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Abstract

Ranking analyses are an essential step in biomedical studies investigating high-dimensional

molecular data. In general, there are many ranking methods available among which re-

searchers can choose. Moreover, ranking analyses involving high-dimensional data are

generally highly unstable in the sense that a small modification of the ranking method can

lead to a completely different ordering of the variables. This increases the temptation to

apply several ranking methods until one of them returns a satisfying result. The strategy

of choosing the analysis approach based on its results is commonly referred to as data

dredging and is known to lead to substantial optimistic biases. To raise awareness of this

practice, it could be useful to give researchers a concrete idea of how unstable ranking

results are with respect to data dredging. This certain type of variability can be referred

to as data dredging potential. In this thesis, a framework for the quantification of data

dredging potential in ranking analyses is provided. The proposed framework is illustrated

in the context of genes rankings using simulated and real data sets. The findings sug-

gest that many ranking results show a data dredging potential that can be considered as

problematic.
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1. Introduction

In many research fields, it is necessary to rank variables according to their importance for

an outcome of interest. In biomedical sciences, an application field of rankings is the identi-

fication of molecular biomarkers (Klau et al., 2019). In simple terms, molecular biomarkers

are molecules such as genes, proteins or metabolites that can be used for disease diagnosis

and prognosis, prediction of therapeutic responses or therapeutic development (Hu et al.,

2011). As a consequence of the advance of high-throughput technologies in the last two

decades, molecular data sets are usually high-dimensional in the sense that they contain

thousands of measurements for each observation (Boulesteix et al., 2017).

In general, variable rankings are performed using a ranking criterion that evaluates the

degree of correlation between each variable and the outcome of interest (Dess̀ı et al., 2013).

Like in other statistical analyses, generating variable rankings requires several decisions

regarding the analysis approach. This does not only include the ranking criterion itself but

also, for instance, data preparation steps or the choice of parameter values (Klau et al.,

2019). All choices regarding a statistical analysis approach are generally referred to as

researcher degrees of freedom (Simmons et al., 2011).

While the multitude of analysis approaches is an issue that concerns all research fields, it

is particularly relevant for variable rankings and other statistical analyses involving molec-

ular data. This has several reasons: Firstly, it has been recognized that many traditional

analysis approaches are inappropriate considering the complexity and high-dimensionality

of molecular data. Therefore, alternative approaches have been developed, which has led

to an increase in researcher degrees of freedom. At the same time, there is a lack of

guidelines supporting the choice of statistical analysis approaches. Moreover, the high-

dimensionality of molecular data leads to a high variability in results. Regarding ranking

analyses, this means that minor changes in the sample or small modifications of the rank-

ing criterion can result in a completely different ordering of the variables. (Boulesteix and

Slawski, 2009; Boulesteix et al., 2017)

As a consequence, ranking analyses involving high-dimensional molecular data can be ex-

pected to leave much room for data dredging, which is the (conscious or subconscious)

strategy of applying several analysis strategies and only reporting the “best-looking” re-

sult (Ioannidis, 2005; Boulesteix et al., 2017). In the context of ranking analyses, the

“best-looking” result could be for instance a top-rank for the researcher’s “favourite” vari-

able (e.g. a variable that is expected to be relevant due to biological knowledge or because

previous studies have shown its relevance) (Boulesteix and Slawski, 2009). Even if all

1



1. Introduction

methods are conceivable from a theoretical and practical point of view, data dredging can

lead to a substantial optimistic bias and false research findings (Ioannidis, 2005).

Although data dredging has gained more attention in recent years (e.g. Szucs, 2016;

Maŕın-Franch, 2018), it might still be an abstract concept for some researchers. Thus,

for a researcher that has performed ranking analyses using several analysis approaches,

it might be helpful to know how much room the ranking results actually leave for data

dredging. The variability in ranking results with respect to data dredging will be referred

to as data dredging potential. In the bioinformatics literature, several measurements have

been proposed to assess the stability of ranking lists (Boulesteix and Slawski, 2009). How-

ever, they do not allow to quantify the variability in ranking results with respect to data

dredging. Thus, the aim of this thesis is to provide a framework that allows to quantify

the data dredging potential in ranking results in a simple and comprehensive way.

The thesis is structured as follows: Chapter 2 introduces a framework for the quantifica-

tion of data dredging potential in ranking results. The proposed framework is illustrated

in the context of gene rankings using different data sets: In Chapter 3, the framework

is applied to simulated data with different parameter settings and a binary outcome. In

Chapter 4 and 5, the proposed framework is illustrated using real data with binary and

survival outcome. Chapter 6 summarizes the main findings, discusses the strengths and

limitations of the framework and gives an outlook.

The results shown in this thesis were generated using version 3.5.3 of the software R (R

Core Team, 2019). In addition to the packages cited in the text, the R-packages ggplot2

(Wickham, 2016), reshape2 (Wickham, 2007), latex2exp (Meschiari, 2015), mvtnorm

(Genz et al., 2019), dplyr (Wickham et al., 2019), stringr (Wickham, 2019) and xtable

(Dahl et al., 2019) were used.
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2. Framework

This chapter provides a framework for the quantification of data dredging potential in

ranking results. To begin with, Section 2.1 formalises data dredging in the context of

ranking analyses. Section 2.2 then introduces a measure that allows to quantify the data

dredging potential of each ranking result. Finally, two possible applications in practice

are considered in Section 2.3.

2.1. Formalisation of data dredging in the context of rankings

Data dredging is the conscious or subconscious strategy of applying several analysis meth-

ods and only reporting the method that yields the “best-looking” result (Ioannidis, 2005;

Boulesteix et al., 2017). In this section, data dredging will be formalised in the context of

ranking analyses.

Let X1, . . . , Xp be the variables that a researcher wants to rank according to their asso-

ciation with an outcome Y . For example, the researcher might be interested in knowing

which genes X1, . . . , Xp can be used to diagnose a certain disease. In this case, Y is a

binary variable (disease is present/not present). However, it could also be, for instance,

a categorial variable or a censored survival time. Moreover, let D denote a data set that

contains n observations of the variables X1, . . . , Xp and Y . (Boulesteix and Slawski, 2009)

In this work, a ranking of the variables X1, . . . , Xp is defined as an ordered list where the

p variables appear in descending order of relevance for the outcome. In ranking analyses,

the relevance of a variable is determined by a ranking criterion, which measures the degree

of correlation between each variable and the outcome in the given data set D. Based on

the value of the ranking criterion, a rank rj P t1, . . . , pu is assigned to each variable Xj

(j � 1, . . . , p). A small value of rj indicates a strong association between Xj and Y , either

positive or negative. For example, rj � 1 means that variable Xj is identified as the most

relevant variable. (Dess̀ı et al., 2013; Boulesteix and Slawski, 2009)

Depending on the type of outcome, there are usually many ranking methods available

which consequently lead to different variable rankings. In the case of data dredging, the

researcher does not choose one of them but tries out several ranking methods. Thus, let

m be the number of ranking methods that were applied to a given data set D. Note that

the term “method” does not only refer to the ranking criterion itself but to all choices

concerning the analysis approach, e.g. potential tuning parameters (Klau et al., 2019).

Furthermore, let rj � prj1 rj2 � � � rjmq be a vector that contains the resulting m ranks

of variable Xj , where rjk is the rank assigned to Xj by method k (k � 1, . . . ,m). The

3



2. Framework

vector rj will be referred to as ranking result of variable Xj .

To further formalise data dredging, it is required to define what is considered as the “best-

looking” result in the context of rankings. In this work, it is assumed that the researcher

has a “favourite” variable that he/she expects to be identified as relevant (e.g. because

a previous study has shown its relevance or because of biological knowledge) (Boulesteix

and Slawski, 2009). Then, the best-looking result is the smallest rank that was assigned

to the favourite variable by one of the m applied methods. Consequently, the method

that yields the best-looking result varies depending on which variable is the researcher’s

favourite variable. Formally speaking, define the best rank of variable Xj as

rbestj :� rjmintk: rk�min rju. (2.1)

Based on this definition, r�bestj denotes the vector of length m�1 that contains all ranks of

variable Xj except rbestj . Defining rbestj as in Equation (2.1) (and not just as the minimum

of rj) ensures that r�bestj contains m � 1 ranks even if more than one method yields the

smallest rank. It would however also be possible to define rbestj as rjmaxtk: rk�min rju.

As an example, let rj � p3 5 3 6q be the ranking result of variable Xj . In this

case, the best rank is rbestj � rj1 � 3 and the vector containing all ranks except rbestj

is r�bestj � prj2 rj3 rj4q � p5 3 6q.

Let Xj� be the researcher’s favourite variable and rj� the ranks that were assigned to Xj�

by applying m methods on the same data set D. There are two questions that may arise in

this context: (i) how much room does ranking result rj� leave for data dredging, and (ii)

what are the actual consequences if the researcher decides to report only the best-looking

result (i.e. rbestj� ) and ignores the other results (i.e. r�bestj� )? Based on the definitions given

above, it is now possible to address these questions from a statistical perspective.

First, the question concerning the consequences of data dredging is discussed. It is com-

monly known that data dredging can lead to a substantial optimistic bias (Ioannidis, 2005),

which will be referred to as data dredging bias. For instance, regarding high-dimensional

class prediction, Boulesteix and Strobl (2009) have quantitatively assessed the bias in pre-

diction error estimation that is caused by selecting the classifier a posteriori.

In the context of ranking analyses, an intuitive way to quantify the data dredging bias

would be to compare rbestj� with the true rank of variable Xj�. However, unless the data

are simulated, the true rank is typically not known (Boulesteix and Slawski, 2009). In

practice, it is therefore not possible to quantitatively assess the data dredging bias of rj�.

Therefore, this thesis will address the question of how much room ranking results leave

for data dredging. This certain type of variability in results will be referred to as data

dredging potential and the following sections will provide an approach for its quantitative

4



2. Framework

assessment. In contrast to the data dredging bias, this does not require any knowledge

about the true rank and is therefore more useful in practice.

The next section introduces a measure that quantifies the data dredging potential of

each ranking result rj . Section 2.3 will then show possible applications in practice. This

includes the comparison of the data dredging potential of rj� with the other ranking results

and the assessment of the overall data dredging potential. The latter might be useful even

if there is no specific favourite variable since it gives the researcher an overview about how

(un)stable the ranking results are with respect to data dredging.

2.2. Quantification of data dredging potential

This section provides an approach to quantify the data dredging potential of a single

ranking result rj . Section 2.2.1 examines the attributes of rj that determine its data

dredging potential and deduces several aspects that a measure for data dredging potential

should satisfy. Based on these considerations, Section 2.2.2 introduces a suitable measure,

which is then modified in Section 2.2.3 to meet all requirements.

2.2.1. Important aspects

Essentially, there are two attributes of rj that determine its data dredging potential. To

illustrate this, let rj � p3 9 10 15q and rj1 � p3 9 10 12q be the ranking results of

the variables Xj and Xj1 . In both cases, the best rank is equal to 3 (rbestj � rbestj1 � 3).

However, because rj4 ¡ rj14, only reporting the best rank intuitively seems to be more

problematic for rj � p3 9 10 15q than for rj1 � p3 9 10 12q. In other words, rj has

a higher data dredging potential than rj1 . Thus, to assess the data dredging potential of rj ,

the range and distribution of r�bestj with respect to rbestj should be considered. However,

this is not the only attribute of rj that determines its data dredging potential. Consider

for example the ranking results rj � p1 7 8 10q and rj1 � p101 107 108 110q. Al-

though the differences between the ranks in rj and rj1 are equal (namely 6 � 1 � 2), rj

has a higher data dredging potential than rj1 . This is because rbestj � 1 identifies Xj as

the most important variable for Y , which will be more relevant for the researcher than

rbestj1 � 101. Therefore, the second important attribute of rj that should be taken into

account to assess the data dredging potential is the actual value of rbestj .

Based on these considerations, a ranking result with the highest possible data dredging

potential is a ranking result where rbestj is equal to 1 and the other m� 1 ranks in r�bestj

are equal to the highest possible rank p. For instance, the ranking results with the high-

est possible data dredging potential for p � 1000 and m � 3 are rj � p1 1000 1000q,

rj � p1000 1 1000q and rj � p1000 1000 1q. Because such a result is the most prob-

lematic ranking result concerning data dredging, it will be referred to as worst case result.

Conversely, a best case result would be a ranking result that has no data dredging poten-
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2. Framework

tial. This is obviously the case if all methods yield the same rank, e.g. rj � p5 5 5 5q

or rj � p1 1 1 1q.

