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A Hyper-Parameter-Tuned, Confidence-Weighted Collaborative Filtering Model for Implicit Feedback

Abstract

Addressing the complexity of choice in an increasingly labyrinthine consumption
environment, it has become common for providers of products and services to offer
recommendations to their users as decision support. These recommendations are
obtained through recommender systems, the most widely applied of which are col-
laborative filtering models. Collaborative filtering exploits users’ feedback on items.
However, in many practical settings, only implicit feedback in the form of binary
information about the presence or absence of an action - for instance, a purchase or a
click - is available. The inherent difficulty with implicit feedback is that lack of pref-
erence cannot be concluded from the absence of an action. The unobserved action
might indeed reflect disapproval, or be attributed to the fact that the user is not even
aware of the item in question. Feedback thus exists only in positive or missing form.
Latent factor models have been known to handle this type of data input reasonably
well, compressing the high-dimensional information into a low-dimensional factor
space in which both users and items are represented. In 2008, Yifan Hu, Yehuda
Koren and Chris Volinsky proposed a collaborative filtering model which copes with
the ambiguity of implicit feedback through assigning confidence-based weights to ob-
servations. This Thesis implements the postulated model for retail company data,
putting special emphasis on hyper-parameter optimization carried out via grid and
random search. While both methods yield satisfying results, random search does so
more efficiently and is thus found to be preferable. Furthermore, the results indicate
that quality aspects beyond prediction accuracy should be explicitly accounted for.
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1 Introduction

The world of consumption has evolved into a complex grid of connections between
individuals and points of interest which increasingly form irrespective of common
geographical occurrence. In order to keep the concepts described in the following
applicable to various forms of consumption (which might be purchasing a tangible
product or listening to a song online), the individuals consuming will be referred to
as users while objects of consumption will be denoted as items. Users enjoy a nearly
infinite choice of items and providers, spurred most notably through the rise of the
internet. While in the past firms may have successfully distinguished themselves
from competitors by establishing brand awareness or by merely occupying a certain
area as monopolists, phenomena such as search engines and online shopping have
changed the field of competition fundamentally. This tilt of the market towards a
vast supply side has prompted providers to apply measures that render their items
more relevant to their clientele (Häubl and Trifts, 2000). Users will ultimately regard
an item as relevant to them, and thus consume it, if it fulfills their needs. For many
items though, consumption is not necessarily preceded by feeling a distinctive need.
Rather, a hitherto latent or even non-existing desire surfaces through being affected
by marketing activities. Suppliers make use of this possibility of creating needs by
offering recommendations to the user. Such recommendations come in many ways,
from movie tips on streaming websites to proposals for additional purchases at an
online shop checkout (Schafer et al., 1999).

Precondition to making meaningful recommendations, in a sense that they result
in consumption, is a profound knowledge of the user’s interests. To this end sev-
eral forms of recommender systems have been developed (Melville and Sindhwani,
2017). One approach that has gained wide popularity is so-called collaborative fil-
tering, which exploits users’ feedback towards items on offer. In its original form,
collaborative filtering was designed to process feedback in the form of ratings on a
fixed scale that clearly indicate whether the user does or does not approve of the
respective item (see for example Su and Koshgoftaar, 2009). However, such rating
data is only available to limited extent as many suppliers do not operate systems to
gather explicit ratings on their items. Instead, recent work has focused on binary
feedback data derived from the information whether or not a user has performed
a certain action, typically a purchase, on an item (implicit feedback). Such data
exists in abundance but lacks a central feature of rating data: the presence of neg-
ative feedback, that is, when the action under observation has not been performed
this does not necessarily reflect disapproval of the item. The user may simply not
be aware of the item or be hindered from consumption in some other way (Pan
et al., 2008). In their oft-cited work Yifan Hu, Yehuda Koren and Chris Volinsky
addressed this problem by assigning different levels of confidence to observed and
unobserved actions (Hu et al., 2008). Their model will henceforth be referred to
as the Hu-Koren-Volinsky model. While several replications of their experimental
studies have corroborated the success of this approach, the quality of recommen-
dations greatly depends on the value of model hyper-parameters. This Thesis will
strive to implement the algorithm proposed by Hu et al. (2008) for a set of retail
data and focus on optimizing the outcome by tuning the hyper-parameters to the
best possible fit. All analytical work is carried out using the software R (R Core
Team, 2019).
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The Thesis starts by explaining the functionality of collaborative-filtering-based
recommender systems with special regard to implicit feedback and proceeds to de-
scribing latent factor models as the specific model class of the Hu-Koren-Volinsky
model. Section 4 explains the process of hyper-parameter tuning, contrasting two
selected approaches that will later serve as tuning methods. In Section 3, the Hu-
Koren-Volinsky model is presented in detail. The model is then fitted on real data in
Section 5, its hyper-parameters optimized with the two different methods outlined
in Section 4. Eventually, the concluding chapter reflects on the results obtained
throughout the Thesis and gives an outlook on aspects which remain open.

2 Collaborative-Filtering-Based Recommender

Systems

2.1 Recommender Systems

In research on the topic various definitions of the term recommender system, each
with different emphasis, have been developed. This Thesis will adopt the key ele-
ments of the proposal by Bobadilla et al. (2013), which is considered to incorporate
all important aspects: recommender systems gather information on user preferences
with respect to a set of items (observed interactions) in order to predict preferences
of these users for previously not consumed items (unobserved interactions), thereby
enabling the operator of the system to offer recommendations to the user (Bobadilla
et al., 2013). Preferences can basically be estimated in two different ways. Some
models explicitly predict ratings of users on all items, although the term rating
should be interpreted simply as a quantified expression of preference which does not
necessarily involve assigning scores on a fixed scale. Section 2.2.2 provides more
detail on the types of ratings recommender systems utilize. Other models content
themselves with predicting a ranking list of top-N relevant items. As the latter
case applies to the Hu-Koren-Volinsky model examined in this Thesis, the task of
prediction will be regarded equivalent to producing a ranking of items rather than
explicit estimation of ratings. Consequently, a recommendation shall be constituted
by suggesting to the user an ordered list of N items the user is most likely to rate
highly (Aggarwal, 2016, Chapter 1.2). It is important to note that recommenda-
tions in this context are understood to be personalized, meaning each user receives
a different suggestion of items according to their individual profile. Obviously, the
generation of such personalized recommendations requires more sophisticated al-
gorithms than displaying the same set of items, for instance determined by item
popularity, to all users (Ricci et al., 2011, Chapter 1.3).

The reason that recommender systems have come into existence is the complex
choice of potentially suitable items users nowadays face in consumption. This is
true especially in the online environment where the offer is not restrained by geo-
graphical proximity between supplier and user. Häubl and Trifts (2000) argue that
users in such settings undergo a two-stage decision process in selecting items to be
consumed. The first step of decision-making typically comprises researching large
amounts of available items and narrowing down the choice to a small subset. This
pre-selection enables the user to perform more in-depth comparison among the re-
maining items and eventually decide on which items to consume in the second step.
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To prevent users from aborting the decision process because they deem the choice
overwhelmingly complex, suppliers seek to assist the user in step one by offering
a relatively small, pre-filtered set of recommendations which can then be further
scrutinized (Häubl and Trifts, 2000). This way, the natural social process of col-
lecting advice from trusted sources to facilitate decision-making is supported by an
automated system (Melville and Sindhwani, 2017).

Naturally, the central objective of a recommender system must be to provide
useful recommendations that result in consumption and thus help generate revenue.
This can be broken down into more concrete intermediate goals. Ricci et al. (2011,
Chapter 1.2) lay out five objectives recommender systems aim at fulfilling:

(a) Increase conversion. This goal refers to users accepting the recommendation
and actually consuming an item, which is arguably the most important feature
of a recommender system. In many applications the intention is provoking
the consumer to purchase an item but the stimulation could also be directed
towards reading an article or watching a video.

(b) Increase item diversity. Personalized recommendations offer a chance for
suppliers to promote more diverse items and thus present the whole palette
instead of only the most popular items. The latter is often the case in non-
personalized marketing activities hoping to appeal to a broad range of users.

(c) Increase user satisfaction. Recommender systems strive to improve user
experience by assisting the user journey through relevant recommendations.
Ideally, the user will find consumption easy and enjoyable.

(d) Increase loyalty. Closely linked to user satisfaction, suppliers are interested
in enhancing user loyalty. The more interactions between user and recom-
mender system can be used to train the recommendation algorithm, the more
accurate and relevant the suggestions become.

(e) Increase knowledge on users. In their function of collecting information
on user preferences recommender systems serve to build a sound knowledge
base on users. Apart from recommendations this can be utilized in further
marketing activities.

While all systems share these common objectives, they may differ greatly in
design. A brief overview on types of recommender systems shall help to place the
later described model into context. Differences predominantly concern data sources
used and algorithms implemented. Recommender systems are categorized according
to proposals by Sivapalan et al. (2014) and Ricci et al. (2011, Chapter 1.4) which, in
combination, are considered to be exhaustive. As this Thesis focuses on collaborative
filtering, and latent factor models in particular, though, other approaches are not
presented in detail.

(a) Association rules. Such rules rely on the common occurrence of items in
bundles of consumption that are referred to as transactions or baskets. If
subsets A and B of an entire item set S are frequently consumed within one
transaction, it can be concluded that a user who has consumed A will be in-
terested in consuming B with a certain probability (Sivapalan et al., 2014).
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This sequence is captured by an association rule A ⇒ B. The association
is considered to have support s if s% of transactions contain A ∪ B (Che-
ung et al., 1996). Rules with support exceeding some threshold can then be
used for making recommendations. However, association rules require a lot of
computation time and are thus not well suited to the large data bases most
applications feature. As they do not draw on user-specific information, they
may still be helpful for recommendations to new users on whom no further
data is available (Sivapalan et al., 2014).

(b) Content-based recommender systems. Content-based models filter items
similar to those the user has consumed in the past. Similarity is based on item
features such as the genre of a movie or the technical qualities of a product
(Ricci et al., 2011, Chapter 1.4). The process of finding similar items can
be carried out by different algorithms like clustering methods or k-nearest
neighbour classification. Major drawbacks of content-based systems include
the difficulty of recommending items to new users and the need for clearly
structured data with well-defined content features. Also, relying on feature
similarity fails to account for the variations in item popularity, so there is no
differentiation between high- and low-selling items so long as they share the
same features (Sivapalan et al., 2014).

(c) Knowledge-based recommender systems. These systems presume
domain-specific knowledge about user requirements. Recommendations are de-
signed to maximize utility to users by suggesting solutions to their needs (Ricci
et al., 2011, Chapter 1.4). Rather than exploiting vast databases, knowledge-
based algorithms feed from information users insert about their requirements
through search filters or similar funnelling mechanisms. Recommendations
mainly rely on item similarities and retrieval strategies which prioritize simi-
larities with respect to the overall utility to the user. Consequently, in order
to produce useful recommendations, a high amount of costly knowledge en-
gineering is necessary. Once sufficient knowledge has been amassed, though,
knowledge-based systems can handle new as well as long-time users and dy-
namically adapt to changing user preferences (Burke, 2000).

(d) Community-based recommender systems. Community-based or social
recommender systems make explicit use of the above-mentioned social pro-
cess of relying on advice from trusted sources in decision-making. To this end,
information about the social relations between users is taken into account; rec-
ommendations are based on how individuals from the user’s personal network
have rated items. Social media are a natural application for community-based
systems (Ricci et al., 2011, Chapter 1.4). For new users without any known
consumption history, inserting information about the user’s social connections
may improve recommendations, although this advantage becomes irrelevant
when substantial interactions with other individuals are also absent. Another
open issue with community-based systems is the consideration of distrust,
which, if not incorporated into the model, may lead to recommendations back-
firing (Victor et al., 2011).

(e) Demographics-based recommender systems. This type of recommender
system utilizes basic demographic information on users to produce recommen-
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dations, including gender and native language. Implicitly, users are segmented
into demographically similar groups which are expected to share common pref-
erences. While the sophistication of such an approach is clearly limited, in
some contexts it may be a low-cost and yet effective solution that does not
require information on past consumption behavior nor high computational ef-
forts (Ricci et al., 2011, Chapter 1.4).

(f) Collaborative filtering. Lastly, there is a number of methods referred to
as collaborative filtering. These use ratings from active users on the item
set as input and have been known to achieve satisfying results, which is why
they have gained wide popularity (Sivapalan et al., 2014). As the Hu-Koren-
Volinsky Model is itself part of the collaborative-filtering-method family, the
following section will present a detailed explanation on the topic.

The variety of approaches described above underlines the applicability of recom-
mender systems to a broad range of contexts that mainly differ in the data base
used. Besides, hybrid systems have been developed in an attempt to mitigate the
drawbacks of single approaches (Ricci et al., 2011, Chapter 1.4). Section 2 will now
elaborate on collaborative filtering models with special regard to implicit feedback
data.

2.2 Collaborative Filtering

2.2.1 Principles of Collaborative Filtering

The term collaborative filtering was coined by the developers of the first actual rec-
ommender system called Tapestry (Hu et al., 2008). This algorithm was designed in
the early 1990s to help users filter relevant content out of electronic mail which came
at ever larger volume. While Tapestry fed on user annotations and thus contained
elements of a content-based system, its developers also sought to pool feedback
from various users in order to facilitate filtering, which they called a collaborative
approach (Goldberg et al., 1992). Meanwhile, collaborative filtering approaches
have become ubiquitous in recommendation tasks. Implementations brought for-
ward after Tapestry increasingly automated the recommendation process. Further
pioneering systems include GroupLens (news articles), Ringo (music), and BellCore
Video Recommender (movies). A surge in popularity was arguably sparked by re-
tail company Amazon’s adoption of collaborative filtering as its primary generator of
user recommendations. The competition set up by movie streaming provider Netflix
in 2006, where a prize was awarded for substantial improvement of the firm’s then
recommendation algorithm, eventually rendered collaborative filtering a subject of
active research and development (Ekstrand et al., 2010).

