Then, the sodium chloride concentration was subse-
quently raised to 750 mMusing PBS buffer containing
3.3 M NaCl. The solution was centrifuged at 2.8 krcf
for 8 min at 20 °C. The supernatant was discarded,
and the pellet was re-suspended in PBS containing
10 mM NaCl, 2.11 mM P8709 buffer (Sigma Aldrich,
USA), 2.89 mM P8584 buffer (Sigma Aldrich, USA),
0.01% Tween20 and 1 mM EDTA. This washing step
was repeated five times. Then, the pellet was re-sus-
pended in TE buffer containing 750 mMNaCl and the
concentration was adjusted to reach 0.1 absorption at
485 nm (maximum of absorbance) on a UV–vis
spectrometer (Nanodrop 2000, Thermo Fisher Scien-
tific, USA). To bind the nanoparticles to the origami,
the chambers were incubated with 100 μl of this solu-
tion overnight.

Confocalmicroscopy

Confocal fluorescence measurements were performed
using a home-built confocal setup based on an
Olympus IX-83 inverted microscope (Japan) and a 78
MHz-pulsed supercontinuum white light laser
(SuperK Extreme, NKT Photonics, Denmark) with
selected wavelengths of 532 nm and 639 nm. The
wavelengths are selected via an acousto-optically
tunable filter (AOTF, SuperK Dual AOTF, NKT
Photonics, Denmark). This is controlled by a digital
controller (AODS 20160 8 R, Crystal Technology,
USA) via a computer software (AODS 20160 Control
Panel, Crystal Technology, USA). A second AOTF
(AA.AOTF.ns: TN, AA Opto-Electronic, France) was
be used to alternate 532 nm and 639 nmwavelengths if
required, as well as to further spectrally clean the laser
beam. It is controlled via home-made LabVIEW soft-
ware (National Instruments, USA). A neutral density
filter was used to regulate the laser intensity, followed
by a linear polarizer and a λ/4 plate to achieve
circularly polarized excitation. A dichroic beam split-
ter (ZT532/640rpc, Chroma, USA) and an immersion
oil objective (UPlanSApo 100×, NA=1.4,
WD=0.12 mm, Olympus, Japan) were used to focus
the excitation laser onto the sample. Micropositioning
was performed using a Piezo-Stage (P-517.3CL,
E-501.00, Physik Instrumente GmbH&Co. KG, Ger-
many). Emitted light was then collected using the same
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objective and filtered from the excitation light by the
dichroic beam splitter. The light was later focused on a
50 μm pinhole (Linos) and detected using Single-
Photon Avalanche Diodes (SPCM, AQR 14, PerkinEl-
mer, USA) registered by an TCSPC system (Hydra-
Harp 400, PicoQuant, Germany) after additional
spectral filtering (RazorEdge 647, Semrock, USA for a
red channel and HC582/75, AHF Analysentechnik,
Germany for a green channel). A custom-made Lab-
VIEW software (National Instruments, USA)was used
to process the acquired raw data. The autocorrelation
of the Alexa Fluor 647 signal was calculated using
SymphoTime 64 (PicoQuant, Germany). For the
fluorescence autocorrelation,measurements were car-
ried out in a reducing and oxidizing buffer systemwith
enzymatic oxygen removal consisting of 90% buffer a
(100 mM MgCl2, 40 mM Tris, 2 mM Trolox/Trolox-
quinone and 1% w/v Glucose) and 10% buffer b
(glucose oxidase (1 mgml−1), 0.4% (v/v) catalase
(50 μg ml−1), 30% glycerol, 12.5 mM KCl in
50 mMTRIS).

Photostability studies on thewide-field
microscope

Single-molecule photostability studies of nanoan-
tenna and the reference samples were performed on
the commercial Nanoimager S (ONI, UK). Samples
were illuminated with a 640-nm laser at 53.5° angle to
achieve evanescent excitation due to total internal
reflection at the glass-water interface. Reference sam-
ples were excited with laser power of 9 mW, while
nanoantenna samples where imaged at 1.6 mW. The
laser beamwas focused onto the back-focal plane of an
oil-immersion objective (100×, NA=1.4) and the
emission light was detected with an sCMOS camera.
Simultaneous photobleaching of few hundreds of
fluorescent molecules was recorded in the field of view
of 50×80 μm. For further analysis, only the central
region with even illumination was used. Single-
molecule fluorescence intensity versus time trajec-
tories were extracted using a home-built analysis
routine in ImageJ. The intensity of a circular regions of
8 pixels in diameter around the molecules were
integrated as a function of time. For the background
correction from these transients the average intensity
of at least 15 regions of the 8-pixel areas containing no
molecules was subtracted. To get the total counts from
molecules the sum of intensity after the background
subtractionwas calculated.
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