To sum up, a measure that quantifies the data dredging potential of rj should take the

distribution of r�bestj with respect to rbestj and the actual value of rbestj into account. More-

over, its minimum and maximum values should ideally correspond to the worst and best

case ranking results. In principle, such a measure would be a stability measure that quan-

tifies the variability in rj with respect to rbestj .

Several stability measures for ranking lists can already be found in existing literature.

For example, many approaches assess the similarity of ranking lists by considering their

overlap. Other approaches use adaptions of distance measures like Spearman’s correlation

coefficient (Boulesteix and Slawski, 2009). For more information on stability measures for

ranking lists see for example Boulesteix and Slawski (2009) and the references therein.

However, to our knowledge, no stability measure exists that is appropriate for the quan-

tification of the data dredging potential in rj . One reason for this is that many measures

do not allow to compare rankings of m ¡ 2 methods without considering them pairwise

or comparing all rankings to a reference ranking list (Boulesteix and Slawski, 2009). Fur-

thermore, they can not be applied to a single ranking result rj and do not measure the

stability with respect to rbestj .

The next two sections will thus introduce a measure that takes all important aspects into

account.

2.2.2. Distribution and range with respect to best rank

A possible way to quantify the data dredging potential of rj is to define hprjq as the

difference between the mean over all ranks in rj and rbestj :

hprjq :�
� 1

m

m̧

k�1

rjk
�
� rbestj � srj � rbestj . (2.2)

The higher the ranks in r�bestj with respect to rbestj , the higher the value of hprjq. Conse-

quently, a high value of hprjq indicates a high data dredging potential of rj .

As an example, Table 2.1 shows three different ranking results and the corresponding val-

ues of hprjq. Ranking result rj � p3 9 10 15q has the highest ranking potential and

accordingly yields the highest value of hprjq.

Concerning the range of values, hprjq takes its minimum value if and only if rbestj is equal

to srj , i.e. if all m methods yield the same rank. Conversely, hprjq takes its maximum

value if and only if rbestj is equal to 1 and all ranks in r�bestj are equal to p. In this case,

6



2. Framework

Table 2.1.: Data dredging potential of three example ranking results measured by hprjq.

rj srj rbestj hprjq

p3 5 10 12q 7.5 3 4.5

p3 9 10 12q 8.5 3 5.5

p3 9 10 15q 9.25 3 6.25

hprjq is equal to 1�pm�1qp
m � 1 � m�1

m pp� 1q. This means that

hprjq P r0,
m� 1

m
pp� 1qs, (2.3)

where the minimum and maximum values correspond to the best and worst case re-

sult of rj , respectively. Note that the maximum value of hprjq consequently depends

on the number of methods and variables. However, this is reasonable because for in-

stance, the worst case result for m � 4 and p � 1000 (e.g. rj � p1 1000 1000 1000q)

seems to be more problematic than the worst case result for m � 2 and p � 100 (e.g.

rj � p1 100q). This is reflected by the values of hprjq, namely hp1, 100q � 49.5 and

hp1, 1000, 1000, 1000q � 749.25. Thus, if hprjq would be normed to have the same range

of values for every combination of p and m, comparison of hprjq for different m and p

settings would get complicated.

Graphical interpretation

A useful feature of hprjq is its graphical interpretation. Let fps; rjq be a step function

returning the proportion of ranks in rj that are larger than s if s ¥ min rj :

fps; rjq �

$&
%0, if s   min rj ,

1
m

°m
k�1 1trjk¡su, if s ¥ min rj ,

(2.4)

where 1p�q is the indicator function. The area under fps; rjq equals hprjq, which means

that the higher the area under fps; rjq, the higher the data dredging potential of ranking

result rj .

Figure 2.1 displays fps; rjq for the same three example ranking results that were shown in

Table 2.1. By comparing the areas under fps; rjq, it can be seen that rj � p3 9 10 15q

has the highest data dredging potential.

The equality between the area under fps; rjq and hprjq can be shown by integrating
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Figure 2.1.: Graphical interpretation of hprjq for three example ranking results.

fps; rjq :

» 8
�8

fps; rjqds �

» max rj

min rj

fps; rjqds

�

» max rj

min rj

°m
k�1 1trjk¡su

m
ds

�

max rj¸
s�min rj

#tk : rjk ¡ su

m
. (2.5)

Equation (2.5) shows that the area under fps; rjq can be calculated by adding the pro-

portions of ranks in rj larger than s for all s � min rj , . . . ,max rj . Assume now without

loss of generality that the ranks in rj are ordered such that rj1 ¤ rj2 ¤ � � � ¤ rjm. In this

case, Equation (2.5) can be written as

rworst
j̧

s�rbestj

#tk : rjk ¡ su

m
�

°m�1
k�1 prjpk�1q � rjkqpm� kq

m

�

°m�1
k�1 rjpk�1qpm� kq �

°m�1
k�1 rjkpm� kq

m

�

°m
k�2 rjk
m

�
rj1pm� 1q

m

�

°m
k�2 rjk
m

�
rj1
m

� rj1

�

°m
k�1 rjk
m

� rj1

� hprjq. (2.6)
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This shows that hprjq is equal to the area under fps; rjq.

Comparison with an alternative approach

Another possible approach for quantifying the data dredging potential is based on Ward’s

method, which is a hierarchical clustering procedure (Ward, 1963). In each step of ag-

glomerative hierarchical clustering, Ward’s method joins the two clusters A and B that

minimise the increase in the sum of squared errors (SSE):

DpA,Bq �
¸

i PAYB

‖zi � z̄AYB‖2 �
� ¸
i PA

‖zi � z̄A‖2 �
¸
i PB

‖zi � z̄B‖2
	

� SSEAYB � pSSEA � SSEBq, (2.7)

where ‖�‖ is the Euclidean norm, zi is an observation of the random vector pZ1, . . . , Zpq
J

and z̄A, z̄B and z̄AYB are the centroids of clusters A, B and AYB, respectively (Rencher,

2002). It can be shown that the increase in SSE is equivalent to

DpA,Bq �
nAnB
nA � nB

‖z̄A � z̄B‖2 (2.8)

where nA, nB and are the number of observations in cluster A and B, respectively

(Rencher, 2002).

The concept of comparing SSEs cannot only be used in the clustering context to find

an optimal grouping for observations but also to quantify the data dredging potential in

ranking results. For this purpose, consider the ranks in r�bestj as cluster A (nA � m� 1)

and rbestj as cluster B (nB � 1). An alternative measure for quantifying the data dredging

potential of rj can be defined as the increase in SSE by “adding” rbestj to r�bestj :

h2prjq :� Dpr�bestj , rbestj q �
m� 1

m
p�r�bestj � rbestj q2, (2.9)

where �r�bestj is the mean over all ranks in r�bestj . The higher the ranks in r�bestj compared

to rbestj , the higher the increase in SSE. Consequently, a high value of h2prjq indicates a

high data dredging potential of rj .

Table 2.2 contains the values of h2prjq for the three example ranking results that were

shown in Table 2.1.

Table 2.2.: Data dredging potential of three example ranking results measured by h2prjq.

rj h2prjq

p3 5 10 12q 27.00000

p3 9 10 12q 40.33333

p3 9 10 15q 52.08333
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Figure 2.2.: Comparison of hprjq and h2prjq for rj � p3 3 3 iq with i � 3, . . . , 20. Measure

h2prjq penalizes deviations between r�best
j and rbestj more than hprjq.

Interestingly, there is a direct link between h2prjq and hprjq. To see this, reformulate

hprjq:

hprjq �

°m
k�1 rjk
m

� rbestj

�
1

m

� m̧

k:rjk�r
best
j

rjk � rbestj �mrbestj

	

�
1

m

� m̧

k:rjk�r
best
j

rjk � pm� 1qrbestj

	

�
m� 1

m

�°m
k:rjk�r

best
j

rjk

m� 1
� rbestj

	
�
m� 1

m

��r�bestj � rbestj

	
(2.10)

and compare it with h2prjq in Equation (2.9). Thus, the only difference between h2prjq

and hprjq is the squaring of the term
��r�bestj � rbestj

�
. This means that h2prjq penalizes

deviations between rbestj and r�bestj more than hprjq. In Figure 2.2, the difference between

the two measures is illustrated by plotting hprjq against h2prjq for rj � p3 3 3 iq with

i � 3, . . . , 20.

Since the two measures hprjq and h2prjq are very similar and because hprjq additionally

has a graphical interpretation, this thesis will focus on hprjq. However, h2prjq could be

used as well to quantify the data dredging potential of rj , especially if deviations between

rbestj and r�bestj are of considerable importance in the respective research question.
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2.2.3. Best rank

A drawback of hprjq is that it takes the distribution of r�bestj with respect to rbestj into ac-

count, but not the actual value of rbestj . For example, consider the ranks rj � p1 7 8 10q

and rj1 � p101 107 108 110q. Because hprjq is equal to 5.5 in both cases, it follows

that both results have the same data dredging potential according to hprjq. However,

since rbestj � 1 indicates a higher importance of the respective variable than rbestj1 � 101,

rj � p1 7 8 10q is expected to have a higher data dredging potential than rj1 �

p101 107 108 110q.

In the following, two approaches addressing this issue are presented. The underlying ideas

are also used for other measures that assess the stability of ranking lists (but do not allow

to quantify the data dredging potential as already stated in Section 2.2.1) (Boulesteix and

Slawski, 2009).

The first approach consists of modifying hprjq such that it adjusts for the value of rbestj .

More specifically, hprjq is weighted according to the value of rbestj :

hprj ;αq :� hprjq � pr
best
j q�α, (2.11)

where α P r0,8q is a parameter that can be chosen by the researcher. As in the case

of hprjq, a high value of hprj ;αq indicates a high data dredging potential. hprj ;αq can

be interpreted as the weighted difference between the average rank of rj and rbestj . If

rbestj � 1, hprj ;αq is equal to hprjq. This implies that hprjq and hprj ;αq take the same

value if rj corresponds to the worst case ranking result since in this case, rbestj is equal to 1.

Consequently, hprj ;αq has the same range of values as hprjq, i.e. hprj ;αq P r0,
m�1
m pp�1qs.

Parameter α determines the relevance of ranks ¡ 1: the higher α, the smaller hprj ;αq

with increasing rbestj . If αÑ 8, ranks ¡ 1 are not considered as relevant and hprj ;8q is

equal to zero for all rbestj ¡ 1. Thus, according to hprj ;8q, a ranking result with rbestj ¡ 1

has no data dredging potential. Conversely, if α � 0, all ranks are considered as equally

relevant and hprj ; 0q is equal to hprjq.

Figure 2.3 illustrates the impact of α and rbestj on hprj ;αq using the example ranking

results rj � p1� i 7� i 8� i 10� iq with i � 0, . . . , 100. All ranking results yield the

same value of hprjq but have different values of rbestj . The figure shows that for α ¥ 1,

hprj ;αq is close to zero for ranking results with rbestj larger than approximately 25.

In practice, a good balance between α � 0 and α Ñ 8 might be for instance α � 0.5.

This has the advantage that hprj ; 0.5q can be written as

hprj ; 0.5q �
hprjqb
rbestj

. (2.12)
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Figure 2.3.: Impact of α on hprj ;αq for ranking results that yield the same value of hprjq, rj �
p1 � i 7 � i 8 � i 10 � iq with i � 0, . . . , 100.

As an example, consider again rj � p1 7 8 10q and rj1 � p101 107 108 110q from

the beginning of this section. According to hprjq, both ranking results have the same

data dredging potential (hprjq � hprj1q � 5.5). For α � 0.5, hprj ; 0.5q is still equal to 5.5

(because rbestj � 1) but hprj1 ; 0.5q is approximately equal to 0.55, indicating a lower data

dredging potential. To yield a value of hprj1 ; 0.5q � 5.5 with rbestj � 101, the discrepancy

between rbestj and r�bestj has to be much higher, for example rj1 � p101 107 108 309q.

An alternative way to take the actual value of rbestj into account is to choose a cutoff

parameter c (e.g c � 50, 100) and assign a data dredging potential of zero if rbestj ¡ c.

This means that $&
%hprjq, rbestj ¤ c,

0, rbestj ¡ c.
(2.13)

This approach is much simpler than using hprj ;αq since the interpretation of hprjq re-

mains the same. However, it follows the nothing-or-all principle, which means that all

ranking results with rbestj ¤ c are treated equally with respect to rbestj , whereas all ranking

results with rbestj ¡ c are considered as irrelevant (Boulesteix and Slawski, 2009). Section

2.3 will however show that despite its oversimplification, this approach might be useful

in combination with hprj ;αq or even preferable if the overall data dredging potential is

assessed.