In a generalized setting, collaborative filtering exploits historical information on
observed user-item interactions to predict hitherto unobserved interactions. The
basic collaborative filtering mechanism stems from the idea of high correlations be-
tween observed ratings across users and items which allow for estimating values in
the unobserved cases. As the following section on model types will show, algorithms
either focus on inter-item correlations, inter-user correlations, or both simultane-
ously (Aggarwal, 2016, Chapter 1.3). The classic collaborative filtering set-up1 thus

1Throughout this Thesis, notation for all elements of collaborative filtering shall be kept strin-
gent. Therefore, symbols may at times deviate from those used in the cited sources.
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consists of a set of users, U = {user 1, user 2, ..., user m} of size m, and a set of
items, I = {item 1, item 2, ..., item n} of size n. Typically m is considerably greater
than n and both figures are large. For each user u there is a subset of items, Iu ⊆ I,
that the user has provided ratings for. Note that Iu may be a null-set if the user has
not yet consumed any of the items of interest. The interactions between users and
items are represented in a user-item ratings matrix R ∈ Rm×n, each of whose ele-
ments rui represents the rating rui of user u on item i (Sarwar et al., 2001). In relying
solely on these user-item interactions, collaborative filtering systems are domain-free
and do not require any further information such as item properties or user profiles.
Rather, they capture underlying and often elusive aspects of the data by exploring
correlation structures to be found across the ratings matrix, since data of users with
similar tastes or items with similar qualities are assumed to be strongly correlated
(Hu et al., 2008). Before describing how this task can be approached, however,
it must be clarified which types of data are encountered in collaborative filtering
settings and how these affect the process of filtering items to recommend.

2.2.2 Implicit Feedback

As has just been outlined, collaborative filtering systems draw on user-item inter-
actions displayed as ratings. These ratings, or, more generally, feedback of users on
items, occurs in either explicit or implicit form (see for example Sarwar et al., 2001).

Explicit Feedback

Explicit feedback is often provided through ratings in the narrower sense. Users as-
sign values to items out of some ordinal set which is typically discretized and offers
the possibility to express both like and dislike. Widely used examples of such rating
scales include sets like {1, 2, ..., 5} and {“poor”, “mediocre”, “excellent”} (Aggar-
wal, 2016, Chapter 1.3.1.1). Obviously, explicit ratings convey a high amount of
information on user-item interactions and are thus valuable input to collaborative
filtering. Alas, obtaining explicit feedback proves to be difficult in practice as users
are often reluctant to state their opinion, if at all there is a platform for ratings.
This might, as Jawaheer et al. (2010) argue, be due to the cognitive effort users
frequently are not willing to make. Therefore recent research has focused on an
alternative type of feedback that comes in greater abundance.

Implicit Feedback

Implicit feedback can be gathered from various environments where users do not even
intend to provide feedback of any kind: information is extracted from user behavior.
User activities reflecting their attitude towards items include actual consumption,
clicks on item websites and similar expressions of interest. Implicit feedback is in-
herently positive as it either takes on values of the frequency of the observed activity
or none at all. It is this imbalance, precisely, that renders filtering implicit feedback
so difficult. Whereas low values in explicit rating environments can be safely as-
sumed to indicate disapproval, missing values in implicit feedback do by no means
allow for such inference. Some unobserved values may indeed reflect disapproval,
but the absence of interaction can be attributed to various other reasons as well.
For online applications in particular, which tend to host immense amounts of items,
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users must be expected to be simply unaware of a substantial share of items. Con-
sequently, implicit feedback is noisier and less expressive than explicit feedback. Its
sheer abundance and still considerable informativeness have nonetheless sustained
its popularity (Jawaheer et al., 2010).

Since implicit feedback offers by far greater applicability, it is the focus of this
Thesis. In order to illustrate more clearly the nature of the data used, an exemplary
ratings matrix with implicit feedback is shown in Figure 1. Positive entries indicate
how often user u has interacted with item i, while missing values (∗) occur where
no such interaction has yet taken place. For instance, user 1 has had one interac-
tion with item 2, which in a classic shopping environment could mean user 1 has
purchased item 2 once.

R = ( rui) =



item 1 item 2 item 3 · · · item n

user 1 ∗ 1 ∗ · · · ...

user 2 ∗ ∗ 2 · · · ...

user 3 1 ∗ 1 · · · ...
...

...
...

...
. . .

...
user m · · · · · · · · · · · · ∗


Figure 1: Exemplary ratings matrix R ∈ Rm×n for m users and n items. If user u has interacted
with item i, rui corresponds to the number of interactions, else to ∗ (Source: own illustration).

2.2.3 Model-Based Collaborative Filtering

As has been described above, collaborative filtering techniques are based on the
assumption that user-item ratings are correlated across users and items. Within
collaborative filtering there are various model sub-types which differ rather strongly
in their approach to exploiting this correlation structure. Aggarwal (2016, Chapters
2 and 3) provides a useful categorization of models as illustrated in Figure 2. For
extensive elaboration on each of the different collaborative filtering techniques see
therefore Aggarwal (2016). Here, the collaborative filtering model family shall only
be briefly introduced in order to put the Hu-Koren-Volinsky model, which is a latent
factor model, into context. Methods can be broadly classified into neighborhood-based
and model-based approaches.
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Collaborative Filtering Techniques

Neighborhood-based CF

User-based CF

Item-based CF

Model-based CF

Decision trees

Rule-based CF

Naive Bayes CF

Arbitrary classification methods

Latent factor models

Figure 2: Categorization of collaborative filtering (CF) techniques. Latent factor models on which
this Thesis focuses are highlighted in gray. (Source: own illustration after Aggarwal (2016, Chap-
ters 2 and 3)).

Neighborhood-Based Collaborative Filtering

Neighborhood-based collaborative filtering is centered around measuring similarity.
The underlying idea is that high similarity between the observed entries of two vec-
tors can be assumed to hold true also for the remaining, possibly unobserved entries.
Consequently, for elements where one vector has missing values predictions can be
based on the corresponding non-missing values of a similar vector (Aggarwal, 2016,
Chapter 2.1). Similarity can be quantified in various ways; frequently used mea-
sures in the collaborative filtering context include correlation coefficients of vectors
and the cosine of the angle in between. The concept of obtaining information from
similar vectors can be applied to both the user and the item dimension of the rat-
ings matrix R, leading to user-based and item-based forms of neighborhood-based
filtering. In both cases, which share a complementary relationship, deriving recom-
mendations is the same basic two-step process. The first step consists of computing
pairwise similarities between vectors. In the second step, average ratings across
these vectors are utilized for prediction. In essence, user-based methods take the
average of ratings from those users who are similar to the target user (neighbor-
hood); item-based methods form predictions as the target user’s average rating on
those items that are deemed similar to the item in question (Su and Koshgoftaar,
2009). Neighborhood-based collaborative filtering algorithms are intuitive and easy
to implement. However, prediction quality has been shown to deteriorate in environ-
ments with sparse data and scalability is limited. In most settings that feature large
amounts of data with only few observed interactions, neighborhood-based systems
are thus not well applicable (Su and Koshgoftaar, 2009).

Model-Based Collaborative Filtering

Model-based collaborative filtering serves to mitigate these shortcomings to some
extent. Similar to neighborhood-based algorithms, these approaches utilize the pre-
sumably high correlations across users and items of the ratings matrix. However,
rather than relying on pairwise similarities between users or between items, they

8



A Hyper-Parameter-Tuned, Confidence-Weighted Collaborative Filtering Model for Implicit Feedback

attempt at detecting more complex patterns that affect both dimensions simultane-
ously (Su and Koshgoftaar, 2009). The underlying belief is that with such a pattern,
the often extremely high-dimensional space user-item interactions create can be de-
composed into a much lower-dimensional representation of users and items that still
holds a sufficient share of information (Ekstrand et al., 2010). This task is not unique
to collaborative filtering problems, which is why some of the methods within the
model-based branch are familiar from other contexts. In particular, decision trees,
Bayesian approaches and arbitrary classification methods usually solve classification
problems. Since classification is essentially a specific case of a matrix completion
problem, collaborative filtering with implicit feedback data can also be assessed as a
one-class classification problem, so the use of such methods seems natural. In gen-
eral, model-based algorithms are often preferable to other techniques as their core
quality of dimensionality reduction allows for a decrease in computation complexity.
A user-based system (which is usually more complex than the item-based alternative
since applications tend to have more users than items) requires computation time
of O(m2), m being the number of users2 (Aggarwal, 2016, Chapter 3.1).

The following section will now take a closer look on latent factor models and lay
out how this type of model-based technique solves the matrix completion problem
of collaborative filtering. Again, within latent factor models, there are sub-types
which use slightly different mathematical methods. Section 3 will explain in full
detail how the Hu-Koren-Volinsky model derives recommendations step by step.

2.3 Collaborative Filtering with Latent Factor Models

2.3.1 Concept of Latent Factors

Latent factor models are based on the idea that while the interactions of m users
with n different items create a highly complex situation of dimension m × n, they
can in fact be expressed by a small amount of factors that characterize both users
and items. Representing users and items through individual values of these factors
is thus deemed sufficient for explaining their interactions (Koren, 2008). Due to the
fact that they are generally not observable these factors are called latent. Latent
variables play a crucial role in many contexts where the phenomena of interest
cannot be observed directly and must therefore be approximated through manifest
variables that are thought to be closely correlated to the latent concepts. One
classic example that actually marks the origins of factor analysis is psychologist
Charles Spearman’s examination in which he sought to measure intelligence, clearly
a latent phenomenon, via quantifiable performance on different intellectual tests.
As Loehlin and Beaujean (2017) put it, Spearman’s work must be regarded as a
confirmatory approach to factor analysis: he had a clear hypothesis of the nature
of latent factors beyond intellectual performance. By contrast, in what they call
exploratory factor analysis, observations of manifest variables are traced back to
factors hitherto unknown (Loehlin and Beaujean, 2017, Chapter 1). The latter is
the case in the collaborative filtering context. Here, latent factors are often thought
of as user affinities, or interests, that are reflected by items to a certain extent. Users

2Big O notation is a common way of documenting time complexity of algorithms which draws
comparisons from input sizes expressed in natural numbers. This form of denoting complexity is
arguably an oversimplification (see for example Krone et al. (2003)) but sufficient to give an idea
of complexity relations.
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with a distinct affinity for some factor are then expected to rate an item highly which
incorporates this factor to a great degree (Koren, 2008). More precisely, a user u will
interact with item i if both share high positive correlations with the same underlying
factors. In factor analysis this is also referred to as high factor loading (Loehlin and
Beaujean, 2017, Chapter 1). The complex structural relationship between latent
and manifest variables is frequently illustrated through path diagrams. Figure 33

shows an exemplary path diagram for a collaborative filtering setting with m = 6
users and n = 3 items where user-item interactions are assumed to be explicable
via k = 2 latent factors. The latter may be correlated with a correlation coefficient
of ϕ12. xuf and yif represent factor loadings of users and items respectively. For
instance, item 1 loads on factor 1 with y11. Note that the original 18-dimensional
user-item space is compressed into a two-dimensional representation.

Figure 3: Exemplary path diagram for a collaborative filtering setting with m = 6 users and n = 3
items which is expressed by k = 2 latent factors. Users’ factor loadings are denoted by xuf , where
u and f represent the number of the user and the latent factor, respectively. Items’ factor loadings
yif are represented analogously. Factors 1 and 2 may be correlated with correlation coefficient ϕ12

(Source: own illustration after Loehlin and Beaujean (2017, Chapter 5)).

It is important to note that the latent factors remain obscure in a sense that
their contentual meaning is never laid bare. Collaborative filtering models merely
provide values for loading coefficients but offer no indication on the interpretation
of the factors. In some cases operators might get an idea about factors’ true nature.
In movie recommendation it would be conceivable that factors correspond to movie
genres which users have a certain affinity for and items incorporate a certain share
of. For meaningful recommendations, however, knowledge about the meaning of
factors is irrelevant. Much more important is finding an adequate low-dimensional
factor-space representation, which is achieved by matrix factorization (Koren, 2008).