Both approaches have in common that they require the choice of a parameter (i.e. α or

c) that determines the relevance of ranks ¡ 1, which is both advantageous and disadvan-
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tageous. On the one hand, this allows the researcher to individually adjust hprjq to the

respective research question (e.g. up to which rank a variable is relevant enough to be

published or a candidate for further research). On the other hand, it raises the problem

of finding a suitable parameter value. This might be especially difficult for α because its

impact on the relevance of ranks ¡ 1 is less intuitive than that of c. Since there will be

inevitably some arbitrariness in the choice of α and c, several parameter values might be

considered in practice (Boulesteix and Slawski, 2009).

2.3. Application in practice

In the previous section, a measure that quantifies the data dredging potential of a single

ranking result was introduced. In this section, two possible applications in practice are

considered, namely rankings with respect to data dredging potential (Section 2.3.1) and

the assessment of the overall data dredging potential (Section 2.3.2).

2.3.1. Ranking with respect to data dredging potential

Let again Xj� be the researcher’s favourite variable and rj� the corresponding ranking

result. Based on hprjq and its modifications (hprj ;αq or cutoff c), it is now possible

to quantify the data dredging potential of rj�. Additionally, it might be interesting to

compare the data dredging potential of rj� with the data dredging potential of the other

p� 1 ranking results.

A possible way to do this is to rank the variables X1, . . . , Xp according to the data dredging

potential of r1, . . . , rp (not to be confused with the original rankings where the variables

were ordered with respect to their relevance for Y ). This approach allows the researcher

to assess the rank of Xj� with respect to the data dredging potential of rj� and to check

if rj� is among the ranking results with the highest data dredging potential.

As already stated in the previous section, there are two approaches that take the actual

value of rbestj into account. To rank the variables according to their data dredging potential,

a combination of both approaches might be an appropriate strategy: By choosing a cutoff

value c, all ranking results that are definitely not relevant are sorted out. The α parameter

in hprj ;αq then adjusts the data dredging potential of the remaining ranking results with

respect to their best rank.

2.3.2. Assessment of overall data dredging potential

Even if the researcher has no specific favourite variable, it might be useful to quantify

the overall data dredging potential of the ranking results. This gives the researcher an

overview about how unstable the results actually are with respect to data dredging.

A graphical way to get a first impression of the overall data dredging potential without
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using hprjq is to generate boxplots that show the distribution of the ranks in rj for each

variable. Another option would be to plot the number of variables with rbestj ¤ c against

c � 1, . . . , cmax (e.g. cmax � 100). If there is no data dredging potential in the ranking

results with rbestj ¤ c (i.e. all ranks in rj are equal), the number of variables with rbestj ¤ c

is equal to c.

Another approach to assess the overall data dredging potential is to use an aggregated

version of hprjq or hprj ;αq. For this purpose, define the mean of hprjq and hprj ;αq over

all ranking results with rbestj ¤ c as

Hpcq :�
1

|Ec|
¸
jPEc

hprjq, (2.14)

Hpc;αq :�
1

|Ec|
¸
jPEc

hprj ;αq, (2.15)

where c is again a cutoff parameter and Ec � tj : rbestj ¤ cu is the set of variables with

rbestj ¤ c. Equations (2.14) and (2.15) show that both Hpcq and Hpc;αq take rbestj into

account by considering only ranking results with rbestj ¤ c. Hpcq can be interpreted as

the mean difference between and srj and rbestj over all variables with j in Ec. Hpc;αq

additionally uses hprj ;αq instead of hprjq which results in a less intuitive interpretation:

Hpc;αq is the weighted mean difference between srj and rbestj over all variables with j in Ec
(with weights according to rbestj ). Actually, it may not be necessary to use Hpc;αq if Hpcq

is considered for more than one cutoff value. For example, Hpcq can be plotted against

c P r1, cmaxs (e.g. cmax � 100), which leverages the nothing-or-all principle.

When using Hpc;αq or Hpcq, it has to be noted that in general, rbestj is not obtained by

the same method for each j P Ec. However, the definition of data dredging given in the

beginning of this chapter implies that only one method is reported (namely the method

that yields the best-looking result). This means that because rbestj is not achieved by

one single method for all j P Ec, the “full” data dredging potential can in general not be

exploited for all variables at once.

Besides the assessment of overall stability with respect to data dredging, Hpcq and Hpc;αq

can be used to identify the method that yields on average the highest increase in data

dredging potential if it is added to the set of ranking methods. For this purpose, let

H�kpcq be the value of Hpcq that arises when the rankings are generated without consid-

ering method k (k � 1, . . . ,m). The method that yields on average the highest increase in

data dredging potential is the method that yields the smallest value of H�kpcq and should

be used with caution (the same procedure can be applied to Hpc;αq). However, it has to

be noted that a method that increases the instability of results does not necessarily yield

incorrect ranking results (Boulesteix and Slawski, 2009).
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To summarize, there are three steps that should be performed to assess the overall data

dredging potential of all ranking results:

1. Consider the distribution of ranks in each rj and the number of variables with

rbestj ¤ c for c � 1, . . . , cmax.

2. Quantify the overall data dredging potential using Hpcq/Hpc;αq, e.g. by plotting

Hpcq against c � 1, . . . , cmax.

3. Optional: Identify the method that yields on average the highest increase in data

dredging potential.

These steps can also be performed to compare the overall data dredging potential resulting

from different data sets or different numbers/types of ranking methods.

The following chapters illustrate the quantitative assessment of the data dredging potential

based on simulated (Chapter 3) and real data (Chapter 4 and 5). To rank the variables

with respect to their data dredging potential, a combination of hprj ;αq and c will be

used. For the assessment the overall data dredging potential, only Hpcq will be considered

because of its more intuitive interpretation.
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3. Simulation study

In this chapter, the framework for the quantification of data dredging potential in ranking

results is applied to simulated gene expression data in a two-group setting. In Section 3.1

and 3.2, the data generation process and the considered ranking methods are described.

In Section 3.3, the data dredging potential is quantified and compared across different

parameter settings.

3.1. Simulation design

To study the impact of different parameter settings on the data dredging potential, 27

data sets are generated. They differ with respect to the number of variables, the number

of observations and the correlation structure. Each data set Dpx,yq consists of a matrix

x � pxijqi�1,...,n
j�1,...,p

and a vector y � py1, . . . , ynq
J. The matrix x contains n independent

observations of the variables X1, . . . , Xp, which represent log-transformed expression levels

of p genes. In this simulation, a two-group scenario is considered. This means that vector

y stores n independent observations of a binary variable Y . For example, Y could be an

outcome of interest or an experimental condition fixed by design. In the following, the

two possible values of Y are referred to as group 1 and group 2. Both groups are of equal

size, i.e. n1 � n2 �
n
2 . (Boulesteix and Slawski, 2009; Wu, 2005)

In each data set, the first 100 genes are differentially expressed (DE ). A gene Xj is truly

differentially expressed if its expected values of expression are not equal between the two

groups of interest, i.e. µj1 � µj2 (Jeanmougin et al., 2010). In this case, Xj is related to

Y and therefore relevant. Conversely, a gene is referred to as non-differentially expressed

(noDE ) if its expected values of expression are equal between the two groups of interest,

i.e. µj1 � µj2 (Jeanmougin et al., 2010). The remaining p � 100 genes in each data set

are non-differentially expressed.

To study the impact of n and p on the data dredging potential, the number of observations

varies with n P t20, 40, 60u and the number of genes varies with p P t2000, 5000, 10000u.

Moreover, three different scenarios for the correlation structure are considered, which will

be described in the following.
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Independent genes

The approach for generating independent gene expression levels is based on Irigoien and

Arenas (2018). As stated above, the expected means of a DE gene are not equal between

the two groups. For each observation i � 1, . . . , n, the DE genes j � 1, . . . , 100 are

simulated from the following univariate normal distribution:$&
%Np1, σj1q, if observation i is in group 1,

Np1� δj , σj2q, if observation i is in group 2,
(3.1)

where δj is drawn from a uniform distribution on r0.3, 2s and the standard deviations σj1

and σj2 are randomly selected among t1.3, 1.5, 1.7, 2.0u. This implies that each gene has

not necessarily the same variance in group 1 and 2. Moreover, since the difference in the

expected means (i.e. δj) differs for every j � 1, . . . , 100, the DE genes are not equally

relevant for Y .

For the remaining noDE genes, i.e. for j � 101, . . . , p, each observation i � 1, . . . , n is

drawn from $&
%Np1, σj1q, if observation i is in group 1,

Np1, σj2q, if observation i is in group 2.
(3.2)

where σj1 and σj2 are again randomly selected among t1.3, 1.5, 1.7, 2.0u.

Correlated genes

In the scenario of correlated genes, each observation i � 1, . . . , n is drawn from a multi-

variate normal distribution:$&
%Npµ1,Σ1q, if patient i is in group 1,

Npµ2,Σ2q, if patient i is in group 2.
(3.3)

The mean vectors are defined as

µ1
p�1

�

�
�����������

1
...

1

1
...

1

�
����������

µ2
p�1

�

�
�����������

1� δ1
...

1� δ100

1
...

1

�
����������
.
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Figure 3.1.: Block-structured correlation matrix for genes j � 1, . . . , 350; the first 100 genes are
differentially expressed. Correlations that are equal to ρ are highlighted in blue.

The values δ1, . . . , δ100 are drawn from a uniform distribution on r0.3, 2s. The variance-

covariance matrices are defined as

Σ1
p�p

� diagpσ11, . . . , σp1qCor diagpσ11, . . . , σp1q, (3.4)

Σ2
p�p

� diagpσ12, . . . , σp2qCor diagpσ12, . . . , σp2q, (3.5)

where Cor
p�p

denotes the correlation matrix and diagpσ11, . . . , σp1q and diagpσ12, . . . , σp2q

are diagonal matrices. As in the case of independent genes, σj1 and σj2 are randomly se-

lected among t1.3, 1.5, 1.7, 2.0u for each gene Xj . The structure of the correlation matrix

Cor is based on Korn et al. (2004). It is generated by dividing the genes into blocks of

size 50. This means that depending on the number of genes (p � 2000, 5000, 10000), there

are 40, 100 or 200 blocks. Moreover, the first five blocks contain 20 DE genes each. The

pairwise correlation between genes within a block is ρ, whereas the correlation between

the blocks is 0. The correlation of a gene with itself is equal to 1. Figure 3.1 displays the

correlation matrix for the first 350 genes in each data set. In the simulation, ρ � 0.4 and

ρ � 0.8 are considered. Note that ρ � 0 corresponds to the scenario of independent genes

described above.

Overall, the combination of n P t20, 40, 60u, p P t2000, 5000, 10000u and ρ P t0, 0.4, 0.8u

yields 27 data sets. In each data set, the DE genes are labelled as DE1,. . . ,DE100 and

the noDE genes as noDE101,. . . ,noDEp.
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3.2. Ranking methods

The genes in each data set are ranked by seven methods that differ with respect to their

ranking criterion. An overview of all used methods can be found in Table 3.1.

Table 3.1.: Overview of ranking methods used in the simulation.

k method

1 Fold-change

2 T-statistic

3 Permutation test

4 SAM

5 Limma

6 Welch’s t-statistc

7 Wilcoxon statistic

The considered methods are univariate, which means that in contrast to multivariate

methods, they evaluate the relevance of each gene independently from the other genes

(Dess̀ı et al., 2013). In principle, all methods are based on testing the null hypothesis that

the expected values of expression for a given gene Xj are equal between the two groups,

i.e. H0 : µj1 � µj2 vs. H1 : µj1 � µj2 for each j � 1, . . . , p (Jeanmougin et al., 2010).

The ranking criteria are defined as the test statistic or p-value of a suitable test (e.g. the

two-sample t-test). The higher the absolute value of the test statistic/the smaller the

p-value, the smaller the assigned rank.

Ideally, none of the ranking methods should assign a rank ¡ 100 to one of the DE genes

in the simulated data sets. Moreover, the most differentially expressed gene (i.e. the gene

with the highest value of δj) should be assigned a rank of 1 by all methods.