3Path diagrams may take on considerably more complex forms than the example displayed here.
In particular, inter-item and and inter-user correlations, as well as error terms, have been omitted
for the sake of clarity. For detailed explanation of path models see Loehlin and Beaujean (2017).
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2.3.2 Matrix Factorization

Motivation

As has been outlined above, latent factor models project user-item interactions into
a low-dimensional space by representing both users and items in values of factor
loadings. Key to this endeavor is the factorization of the ratings matrix R. Matrix
factorization is essentially the representation of a matrix by the cross product of
two considerably smaller matrices X∗ ∈ Rm×k and Y ∗ ∈ Rn×k which contain users’
and items’ factor loadings, respectively. R is thus decomposed such that4 (Seroussi
et al., 2011):

R = X∗Y ∗T (1)

Crucially, this decomposition is still viable when R contains missing values,
meaning X∗ and Y ∗ can be fully specified from the observed values in R. Con-
sequently, once the factor loadings matrices X∗ and Y ∗ are found, it is possible to
rewrite the missing values in R simply as the dot product of vectors of the corre-
sponding column vectors in X∗ and Y ∗, x∗u ∈ Rk and y∗i ∈ Rk (Yu et al., 2014):

rui = x∗Tu y
∗
i (2)

This way, the exemplary setting from Figure 3 can be expressed as a cross prod-
uct of factor matrices. Note that users’ and items’ representation, which in the
original space takes n and m values respectively, is compressed into the same k = 2
dimensions:

R = ( rui) =


r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63

 = X∗Y ∗T =


x∗11 x∗12

x∗21 x∗22

x∗31 x∗32

x∗41 x∗42

x∗51 x∗52

x∗61 x∗62

×
(
y∗11 y∗12 y∗13

y∗21 y∗22 y∗23

)

It is easy to see how matrix factorization presents a powerful solution to the
recommendation problem. Alas, Equations 1 and 2 are valid only if the true rep-
resentation (X∗, Y ∗) is found. In practice, this is frequently not the case due to
the non-convex nature of the matrix factorization problem (Jain and Kar, 2017).
Rather, solutions X and Y are obtained that possibly do not exactly reflect the true
decomposition. Therefore Equations 1 and 2 must in general be rewritten as (see
for example Aggarwal, 2016, Chapter 3.6):

R ≈ XY T , rui ≈ xTuyi (3)

4In many sources, the low-rank matrices are taken to be of dimensions k × m and k × n
respectively, so Xtp = XT and Ytp = Y T . This leads to the decomposition R = XT

tpYtp. Since
this Thesis focuses on the Hu-Koren-Volinsky model, however, it adopts the notation of Hu et al.
(2008). Because of XT

tpYtp = (XT ) TY T = XY T both equations are equivalent.
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Optimization Problem

The matrix factorization problem is at heart a non-convex minimization problem.
The aim is to find X ∈ Rm×k, Y ∈ Rn×k, such that the objective function
J : Rm×n → R, (X, Y ) 7→ J((X, Y )), is minimal5:

arg min
X,Y

J = arg min
X,Y

∑
u,i∈Ω

( rui − xTuyi) 2 + λ( ‖X‖2
F + ‖Y ‖2

F ) . (4)

The first term of J is dedicated to minimizing the squared error of approximating
R by XY T over the set Ω of observed entries of R. The second term is inserted for
regularization to prevent overfitting induced by overly large parameters in X and Y .
Regularization is carried out by the squared Frobenius norm ‖ ·‖2

F , which is the sum
of squared matrix elements. Parameter λ calibrates the severity of punishment (Yu
et al., 2014). Regularization is common to modeling but particularly important in
the collaborative filtering context where training data, i.e., the observed entries of R,
are scarce (Section 2.3.3 will address this problem in more detail). By discouraging
large coefficients in X and Y the regularization term inserts a bias towards simpler
and thus less data-specific solutions (Aggarwal, 2016, Chapter 3.6).

Minimizing J means finding the function’s global minimum. In general, functions
may possess three types of critical points: local extrema, global extrema, and saddle
points. For any function f : Rp → Rq, x 7→ f(x), a local minimum occurs in xmin, loc
if f(xmin, loc) is the minimal functional value in a neighborhood of xmin, loc. The
definition of a global minimum xmin, glob extends this to f taking on the globally
minimal value in xmin, glob (that is, f is minimal in an arbitrarily large neighborhood
of xmin, glob). Saddle points xsad mark areas where f merely enters a plateau before
decreasing further, not becoming locally minimal. A necessary condition for x0

being a critical point of any type is that the gradient of f in x0, ∇f(x0) ∈ Rp, which
denotes the vector of f ’s partial derivatives with respect to x0 = (x0,1, x0,2, ..., x0,p),
equals the null vector (Kelley, 1999, Chapters 1.3 and 1.4):

∇f(x0) = 0 (5)

A gradient of 0 means that, in a critical point, f ’s slope is neither positive or
negative. Whether f decreases before reaching x0 and then increases again (indicat-
ing a minimum), or continues to decrease (indicating a saddle point) can usually be
determined by second-order conditions (Kelley, 1999, Chapters 1.3 and 1.4). How-
ever, two kinds of ambiguity arise from this situation. First, the distinction between
minima and saddle points by applying second-order conditions is not always beyond
doubt in optimization settings, since many objective functions have degenerate sad-
dle points that cannot be identified this way (Anandkumar and Ge, 2016). Second,
even if a critical point is known to be a minimum, it is not trivial to decide whether

5In fact, this minimization expression is somewhat detached from theoretical matrix recovery:
since the aim is finding a rank-k representation of R, the corresponding minimum would in theory
have to be searched over some (XY T )∗ which is of rank k at most. This poses a constrained
optimization problem. However, in practice, the rank constraint is replaced by dimensional limits
on X and Y , which leads to the per se unconstrained problem of Equation 4. While this deviates
somewhat from strict mathematical theory, it works reasonably well for practical applications and
allows for substantial computational savings (Bhojanapalli and Neyshabur, 2016).
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it is globally minimal. This is due to the fact that first- and second-order condi-
tions rely on the differential, which is a local notion and as such confined to local
propositions. Finding sufficient conditions for global optimality is not impossible
but considerably more complex (Hiriart-Urruty, 1995).

The problem of ambiguity is gravely exacerbated by the fact that the matrix
factorization problem stated in Equation 4 is of non-convex nature (Jain and Kar,
2017). Unlike convex6 functions, whose local minima are automatically also globally
minimal (Kelley, 1999, Chapter 1.5), non-convex functions may contain numerous
local extrema, plus saddle points, where the gradient equals the null vector. Find-
ing even a locally minimal solution to the matrix factorization problem is therefore
challenging (Anandkumar and Ge, 2016). Figure 4 gives an idea about the poten-
tially complex topography of a non-convex function (right) as opposed to a convex
function (left):

(a) Convex function (b) Non-convex function

Figure 4: Exemplary convex and non-convex bivariate functions. The Sphere function on the left
is given by f : R2 → R, f(x, y) = x2 +y2. On the right the Shubert function, f : R2 → R, f(x, y) =

(
∑5

i=1 cos( ( i + 1) ix + i) (
∑5

i=1 cos( ( i + 1) iy + i) , is displayed. Both functions are placed into
a cube of side length 2 with x, y ∈ [−1, 1] (Source: own illustration after Surjanovic and Bingham
(2017 (accessed on 2019/06/08)).

Numerical Solutions

Various algorithms can be applied to solve the matrix factorization problem. Ag-
garwal (2016, Chapter 3.6) provides an extensive overview on the main techniques
currently in use for collaborative filtering. They all strive to find a solution for
the optimization problem stated in Equation 4 in presence or absence of additional
constraints on X and Y . Table 1 lists the main methods, of which unconstrained
matrix factorization and singular value decomposition are by far the most popular
(see for example Yu et al. (2014) or Koren (2008)):

6For a formal definition of convex functions see for example Jain and Kar (2017).
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Method Constraints
Unconstrained matrix factorization None
Singular value decomposition Orthogonal basis
Non-negative matrix factorization Non-negativity
Probabilistic matrix factorization Non-negativity

Table 1: List of main matrix factorization methods and constraints incorporated in their respective
optimization problem (Source: own illustration after Aggarwal (2016, Chapter 3.6)).

(a) Unconstrained matrix factorization solves the basic optimization problem
of Equation 4 without subjecting the optimum to any further constraints. It
encompasses two main techniques frequently applied in collaborative filtering
settings, namely stochastic gradient descent and alternating least squares (Yu
et al., 2014). However, it must be noted that both methods in their original
form fail to account for the unary nature of implicit feedback. Since they have
no way of knowing which of the missing values are indeed missing and which
must be treated as negative feedback, they inherently take all non-observed
entries to be missing or equal zero (Pan et al., 2008). This problem will be
addressed in the following section.

(aa) Stochastic gradient descent (SGD). SGD is an iterative algorithm
that, from a random starting point, gradually moves along a sequence
of ever-smaller values of J . It does so by following the direction of the
steepest descent, which is the negative value of the gradient. Thus it
steadily approximates the minimum with a step size (or learning rate) of
α (Nocedal and Wright, 1999, Chapter 2.2). The k entries in each row
xu of X and yi of Y are updated using one single observed entry at a
time. The observed values are revisited multiple time until the algorithm
converges (Aggarwal, 2016, Chapter 3.6). A major problem with SGD
is that convergence is greatly impacted by the initial starting point and
the learning rate α. Frequently, the algorithm merely converges on local
minima or tarries at saddle points for an arbitrarily long time (Anand-
kumar and Ge, 2016).

(bb) Alternating least squares (ALS). As the name suggests, this algo-
rithm iterates between alternately optimizing X and Y while keeping
the respective other matrix fixed. In doing so, ALS reduces the matrix
factorization problem to a quadratic one with a closed-form solution in
each step. Similar to SGD, no further constraints are imposed on X
and Y . Computing one iteration typically takes more time than with
SGD, however, in general fewer iterations are needed and row-wise com-
putations can be parallelized (Yu et al., 2014). The Hu-Koren-Volinsky
model makes use of ALS optimization, so the algorithm functionality will
be presented in detail in Section 3.2.

(b) Singular value decomposition (SVD). SVD performs matrix factoriza-
tion in presence of constraints: it decomposes R such that the columns of X
and Y are mutually orthogonal, i.e. perpendicular to one another (in fact,
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orthogonality is a strong assumption for real-life settings). With SVD, R is
represented by three matrices rather than two. Its rank-k approximation is
given by

R ≈ AΣBT , (6)

where A contains the k largest7 eigenvectors of RRT , Σ is a diagonal matrix
of the k largest eigenvalues of either RRT or RTR, which are identical, and
B contains the k largest eigenvectors of RTR. By convention, X is taken to
be AΣ, which leaves B to equal Y (Ekstrand et al., 2010). In essence, SVD
performs optimization of the same objective function as unconstrained matrix
factorization but over a smaller set of potential solutions. In collaborative fil-
tering with implicit feedback, where R is not fully specified - SVD too suffers
from the problem that missing values are either treated as entirely missing or
entirely negative feedback -, this tends to produce higher errors than uncon-
strained solutions (Aggarwal, 2016, Chapter 3.6).

(c) Non-negative matrix factorization. This term refers to a number of ma-
trix factorization algorithms that are constrained by X, Y ≥ 0. It is obvious
how non-negativity applies to collaborative filtering setting with implicit feed-
back where no negative ratings can be observed. Therefore, while accuracy
is not necessarily improved, non-negative matrix factorization provides con-
siderably greater interpretability. However, this advantage is less relevant in
settings where the aim is merely finding top-N recommendations without ex-
plicit estimation of all unobserved ratings (Aggarwal, 2016, Chapter 3.6).

(d) Probabilistic matrix factorization. Lastly, probabilistic techniques have
been known to provide adequate solutions to the matrix factorization problem
with implicit feedback data. While the aforementioned methods rely on linear
algebra, probabilistic matrix factorization incorporates statistical probabilities
of users’ ratings on items. This close relation to probability theory requires X
and Y to be non-negative. Similar to SVD, R is decomposed into three matri-
ces, but with rather different intention. Instead of minimizing error terms the
aim is to maximize the predictive power of the model, leading to a decompo-
sition with an intuitive probabilistic interpretation of user behavior (Ekstrand
et al., 2010).

2.3.3 Domain-Specific Challenges

Latent factor models face a number of domain-specific challenges that have an im-
pact on recommendation quality. Khusro et al. (2016) have accumulated an extensive
list of challenges to recommender systems. In the following, those which are relevant
to latent factor models are briefly discussed.

(a) Sparsity is arguably the the predominant challenge for latent factor models
to tackle, particularly so if feedback data is implicit and negative feedback re-
mains unobserved. Since there are typically large number of users and items,

7To be exact, the algorithm would have to be called truncated SVD, since only the k largest
eigenvectors are used instead of all.
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and each user interacts only with very few of these items, the ratings matrix
tends to be high-dimensional and extremely sparse at the same time. As has
been stated in Equation 4, however, latent factor models rely on minimizing
errors with regard to observed entries. Consequently, if those are scarce, the
optimization problem is further complicated (Huang et al., 2004). Standard
methods such as SGD, ALS and SVD fail to account for the mixed nature
of unobserved entries since they are limited to either treating them all as
missing values or taking them all to reflect negative values. Obviously, both
interpretations are a distortion of reality. Pan et al. (2008) refer to the task
of collaborative filtering with unary feedback, where in fact only positive in-
teractions can be known, as one-class collaborative filtering. They propose
two different strategies to alleviate the one-class problem. The first is to as-
sign different weights to observed and non-observed entries of R, accounting
for varying levels of confidence. This strategy is applied by the Hu-Koren-
Volinsky model and will be detailed in Section 3.1. Alternatively, sampling
methods for randomly classifying some missing entries as negative values are
suggested. The experimental studies conducted by Pan and colleagues show
that both approaches yield similar results and clearly outperform standard
methods which uniformly treat missing values (Pan et al., 2008).

(b) Scalability is closely associated with sparsity as both stem from high dimen-
sionality. In most applications, algorithms are required to be easily scalable
since they often need to make recommendations in real-time. Besides consum-
ing time, computation comes at a monetary cost since data storage, processing
and network resources are often provided by external suppliers (Deelman et al.,
2008). Run time until convergence and the portion of computation that can
be parallelized or carried out up-front therefore matter greatly. In general,
model-based collaborative filtering techniques possess the advantage of scal-
ing only sub-linearly with the number of user-item interactions, as opposed to
model-based approaches (Khusro et al., 2016). A detailed discussion of scal-
ability, which must certainly include aspects exceeding statistical analysis, is
beyond the scope of this Thesis. For proposals on scalability improvements
see for example Takács et al. (2009) or Karydi and Margaritis (2016).

(c) Cold-start refers to the challenge of incorporating new users and items with
no or very few previous ratings into the system. In such cases, collaborative
filtering models tend to produce poor recommendations or cover only a cer-
tain amount of user-item interactions (Aggarwal, 2016, Chapter 5.1). As a
matter of fact, there is no way of addressing this issue directly for a standard
latent factor model. Some models mitigate this shortcoming by incorporating
additional information on users and items (Gouvert et al., 2018). Others del-
egate recommendations for new elements to different types of recommender
systems, such as demographics-based or content-based algorithms, effectively
converting to a hybrid approach (Khusro et al., 2016).

(d) Grey sheep is an issue with similar consequences. The term describes users
whose affinities do not match well with those of others in the system. As they
rely on item preferences of a community of users when estimating the active
user’s rating towards different items, collaborative filtering models as a whole
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tend to provide poor recommendations to users with singular behavior. The
grey sheep problem has so far received rather little awareness in research on
collaborative filtering, which may be due to the fact that grey sheep users
represent only a small number of users overall and are thus not deemed overly
important. Recently, some work has been dedicated to this challenge which
appears to be a subject of further research (Gras et al., 2017).

(e) Evaluation of latent factor models, lastly, poses a permanent problem. The
challenge here is two-fold: first, suitable measures for evaluation must be
found. The following section will show that classic error metrics, which are
frequently used for model evaluation thanks to their simplicity and compara-
bility, are not stand-alone sufficient for assessing the quality of collaborative
filtering models. Second, evaluation suffers from a lack of benchmark data
against which models can be tested. Such data are mostly kept proprietary
because they contain a high amount of sensitive information. Some data sets,
though, are openly accessible; these are also often found as test data in aca-
demic research (Khusro et al., 2016).

2.3.4 Model Evaluation

As has been stated above, evaluating latent factor models proves challenging. Eval-
uation is nonetheless crucial to fitting a model that provides satisfactory recom-
mendations. Recommendation quality is not limited to prediction accuracy but a
multi-faceted concept that incorporates different quantitative and qualitative as-
pects, which shall be briefly discussed in the following. Aggarwal (2016, Chapter 7)
and Herlocker et al. (2004) suggest the following evaluation aspects:

Aspects of evaluation

Accuracy Beyond accuracy

Coverage

Confidence & trust

Novelty & serendipity

Diversity

Scalability

Figure 5: Overview on evaluation aspects for latent factor models (Source: own illustration after
Aggarwal (2016, Chapter 7) and Herlocker et al. (2004)).
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Accuracy

As latent factor collaborative filtering models essentially perform predictive model-
ing, a good model is required to achieve high accuracy, that is, produce predictions
which reflect the truth as closely as possible. Not least thanks to their simplicity and
comparability across different model types, research often relies on error measures to
quantify accuracy. In this narrower sense, a model is understood to be fully accurate
if all predicted ratings exactly equal the true ones. Accuracy is then evaluated by
computing prediction errors such as the mean absolute error (MAE) or root mean
square error (RMSE) (Ekstrand et al., 2010). In collaborative filtering with implicit
feedback, however, the aim is to provide top-N recommendations rather than a full
estimation of all ratings. Following this concept, accuracy depends on the correct
ordering of items with respect to the user’s affinity. Accuracy metrics in top-N rec-
ommendations thus naturally focus on measures of rank (Aggarwal, 2016, Chapter
7.5). Ranking evaluation can be be performed by numerous statistics which can be
clustered into correlation, utility and decision-support metrics.

(a) Correlation-based rank metrics assess the strength of the relationship be-
tween the true and the predicted ranking. Most frequently, ranking accuracy
is measured by Spearman or Kendall rank correlation coefficients. Since both
handle weak orderings with many ties poorly, they are not applicable to im-
plicit feedback settings where the unary nature of ratings produces particularly
weak orderings (Herlocker et al., 2004).

(b) Utility-based metrics seek to quantify the usefulness of recommendations.
The underlying assumption is that each recommended item holds a certain
utility to the user which is inferred partly by the user’s true rating towards it
and partly by its position in the recommendation set. Ideally, items with high
ground-truth ratings will rank top of the list (Aggarwal, 2016, Chapter 7.5).
One way to assess utility is given by the so-called half-life utility score. It relies
on the assumption that the probability of the user selecting a recommended
item from an ordered recommendation list decreases exponentially with the
item’s position on the list. Let pos(i) denote the position index of item i. The
location of the item which has a 50% probability of being examined further is
specified by half-life parameter h. Then the half-life utility score Ru for user
u is given by8

Ru =
n∑
i=1

rui
2(pos(i)−1)/(h−1)

(7)

Better recommendation lists will feature higher h-values since utility decreases
more slowly. Consequently, the score encompasses more summands with low
negative exponents and turns out higher in total. A global utility measure can
be computed by averaging the user-specific half-life utility scores over all users
(Lü et al., 2012).

8The original definition in Lü et al. (2012) has as numerator the maximum out of 0 and the
difference between rui and some default rating. Since implicit feedback is per se non-negative and
the default rating must certainly be assumed to be 0, Equation 7 has been somewhat simplified.
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Alternatively, utility can be measured through the discounted cumulative gain
(DCG). The DCG too uses a discount factor relative to the position of items on
the recommendation list which is applied to the supposed utility (gain) gui of
user u in consuming item i. Typically, gui is computed as an exponential func-
tion of item i’s relevance to user u, relui, such that gui = 2relui − 1. Relevance
is usually approximated by the true rating rui. With this, the DCG can be
expressed as follows9, where a higher score indicates better recommendations
(Aggarwal, 2016, Chapter 7.5):

DCG =
1

m

m∑
u=1

n∑
i=1

2relui − 1

log2(pos(i) + 1)
(8)

There are several other rank-based utility metrics, but since they are mostly
derived from the ones explained above, they are not presented in detail. For
more information see for example Herlocker et al. (2004).

(c) Decision-support-based metrics originate from classification tasks. A model
is thought to be accurate if items the user has actually consumed are also
deemed worth recommending by the algorithm. For evaluation, a random set
of ratings is held out and predicted. In comparing truth and prediction, four
distinct cases arise: (1) the algorithm recommends a truly relevant item (true
positive), (2) an irrelevant item is recommended (false positive), (3) a relevant
item is omitted from recommendation (false negative), or an irrelevant one is
not recommended (true negative). Obviously, the second and third constella-
tions represent faulty predictions (Ekstrand et al., 2010). Table 2 illustrates
the so-called confusion matrix of all cases which contains the respective abso-
lute number of observations for which the stated case applies:

Relevant Irrelevant
Recommended # true positive (TP) # false positive (FP)
Not recommended # false negative (FN) # true negative (TN)

Table 2: Confusion matrix for top-N recommendation task. Cells contain the absolute
number (denoted by #) of observations for which the respective case applies. Prediction
errors occur when irrelevant items are recommended or when relevant ones are omitted from
the recommendation list (Source: own illustration after Ekstrand et al. (2010)).

From this confusion matrix several indicators of accuracy can be derived. Let
R̂ denote a prediction of R. Then the precision of the prediction quantifies
the share of recommended items that are indeed relevant to the user. With
the notation of Table 2 precision is defined as follows:

precision(R̂) = TP/(TP + FP ) (9)

The recall of R̂, also referred to as sensitivity, measures how many items out
of those who are truly relevant to the user have actually been recommended:

9In Aggarwal (2016), items are summed only over the set the user has actually rated. With
implicit feedback, however, the cases where the user has not provided a rating render a zero
summand anyway. For the sake of simplicity this restriction has therefore been omitted.
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recall(R̂) = sensitivity(R̂) = TP/(TP + FN) (10)

Lastly, the false positive rate (FPR) represents the share of irrelevant items
that have been falsely recommended. It is the complement of specificity, which
measures the share of irrelevant items that have rightly not been recommended:

FPR(R̂) = FP/(FP + TN) (11)

The definitions and further information on decision support metrics can be
found in Ekstrand et al. (2010). Now an accurate model is expected to have
high precision and recall, although those two metrics are somewhat bound by a
trade-off. Simultaneously, a low FPR is desirable. Accuracy is often visualized
by the so-called ROC curve, where ROC stands for receiver operating charac-
teristic. It plots sensitivity on the y-axis against FPR on the x-axis and always
connects the (0, 0) and (1, 1) coordinates. A model is the more accurate the
further its ROC curve deviates from the bisector which would indicate com-
pletely random prediction. Therefore, the area under the ROC curve (AUC)
is a popular measure for prediction accuracy (Aggarwal, 2016, Chapter 7.5).
Figure 6 illustrates an exemplary ROC curve for a rather accurate model:

Figure 6: Exemplary ROC curve. The illustrated data are taken from the ROCR.simple
data set which is implemented in the ROCR package (Sing et al., 2015) and contains mock
prediction data. On the horizontal axis, the false positive rate is displayed, while sensi-
tivity is mapped to the vertical axis. The bisector, which represents completely random
classification, has been inserted as a dashed line (Source: own illustration).

Beyond Accuracy

Clearly, accuracy is an important quality for latent factor models in collaborative
filtering. In revisiting the objectives of recommendations outlined in Chapter 2.1,
however, it becomes evident that accurate predictions cannot be the sole criterion.
There are several other aspects that should be taken into account but are often hard
to measure, which is why accuracy remains the primary field of evaluation.
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(a) Coverage. The requirement of high coverage is directly linked to the aim
of increasing item diversity. Coverage refers to the proportion of user-item
interactions the model is capable of predicting and can be divided into two
sub-types. User-space coverage denotes the share of users for whom at least
N recommendations can be derived in a top-N recommendation task, whereas
item-space coverage measures the fraction of items that can be recommended
at all. Both aspects depend heavily on the availability of observed ratings:
users for whom little information exists and items consumed rarely pose a
problem in being covered (Aggarwal, 2016, Chapter 7.3.2). It is important to
note that coverage must always be assessed in relation to accuracy. Boosting
coverage by, say, imputing values of average ratings or similar heuristics will
impact accuracy negatively (Herlocker et al., 2004).

(b) Confidence and trust. These requirements reflect the two perpectives on
prediction credibility. Confidence measures the degree of certainty the rec-
ommender system itself assigns to its predictions, typically expressed as an
interval which covers the true value with a fixed probability. Obviously, the
system ought to be as confident as possible, in a way that of two equally
accurate methods the one with higher confidence is preferable (Shani and Gu-
nawardana, 2011, Chapter 8.3.4). From the complementary perspective, the
level of trust indicates how much faith users put into the recommendations
they receive. Perhaps counter-intuitively, high degrees of accuracy do not
necessarily result in users trusting the system. As their preferences towards
unknown items often remain latent to themselves, users might not recognize
an accurate prediction and be inclined to suspicion. On the other hand, aug-
menting trust may even be contradictory to some recommendation objectives:
for instance, suggesting only already-popular items is likely to preserve trust
but will not contribute to item diversity. A possible solution to this dilemma is
the display of plausible explanations as to why a specific item is recommended
(Aggarwal, 2016, Chapter 7.3.3).

(c) Novelty and serendipity. The requirement to suggest novel items may also
be in conflict with user trust. While novelty is often understood as the propor-
tion of unknown items in the recommended set, Hurley and Zhang (2011) deem
this definition too restrictive since it implicitly assumes full information about
users’ prior knowledge. They propose instead to interpret novelty as items be-
ing unusual with respect to the user’s observed behavior. More precisely, the
items that a merely similarity-based algorithm finds hardest to recommend are
regarded as most novel (Hurley and Zhang, 2011). Closely linked to novelty is
the requirement of serendipity, meaning the recommendation should be able
to surprise the user in a way that it is unexpected or different from the ob-
vious. It is thus a somewhat stronger concept than novelty (Aggarwal, 2016,
Chapter 7.3.5). Suggesting to a user who has been shown to like movies from a
certain genre a movie from the same genre she has not yet seen might be novel
but unsurprising, whereas recommending a movie from an entirely different
genre may be also serendipitous. Kotkov et al. (2016) point out that for a
recommender system to achieve serendipity, recommendations must not only
be unexpected but also relevant, in a sense that merely provoking surprise is
not sufficient when the user does not regard the recommended item as useful.
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(d) Diversity. Recommender Systems are expected to prove recommendation
sets of a certain diversity. Suggesting highly similar items bears the risk of
not appealing to the user at all if the prediction turns out to be inaccurate
(Aggarwal, 2016, Chapter 7.3.6). Even if the user does approve of the type of
items recommended, they might prefer a broader range of options over several
variants of one suggestion (Shani and Gunawardana, 2011, Chapter 8.3.8).
Furthermore, greater variety is compatible with the requirements of novelty
and serendipity.

(e) Scalability. The last aspect to be taken into account has been discussed
with domain-specific challenges in Chapter 2.3.3. Scalability refers to com-
putational requirements which should obviously be as low as possible since
they carry a temporal and, ultimately, monetary cost. As opposed to the
aforementioned concepts, scalability can be easily quantified, for instance by
calculating up-front training time, prediction time (which is particularly pre-
carious), and memory space (Aggarwal, 2016, Chapter 7.3.8). Some relief to
this point may have recently been brought by the advance of cloud comput-
ing: instead of hosting their own data infrastructure with development and
maintenance costs, suppliers can use cloud services which rent out computing
capacity at need (Deelman et al., 2008).

3 The Hu-Koren-Volinsky Latent Factor

Model for Implicit Feedback

3.1 Optimization Problem

Now that a basic understanding of collaborative filtering in implicit feedback set-
tings with latent factor models has been established, the Hu-Koren-Volinsky model
as one specific proposal to solve the recommendation problem shall be introduced.
To this end, the optimization problem and the problem-solving algorithm will be
presented in detail. Afterwards, the challenge of hyper-parameter choice will be
addressed. All elaborations, unless stated otherwise, are based on the work of Hu
et al. (2008).