The rest of this section briefly reviews the considered ranking methods, which are im-

plemented in the Bioconductor add-on package GeneSelector (Slawski and Boulesteix,

2018). To describe the ranking methods, let x̄j1 and x̄j2 denote the sample means of Xj

for group 1 and 2, respectively. Moreover, the pooled sample variance of Xj is given by

s2j �
pn1 � 1qs2j1 � pn2 � 1qs2j2

n1 � n2 � 2
, (3.6)

where s2j1 and s2j2 are the group specific sample variances with s2jg �
1

ng�1

°
i:yi�g

pxij�x̄jgq

for g P t1, 2u. (Jeanmougin et al., 2010)

The considered methods are the following:

• Fold-change: Assuming that the expression levels are log-transformed, the ranking

criterion is simply the absolute value of the mean difference between the two groups
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3. Simulation study

(Boulesteix and Slawski, 2009). For gene Xj , this is equal to

|FCj | � |x̄j1 � x̄j2|. (3.7)

Note this procedure is very naive since it only considers the difference in means

without taking variances into account (Slawski and Boulesteix, 2018).

• T-statistic: The ranking criterion is the absolute value of the test statistic resulting

from the ordinary t-test for two groups. For gene Xj , the test statistic is defined as

tTstatj �
x̄j1 � x̄j2

sj

b
1
n1
� 1

n2

(3.8)

(Jeanmougin et al., 2010).

• Permutation test: This method uses the permutation p-values as ranking crite-

rion. The underlying idea of a permutation test is to estimate the distribution of

a test statistic under the null hypothesis and compare it to the actual value of the

test statistic. In this simulation, the considered test statistic is tTstatj and the null

hypothesis is H0 : µj1 � µj2. The distribution of H0 is estimated by generating B

(e.g. B � 100) random permutations of the values in y and calculating the test

statistic tTstatj,b for each permutation b � 1, . . . , B. The permutation p-value of Xj is

then defined as

pPermj �

°B
b�1 1

�
|tTstatj |   |tTstatj,b |

�
B

. (3.9)

If two or more variables yield the same permutation p-values, |tTstatj | is used as

second-order ranking criterion. (Dudoit et al., 2003; Slawski and Boulesteix, 2018)

• SAM (Significance Analysis of Microarrays): The ranking criterion is the ab-

solute value of the SAM statistic tSAMj , which is a modified version of the t-statistic.

It stabilises tTstatj by adding a small positive constant sc to the denominator:

tSAMj �
x̄j1 � x̄j2

sc � sj

b
1
n1
� 1

n2

(3.10)

(Tusher et al., 2001). The value of the constant is only computed once for all genes

and is chosen to minimize the coefficient of variation of the test statistic, for details

see Chu et al. (2002).

• Limma (Linear Models for Microarray Data): This method uses the absolute

value of the Limma statistic as ranking criterion. The Limma statistic represents a

hybrid classical/Bayes approach in which the posterior variance s2Limmaj is substi-
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tuted into the classical t-statistic:

tLimmaj �
x̄j1 � x̄j2

sLimmaj

b
1
n1
� 1

n2

, (3.11)

where s2Limmaj is a weighted combination of an estimate obtained from the prior

distribution (s20) and the pooled sample variance (s2j ):

s2Limmaj �
d0s

2
0 � djs

2
j

d0 � dj
, (3.12)

where d0 and dj are prior and empirical degrees of freedom, respectively. Using a

prior distribution has the effect of borrowing information from the ensemble of genes

for inference about each individual gene. It shrinks the observed variances towards

the prior values. (Smyth, 2004; Jeanmougin et al., 2010)

• Welch’s t-statistic : The ranking criterion is the absolute value of the test statistic

resulting from the t-test for two groups with unequal variances:

tWelchT
j �

x̄j1 � x̄j2c
s2j1
n1

�
s2j2
n2

(3.13)

(Jeanmougin et al., 2010).

• Wilcoxon statistic: This method uses the absolute value of the Wilcoxon statistic

as ranking criterion. The Wilcoxon statistic of gene Xj is defined as

WWilcox
j � Rj �

n1pn1 � 1q

2
, (3.14)

where Rj is the rank sum. Rj is calculated by combining the expression levels

of group 1 and 2 for gene Xj , listing them in rank order and taking the sum of

all ranks that belong to the group with more observations (or simply group 1 if

n1 � n2). (Jeanmougin et al., 2010; Slawski and Boulesteix, 2018)

3.3. Results

In this section, the ranking results are analysed with respect to their data dredging po-

tential. This includes comparisons across the parameter settings as well as comparisons

between DE genes and noDE genes.

As stated in Chapter 2, hprjq and its modifications (hprj ;αq and cutoff parameter c) do

not only allow to quantify the data dredging potential of a single ranking result but also
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Table 3.2.: Top-10 lists of ranking results with the highest data dredging potential resulting from
c � 100 and α � t0, 0.5, 0.8u for a simulated data set with p � 2000, n � 40, ρ � 0.
Empty cells denote that the ranking result is not among the top-10. For each ranking
result, rbestj is highlighted in red.

gene rj
hprj ;αq rank (w.r.t. hprj ;αq)

α � 0 α � 0.5 α � 0.8 α � 0 α � 0.5 α � 0.8

noDE390 (482 230 167 353 366 230 61) 208.86 26.74 7.79 1 1 1

noDE1510 (72 312 345 182 187 312 436) 191.71 22.59 6.26 2 2 3

noDE744 (87 262 249 158 162 262 406) 139.57 14.96 3.92 3 6

noDE1511 (77 264 250 153 156 264 349) 139.14 15.86 4.31 4 4 7

noDE1951 (99 257 295 163 167 257 398) 134.71 13.54 3.41 5 9

noDE309 (237 203 224 214 214 203 69) 125.86 15.15 4.25 6 5 9

noDE1293 (348 102 47 202 226 102 115) 116.14 16.94 5.34 7 3 4

noDE1165 (84 241 208 145 148 241 328) 115.29 12.58 3.33 8

noDE1613 (226 193 75 198 200 193 221) 111.57 12.88 3.53 9

noDE1182 (279 177 285 219 219 177 97) 110.57 11.23 2.85 10

noDE1890 (264 111 49 180 183 111 129) 97.71 13.96 4.34 7 6

noDE1936 (49 164 196 95 96 164 256) 96.71 13.82 4.30 8 8

DE3 (41 135 173 76 77 135 245) 85.00 13.27 4.36 10 5

DE4 (1 10 10 8 8 10 12) 7.43 7.43 7.43 2

noDE1457 (155 16 15 61 66 16 20) 34.86 9.00 3.99 10

to rank the variables according to their data dredging potential and to assess the overall

data dredging potential. Both applications are considered in the following.

Rankings with respect to data dredging potential

First, the genes are ranked with respect to their data dredging potential. For this purpose,

the data dredging potential of the ranking results r1, . . . , rp in each data set is assessed

by a combination of hprj ;αq and a cutoff value of c � 100. To illustrate the impact of α

on the data dredging potential, several values for α are considered. As stated in Chapter

2, hprj ;αq is close to zero for most ranking results if α ¥ 1. For this reason, α varies

with α P t0, 0.5, 0.8u. However, it has to be noted that the choice of α is not based on an

objective criterion and that other values for α could be used as well.

After assessing the data dredging potential of each ranking result, the genes are ordered

such that a small rank of gene Xj indicates a high data dredging potential of rj (note

that in the original rankings, a small value of Xj indicates a high relevance for Y ). Since

three values for α are considered, there are three different rankings with respect to data

dredging potential for each data set.

Table 3.2 displays the top-10 lists of ranking results with the highest data dredging poten-

tial for a simulated data set with 2000 uncorrelated genes and 40 observations (i.e. ρ � 0,

p � 2000 and n � 40). It shows that for each α value, gene noDE390 has the highest data

dredging potential. For α � 0, hpr390; 0q takes a value of 208.86, which means that the

difference between the average rank and the best rank of this gene is equal to 208.86. For

α � 0.5 and α � 0.8, the value of hpr390;αq is reduced to 26.74 and 7.79, respectively.
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Apart from gene noDE390, the three top-10 lists in Table 3.2 differ depending on the

value of α. As explained in Chapter 2, a parameter value of α � 0 only considers the

distribution of r�bestj with respect to rbestj , whereas a value of α ¡ 0 additionally takes the

actual value of rbestj into account. This is reflected in Table 3.2: For α � 0, the top-10 list

only includes ranking results with best ranks larger than 49 and a high difference between

average and best rank; the actual value of rbestj is not of relevance (except for rbestj ¤ 100).

Conversely, for α P t0.5, 0.8u, the top-10 ranking results tend to have smaller values of

rbestj and a smaller range.

The impact of α on the data dredging potential is also illustrated in Figure 3.2, which

displays all ranking results with rbestj ¤ 100 for the same simulated data set as shown in

Table 3.2. The figure consists of three panels that highlight the top-10 ranking results with

the highest data dredging potential for each α P t0, 0.5, 0.8u. To simplify the comparison

between the panels, rbestj is plotted against hprj ; 0q in each panel.

Both Table 3.2 and Figure 3.2 show that for α � 0, all genes in the top-10 list are noDE

genes. As can be seen from Figure 3.2, this is because noDE genes tend to have a higher

variability in ranking results and higher values of rbestj than DE genes. If the actual value

of rbestj is additionally taken into account (i.e. for α ¡ 0), the 10-top list also includes DE

genes.

When looking at the best rank of each ranking result in Table 3.2, it is striking that rbestj is

exclusively assigned by the ranking methods using the Wilcoxon statistic, the permutation

test or the fold-change criterion. Consequently, the data dredging potential of the ranking

results in Table 3.2 would be considerably smaller if these three methods were omitted.

Ensuing results being depicted in this section will show that this does not only apply to

the top-10 list but also to other ranking results.

Overall, the results shown for the data set with p � 2000, n � 40 and ρ � 0 are in line

with the results of the other simulated data sets. Corresponding tables and figures can be

found in the electronic appendix.

Overall data dredging potential

This section aims to provide an overview about how unstable the ranking results of each

simulated data set are with respect to data dredging. As explained in Chapter 2, there

are three steps that should be performed to assess the overall data dredging potential. In

the following, this procedure is applied to the simulated data sets.

Step 1. Consider the distribution of ranks and the number of variables with rbestj ¤ c

To get a first impression of the overall data dredging potential, the distribution of ranks

and the number of variables with rbestj ¤ c can be considered. As an example, Figure 3.3

shows the number of variables with rbestj ¤ c, c P r1, 100s, for six simulated data sets with

ρ � 0, p P t2000, 10000u and n P t20, 40, 60u. If all ranking methods yield the same rank
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Figure 3.2.: Data dredging potential of ranking results with rbestj ¤ 100 for a simulated data set
with p � 2000, n � 40, ρ � 0. In each panel, the top-10 ranking results with the
highest data dredging potential for α P t0, 0.5, 0.8u are highlighted in red.
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Figure 3.3.: Number of variables with rbestj ¤ c, c P r1, 100s, for simulated data sets with p P
t2000, 10000u and n P t20, 40, 60u and ρ � 0. If all methods yield the same rank for
each variable, the number of variables with rbestj ¤ c is equal to c (dashed line).

for each variable (i.e. if the ranking results have no data dredging potential), the number

of variables with rbestj ¤ c is equal to c for each c P r1, ps. On contrary, if the number of

variables with rbestj ¤ c is much higher than c, this indicates a high data dredging potential

since there are many variables with a small best rank.

Figure 3.3 shows that the higher n and the smaller p, the higher the number of variables

with rbestj ¤ c for c P r1, 100s. This indicates that the overall data dredging potential

increases with increasing p and decreasing n.

A second way to get a general idea of the overall data dredging potential is illustrated in

Figure 3.4 and 3.5. Both figures contain boxplots showing the distribution of each ranking

result with rbestj ¤ 100 for the same six data sets as presented in Figure 3.3.

When looking at the figures that display the results for p � 2000 and n P t20, 40, 60u

(Figures 3.4a-3.4c), it can be observed that the variability within the ranking results rj

increases if the number of observations decreases. Moreover, the figures show that the

smaller the number of observations, the smaller the value of rbestj for noDE genes. As

stated above, all noDE genes should ideally have ranks ¡ 100. The results for p � 10000

(Figures 3.5a-3.5c) show similar tendencies regarding the impact of n. Furthermore, Fig-

ures 3.4 and 3.5 disclose that the variability within the ranking results increases with the

number of variables. This applies in particular to the data sets with n � 20.