Original Setting

The Hu-Koren-Volinsky model was initially proposed as a recommender system for
television shows. The original model relied on implicit user feedback in the form of
anonymous users’ watching habits. A rating on show i by user u in this set-up is con-
stituted by the times u has fully watched i. As is characteristic of implicit feedback,
this data is asymmetric (no negative feedback can be observed with certainty) and
inherently noisy (users might watch a show but dislike it or be absent while it is on).

Incorporation of Confidence

Data asymmetry and noisiness inhibit direct deduction of preferences from implicit
feedback. However, assumptions may be derived with a certain confidence. Not
observing a rating at all purports very low confidence; one-time interactions allow
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for more confidence but might still be distorted due to various reasons; multiple
interactions of one user with a specific item corroborate the assumption of preference
rather strongly. Hu et al. (2008) incorporate this hypothesis into their model by
weighing ratings according to the level of confidence assigned: raw ratings rui are
binarized, yielding assumed preferences pui which are then paired with a confidence
level cui.

As before, raw ratings rui are stored in ratings matrix R and can be expressed
in the following form:

rui =

{
j if u has interacted with i j times, j > 0

0 otherwise
(12)

Ratings may take on floating numbers as they do in the original setting (shows
can be watched in part), but in many contexts, such as purchasing or clicking be-
havior, they are in fact constrained to integers. From these raw numerical values,
binary preferences are inferred. Lacking further information, the model declares
unobserved interactions as non-preference and observed interactions as preference
but later accounts for the respective amount of uncertainty these assumptions carry.
Preferences are thus set to:

pui =

{
1 for rui > 0

0 otherwise
(13)

These binary preferences are precisely what shall be estimated by the model. As
before, the aim is to find factor matrices X, Y which constitute a rank-k representa-
tion of the original ratings matrix R. Predictions are then computed by multiplying
the respective factor loadings vectors of user u and item i:

p̂ui = xTuyi (14)

Since the direct link of preferences to raw ratings is subject to a starkly vary-
ing level of confidence, the degree of uncertainty must be accounted for in making
predictions. Confidence scales with the numerical value of raw ratings:

cui = 1 + αrui, α > 0 (15)

This way, unobserved ratings are assigned a minimum confidence level of 1, while
confidence in observed ratings assumes values > 1 that depend on the choice of α.
For the latter the authors suggest a parameter value of 40, inserting a substantial
discrepancy between respective confidence levels for unobserved and observed rat-
ings. It is easy to see how finding an adequate value for α is crucial to model quality
as the incorporation of confidence marks the very core of the Hu-Koren-Volinsky
model, which is why Section 4 will address this challenge in more detail.

Objective Function

The assumptions on preference and confidence are inserted into the basic objective
function stated in Equation 4 by weighing the inherent prediction error of Equa-
tion 2 with the corresponding level of confidence. This marks the first important
distinction from the basic function. The second is given by the fact that JHKV is
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minimized over all user-item interactions instead of only the observed ones. While it
is acceptable in a general matrix factorization context to confine optimization to ob-
served entries, the fundamental asymmetry of implicit feedback renders this modus
operandi inapplicable, since it would equal optimization over positive feedback only.
Thus, the optimization problem of the Hu-Koren-Volinsky model is given by

arg min
X,Y

JHKV = arg min
X,Y

m∑
u=1

n∑
i=1

cui
(
pui − xTuyi

)2
+ λ

(
m∑
u=1

‖xu‖2
F +

n∑
i=1

‖yi‖2
F

)
.

(16)
In order to keep the following explanations easily traceable, the following nota-

tion will be applied henceforth:

X = (xuf ) ∈ Rm×k Matrix of user factors with u = 1, ...,m, f = 1, ..., k
xu ∈ Rk Vector of factor loadings for user u
Y = (xif ) ∈ Rn×k Matrix of user factors with i = 1, ..., n, f = 1, ..., k
yi ∈ Rk Vector of factor loadings for item i
P = (pui) ∈ Rm×n Matrix of binary preferences with u = 1, ...,m, i = 1, ..., n
pu ∈ Rn Vector of binary preferences of user u
C = (cui) ∈ Rm×n Matrix of confidence levels with u = 1, ...,m, i = 1, ..., n
cu ∈ Rn Vector of confidence levels for ratings by user u
ci ∈ Rm Vector of confidence levels for ratings on item i

Table 3: Notation for explanations on the Hu-Koren-Volinsky model

3.2 Iterative Solution Algorithm

Minimizing the objective function JHKV over all entries of the highly sparse ratings
matrix obviously requires a lot more computation complexity than optimization over
only the observed ones would. More precisely, JHKV contains m×n terms, a number
that can easily scale up to billions or trillions of digits. Consequently, the optimiza-
tion problem reaches such high dimensionality that direct optimization techniques
like SGD no longer provide meaningful solutions10. Revisiting the exemplary illus-
tration of a non-convex function in Figure 4, it is easily conceivable that finding the
global minimum of a function this complex by moving along the gradient is near
impossible. Instead of direct optimization the Hu-Koren-Volinsky model therefore
relies on an ALS algorithm which, as has been explained in Section 2.3.2, reduces
the problem to a quadratic form.

Algorithmic Structure

Broadly spoken, the algorithm takes a random initialization Yinit of Y as input
in the first step and computes X with fixed Yinit, then recomputes Y with fixed
X as obtained from the previous step, and iterates over these alternate tasks until
convergence is reached. Convergence in this context is thought of as the stabilization
in the elements of factor matrices X and Y . Each computation of X and Y is
carried out row-wise, that is, by looping over all users or all items, respectively. The
algorithm thus roughly assumes the following structure:

10This statement is broadly corroborated by related work (see for example He et al. (2019)).
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Algorithm 1 Finding X,Y in the Hu-Koren-Volinsky model using ALS

initialize Y at random
1: while not(convergence) do
2: for u = 1 to m do
3: compute xu using Y
4: end
5: yielding X
6: for i = 1 to n do
7: compute yi using X
8: end
9: yielding Y

10: end
11: return X,Y

First-Order Conditions

Computation of xu and yi directly results from the first-order condition of minimiza-
tion, namely that for (X, Y )∗ being at least locally minimal the gradient of JHKV in
(X, Y )∗ must equal 0. Calculating the partial derivatives of JHKV with respect to
xu and yi yields the following equations, where Cu and Ci are the diagonal matrices
of cu and ci, respectively11:

xu = (Y TCuY + λI)−1Y TCupu (17)

yi = (XTCiX + λI)−1XTCipi (18)

Computational Improvements

Applying some transformations to the above conditions allows for saving computa-
tional costs. Calculation of Y TCuY and XTCiX in each iteration of the user and
item loops, respectively, requires a high amount of time. Computation becomes
substantially faster when exploiting the fact that

Y TCuY = Y TY + Y T (Cu − I)Y (19)

and, analogously,

XTCiX = XTX +XT (Ci − I)X. (20)

While this may not appear as a simplification at first glance, note that Y TY and
XTX, which are identical for all users and items, can now be pre-computed before
looping over all elements. Moreover, entries of Cu − I and Ci − I are only non-zero
if the respective user-item interaction has been observed, i.e the assigned confidence
level is > 1, which is true for but a small fraction of entries due to the sparsity of
the ratings matrix. The first-order conditions of the optimization problem therefore
become:

11A more extensive development of these equations from the basic objective function may be
found in the Appendix under A.1.
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xu = (Y TY + Y T (Cu − I)Y + λI)−1Y TCupu (21)

yi = (XTX +XT (Ci − I)X + λI)−1XTCipi (22)

Run times now amount to O(k2ν + k3m) for computing X and O(k2ν + k3n)
for computing Y (ν denotes the total number of non-zero observations). It becomes
immediately clear that computation time scales with the number of users and items,
observed entries, and, most notably, the number of factors.

Deriving Recommendations

Eventually, the factor matrices X and Y obtained from factorization of R can be uti-
lized for deriving top-N recommendations. To this end, all preferences are predicted
as has been outlined above:

p̂ui = xTuyi

For each user u, these predicted preferences are then arranged in descending
order. The recommendation list is constituted simply by selecting the N items with
the highest ranking12.

Challenge of Hyper-Parameter Choice

As has been mentioned in the context of confidence levels, the degree to which the
Hu-Koren-Volinsky model succeeds in factorizing the ratings matrix into a meaning-
ful low-rank representation depends on the adequate choice of certain settings. In
general, model parameters that need to be determined by the operator prior to fit-
ting the model, as opposed to those learned by the model during training, are called
hyper-parameters. Their choice greatly impacts model quality, which is why hyper-
parameter optimization remains a field of constant work and discussion, particularly
so in research on machine learning (Klatzer and Pock, 2015).

The Hu-Koren-Volinsky model features three hyper-parameters whose values in-
fluence recommendation quality. First, the representation of R in a low-rank factor
space heavily depends on the number k of factors. Choosing the appropriate num-
ber is subject to a trade-off between model fit and simplicity (the latter being also
linked to saving computational costs). Second, confidence levels for observations are
mainly driven by parameter α. If α is too low, the uncertainty inferred by declaring
non-observed interactions as non-preference is not sufficiently accounted for; if α
is too high, on the other hand, confidence in observed interactions might be over-
stated. Third, regularization parameter λ which controls the severity of penalizing
complexity must be calibrated.

12In practice, the selection of items to be recommended is often subject to further rules and
conditions, such as physical availability of the item or profit margin contribution. The incorporation
of such additional constraints is also referred to as context awareness. For details on this topic see
for example Adomavicius and Tuzhilin (2011).
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The empirical analysis this Thesis conducts strives to find optimal
hyper-parameters for the Hu-Koren-Volinsky model as applied to real data. Results
of this endeavour are discussed in Section 5. Before, the following section will lay
out the theory of hyper-parameter optimization in more detail, focusing on the two
approaches used for the empirical analysis.

4 Hyper-Parameter Tuning in Predictive

Modelling

4.1 Principles of Hyper-Parameter Tuning

It has been shown that matrix factorization in latent factor models is in essence
an optimization problem. The same is true for the task of hyper-parameter tun-
ing, such that the latter can be interpreted as an outer optimization loop in the
entire recommendation problem (Bergstra and Bengio, 2012). It is important to
note that hyper-parameters should always be tuned simultaneously as they are fre-
quently co-dependent. In the following, the dominant approach to hyper-parameter
optimization is laid out as found in Bergstra and Bengio (2012).

Optimization Problem

Typically, a learning algorithm, such as the one enshrined in the Hu-Koren-Volinsky
model, strives to find a function f that minimizes some loss function L(x; f), where
x is assumed to follow ground-truth distribution Gx. The learning algorithm is itself
dependent on the choice of hyper-parameter set θ and can thus be expressed as Aθ.
The function minimizing the expected loss over training data Xtrain is then given by
f = Aθ(Xtrain). Consequently, the set θ∗ of optimal hyper-parameters is obtained by
minimizing the expected loss over the set Θ of all possible combinations (Bergstra
and Bengio, 2012):

θ∗ = arg min
θ∈Θ

EGx (L (x;Aθ(Xtrain))) (23)

The exact form of loss function f thereby depends on which model selection
criterion is applied to distinguish good models from poor ones. This decision is
directly linked to model evaluation as discussed in Section 2.3.4, so, for instance,
the ideal set of hyper-parameters could be established through optimization of half-
life utility or AUC. Due to the rather elusive nature of beyond-accuracy measures,
hyper-parameter optimization usually relies on easily quantifiable accuracy metrics
(Luo, 2016).

Approximate Solution via Cross Validation

Finding θ∗ as stated in Equation 23 faces several obstacles to a direct solution.
The first is that ground-truth distribution Gx is unknown, which renders the exact
computation of expected value EGx impossible. Therefore, most applications use
the technique of cross-validation for approximating the expected value. In cross-
validation, validation sets Xvalid are sampled randomly and then used for computing
the mean loss function. If validation sets are indeed drawn independently, no bias is
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induced. The optimization problem with cross-validation can be written as follows,
simplifying the expression by using Ψ for denoting the hyper-parameter response
function (Bergstra and Bengio, 2012):

θ∗ ≈ arg min
θ∈Θ

mean
x∈Xvalid

L (x;Aθ(Xtrain)) = arg min
θ∈Θ

Ψ(θ) (24)

Confinement of the Search Space

While ignorance of the ground-truth distribution can be mitigated by cross-validating
the estimations of θ∗, the critical point in hyper-parameter optimization is the usu-
ally very limited knowledge about the response surface Ψ(θ) and the search space
Θ. Therefore, it has become the dominant strategy to confine Θ to a small, finite
subset Θtrial out of which all distinct θ are tested. The final optimization problem
as encountered in practical applications thus takes the form:

θ∗ ≈ arg min
θ∈Θtrial

Ψ(θ) = θ̂ (25)

Obviously, finding Θtrial such that it contains only few promising values for θ is
a non-trivial task which becomes all the more complicated with higher numbers of
hyper-parameters (Bergstra and Bengio, 2012). The following section will contrast
the two most widely used approaches for confining the search space that are applied
for tuning the hyper-parameters of the Hu-Koren-Volinsky model in the empirical
analysis.

4.2 Two Selected Approaches

4.2.1 Grid Search

Grid search uses a rather simple method to construct a search space for the op-
timization algorithm. Essentially, this approach encompasses the definition of a
configuration space for each hyper-parameter and the consequent evaluation of all
possible combinations, the globally optimal of which is then used to fit the model.
Parameter combinations are spread out on a discrete grid that takes the form of
a hyper-rectangle (Fu et al., 2016). While implementation and parallelization are
easily accomplished, grid search suffers from the curse of dimensionality. Let Θs

denote the configuration space of hyper-parameter s, s = 1, ..., S. Then the number
of trials to be performed scales to |Θtrial| =

∏S
s=1 |Θs|, growing exponentially with

rising number S. It is easy to see how this relation limits grid size in practice, which
in turn weighs on the probability of the grid containing sensible hyper-parameter
values (Bergstra and Bengio, 2012). However, grid search tends to perform reason-
ably well in settings with few hyper-parameters where the grid remains relatively
small (Fu et al., 2016). Since the Hu-Koren-Volinsky model contains but three
hyper-parameters, the approach is considered to be worth testing.

4.2.2 Random Search

Random search differs from grid search in proposing an alternative strategy for ob-
taining Θtrial. Rather than incorporating all possible combinations arising from the
configuration space given by the Cartesian product of sub-configuration spaces Θs,
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it draws from a uniform density on this same configuration space. The underlying
idea is that of low effective dimensionality of Ψ, meaning Ψ is in fact dominated
by a small number of important dimensions. Grid search covers the original S-
dimensional space evenly but provides inefficient coverage of sub-spaces, because
points along one dimension of a grid share the same corresponding coordinate. By
contrast, randomly distributed points assume more distinct values in each sub-space.
Consequently, for the same number of computationally costly trials, random search
manages to test more distinct parameter values (Bergstra and Bengio, 2012). Figure
7 illustrates this situation:

(a) Grid Search (b) Random Search

Figure 7: Exemplary illustration of point sets in grid search and random search. Optimization takes
place over two hyper-parameters. In grid search, configuration spaces for both hyper-parameters
are given by Θs = {1, ..., 5} with s ∈ {1, 2}. For random search 25 points are randomly sampled
from a uniform distribution with limits [ 1, 5] . It becomes visible that with grid search, 25 trials
test only five distinct values of each parameter. By contrast, random search allows for up to 25
distinct values (Source: own illustration after Bergstra and Bengio (2012)).

So, without forsaking the advantages of easy implementation and parallelization,
random search covers the search space much more effectively. In fact, discussions
suggest that quite a small amount of observations might be enough to find a solution
close to the optimum with high probability. For instance, randomly drawn obser-
vations have an individual chance of 5% of belonging to the 5%-interval around the
true optimum. Drawing n points independently leads to a probability of all points
missing this interval of (1− 5%)n. Consequently, the chance of at least one of them
belonging to the close-to-optimality interval is 1 − (1 − 5%)n. Demanding a prob-
ability of at least 95% for this to happen equals n being ≥ 60. So, if at least 5%
of the points on the grid represent a solution deemed sufficiently close to the opti-
mum, then random search with 60 trials will identify one point out of that region
with a 95% probability. Obviously, higher numbers of trials allow for more certainty
(Zheng, 2015 (accessed on 2019/27/08).

However, just as grid search, random search is a non-adaptive approach: there
is no utilization of already available results for a sensible confinement of the search
space. This shortcoming can be mitigated by performing upstream manual search,
that is, identifying promising regions of Θ with the help of human intuition or ex-
perience (Young et al., 2015).

The following section will now discuss concepts and results of the empirical anal-
ysis. As has been mentioned before, the analysis essentially encompasses the imple-
mentation of a Hu-Koren-Volinsky model for real-world data with special emphasis
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on hyper-parameter tuning. First, the concept of analysis is introduced in Section
5.1, including information on the data set used, a brief overview on methodology,
and an explanation of the applied evaluation measures. Results are presented in
a comparative analysis of the selected approaches towards hyper-parameter opti-
mization. Eventually, these results are discussed with regard to evaluation of both
methods and possible enhancements to the fitted model which are beyond the scope
of this Thesis but which might help to improve recommendation quality.

5 Fitting the Model With Optimized

Hyper-Parameters

5.1 Concept of Analysis

5.1.1 Data Used

In predictive modelling with hyper-parameter optimization, models are usually fitted
on training data and evaluated on test data (see Section 4.1). Typically, folds to serve
as test data are drawn randomly from the entire data set (Kohavi, 1995). However,
this approach is not applicable to implicit feedback as the predicted variable is
unknown for all but a few observations and exploiting correlation structures across all
elements is crucial (Hu et al., 2008). Therefore, rather than splitting the same data
set into different folds multiple times, the data is divided once into two subsequent
time periods, such that the quality of recommendations based on the first period
can be measured against actual transactions from the second period. Partitioning
the data this way is conceivable in any proportion but carries an inherent trade-off.
While an overly large test data set risks sub-optimal model fit due to lack of learning
data, an over-emphasis on training data might cause overfitting and leave evaluation
unreliable. In practice, reserving around 30% of data for testing has often proven
effective (Liu and Cocea, 2017).

In this analysis, data is collected from real-world transactions of a Germany-
based retail company with international operations13. The training set contains
purchasing data from the nine-month time period between September 1st, 2018,
and May 31st, 2019, whereas transactions from the subsequent three-month period
between June 1st, 2019, and August 31st, 2019, are used as test data. Both parts
encompass the same sets of users and items, respectively. In effect the train-test
split thus takes on a 75%-25% ratio.

Users and Items Included

Since the company features great numbers of both users and items, processing the
entire set of available transactions is not feasible without considerable computation
power which, to this scale, is not accessible here. Therefore, for this Thesis, an ex-
tract of purchasing data is usedö. This extract is selected according to the following
criteria:

13In order to uphold the ability to publish this Thesis for any audience, no information which
might reveal the company’s identity is disclosed.
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• Comparability. The company has evidence suggesting that user clienteles
vary across the countries the company operates business in, due to demo-
graphic and regional idiosyncrasies. Likewise, item assortments are country-
specific. Since latent factor models seek to exploit correlations across users
and items, though, it appears sensible to restrict recommendations to user
and item groups deemed sufficiently similar for meaningful correlation-based
recommendations. Therefore, only purchases of items offered in Germany by
users registered in Germany are taken into account.

• Activity. Users and items included are selected based on transaction activity,
that is, only those users and items with a certain amount of purchases in the
considered time period are covered. This approach reflects reality since, as
has been argued above, recommendation quality tends to deteriorate with
mounting data sparsity. For users and items with very few transactions (or
even none at all), other methods than latent factor models are often more
advisable.

• Applicability. Some groups of users and items need to be excluded as they
are not fit to produce sensible recommendations. Concerning the former, these
are users with an implausibly high number of transactions (due to fraudulent
use of user accounts, as the company’s information suggests), so only users
with a maximum of 50 purchases in the regarded time period are selected.
This corresponds roughly with at most weekly purchases, which is plausible in
the company’s business environment. Also items from certain item categories
that are not applicable for recommendations are omitted.

• Processability. The total number of users and items is substantially re-
stricted by the available computation capacity. For this analysis, dimensions
of just under 30 million elements in the ratings matrix have been found to
work sufficiently well (larger dimensions cause problems with memory space;
details on processing infrastructure and methods may be found in the following
section).

• Proportionality. The exact numbers of users and items are determined
according to the company’s actual ratio of registered users to items on offer,
which is roughly 3.5, so, in total, the 10,000 most active users and 3,000 most
frequently purchased items are selected14.

Due to the absence of some interactions out of the Cartesian product of these sets
in the regarded time period, the resulting ratings matrix is slightly smaller than the
maximum. With a total amount of 9,766 users and 2,993 items taken into account,
it contains 29,229,638 elements (see Table 4). Note how the curse of dimensionality
comes into effect here: the already considerable size of the input matrix arises from
selecting a few thousand users and items, numbers that are dwarfed by the amounts
of data real-world applications - relying on vast amounts of storage and computation
capacity - need to process.

14In order to ensure model applicability throughout the time period regarded, only users that
had been enrolled during the entire time are eligible. Similarly, only products that had consistently
been part of the assortment are covered.
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Effective number of users 9,766
Effective number of items 2,993
Total effective number of matrix elements 29,229,638
Time period for training Sep 1st, 2018 to May 31st, 2019
Time period for testing Jun 1st, 2019 to Aug 31st, 2019

Table 4: Summary of information on the input data sets

Form of Data Input

The raw training and test data sets are extracted from the company’s data warehouse
(the corresponding query may be found in the Appendix under Section A.2). Both
are of identical shape and contain one row per transaction, that is, per purchase of
item i by user u. Users and items are represented by their respective IDs, such that
each transaction consists of a tuple (UIDu, IIDi)s. Note that a tuple may appear
repeatedly if u purchased i multiple times within the period considered. Table 5
shows the first five rows of the training data set as an example:

UID IID
lSV+IWuYeCd6ZXSdWjV7UOopYUqPPyRAJiMmkCdFKZlvP2ZV 491549592
lSR3JmYjdSR6aHYtUzV7ncAqYUpAPitAkZIrOSJDkZ9jOVNl 492096516
JCFDIlcmQpd6b3EuZjV7S7kiYXSKj5hAJZUoiyZykZtoQFVm 491293926
lyN0LmiWcyF6Y0icYzV7Tux3YUo6O5ZAIpUlOZh3nithimRn 491794006
LSN0KGWUd5V6ZXQrZTV7oPAkYXM5MyFAmCSYPJZznZtVj1Jk 492086821

Table 5: Extract of the training data set

Descriptive Attributes of Data Input

In order to obtain a more in-depth picture of the data structure and also to identify
potential outliers or implausible observations, both data sets shall be examined more
closely with respect to their major statistical characteristics. As the Hu-Koren-
Volinsky model takes the matrix of raw ratings as input, tuples of transaction data
are processed in a way that the absolute frequency of each transaction (UIDu, IIDi)
is represented by the corresponding cell rs,ui in Rs (s ∈ {training, test}). Table 6
lists the main attributes of training and test ratings.

Data Min Mean Median Max STD Sparsity
Rtraining 0 0.00336 0 50 0.09552 99.668%
Rtest 0 0.00265 0 1 0.05149 99.738%

Table 6: Major statistical attributes of training (Rtraining) and test (Rtest) data . Min is short for
minimum, Max for maximum, and standard deviation is abbreviated by STD.

As expected, the minimum rating in both data sets is 0, equalling a non-observed
purchase by user u of item i. The maximum rating of 50 in the training set appears
surprising at first but is not implausible since many items included have a higher pur-
chasing frequency. While such high values should certainly be regarded as outliers -
the median of 0 suggests their exceptionality - no need for deletion or manipulation
can be identified. The maximum rating of 1 in the test data, on the other hand,
remains fully within the expected spectrum. Mean and standard deviation reflect
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the difference in value ranges of training and test data. Lastly, it becomes clear how
very sparse the data sets are: non-zero elements account for less than 0.5% in both
cases. The fact that the test matrix is even sparser than the training matrix can
conceivably be attributed to the shorter time period the former stems from (i.e., less
time for transactions to occur).

Drilling down on the two dimensions of the data reveals the distribution of pur-
chases across users and items. In Figures 8 to 13 below the different distributions are
displayed. Red and taupe colors represent training and test data sets, respectively.
Distributions across users are shaded darker, whereas light colors mark the items
dimension. Since single items have larger maximum purchasing frequencies than
single users and their distribution is more strongly skewed, lower numbers being
more probable, two types of histogram are used to depict the items dimension. The
first one (Figures 10 and 11) shows the purchase distribution across the whole range
of values and the second one (Figures 12 and 13) zooms into the denser region of
zero to 100 purchases.
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The number of purchases per user takes on a similar shape in training and test
data (Figures 8 and 9). Both distributions are skewed towards lower values and
concentrated around a mode of six purchases, with a tail reaching to 50 purchases
in the training and 28 in the test set. As the test data result from a shorter time
period, their somewhat higher density in lower values is plausible.

Figure 8: Distribution of the number of purchases per user in training data. The horizontal
axis represents the number of purchases. Bars display the absolute frequency of users with the
corresponding number of purchases (right vertical axis), the line depicts density (left vertical axis).

Figure 9: Distribution of the number of purchases per user in test data. The horizontal axis repre-
sents the number of purchases. Bars display the absolute frequency of users with the corresponding
number of purchases (right vertical axis), the line depicts density (left vertical axis).

Regarding the items dimension, a much greater variance in the number of pur-
chases becomes visible. Again, distributions for both training and test data are
strongly skewed to the left with some outliers far in the area of larger values. Consid-
ering the variety of items included, some being high-frequency products and others
having a long product life cycle, this remains fully within the expected range.
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Figure 10: Distribution of the number of purchases per item in training data. The horizontal
axis represents the number of purchases. Bars display the absolute frequency of items with the
corresponding number of purchases (right vertical axis), the line depicts density (left vertical axis).

Figure 11: Distribution of the number of purchases per item in test data. The horizontal axis repre-
sents the number of purchases. Bars display the absolute frequency of items with the corresponding
number of purchases (right vertical axis), the line depicts density (left vertical axis).

In order to get a more detailed picture about the lion’s share of density, the two
figures below confine the range of purchases to a maximum of 100. Training and
test data show similar characteristics, with purchase numbers of around ten being
most frequent. Due to the shorter time scope, here too the test set’s distribution is
even more heavily skewed leftwards.
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Figure 12: Distribution of the number of purchases per item in training data, confined to 100.
The horizontal axis represents the number of purchases. Bars display the absolute frequency of
items with the corresponding number of purchases (right vertical axis), the line depicts density
(left vertical axis).

Figure 13: Distribution of the number of purchases per item in test data, confined to 100. The
horizontal axis represents the number of purchases. Bars display the absolute frequency of items
with the corresponding number of purchases (right vertical axis), the line depicts density (left
vertical axis).