Finally, Figure 3.4 and 3.5 show that the variability within the ranking results of noDE

genes is generally higher than in DE genes. This confirms the findings from Table 3.2 and

Figure 3.2.
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Figure 3.4.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0, p � 2000 and n P t20, 40, 60u.
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Figure 3.5.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0, p � 10000 and n P t20, 40, 60u.
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The other simulated data sets provide similar results and point to the same conclusions.

The correlation structure between the genes (i.e. parameter ρ) does not appear to affect

the variability within the ranking results. Corresponding figures are provided in the ap-

pendix (Figures A.1 and A.2 - A.8).

Step 2. Quantify the overall data dredging potential using Hpcq

As a second step, the overall data dredging potential is assessed quantitatively. In Figure

3.6, Hpcq is plotted against c P r1, 100s for all 27 simulated data sets. For example, the

second panel of Figure 3.6b displays Hpcq for three data sets with ρ � 0.4, p � 5000 and

n P t20, 40, 60u. For n � 60 and c � 75, the value of Hpcq is equal to 25, whereas for

n � 20 it is larger than 50. Consequently, the mean difference between the average and

the best rank for all ranking results with rbestj ¤ 75 is equal to 25 for n � 60 and larger

than 50 for n � 20.

Figure 3.6 shows that in each data set, the value of Hpcq tends to increase with the cutoff

value c. This implies that the higher the value of rbestj , the larger the difference between

the average and best rank of rj . Moreover, it can be observed that the overall data dredg-

ing potential increases with decreasing number of observations (for fixed values of c, ρ and

p). On contrary, the number of variables p seems to increase the overall data dredging

potential. However, this mainly applies to data sets with n � 20.

To ensure that the observed tendencies regarding the impact of c, p and n on the data

dredging potential are not due to random fluctuations, 20 simulated data sets were addi-

tionally generated for each combination of n, p and ρ. Figure 3.7 displays the resulting

mean values of Hpcq for each parameter setting. The figure confirms that Hpcq increases

with increasing c and decreasing number of observations. As already observed in Figure

3.6, the number of variables affects the data dredging potential mainly for n � 20. Regard-

ing the impact of the correlation between the variables, there is no noticeable difference

between the figures for ρ � 0, ρ � 0.4 and ρ � 0.8.

To summarize, the overall data dredging potential depends on the cutoff parameter c, the

number of observations n and the number of variables p. The results are in line with the

results of Step 1, which were shown in Figures 3.3, 3.4 and 3.5.

When comparing different Hpcq values, the question may arise whether there is a thresh-

old for Hpcq (or hprjq if a single rj is considered) indicating that the ranking results are

unproblematic with respect to data dredging. Unfortunately, there is no definite answer

to this question. Only a value of Hpcq � 0 indicates completely stable ranking results

that do not leave any room for data dredging (which is not realistic in practice). However,

regarding the results in Figure 3.6 and 3.7, a value of Hpcq � 25 for all c ¤ cmax (e.g.

cmax � 100) might be acceptable. It has to be noted that this is only a rule of thumb

that is not based on any objective criterion and might vary depending on the respective

research question.
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Figure 3.6.: Overall data dredging potential quantified by Hpcq for 27 simulated data sets with
n P t20, 40, 60u, p P t2000, 5000, 10000u and ρ P t0, 0.4, 0.8u.
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Figure 3.7.: Mean of Hpcq over 20 simulated data sets generated for each combination of n P
t20, 40, 60u, p P t2000, 5000, 10000u and ρ P t0, 0.4, 0.8u.
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Figure 3.8.: Overall data dredging potential that arises when the variable rankings are performed
without using method k � 1, . . . , 7. The method that yields the smallest value of
H�kpcq is the method that yields the highest increase in overall data dredging potential
when added to the set of ranking methods. The figure shows three simulated data sets
with ρ � 0, n � 20 and p � t2000, 5000, 10000u.

Step 3. Identify the method that yields the highest increase in data dredging potential

The last step aims to assess the increase in overall data dredging potential that arises

if method k � 1, . . . , 7 is used in addition to the other six methods. For this purpose,

H�kpcq is calculated for each k � 1, . . . , 7. As defined in Chapter 2, H�kpcq is the value

of Hpcq that arises when the variable rankings are performed without considering method

k.

Figure 3.8 displays H�kpcq, c P r1, 100s, for three simulated data sets with n � 20,

p P t2000, 5000, 10000u and ρ � 0. It is striking that in each panel and for nearly all

values of c, H�FCpcq yields the smallest value. This means that the fold-change criterion

causes the highest increase in data dredging potential when it is used in addition to the

other six methods. Two other ranking methods that noticeably increase the overall data

dredging potential are the Wilcoxon statistic and the permutation test. The remaining

four methods (Limma, SAM, t-statistic and Welch’s t-statistic) yield almost the same

values of H�kpcq for each value of c and p. Regarding the impact of the number of vari-

ables, the difference between H�FCpcq and the other values of H�kpcq is especially high

for p � 10000. The same applies to H�Wilcoxpcq.

In principle, there are two possible reasons why a method increases the data dredging po-

tential of a ranking result more than other methods: Either it assigns much higher ranks

than the other methods or it assigns much smaller ranks. For the ranking results with

rbestj ¤ 100 that are considered in Figure 3.8, it is likely that the latter case applies. This

can be seen in Table 3.2, which was shown above. The data set in Table 3.2 corresponds

to the left panel in Figure 3.8. It was stated that for all ranking results listed in the table,
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3. Simulation study

rbestj was exclusively assigned by the fold-change criterion, the Wilcoxon statistic or the

permutation test. Hence, it is plausible that this is also true for the ranking results with

rbestj ¤ 100 that are shown in Figure 3.8.

As stated in Chapter 2, the method that yields the highest increase in overall data dredg-

ing potential does not necessarily assign incorrect ranks. However, concerning the present

case, this might be valid at least for the fold-change criterion. As stated in Section 3.2,

this ranking method is very naive since it considers the differences in means only and does

not take the variances into account. Thus, it can be expected that this methods yields

incorrect ranking results (Boulesteix and Slawski, 2009).

The figures for the remaining data sets provide similar results and can be found in the

appendix (Figures A.9-A.11).
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4. Real data application with binary outcome

This chapter illustrates the framework introduced in Chapter 2 by applying it to a real

data set with binary outcome. Sections 4.1 and 4.2 describe the data set and the ranking

methods used for the application. Section 4.3 presents the results, which consist of variable

rankings with respect to data dredging potential and the assessment of the overall data

dredging potential.

4.1. Data

The data set Dpx,yq used throughout this chapter consists of a matrix x � pxijq i�1,...,114
j�1,...,12625

and a vector y � py1, . . . , y114q
J. The matrix x contains expression levels of 12625 genes

from 114 individuals with acute lymphoblastic leukemia (ALL). For each individual, vector

y stores the information if remission was achieved (99 individuals) or not (15 individuals).

The data are available from the Bioconductor ALL package (Chiaretti et al., 2004; Li,

2018). Originally, 128 individuals were included in the data set but for 14 individuals, the

remission status is not available.

4.2. Ranking methods

Since the data set corresponds to a two-group setting (remission vs. no remission), the

variable rankings can be performed using the same seven methods as in the simulation

(Chapter 3). To study the impact of the number of methods, the results are analysed for

m � 7 and m � 4. In the latter case, the ranking methods based on the Wilcoxon statistic,

the fold-change criterion and the permutation test are omitted. For the simulated data in

Chapter 3, these three methods were shown to yield the highest increase in data dredging

potential when added to the set of ranking methods. Note that omitting other ranking

methods could possibly yield other results.

Table 4.1 gives an overview of the ranking methods used for m � 7 and m � 4. See

Chapter 3 for a description of the methods.

4.3. Results

In this section, the ranking results of the ALL data set are analysed with respect to their

data dredging potential. The procedure is the same as in Chapter 3: First, the genes
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4. Real data application with binary outcome

Table 4.1.: Overview of ranking methods used
for the data application with binary outcome.

m � 7 m � 4

k method k method

1 Fold-change 1 T-statistic

2 T-statistic 2 SAM

3 Permutation test 3 Limma

4 SAM 4 Welch’s t-statistc

5 Limma

6 Welch’s t-statistc

7 Wilcoxon statistic

are ranked with respect to their data dredging potential. Then, the overall data dredging

potential is assessed.

Rankings with respect to data dredging potential

As suggested in Chapter 2, a combination of hprj ;αq and a cutoff c is used to rank the

genes with respect to the data dredging potential of their ranking results. Parameter α

varies with α P t0, 0.5, 0.8u to illustrate its impact on the data dredging potential. The

cutoff value is set to c � 100.

Table 4.2 presents the top-10 ranking results with the highest data dredging potential for

α P t0, 0.5, 0.8u and m � 7. First of all, it can be seen that compared to the simulation in

Chapter 3, all ranking results in Table 4.2 yield very high values of hprj ;αq. For almost

all ranking results in Table 4.2, this is caused by the fold-change criterion, whose assigned

ranks differ a lot from the ranks of the other methods. As already stated in Chapter 3,

the fold change criterion is a very naive procedure that can be expected to yield incorrect

ranking results.

The ranking result with the highest value of hprj ; 0q is gene 38355 at. For this gene,

hprj ; 0q takes a value of 4123.43, which means that the difference between the average and

the best rank of gene 38355 at is equal to 4123.43. For α � 0.5 and α � 0.8, this value is

reduced to 601.46 and 189.49, respectively.

The only two values of hprj ;αq that remain constant for each α are the values of gene

36769 at and 38124 at. This is due to the fact that their best ranks are equal to 1. How-

ever, they are among the top-10 ranking results with the highest data dredging potential

only if α is set to 0.8. In general, Table 4.2 reveals that for α ¡ 0, the ranking results with

the highest data dredging potential tend to have smaller values of rbestj than for α � 0. As

explained in Chapter 2, this is because for α ¡ 0, smaller values of rbestj are considered as

more relevant for data dredging, whereas for α � 0, the actual value of rbestj is not taken

into account (except that rbestj ¤ 100).

The impact of α on the data dredging potential is additionally illustrated in Figure 4.1,
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4. Real data application with binary outcome

Table 4.2.: Top-10 lists of ranking results with the highest data dredging potential with m � 7,
c � 100 and α P t0, 0.5, 0.8u. Empty cells denote that the ranking result is not among
the top-10. For each ranking result, rbestj is highlighted in red.

gene rj
hprj ;αq rank (w.r.t. hprj ;αq)

α � 0 α � 0.5 α � 0.8 α � 0 α � 0.5 α � 0.8

38355 at (47 4724 5371 3032 4641 5271 6107) 4123.43 601.46 189.49 1 1 3

38319 at (77 4229 3445 2668 4153 4982 7059) 3724.86 424.49 115.32 2 3

37006 at (60 3831 3552 2363 3737 4115 4303) 3077.29 397.28 116.32 3 5

41214 at (28 2990 3114 1722 2926 3052 1577) 2173.29 410.71 151.14 4 4 4

1914 at (214 1990 1429 1175 1932 61 7858) 2033.14 260.32 75.84 5

35192 at (2080 2244 2003 1984 2214 100 2895) 1831.43 183.14 46.00 6

41356 at (85 1976 2226 1089 1919 3045 2909) 1807.71 196.07 51.71 7

32649 at (24 2275 2252 1225 2219 2325 2184) 1762.29 359.73 138.65 8 6 8

36536 at (63 2454 2026 1390 2389 3036 1240) 1736.71 218.81 63.13 9

35940 at (45 779 1161 378 740 2217 6492) 1642.43 244.84 78.15 10

38514 at (8 1661 2075 787 1609 2376 1426) 1412.29 499.32 267.58 2 1

39318 at (6 1036 1191 446 997 1029 1307) 852.86 348.18 203.40 7 2

39389 at (17 1817 1816 914 1753 1444 2199) 1405.86 340.97 145.74 8 6

38242 at (26 1816 1691 937 1751 2039 3414) 1641.71 321.97 121.15 9 10

40775 at (27 1760 1685 909 1695 2273 1939) 1442.71 277.65 103.30 10

36769 at (978 4 4 20 4 20 1) 146.29 146.29 146.29 5

38124 at (137 194 272 120 180 1 76) 139.00 139.00 139.00 7

34098 f at (160 422 667 220 409 3 183) 291.86 168.50 121.19 9

which consists of three panels that plot rbestj against hprj ; 0q. In each panel, the top-10

ranking results shown in Table 4.2 are highlighted for α P t0, 0.5, 0.8u. Again, it can be

observed that the average value of rbestj for the top-10 results tends to decrease with in-

creasing α.