All in all, the number of purchases across users and items is distributed in a
plausible form and does not point to any irregularities or faultiness of data. As
expected, single users and items predominantly feature only relatively small amounts
of purchases, which might prove challenging to recommendations. Section 5.3 will
discuss how well the model copes with this data sparsity. In the following, the
methodological process for fitting and evaluating the model is laid out in detail.

5.1.2 Methodology

The analytical process encompasses several steps that are classic to predictive mod-
eling (see for example Aggarwal (2016, Chapter 2.2)), listed below. All statistical
computations are carried out in the software R (R Core Team, 2019). Besides stan-
dard R language, the following programming packages are used: tidyr for processing
data in a tidy manner (Wickham and Henry, 2019), dplyr for facilitating data ma-
nipulation (Wickham, François, Henry and Müller, 2019), Matrix for storing large,
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sparse matrices efficiently (Bates et al., 2019), Rfast for performing fast calculations
(Papadakis et al., 2019), foreach for parallelizing computations (Wickham, Chang,
Henry, Pedersen, Takahashi, Wilke, Woo and Yutani, 2019), doParallel as back-
end for foreach (Ooi et al., 2019), ggplot2 for flexible graphics (Ooi and Weston,
2019), plotly for visualizing three-dimensional data (Sievert et al., 2019), and, lastly,
ROCR for visualizing ROC curves (Sing et al., 2015). All major procedures are
self-implemented so as to ensure sufficient flexibility for customization. To enhance
feasibility despite the resulting larger computational requirements, procedures are
parallelized as far as possible. For the same purpose computations are carried out
on the Linuxcluster of the Leibniz Supercomputing Center of the Bavarian Academy
of Sciences and Humanities (LRZ), employing eight central processing units. In the
following, the analytical scheme is laid out step by step.

[1] Pre-process data. Pre-processing in this case is not cumbersome and merely
consists of transforming the input data sets into ratings matrices Rtraining and
Rtest. Since both are very sparse, as shown above, they can be stored in a
memory-sparing way logging only the non-zero matrix elements.

[2] Split data in to training and test sets. As has been explained above, the
nature of implicit feedback requires partitioning the data ex ante.

[3] Fit model with optimized hyper-parameters

[3.1] Determine trial points for hyper-parameters. As discussed in Sec-
tion 4.2, grid and random search serve to confine the search space to a fi-
nite number of trial points Θtrial which can be tested for hyper-parameter
optimization. However, both require the initial specification of ranges for
each hyper-parameter over which to form the search grid or from which to
draw random trial points. This endeavor is largely driven by trial-and-
error. In the original setting, the authors hint at which values for the
number of factors, α, and λ, respectively, work best for their application.
These values, though strongly dependent on the concrete data situation,
are taken as naive starting points:

• Number of factors. This hyper-parameter greatly impacts compu-
tational requirements, which is why the number of factors is capped
by computational capacity. In Hu et al. (2008), the authors test val-
ues ranging between ten and 200, albeit for a substantially larger data
set with millions of non-zero entries alone. They find larger numbers
of factors to perform better (Hu et al., 2008). Since the data ex-
amined here is of much lower dimension and computation power is
presumably restricted even more, values from ten to 20 factors are
tested.

• Confidence parameter α. Here the authors merely mention that
α = 40 yields satisfying results (Hu et al., 2008). In the attempt to
cover a large area around this point, the test range for α is set to [10,
100].

• Regularization parameter λ. The only hint about a sensible value
of λ refers to a model without confidence adjustment that the authors
use as baseline for their proposal (Hu et al., 2008). Lacking other
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plausible suggestions, λ is also tested in values ranging from ten to
100. Table 7 summarizes the respective lower and upper bounds for
all three hyper-parameters.

Hyper-parameter Lower bound Upper bound
Number of factors 10 20
α 10 100
λ 10 100

Table 7: Search space for hyper-parameter tuning. The three hyper-parameters over
which the model is optimized - the number of factors, confidence parameter α and
regularization parameter λ are displayed along with the respective lower and upper
bounds of the range from which their values have been tried.

The shape of the resulting search grid in grid search is strongly deter-
mined by the number of factors which must obviously take on an integer
value. Therefore, eleven distinct values (length of the range from ten to
20) for each hyper-parameter are tested, such that, in total, grid search
is performed over 113 = 1, 331 combinations. Since random search is
expected to cover the search space more efficiently, a smaller number
of trials should suffice here. The amount of trials is set to 266, which
corresponds with 20% of trials in grid search.

[3.2] Fit model on training data for each trial combination of hyper-
parameters and evaluate model performance. In this step, the
Hu-Koren-Volinsky model (without alterations to the form originally pro-
posed in Hu et al. (2008)) is fitted for each hyper-parameter combination
in Θtrial,GS from grid search and Θtrial,RS from random search, respec-
tively. Since the inherent ALS algorithm can per se be executed indef-
initely, stopping criteria which cause the factorization to terminate are
applied. For the execution to abort, either a critical value of the model
evaluation measure (30%) must be reached or the a maximum number of
five iterations must be completed. Model evaluation adopts the originally
proposed evaluation measure by Hu et al. (2008). Neither the original
setting nor the one examined here offers the opportunity to assess users’
reaction to recommendations (with the exception of a purchase, whose
absence, as has been argued, can stem from a variety of reasons), and,
consequently, quantify prediction error. Error-based metrics thus do not
serve the evaluation purpose well. Instead, a form of decision-support-
based measure is applied. The average rank (rank) is akin to the concept
of recall and assesses how well the items actually consumed by a user are
represented in the recommendation list. For each user-item interaction,
rankui denotes the percentile-rank of item i in user u’s recommendation
list. Values of rankui range between 0% for the topmost and 100% for
the least recommended item, where random predictions have an expected
rankui of 50%. Percentile-ranks are then weighted by users’ real ratings
rui and aggregated over all users and items, such that only ranks on ac-
tually consumed items (where rui > 0) are included and lower values of
rank are desirable as these indicate that actually consumed items are
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located further up the recommendation list (Hu et al., 2008):

rank =

∑m
u=1

∑n
i=1 ruirankui∑m

u=1

∑n
i=1 rui

(26)

The denominator places rank into a [0, 1] interval where low values are
preferable and 50%, corresponding to random prediction, acts as bench-
mark for model quality. Figure 14 illustrates the functionality of rank for
two different models A and B, both of which provide recommendations
on a total of nine items for a single user u. True ratings rui are sorted in
descending order and models’ rankings rankui,A, rankui,B are displayed
alongside. It is clearly visible that model A shows a better recall - it
only confuses items 2 and 3 while model B mis-ranks several items. Con-
sequently, ranku,A equals 17.5% but model B scores rather poorly with
ranku,B = 35%:

Item i rui rankui,A rankui,B rui · rankui,A rui · rankui,B
Item 1 4 0.000 0.500 0.000 4.000
Item 2 3 0.250 0.125 1.500 1.500
Item 3 1 0.125 0.000 0.125 0.000
Item 4 1 0.375 0.625 0.500 0.500
Item 5 1 0.500 0.500 1.000 1.000
Item 6 0 0.625 0.250 0.000 0.000
Item 7 0 0.750 0.750 0.000 0.000
Item 8 0 0.875 0.875 0.000 0.000
Item 9 0 1.000 1.000 0.000 0.000
SUM 10 1.750 3.500

ranku,A =

∑9
i=1 ruirankui,A∑9

i=1 rui
=

1.75

10
= 0.175

ranku,B =

∑9
i=1 ruirankui,B∑9

i=1 rui
=

3.5

10
= 0.35

Figure 14: Exemplary calculation of average rank measure. Column rui lists true
user ratings on items 1-9. The two subsequent columns contain models’ respective
rankings on these items. The product of user ratings and model rankings is calculated
in the last two columns, the respective sum of which marks the counter in the ranku,X
(X ∈ {A,B}) measure. Dividing by the sum over rui yields the respective ranku,X
values (Source: own illustration).

[3.3] Select best models. After fitting all possible models with trial points
from grid and random search, the respective best model from both ap-
proaches is determined according to the lowest achieved average rank.

[4] Examine best models. Eventually, the models selected in Step 3.3 are exam-
ined more closely in order to assess their performance, providing a foundation
for the discussion in Section 5.3.
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5.2 Results

5.2.1 Results of Grid Search

After trying 1,331 different combinations of the three hyper-parameters to be speci-
fied (making up Θtrial,GS), grid search returns the locally optimal Hu-Koren-Volinsky
model with

• 20 factors,

• confidence parameter α = 100, and

• regularization parameter λ = 10.

Figure 15 displays all hyper-parameter combinations constituting Θtrial,GS, each
represented as a point in the three-dimensional sub-space of Θ yielded by confining
the search space to the examined ranges. The grid-like structure of the search
space is easily visible. Points are colored according to the average rank measure of
the specified model, where darker colors indicate lower average rank values and thus
better models. It becomes clear that well-performing models are concentrated in the
area of high factor numbers, high α and low λ. The point representing the locally
optimal model is located in the foremost corner on the plane marking λ = 10.

The model achieves satisfying results with an average rank of 6.83%, remaining
well below the benchmark of 50% expected from random recommendations. This
means that items actually purchased in the test phase are on average located within
the top 6.83% of the recommendation list, indicating that the model is capable of
grasping users’ affinities quite well.
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Figure 15: Average rank of models by hyper-parameter value as obtained by grid search. The three
hyper-parameters factor amount, α and λ are mapped to the x-axis, y-axis and z-axis, respectively.
Each point in the thus constituted space represents a different model with corresponding hyper-
parameter values. Darker colors indicate lower average rank values and therefore better models.

Addressing accuracy from another angle, the ROC curve of the locally optimal
model, as obtained by grid search, is displayed in Figure 16. As has been argued
before, collaborative filtering with implicit feedback is essentially a classification
problem. Interpreting the binarized preferences indicated by the presence or absence
of a purchase in the test phase as classes relevant and irrelevant, and ranks assigned
by the model as an estimation for class membership, allows for construction of the
ROC curve and the corresponding AUC measure. The visualization suggests that
the model achieves near perfect classification, which is corroborated by the high
AUC value of 93.35%.
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Figure 16: ROC curve of the locally optimal model as obtained by grid search. On the horizontal
axis, the false positive rate is displayed, while sensitivity is mapped to the vertical axis. An ideal
ROC curve would rise vertically until reaching a sensitivity of 1, then stretch horizontally.

5.2.2 Results of Random Search

Random search identifies the locally optimal model in a similar area of the searched
sub-space of Θ, albeit after only 266 trials. Here, the best hyper-parameter combi-
nation consists of

• 20 factors,

• confidence parameter α = 91.94, and

• regularization parameter λ = 24.42.

Like grid search, 20 factors are deemed locally optimal. Also, confidence pa-
rameter α remains in the neighborhood of the value grid search found to work
best; regularization parameter λ is somewhat higher though. Model performance is
slightly below that of the one obtained by grid search and is assigned an average
rank of 7.27%, so items actually purchased in the test phase are on average located
within the top 7.27% of the recommendation list. The locally optimal model is situ-
ated just above the foremost bottom corner of the cubical sub-space of Θ displayed
in Figure 17. In contrast to the even structure observed in grid search, trial points
are now scattered throughout the cube.
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Figure 17: Average rank of models by hyper-parameter value as obtained by random search. The
three hyper-parameters factor amount, α and λ are mapped to the x-axis, y-axis and z-axis, respec-
tively. Each point in the thus constituted space represents a different model with corresponding
hyper-parameter values. Darker colors indicate lower average rank values and therefore better
models.

The ROC curve for the model selected in random search, depicted in Figure 18,
appears almost identical to the one in grid search. Consequently, its AUC is almost
as high with 92.88%. Both approaches are thus very well capable of discriminating
between relevant and irrelevant items.

While this may seem desirable at first glance, the high number of factors chosen
to fit the two models and the good recommendation results give rise to the concern
that both might be over-specialized. This problem will be discussed in the following
Section.
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Figure 18: ROC curve of the locally optimal model as obtained by random search. On the hori-
zontal axis, the false positive rate is displayed, while sensitivity is mapped to the vertical axis. An
ideal ROC curve would rise vertically until reaching a sensitivity of 1, then stretch horizontally.

5.3 Discussion

5.3.1 Critical Assessment of Both Approaches

The first conclusion to be drawn from the results discussed above is that random
search for hyper-parameter optimization should be preferred over grid search. Al-
though grid search finds a slightly better model, this advantage becomes insignificant
when considering the fact that it took five-fold computation time for grid search to
come up with this result. Time being costly, as argued earlier on, the slender differ-
ence in average rank values will hardly suffice for choosing grid search nonetheless.
Other research offers similar results, suggesting that, despite its simplicity, random
search is an efficient methodology for hyper-parameter optimization (at least if the
number of hyper-parameters to be tuned is small). For instance, Mantovani et al.
(2015) find that for optimization of support vector machines, random search per-
forms equally well as grid search and also as more complex algorithms, but with much
less computational effort (Mantovani et al., 2015). Bergstra and Bengio (2012) reach
the same conclusion and even obtain better models through random search in some
cases. They attribute the relative disadvantage of grid search mainly to the fact
that it covers all dimensions of the search space evenly, even though model quality
is often mainly driven by few hyper-parameters. Random search, by contrast, avoids
allocating too much time for searching unpromising areas of Θ. Another positive
aspect arising from randomness is that new trial points can be added at any time,
where grid search would require to adjust the entire search grid at high computa-
tional costs (Bergstra and Bengio, 2012). So, in an environment where computation
power is expensive, random search is shown to be an efficient approach to optimizing
model hyper-parameters.

However, as has been hinted at in the previous section, the very good results
of both approaches might actually point to a heavy over-specialization. This term
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refers to the tendency of collaborative filtering models to anchor recommendations
at past user behavior overly strongly (see for example Adamopoulos and Tuzhilin
(2014)). Such a propensity is to some degree inherent to collaborative filtering
but often stands in conflict to beyond-accuracy recommendation goals. Narrowly
specialized models such as the ones fitted here will struggle to offer, say, novel or
broadly diversified items to users (Adamopoulos and Tuzhilin, 2014). Interestingly,
the original work by Hu et al. (2008), whose implementation achieves an average rank
of 8.35% and thus appears similarly biased towards accuracy, does not mention the
issue. Within the scope of this Thesis and the data used herein, it can be concluded
that the Hu-Koren-Volinsky model succeeds at capturing past user behavior quite
well. An actual application must surely consider modifications so as to balance
model accuracy with other goals of recommendation. In the last section, some
conceivable enhancements to the Hu-Koren-Volinsky model as implemented here
are discussed.

5.3.2 Possible Enhancements

Research on collaborative filtering for implicit feedback suggests there is still ample
room for optimization. First and foremost, the model implemented in this analy-
sis cannot handle large numbers of users and items well and thus offers only very
limited scalability. This shortcoming, though major, can easily be fixed by building
a more powerful computational infrastructure. There are other aspects, however,
that lie beyond the scope of the Hu-Koren-Volinsky model as implemented here:
improvements might be gained from including additional aspects of the data into
the model, using alternative model families, or performing hyper-parameter tuning
differently.

Modifying Data Input

While it is an inherent strength of collaborative filtering methods that they draw
solely on historic user-item interactions, higher recommendation quality might be
achieved from incorporating additional information, particularly so if such data is
available without further costs. One aspect that is, for instance, discussed by Leim-
stoll and Stormer (2007) is seasonality. Seasonal items are on offer only for certain
time periods. In order to avoid recommending to a user items that cannot even be
purchased at the time and are thus temporarily irrelevant, the system should be able
to identify all seasonal items along with their respective selling period and tweak
recommendations accordingly. The former is a concern of product management, the
latter requires alterations of the recommendation list (Leimstoll and Stormer, 2007).

Besides fluctuations that affect all users simultaneously, relevance of items might
also vary on a user-individual level in a sense that it might be time-dependent. As
Ding and Li (2005) argue, it is easily conceivable that since an interaction dat-
ing back several years a user’s preferences may have changed substantially; recent
purchases, by contrast, should give a more reliable idea on the current user profile.
However, classic collaborative filtering methods and the Hu-Koren-Volinsky model in
particular do not distinguish between old - possibly outdated - and recently observed
data. In order to keep their recommendations relevant, they must be re-trained on
a regular basis. This shortcoming can be mitigated in different ways. Obviously,
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older data could simply be omitted from analysis, but since observations in implicit
feedback are typically very scarce already, this might aggravate the sparsity problem
to an extent where meaningful recommendations are no longer possible (Ding and
Li, 2005). Also, research suggests that older data contribute less but still positively
to model quality (de Pessemier et al., 2010). As an alternative, several types of
models that capture temporal dynamics have been developed. Vinagre et al. (2015)
cluster these into two different approaches. Time-aware algorithms seek to exploit
temporal patterns by enriching data input with time stamps. This way, the change
of user behavior over the course of a day, week or year can be considered for rec-
ommendations. Time-dependent methods interpret data as a chronological sequence
and strive to identify unprecedented behavioral changes rather than cyclical pat-
terns. In both variations models can be technically constructed by projecting the
user-item matrix into a temporal dimension, creating a three-dimensional tensor
that is then factorized (Vinagre et al., 2015).

Another conceivable enhancement also tackles the convenient but potentially
sub-optimal simplicity of purely transactional data input. Borrowing the idea be-
hind content-based recommender systems, data is enriched by user and item features
that are believed to carry valuable information not entirely captured by latent factors
(or not extractable from factors by human operators). In what they have dubbed
attentive collaborative filtering, Chen et al. (2017) attempt to make use of additional
information from item features. They identify two forms of implicitness of feedback.
The first concerns the selection of items itself in a sense that preferences cannot
be directly derived from observing or not observing interactions. This dimension
of implicitness is fully acknowledged and covered by the Hu-Koren-Volinsky model
already. However, the authors point to a second dimension regarding the content of
items: even in the event of a user preferring an item, it cannot be known whether all
components of the item are approved of since there is typically no explicit feedback.
They propose an integrated model capable of incorporating component-related in-
formation in the form of item features, which could well improve the implemented
model also (Chen et al., 2017).

Choosing Alternative Models

Apart from data enrichment it is certainly worth considering to alter the type of
model altogether. He et al. (2017) argue that the inner product of loadings vectors
xu and yi, which is taken to predict user u’s affinity towards item i (see Equation
14), fails to capture all the complex user-item interactions taking place in the low-
dimensional factor space. In order to mitigate this shortcoming, models must be
allowed to perform the representation with a large number of factors, which might
in turn lead to over-specialization with respect to the training data. The fact that
both grid and random search find the model with the maximum amount of factors to
be locally optimal in this analysis might be related to this observation. The authors
propose a model based on neural networks which they show to be a generalization of
matrix factorization (He et al., 2017). A similar technique is examined by Covington
et al. (2016) who apply a generalized matrix factorization framework in form of a
pair of neural networks to video recommendations. Their studies also suggest that
these models are capable of outperforming classic matrix factorization (Covington
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et al., 2016). Such approaches certainly appear promising, and the recency of those
and other researchers’ work in this area hint at the untapped potential that might
still be hidden in the field of collaborative filtering.

Performing Hyper-Parameter Optimization Differently

Lastly, the process of hyper-parameter optimization on any model, potentially mod-
ified with some of the aforementioned proposals, could be carried out in a different
way. To begin with, there are various alternative evaluation criteria applicable to
the optimization process, as has been discussed in Section 2.3.4. In what has already
been identified as a shortcoming of the modeling process implemented here, model
quality is solely based on ranking accuracy. This introduces a natural bias towards
more frequently purchased items. The operator of a recommender system, however,
might want to take additional aspects, such as serendipity or item diversity, into
account. For example, Wang et al. (2018) propose a model which incorporates item
diversity, measured through the degree of orthogonality between item vectors, di-
rectly into the objective function. Vargas et al. (2011) define a two-step process
where recommendation lists obtained through matrix factorization are manipulated
with a diversification algorithm whose objective function seeks to balance similarity
and diversity. An alternative approach, suggested by (Cheng et al., 2017), couples
the two optimization problems in a supervised-learning setting and implements a
single, learning-based collaborative filtering algorithm.

Besides modification of the evaluation criterion, model optimization might be
ameliorated by using alternative tuning methods. Grid and random search are
simple and easy to implement but perform optimization in a brute-force manner.
In machine learning, hyper-parameter tuning via Bayesian optimization has been
an object of active research. Rather than applying many different hyper-parameter
values in a trial-and-error manner, the Bayesian approach aims at reducing the
number of trials to a minimum. It views hyper-parameter tuning as a problem
with an unknown objective function. In order to solve this problem, some surrogate
model that incorporates prior belief and updates information throughout the process
is used to estimate the objective function. A so-called acquisition function proposes
a sampling point out of the search space Θtrial which has a high probability of
improving the model. The surrogate function is then evaluated at this point. With
this new information, the updated acquisition function directs the search to the next-
best hyper-parameter combination (Snoek et al., 2012). Since each trial of hyper-
parameter combinations within latent factor models requires fresh factorization of
typically very large matrices, speeding up the tuning process this way might be a
another considerable improvement.
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6 Conclusion

This Thesis has implemented a latent factor model, originally proposed by Hu et al.
(2008), as a collaborative-filtering-based recommender system for German retail
data. Latent factor models take a user-item ratings matrix, each of whose elements
represents the rating of a specific user u on an item i, as input and performs factor-
ization into two smaller matrices that contain users’ and items’ loadings on certain
latent factors. Latent factors in this context are best thought of as user affinities
that items satisfy to varying degree. This way, the typically high-dimensional data
is compressed into a low-rank space in which both users and items are represented
by the same dimensions. Crucially, factorization is successful even if the ratings ma-
trix has missing values. These unobserved ratings can be estimated by taking the
cross-product of the respective user and item loadings vectors. However, the implicit
nature of the user feedback processed in this model, namely binary transaction data,
impedes the identification of user preferences in a sense that unobserved transac-
tions do by no means allow to immediately conclude a lack of preference. Rather,
observed and unobserved transactions are treated with different levels of confidence.
In order to find the optimal latent-factor representation of the user-item correlation
structure, the model minimizes the confidence-weighted sum of prediction errors.
The model was evaluated by comparing recommendations with real transactions of
a later time period. Ranking accuracy served as an evaluation criterion: ideally, all
items actually purchased in the test phase should be located high up the recommen-
dation list. The three hyper-parameters shaping the Hu-Koren-Volinsky model - the
number of latent factors, the difference in confidence levels of observed and unob-
served ratings, and the regularization parameter - were optimized using grid search
and random search as contesting tuning techniques. Both methods found quite sim-
ilar results, but random search did so much more efficiently, needing only 20% of
the number of trials in grid search to achieve roughly equivalent quality. Indeed,
the locally optimal models constructed by both approaches achieved a very good
ranking accuracy. Yet this highly accurate recreation of past user behavior stands
in conflict with other objectives of recommendations, such as proposing novel or di-
verse items, and fails to take changes in behavior into account. Therefore, while the
Hu-Koren-Volinsky model has proven to derive accurate recommendations for the
data analyzed herein, several fields of potential improvement have been identified.
These include, among others, boosting scalability and the incorporation of beyond-
accuracy recommendation goals. The task of recommendation in general remains a
topic attracting plenty of research. Certainly, the future will yet see a lot of fresh
ideas and progress on the issue.
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A Appendix

A.1 First-Order Conditions in the Hu-Koren-Volinsky Model

While the original paper by Hu et al. (2008) does not provide step-wise calcula-
tions, a development of the first-order conditions of the author’s own account may
be found here. Since conditions for xu and yi can be obtained in analogous manner,
only calculations for user u are listed.

The objective function of the Hu-Koren-Volinsky model for user u is given by

arg min
X,Y

JHKV,u = arg min
X,Y

n∑
i=1

cui
(
pui − xTuyi

)2
+ λ

(
‖xu‖2

F +
n∑
i=1

‖yi‖2
F

)
= arg min

X,Y
Cu
(
pu − xTuY

)2
+ λ

(
‖xu‖2

F + ‖Y ‖2
F

)
,

which, by differentiation for xu, leads to the first-order condition of Equation 17:

−2Y TCu
(
pu − xTuY

)
+ 2λxu = 0

⇔ Y TCu
(
pu − xTuY

)
− λxu = 0

⇔ Y TCupu − Y TCuxTuY − λxu = 0

⇔ Y TCupu = Y TCuxTuY + λxu

⇔ Y TCupu = xu
(
Y TCuY + λI

)
⇔ xu =

(
Y TCuY + λI

)−1
Y TCupu
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A.2 SQL Query for Data Extraction

For the sake of anonymity, names of tables and columns have been modified so as
not to be recognizable for anyone who might know the company the data originates
from. In fact, the query is executed twice with different 〈start〉 and 〈end〉 parameters
in order to obtain training and test data. The extraction of test data is thereby
restricted to the user and item IDs of the training data.

SELECT a.uid

, a.iid

FROM salestable AS a

INNER JOIN (

SELECT DISTINCT aa.uid

, COUNT (*) AS npurchased

FROM salestable AS aa

INNER JOIN (

SELECT DISTINCT uid

, MIN(fromdate) AS fromdate

, MAX(tilldate) as tilldate

FROM enrolmenttable

WHERE country = ’GERMANY ’

GROUP BY 1

) bb ON aa.uid = bb.uid

AND fromdate <= ’2018 -09 -01’

AND tilldate >= ’2019 -08 -31’

INNER JOIN (

SELECT uid

FROM (

SELECT DISTINCT uid

, COUNT (*) AS npurchased

FROM salestable

WHERE 1=1

AND date BETWEEN ’2018 -09 -01’

AND ’2019 -08 -31’

AND country = ’GERMANY ’

GROUP BY 1

HAVING npurchased <= 50

) aaa
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) cc ON aa.uid = cc.uid

WHERE 1=1

AND date BETWEEN ’2018 -09 -01’

AND ’2019 -08 -31’

AND transactiontype = ’PURCHASE ’

GROUP BY 1

QUALIFY ROW_NUMBER () OVER

(ORDER BY npurchased DESC) <= 10000

) b ON a.uid = b.uid

INNER JOIN (

SELECT DISTINCT aa.iid

, COUNT (*) AS npurchased

FROM salestable AS aa

INNER JOIN (

SELECT DISTINCT iid

, MIN(releasedate) AS fromdate

FROM producttable

WHERE isdeleted = 0

GROUP BY 1

) bb ON aa.iid = bb.iid

AND fromdate <= ’2018 -09 -01’

LEFT JOIN producttable cc

ON aa.iid = cc.iid

WHERE 1=1

AND date BETWEEN ’2018 -09 -01’

AND ’2019 -08 -31’

AND transactiontype = ’PURCHASE ’

AND category = ’APPLICABLE ’

GROUP BY 1

QUALIFY ROW_NUMBER () OVER

(ORDER BY npurchased DESC) <= 3000

) c ON a.iid = c.iid

WHERE date BETWEEN <start > AND <end >
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B Electronic Appendix

This Thesis is supplemented by additional material submitted in electronic form.
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