The top-10 ranking results with the highest data dredging potential for m � 4 can be

found in the appendix (Table A.1 and Figure A.12). Although the fold-change criterion is

omitted for m � 4, the resulting values of hprj ;αq are still high compared to the simulation

results.

Overall data dredging potential

The assessment of the overall data dredging potential is conducted in three steps as sug-

gested in Chapter 2.

Step 1. Consider the distribution of ranks and the number of variables with rbestj ¤ c

To get a first impression of the overall data dredging potential, Figure 4.2 presents the

number of variables with rbestj ¤ c for c P r1, 100s and m P t4, 7u. Ideally, the number of

variables with rbestj ¤ c should be equal to c for each c P r1, ps. In this case, the overall

data dredging potential would be non-existent because all methods assign the same rank

to each variable. When looking at Figure 4.2, it is obvious that this is not the case for

the ALL ranking results. For m � 7 and each c P r1, 100s, the number of variables with
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Figure 4.1.: Data dredging potential of ranking results with rbestj ¤ 100 for m � 7. In each panel,
the top-10 ranking results with the highest data dredging potential for α P t0, 0.5, 0.8u
are highlighted in red.
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Figure 4.2.: Number of variables with rbestj ¤ c, c P r1, 100s and m P t4, 7u. If all methods yield

the same rank for each variable, the number of variables with rbestj ¤ c is equal to c
(dashed line).

rbestj ¤ c is approximately three times the value of c. Even for m � 4, which can be

expected to yield more stable ranking results than m � 7, the number of variables with

rbestj ¤ c is almost twice the value of c.

As described in Chapter 2, another approach to get a first impression of the overall data

dredging potential is to generate boxplots showing the distribution of each rj . Figure 4.3a

displays the corresponding boxplots for all ranking results with rbestj ¤ 100 and m � 7. It

reveals that the variability within the ranking results is in general very high. Many ranking

results include ranks that are larger than 1000; a few ranking results even include ranks

that are larger than 5000. For m � 4 (Figure 4.3b), the variability within the ranking

results is considerably smaller. However, the range of many ranking results is still larger

than 500, which indicates a high overall data dredging potential.

Step 2. Quantify the overall data dredging potential using Hpcq

In the second step, the overall data dredging potential is quantified using Hpcq, which is

an aggregated version of hprjq.

The resulting values of Hpcq for c P r1, 100s and m P t4, 7u are presented in Figure 4.4.

Firstly, consider the values of Hpcq for m � 7. For c � 1, Hpcq is approximately equal

to 100. Accordingly, the mean difference between the average and the best rank of vari-

ables with rbestj � 1 is approximately equal to 100. This value increases rapidly with c,

which indicates that the variability within the ranking results increases with rbestj . For

m � 4, Hpcq is considerably smaller than for m � 7, especially with increasing values of

c. Nevertheless, both m � 4 and m � 7 yield higher values of Hpcq than the simulated
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Figure 4.3.: Boxplots showing the distribution of each rj with rbestj ¤ 100 for m P t4, 7u.

ranking results in Chapter 3. Specifically, taking the proposed threshold of Hpcq � 25 as a

basis, the overall data dredging potential of the ranking results can be considered as very

problematic, even for m � 4.

Overall, Figure 4.4 confirms the findings from Step 1: For both m � 4 and m � 7, the

ranking results from the ALL data set show a considerably higher overall data dredging

potential than the simulated ranking results in Chapter 3 (which were generated by the

same seven ranking methods). Moreover, the ranking results from the ALL data set have

a smaller but non-negligible overall data dredging potential if the Wilcoxon statistic, the

fold-change criterion and the permutation test are omitted.
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Figure 4.4.: Overall data dredging potential quantified by Hpcq for m P t4, 7u.

Step 3. Identify the method that yields the highest increase in data dredging potential

In the last step, the ranking methods are analysed with respect to their contribution

to the overall data dredging potential. For this purpose, H�kpcq is calculated for each

k � 1, . . . ,m with m P t4, 7u. As explained in Chapter 2, H�kpcq is the value of Hpcq

that arises if method k is omitted from the ranking analyses. The method that yields the

smallest value of H�kpcq is the method that yields the highest increase in overall data

dredging potential if it is added to the set of ranking methods.

Figure 4.5a presents the results for m � 7 and c P r1, 100s. In Table 4.2, it was shown

that the high values of hprj ;αq are mainly caused by the fold-change criterion, whose

assigned ranks differ a lot from the other methods. Figure 4.5a reveals that this is not

just applicable for the top-10 ranking results with the highest data dredging potential but

also for other ranking results with rbestj ¤ 100: The method with the smallest value of

H�kpcq for almost all values of c is the fold-change criterion. Consequently, the fold-change

criterion yields the highest increase in overall data dredging potential when it is added to

the set of ranking methods. Moreover, it can be observed that H�FCpcq in Figure 4.5a is

approximately equal to Hpcq for m � 4 in Figure 4.4. This indicates that the difference in

overall data dredging potential between m � 4 and m � 7 that was revealed in Step 1 and

2 is mainly due to the fact that the fold-change criterion is omitted for m � 4. As already

stated in Chapter 3, the fold change criterion is a very naive procedure that should be

used with caution. Compared to the fold-change criterion, the Wilcoxon statistic and the

permutation test do not seem to reduce the overall data dredging potential considerably

when they are omitted.

Figure 4.5b displays the values of H�kpcq for m � 4. It is immediately apparent that

Welch’s t-statistic yields the smallest value of H�kpcq for c P r1, 100s. In contrast, the
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Figure 4.5.: Overall data dredging potential that arises when the variable rankings are performed
without using method k � 1, . . . ,m, m P t4, 7u. The method with the smallest value of
H�kpcq is the method that yields the highest increase in overall data dredging potential
when added to the set of ranking methods.

values of H�kpcq for the remaining three methods are approximately equal to the values

of Hpcq for m � 4 in Figure 4.4. This result is probably due to the fact that SAM and

Limma are modified versions of the t-statistic. Thus, all three methods are based on a test

that assumes that the variances in both groups are equal. In contrast, Welch’s t-statistic

assumes unequal variances in both groups (Jeanmougin et al., 2010). Consequently, it

is plausible that the rankings generated by t-statistic, SAM and Limma are very similar,

which in turn leads to a low overall data dredging potential if Welch’s t-statistic is omitted.

However, that this does not imply that Welch’s t-statistic yields wrong ranking results.

40



5. Real data application with survival outcome

In Chapter 3 and 4, the framework for the quantification of data dredging potential in

ranking analyses was applied to data sets with binary outcome. The present chapter

analyses the data dredging potential of ranking results in the survival context. Section 5.1

introduces the data set that is used to illustrate the framework. Section 5.2 then describes

the considered ranking methods. In Section 5.3, the ranking results are analysed with

respect to their data dredging potential.

5.1. Data

For the ranking analyses with survival outcomes, a data set of the form Dpx,y, δq is

considered, where x � pxijqi�1,...,n
j�1,...,p

, y � py1, . . . , ynq
J and δ � pδ1, . . . , δnq

J store n

independent observations of X1, . . . , Xp, Y and δ. Variable Y denotes the follow-up time

(or censored survival time), which is defined as the minimum of the underlying survival

time T and the censoring time C, i.e. Y � minpT,Cq. Variable δ denotes the censoring

indicator and is defined as δ � 1pT ¤ Cq, where 1p�q is the indicator function. As in the

previous chapters, X1, . . . , Xp denote the variables that are ranked with respect to their

importance for the outcome. (Edelmann et al., 2019b; Chen et al., 2018)

The survival data set used throughout this chapter is based on the mantle cell lymphoma

(MCL) study of the Lymphoma/Leukemia Molecular Profiling Project and is available at

http://llmpp.nih.gov/MCL (Rosenwald et al., 2003). It contains the expression values of

8810 genes from 92 untreated MCL patients with no history of previous lymphoma. As in

earlier applications (e.g. Edelmann et al., 2019b), the analysis will be restricted to genes

that do not contain missing observations, which reduces the number of genes to 2480. In

addition to the gene expression values, the data set contains the follow-up time and the

censoring status of each patient. During the follow-up, 64 patients died of MCL; the other

28 patients were censored. The median follow-up time is 2.76 years.

5.2. Ranking methods

Since the outcome of interest is a survival time, the genes in the MCL data set cannot

be ranked by the same methods as in Chapter 3 and 4. Instead, they are ranked by

eight methods that are suitable for survival data. As in the previous applications, the

considered methods differ with respect to their ranking criterion. Moreover, all methods
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5. Real data application with survival outcome

Table 5.1.: Overview of ranking methods used
for the data application with survival outcome.

m � 8 m � 4

k method k method

1 COX 1 COX

2 SIS 2 CINDEX

3 CINDEX 3 CRCDCS

4 IPOD 4 RESI

5 RCDCS

6 CRCDCS

7 RESI

8 BCORSIS

are univariate. Accordingly, each method is based on a ranking criterion that is calculated

for each variable Xj without considering the other variables X1, . . . , Xj�1, Xj�1 . . . , Xp.

The variables are then ranked according to the value of the ranking criterion, where a high

value indicates high importance for the response. In the context of univariate ranking

methods for survival data, the ranking criterion is also referred to as marginal utility.

(Edelmann et al., 2019b)

An overview of the considered ranking methods can be found in Table 5.1. All methods

are implemented in the R package MVS (Edelmann et al., 2019a). As in the real data

application with binary outcome (Chapter 3), the impact of the number of methods is

studied by additionally analysing the ranking results for m � 4. For this purpose, four

methods were randomly chosen from the set of ranking methods. The corresponding

methods are also listed in Table 5.1.

The remainder of this section briefly reviews the methods that were used to generate the

variable rankings:

• (SIS-)COX: The marginal utility of variable Xj is defined as the maximum of the

partial likelihood of a Cox model with variable Xj as predictor (Fan et al., 2010). SIS

is the abbreviation for sure independence screening, which is an approach by Fan and

Lv (2008) that uses Pearson correlation for feature screening and was theoretically

justified for linear models. COX is an adhoc solution to apply SIS to the Cox

proportional-hazards model (Edelmann et al., 2019b).

• SIS: The marginal utility of variable Xj is determined by calculating the absolute

value of the Pearson correlation between follow-up time Y and variable Xj . It was

proposed by Saldana and Feng (2018) as a computational shortcut for the COX

method. However, by considering the follow-up time Y instead of the survival time

T , it does not correct appropriately for censoring (Edelmann et al., 2019b).

• CINDEX: This method uses Harrel’s C-Index (C for concordance) (Harrell et al.,

1996), which is a rank correlation statistic and thus not sensitive to outliers in the
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5. Real data application with survival outcome

data. The C-Index of variable Xj is given by

Cpx�jq �

°n
i�1

°n
i1�1 1pyi ¡ yi1q1pxi1j ¡ xijqδi1°n
i�1

°n
i1�1 1pyi ¡ yi1qδi1

, (5.1)

where x�j � px1j , . . . , xnjq contains n observations of variable Xj . The marginal

utility based on the C-Index is defined as:

maxpCpx�jq, Cp�x�jqq (5.2)

(Edelmann et al., 2019b).

• IPOD: In contrast to the methods above (COX, SIS and CINDEX), this method

allows to detect non-monotone associations between the variables and the survival

time. It is based on the consideration that the survival time T is independent of

variable Xj if and only if the conditional survival function Spt |Xj � xq equals

the unconditional survival function Sptq for almost all x (Edelmann et al., 2019b).

Specifically, Hong et al. (2018) propose the integrated power density to assess the

marginal utility. It is defined as:

IPODγpt, rq �

» t
0
fγps |Xj � rqds, (5.3)

where r P t1, . . . , Rju is a category of the (discretized) variable Xj , γ ¡ 0 is a

tuning parameter and fpt|Xj � rq is the conditional density function of t, which

is estimated in practice. For γ � 1, equation (5.3) is the conditional cumulative

density function F pt|Xj � xq. The marginal utility of variable Xj is the maximum

absolute difference of IPOD over all pairs r1, r2 P t1, . . . , Rju :

max
r1,r2Ptr1,...,rmu

sup
t Pr0,τq

|IPODγpt, riq � IPODγpt, rjq|, (5.4)

where τ ¡ 0 is a fixed time point (e.g., the study duration). In the implementation

of the R package MVS, the tuning parameter γ is set to 1.

The remaining four methods are based on the distance correlation coefficient or related

measures. Thus, the concept of distance correlation is explained briefly based on Edelmann

et al. (2019b).

Distance correlation is a powerful measure of dependence. It allows to detect arbitrary

(including non-monotone) associations between two variables of arbitrary dimension and is

0 if and only if the variables are independent. The distance correlation coefficient between
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two random variables U and V is defined as

dCorpU, V q �
dCovpU, V qa

dCovpU,UqdCovpV, V q
, (5.5)

where dCovp�, �q denotes the distance covariance. It is defined as the non-negative square

root of

dCov2pU, V q �Ep|U � U 1||V � V 1|q � Ep|U � U 1|qEp|V � V 1|q

� 2Ep|U � U 1||V � V 2|q,
(5.6)

where U and V are again random variables and pU 1, V 1q and V 2 are independent copies

of pU, V q and V , respectively. For random vectors with U P Rp and V P Rq, the absolute

value | �| in (5.6) is replaced by the corresponding Euclidean norm.

In practice, dCorpU, V q is estimated from a sample of pU, V q. A consistent and unbiased

estimator for dCorpU, V q can be found in Edelmann et al. (2019b).

The following methods use distance correlation:

• RCDCS: Chen et al. (2018) have proposed the robust censored distance correla-

tion screening, which uses the squared distance correlation between the cumulative

distribution functions of Xj and T as marginal utility:

dCor2pFjpXjq, F pT qq. (5.7)

To estimate (5.7), FjpXjq is replaced by the corresponding empirical distribution

function and dCor by a suitable sample version. Additionally, F p�q is substituted

by its Kaplan-Meier estimate and the survival time T (which cannot be observed

in practice) by the follow-up time Y (Edelmann et al., 2019b; Chen et al., 2018).

Edelmann et al. (2019b) note that by using Y instead of T , RCDCS does not ap-

propriately correct for censoring.

• CRCDCS: In the same paper, Chen et al. (2018) have introduced a second method

which they refer to as composite robust censored distance correlation screening. The

idea behind this method is that if variable Xj has influence on the survival time

T , there must exist some τ such that the τ -th quantile of T (=Qτ pT q) depends on

Xj . This is equivalent to testing whether Wτ � τ � 1pT ¤ Qτ pT qq and Xj are

independent. The marginal utility of variable Xj measures the association between

Xj and multiple quantiles Qτ1pT q, . . . , QτH pT q simultaneously. It is defined as

dCor2pFjpXjq, pW̃τ1 , . . . , W̃τH q
Jqq, (5.8)
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where FjpXjq is the cumulative density function of Xj and pW̃τ1 , . . . , W̃τH q
J are

weight-adjusted versions of pWτ1 . . . ,WτH q
J that take censoring into account. See

Chen et al. (2018) for a sample version of (5.8).

• RESI: This method has been proposed by Edelmann et al. (2019b). It circumvents

the problem that the survival time T cannot be observed directly by using the

distance correlation between Xj and the martingale residuals of a null Cox model as

marginal utility. The martingale residual of the i-th individual is xMi � δi � ∆̂pYiq,

where ∆̂p�q is the Breslow estimate of the cumulative Baseline-hazard.

• BCORSIS: The ball correlation sure independence screening proposed by Pan et al.

(2018) is similar to RCDCS but instead of distance correlation, it uses the closely

related Ball correlation between T and Xj as marginal utility (Edelmann et al.,

2019b). More information about the Ball correlation can be found in Pan et al.

(2018).

For details on the methods, the reader is referred to the cited literature as well as to

Edelmann et al. (2019b), which give a comprehensive overview of ranking methods in the

survival context.

5.3. Results

In this section, the ranking results of the MCL data set are analysed with respect to their

data dredging potential. As in the previous applications (Chapter 3 and 4), this includes

rankings with respect to data dredging potential and the assessment of the overall data

dredging potential.

Rankings with respect to data dredging potential

The genes are ranked with respect to their data dredging potential by using a combination

of c � 100 and hprj ;αq with α P t0, 0.5, 0.8u. Table 5.2 shows the top-10 list of ranking

results with the highest data dredging potential for each α and m � 8. First of all, it

can be observed that the values of hprj ;αq are smaller than the values of hprj ;αq for the

top-10 ranking results of the ALL data set (Table 4.2 in Chapter 4). However, as stated

in Chapter 2, the maximum value of hprj ;αq depends on the number of variables and

methods. In the present case, with p � 2480 and m � 8, the highest possible value of

hprj ;αq is equal to m�1
m pp� 1q � 2169.125 for each α, whereas the highest possible value

of the ALL data set is 10820.57 (m � 7 and p � 12625).

As can be seen in Table 5.2, the variable with the highest data dredging potential for

α � 0 and α � 0.5 is gene 16370. The difference between its average rank and best rank

is 1201.38 (hprj ; 0q � 1201.38). For α � 0.8, the value of hprj ;αq is reduced to 31.18 since

the best rank of gene 16370 is equal to 96.
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Table 5.2.: Top-10 lists of ranking results with the highest data dredging potential with m � 8,
c � 100 and α P t0, 0.5, 0.8u. Empty cells denote that the ranking result is not among
the top-10. For each ranking result, rbestj is highlighted in red.

gene rj
hprj ;αq rank (w.r.t. hprj ;αq)

α � 0 α � 0.5 α � 0.8 α � 0 α � 0.5 α � 0.8

16370 (1304 1875 1615 96 1819 937 729 2004) 1201.38 122.61 31.18 1 1 3

29821 (1131 1198 1523 94 1517 1623 1300 1444) 1134.75 117.04 29.95 2 3 5

31503 (407 78 915 1527 414 704 640 430) 561.38 63.56 17.20 3 7

33558 (564 779 627 75 904 612 357 756) 509.25 58.80 16.10 4 8

30828 (389 100 549 873 346 863 735 404) 432.38 43.24 10.86 5

28805 (852 1183 555 30 292 307 269 172) 427.50 78.05 28.13 6 6 6

27810 (297 19 591 575 130 726 886 179) 406.38 93.23 38.54 7 4 2

28595 (321 52 582 930 317 590 355 333) 383.00 53.11 16.23 8 9

26207 (305 23 580 970 250 588 396 134) 382.75 79.81 31.16 9 5 4

32501 (749 939 429 93 449 312 353 388) 371.00 38.47 9.88 10

31037 (99 1 143 301 107 134 115 62) 119.25 119.25 119.25 2 1

17179 (369 846 487 44 268 238 250 207) 294.62 44.42 14.27 10

27116 (127 20 60 81 3 79 140 16) 62.75 36.23 26.06 7

15936 (21 2 37 167 16 49 41 2) 39.88 28.20 22.90 8

16020 (87 8 155 113 72 199 194 87) 106.38 37.61 20.15 9

15886 (78 116 72 131 45 83 79 5) 71.12 31.81 19.63 10

As in the previous applications, the values of rbestj in the top-10 list are on average higher

for α � 0 than for α ¡ 0. As an example, consider the top-10 list for α � 0.8: Half of the

ranking results in the top-10 list provide a rbestj smaller than 9. This tendency regarding

the impact of α is additionally illustrated in Figure 5.1, which displays all ranking results

with rbestj ¤ 100 and highlights the top-10 ranking results for each α P t0, 0.5, 0.8u.

When looking at the best ranks in Table 5.2, it is striking that these are almost exclusively

assigned by SIS and IPOD. In particular, note that the two genes that are identified as

most relevant by SIS (gene 31037 and 15936 ) are among the top-10 ranking results with

the highest data dredging potential for α � 0.8.

The top-10 ranking results with the highest data dredging potential for m � 4 yield

considerably smaller values of hprj ;αq. Corresponding results can be found in the appendix

(Table A.2 and Figure A.13).

Overall data dredging potential

This section aims to provide an overview about how unstable the ranking results of the

MCL data set are with respect to data dredging. As in the previous applications, the

overall data dredging potential is assessed in three steps.

Step 1. Consider the distribution of ranks and the number of variables with rbestj ¤ c

In the first step, the overall data dredging potential is assessed graphically by considering

the number of variables with rbestj ¤ c and the distribution of each ranking result.
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Figure 5.1.: Data dredging potential of ranking results with rbestj ¤ 100 for m � 8. In each panel,
the top-10 ranking results with the highest data dredging potential for α P t0, 0.5, 0.8u
are highlighted in red.

47



5. Real data application with survival outcome

0

50

100

150

200

1 25 50 75 100
c

nu
m

be
r 

of
 v

ar
ia

bl
es

 w
ith

 r
jbe

st
≤

c

number of methods 8 4

Figure 5.2.: Number of variables with rbestj ¤ c, c P r1, 100s and m P t4, 8u. If all methods yield

the same rank for each variable, the number of variables with rbestj ¤ c is equal to c
(dashed line).

As can be seen from Figure 5.2, for m � 8, the number of variables with rbestj ¤ c is

approximately twice the value of c. For m � 4, this number is considerably smaller.

Figure 5.3a illustrates the distribution of each ranking result with rbestj ¤ 100 for m � 8.

It reveals that many ranking results include ranks that are larger than 500. One ranking

result even include a rank that is larger than 2000. In fact, this is the ranking result

of gene 16370, which was identified as the ranking result with the highest data dredging

potential for α P t0, 0.5u in Table 5.2. Furthermore, Figure 5.3a shows that the variability

within the ranking result tends to increase with rbestj .

The tendency regarding the relation between the value of rbestj and the variability within

the ranking results can also be observed in Figure 5.3b, which shows the distribution of

each rj for m � 4. However, the variability within the ranking results for m � 4 is smaller

than for m � 8; only a few ranking results include ranks that are larger than 250.

Step 2. Quantify the overall data dredging potential using Hpcq

In the second step, the overall data dredging potential is quantified by Hpcq. As in the

previous applications, Hpcq is considered for c P r1, 100s. The results for m P t4, 8u are

presented in Figure 5.4. In principle, they confirm the findings from Step 1: The variability

within the ranking results increases with c and is considerably smaller for m � 4 than for

m � 8. However, in contrast to the figures in Step 1, Hpcq additionally allows to quantify

the mean variability in the ranking results with respect to rbestj . In Chapter 3, a value

of Hpcq � 25 was proposed as a threshold for differentiating between problematic and

unproblematic overall data dredging potential. Taking this rule of thumb as a basis, the
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Figure 5.3.: Boxplots showing the distribution of each rj with rbestj ¤ 100 for m P t4, 8u.

ranking results for m � 8 show an overall data dredging potential that can be considered

as problematic. For m � 4 and c ¤ 75, the overall data dredging potential does not seem

to be particularly problematic.

Step 3. Identify the method that yields the highest increase in data dredging potential

In the final step, the ranking methods are analysed with respect to their contribution

to the overall data dredging potential. As in the previous applications, this is done by

calculating H�kpcq for each k � 1, . . . ,m, where H�kpcq is the value of Hpcq that arises if

method k is not considered for the ranking analyses.

The results for m � 8 and c P r1, 100s are displayed in Figure 5.5a. It shows that SIS

yields the smallest value of H�kpcq for almost all values of c. Consequently, the overall
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Figure 5.4.: Overall data dredging potential quantified by Hpcq for m P t4, 8u.

data dredging potential increases the most if SIS is added to the set of ranking methods.

The reason for this may be that SIS does not properly correct for censoring. However,

this also applies to RCDCS, which does not appear to increase the overall data dredging

potential a lot if added to the set of ranking methods. Apart from SIS, the only method

that increases the overall data dredging potential noticeably is IPOD. Note that both SIS

and IPOD were already shown to yield much smaller ranks than the other methods with

regard to the top-10 ranking results with the highest data dredging potential (Table 5.2).

Although it is uncertain why SIS and IPOD differ from the other ranking methods, they

should be used with caution. However, as stated in Chapter 2, this does not necessarily

imply that SIS and COX yield wrong ranking results.

Figure 5.5b presents the results for m � 4. It reveals that the overall data dredging

potential decreases the most if COX is omitted from the set of ranking methods. This

indicates that CINDEX, CRCDCS and RESI yield very similar ranking results. However,

as shown in Figure 5.4, even if COX is added to the set of ranking methods (i.e. for m � 4),

the overall data dredging potential is very low, which indicates that all four methods yield

similar ranking results.
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Figure 5.5.: Overall data dredging potential that arises when the variable rankings are performed
without using method k � 1, . . . ,m, m P t4, 8u. The method with the smallest value of
H�kpcq is the method that yields the highest increase in overall data dredging potential
when added to the set of ranking methods.
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6. Conclusion

The aim of this thesis was to provide a framework that allows to quantify the data dredg-

ing potential in ranking results. As a first step, a measure hprjq was introduced that

quantifies the variability within the ranking result of variable Xj with respect to its best

rank rbestj . This measure can be interpreted as the difference between the average rank

and the best rank of variable Xj . A drawback of hprjq is that it does not take the actual

value of rbestj into account. Thus, two modifications of hprjq were proposed. The first

one is hprj ;αq, which weights hprjq according to rbestj and a parameter α. The second

approach consists of choosing a cutoff value c that assigns a data dredging potential of

zero to all ranking results with rbestj ¡ c (c.f. Section 2.2). Subsequently, it was shown

that hprjq and its modifications do not only allow to quantify the data dredging potential

of a single ranking result but also to rank the variables according to their data dredging

potential and to quantify the overall data dredging potential. Ranking the variables with

respect to their data dredging potential might be particularly relevant if the researcher

wants to compare the ranking result of a specific variable Xj� (e.g. his/her “favourite”

variable) with the ranking results of the other variables. This enables the researcher to

assess the rank of Xj� with respect to its data dredging potential and to check if Xj� is

among the variables with the highest data dredging potential. For this purpose, it was

recommended to use a combination of hprj ;αq and a cutoff value c. Even if there is no

specific variable that the researcher is interested in, hprjq can be used to quantify the

overall data dredging potential of the ranking results. The idea behind this procedure is

to provide an overview about how unstable the ranking results are with respect to data

dredging. In order to quantify the overall data dredging potential, an aggregated version

of hprjq, Hpcq, was proposed. It can be interpreted as the mean difference between the

average and the best rank over all variables with rbestj ¤ c. The use of Hpc;αq, which is

an aggregated version of hprj ;αq, was not recommended to use in practice because of its

less intuitive interpretation (c.f. Section 2.3).

The proposed framework was illustrated in the context of gene rankings using simulated

(Chapter 3) and real data sets (Chapter 4 and 5). Regarding the outcome of interest, two

scenarios were considered: Data with binary outcome (Chapter 3 and 4) and data with

survival outcome (Chapter 5). Correspondingly, the data sets with binary outcome were

ranked by other methods than the data set with survival outcome.

As proposed in Chapter 2, the variables in each data set were ranked with respect to their

data dredging potential. For this purpose, the data dredging potential of each ranking
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result was quantified by a combination of α P t0, 0.5, 0.8u and c � 100. On average, the

best ranks of the top-10 ranking results with the highest data dredging potential were

higher for α � 0 than for α ¡ 0. This result was expected since for α ¡ 0, smaller ranks

are considered as more relevant for data dredging, whereas for α � 0, the actual value of

rbestj is not taken into account.

The overall data dredging potential in each data set was assessed in three steps. First,

the distribution of each ranking result and the number of variables with rbestj ¤ c were

considered. In the second step, the overall data dredging potential was assessed by Hpcq,

which quantifies the mean variability in ranking results with respect to rbestj . In general,

the results of step 2 were consistent with the results of step 1: In the simulation, the overall

data dredging potential increased with decreasing number of observations and increasing

number of variables. The correlation structure did not appear to affect the overall data

dredging potential. Regarding the real data applications, the overall data dredging poten-

tial was considerably smaller if the number of methods was reduced. As a threshold for

unproblematic data dredging potential, a value of Hpcq � 25 was proposed. Taking this as

a basis, almost all data sets show a problematic data dredging potential. As a third step,

the methods were analysed with respect to their contribution to the overall data dredging

potential. In the two-group setting (simulated and real data), the fold-change method

was shown to yield the highest increase in data dredging potential when added to the set

of ranking methods. For the survival outcome, the methods SIS and IPOD increased the

overall data dredging potential considerably.

To summarize, the framework proposed in this thesis allows the researcher to get a concrete

idea of how unstable ranking results are with respect to data dredging. The importance

of acknowledging data dredging potential becomes drastically apparent regarding the high

variability in ranking results with respect to rbestj that was observed in the data appli-

cations. Quantifying the data dredging potential in ranking results could help to raise

awareness of data dredging, which is a practice that can lead to a substantial optimistic

bias. In contrast to existing stability measures for ranking lists, the provided framework

allows to quantify the variability in ranking results with respect to rbestj (i.e. the result

that is relevant for data dredging). The proposed framework is flexible in the sense that

by choosing the parameters α and c adequately, hprjq can be individually adjusted to the

respective research question. Specifically, this means that the framework could also be

applied to other research fields than the selection of biomarkers. Moreover, the framework

can not only be used to compare the results of different ranking criteria (as shown in the

applications) but also to compare ranking results that result of all possible choices con-

cerning the analysis strategy. Another advantage of the framework is that it enables the

researcher to compare the overall data dredging potential resulting from different data sets

or different numbers of ranking methods. For example, this allows to study the impact of
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the number of variables, observations and methods on the overall data dredging potential.

As already stated in the thesis, the flexibility of the framework regarding the parameters

α and c can also be seen as a drawback. Although some general recommendations were

given, it might still be difficult to choose an appropriate value for α and c since there is no

objective criterion for this choice. Another drawback of the framework is that it is difficult

to define a generally valid threshold that allows to differentiate between problematic and

unproblematic (overall) data dredging potential. Thus, the aims of future research could

be to establish more detailed guidelines regarding the choice of parameter α and c and the

definition of problematic dredging potential.

Moreover, future research could investigate the association between data dredging poten-

tial and data dredging bias. As stated in the thesis, this would require simulated data

since the true rank of each variable is in general not known. Furthermore, defining the

data dredging bias would require a sound theoretical basis. For instance, it might not

be appropriate to simply define the data dredging bias as the difference or ratio of true

rank and best rank. Moreover, it could be reasonable to define the data dredging bias

depending on the application. For example, in the case of differential expression analysis,

it could be useful to differentiate between differentially expressed and non-differentially

expressed genes when quantifying the data dredging bias.

Overall, the framework introduced in this thesis can be regarded as a first step towards

acknowledging the variability in ranking results with respect to data dredging. Although

more research is needed on this area, the framework can hopefully contribute to raising

awareness of data dredging in ranking analyses.
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Figure A.1.: Number of variables with rbestj ¤ c, c P r1, 100s, for simulated data sets with ρ P
t0.4, 0.8u. If all methods yield the same rank for each gene, the number of variables
rbestj ¤ c is equal to c (dotted line).
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Figure A.2.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0, p � 5000 and n P t20, 40, 60u.
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Figure A.3.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.4, p � 2000 and n P t20, 40, 60u.
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Figure A.4.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.4, p � 5000 and n P t20, 40, 60u.
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Figure A.5.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.4, p � 10000 and n P t20, 40, 60u.
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Figure A.6.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.8, p � 2000 and n P t20, 40, 60u.
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Figure A.7.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.8, p � 5000 and n P t20, 40, 60u.
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Figure A.8.: Boxplots showing the distribution of each rj with rbestj ¤ 100 (dashed line) for three
simulated datasets with ρ � 0.8, p � 10000 and n P t20, 40, 60u.
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Figure A.9.: Overall data dredging potential that arises when the variables rankings are performed
without usig method k � 1, . . . , 7 is not considered. The method with the smallest
value of H�kpcq is the method that yields the highest increase in overall data dredging
potential when it is added to the set of the other ranking methods. The figure shows
nine simulated data sets with ρ � 0, p � t2000, 5000, 10000u and n P t20, 40, 60u.
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Figure A.10.: Overall data dredging potential that arises when the variables rankings are performed
without usig method k � 1, . . . , 7 is not considered. The method with the smallest
value of H�kpcq is the method that yields the highest increase in overall data dredging
potential when it is added to the set of the other ranking methods. The figure shows
three simulated data sets with ρ � 0.4, p P t2000, 5000, 10000u and n P t20, 40, 60u.
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Figure A.11.: Overall data dredging potential that arises when the variables rankings are performed
without usig method k � 1, . . . , 7 is not considered. The method with the smallest
value of H�kpcq is the method that yields the highest increase in overall data dredging
potential when it is added to the set of the other ranking methods. The figure shows
nine simulated data sets with ρ � 0.8, p P t2000, 5000, 10000u and n P t20, 40, 60u.
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Table A.1.: Top-10 lists of ranking results with the highest data dredging potential resulting from
the ALL data set with c � 100, α P t0, 0.5, 0.8u and m � 4. Empty cells denote that
the ranking result is not among the top-10. For each ranking result, rbestj is highlighted
in red.

gene rj
hprj ;αq rank (w.r.t. hprj ;αq)

α � 0 α � 0.5 α � 0.8 α � 0 α � 0.5 α � 0.8

35192 at (2244 1984 2214 100) 1535.50 153.55 38.57 1 3

38004 at (2020 1630 1982 90) 1340.50 141.30 36.63 2 5

1914 at (1990 1175 1932 61) 1228.50 157.29 45.83 3 1 8

1299 at (1706 1313 1669 94) 1101.50 113.61 29.07 4

2004 at (1589 1065 1541 66) 999.25 123.00 35.00 5 8

1974 s at (1426 1167 1401 48) 962.50 138.92 43.49 6 6

1565 s at (1459 965 1421 83) 899.00 98.68 26.21 7

712 s at (1098 1311 1109 76) 822.50 94.35 25.73 8

40434 at (888 1147 891 98) 658.00 66.47 16.80 9

626 s at (930 741 910 34) 619.75 106.29 36.90 10

1475 s at (699 493 681 9) 461.50 153.83 79.58 2 5

34098 f at (422 220 409 3) 260.50 150.40 108.17 4 2

1472 g at (484 253 461 5) 295.75 132.26 81.61 7 4

38124 at (194 120 180 1) 122.75 122.75 122.75 9 1

38279 at (627 471 611 13) 417.50 115.79 53.64 10 7

37185 at (6 2 5 564) 142.25 100.59 81.70 3

1473 s at (489 242 465 8) 293.00 103.59 55.51 6

577 at (213 144 206 4) 137.75 68.88 45.44 9

953 g at (125 76 116 2) 77.75 54.98 44.66 10
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Figure A.12.: Data dredging potential of ranking results with rbestj ¤ 100 for m � 4. In each panel,
the top-10 ranking results with the highest data dredging potential for α P t0, 0.5, 0.8u
are highlighted in red.
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Table A.2.: Top-10 lists of ranking results with the highest data dredging potential resulting from
the MCL data set with c � 100, α P t0, 0.5, 0.8u and m � 4. Empty cells denote that
the ranking result is not among the top-10. For each ranking result, rbestj is highlighted
in red.

gene rj
hprj ;αq rank (w.r.t. hprj ;αq)

α � 0 α � 0.5 α � 0.8 α � 0 α � 0.5 α � 0.8

16311 (918 57 51 77) 224.75 31.47 9.67 1 1 1

17545 (611 84 85 143) 146.75 16.01 4.24 2 2 5

24735 (512 117 89 75) 123.25 14.23 3.90 3 3 6

24758 (467 92 76 141) 118.00 13.54 3.69 4 4 7

24897 (325 90 111 229) 98.75 10.41 2.70 5 8

25949 (77 200 242 156) 91.75 10.46 2.84 6 7

27682 (94 214 217 214) 90.75 9.36 2.40 7

33531 (69 256 170 133) 88.00 10.59 2.97 8 6

27395 (73 224 198 104) 76.75 8.98 2.48 9

17795 (45 152 178 111) 76.50 11.40 3.64 10 5 8

17069 (41 129 154 96) 64.00 10.00 3.28 9 10

28454 (54 131 193 118) 70.00 9.53 2.88 10

28990 (24 1 1 3) 6.25 6.25 6.25 2

32187 (34 3 4 20) 12.25 7.07 5.09 3

17123 (70 22 13 7) 21.00 7.94 4.43 4

30282 (6 23 26 26) 14.25 5.82 3.40 9
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Figure A.13.: Data dredging potential of ranking results with rbestj ¤ 100 for m � 4. In each panel,
the top-10 ranking results with the highest data dredging potential for α P t0, 0.5, 0.8u
are highlighted in red.
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B. Electronic appendix

The electronic appendix comprises an electronic version of this thesis (MA Niessl.pdf)

as well as two folders. The first folder contains the additional figures and tables of the

simulation that are not included in Appendix A (Additional figures and tables). The

second folder (R Code) consists of four subfolders that contain the code that produces the

results shown in each chapter (01 Framework, 02 Simulation, 03 Application Binary

Outcome, 04 Application Survival Outcome).
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