
Ludwig-Maximilians-Universität München
Faculty for Mathematics, Computer Science and

Statistics

Master’s thesis

De novo drug design in continuous space

Author:

Tuan Le

Supervisor:

Prof. Dr. Ulrich Mansmann [LMU]
Dr. Roman Hornung [LMU]

Dr. Djork-Arné Clevert [Bayer AG]
M.Sc. Robin Winter [Bayer AG]

11th November 2019

Abstract

Finding novel compounds with favorable properties is an essential step in the drug
discovery process. In-silico de-novo drug design seeks to generate novel chemical
compounds, tailored to very specific healthcare needs using computational meth-
ods.
Recently, much work has been done to utilize generative models to generate and
enrich molecular libraries with compounds that satisfy specified biochemical and
physicochemical properties. Most state-of-the-art generative models in drug discov-
ery utilize the capabilities of deep neural networks and many work with string-based
representations of compounds. In contrast to most recent state-of-the-art generative
models, we use a continuous vector representation of compounds that was learned
by unsupervised pre-training.
The main goal of this thesis is to develop and benchmark generative adversarial
networks (GANs) that learn the continuous data distribution of ChEMBL, a large
chemical database of already synthesized compounds.
First, we show that our GAN is able to learn the distribution of compounds in
ChEMBL while generating novel and diverse compounds, and that it is competitive
against other state-of-the-art methods when compared in the GuacaMol benchmark,
which is a standardized evaluation framework for de novo generative models.
Next, we address the main goal in de novo drug design to generate chemical libraries
with compounds that satisfy specific physicochemical properties. We optimize our
GAN to generate compounds that are very drug-like by maximizing a single metric
called the QED (Quantitative Estimate of Druglikeness). Our final GAN model is
able to generate novel and diverse molecules with high QED values.

Contents

1 Introduction 1
1.1 Generative Models in Drug Discovery 2

2 Theoretical Framework 6
Notation . 6

2.1 Molecular Representation . 6
2.1.1 InCHI Representation . 8
2.1.2 SMILES Representation . 8

2.2 Deep Learning . 13
2.2.1 Feedforward Neural Network 13
2.2.2 Basics and Building Blocks . 15

2.2.2.1 Weight Matrices and Biases 15
2.2.2.2 Activation Functions 17
2.2.2.3 Loss Functions . 19

2.2.3 Regularization . 21
2.2.4 Training . 22
2.2.5 Optimization . 23

2.2.5.1 Gradient Descent . 23
2.2.5.2 Backpropagation . 25

2.2.6 Recurrent Neural Network . 28
2.2.6.1 Vanilla Recurrent Neural Network 29
2.2.6.2 Application of RNNs in Drug Discovery 34

2.3 Autoencoders . 37
2.3.1 Translation Model to Learn Molecular Descriptors 39

2.4 Generative Adversarial Networks . 42
2.4.1 Divergence Metrics . 43

2.4.1.1 Kullback-Leibler Divergence 43
2.4.1.2 Jensen-Shannon Divergence 44
2.4.1.3 Wasserstein-1 Distance 45

2.4.2 Vanilla GAN . 47
2.4.3 Wasserstein GAN . 53
2.4.4 Improved Wasserstein GAN 57

3 Dataset 61

4 Application 62
4.1 Technical Information . 62
4.2 Learning Multivariate Normal Distribution 63

4.2.1 Evaluation Metrics . 63
4.2.2 Results . 65

4.3 Learning ChEMBL space using CDDD Representations 68
4.3.1 Evaluation Metrics . 68
4.3.2 Results . 72
4.3.3 Druglikeness of Generated Molecules 78
4.3.4 GuacaMol: Distribution-Learning Benchmark 79

4.4 Optimizing Molecules in Learned ChEMBL Space 82
4.4.1 FeedbackGAN . 83
4.4.2 Results . 85

5 Discussion 92
5.1 Outlook / Future Work . 96

Appendices 97
A Derivation of Wasserstein GAN . 97

A.1 K-Lipschitz Continuity . 97
A.2 Definition Wasserstein-p Distance 99
A.3 Derivation Sketch Dual Problem of Wasserstein-1 Distance 99

B Maximum Likelihood Optimization and Kullback-Leibler Divergence
Minimization . 102

C Distribution-Learning . 103
C.1 Exploring different Architectures and Settings 103
C.2 Comparison Baseline Model and Best Model 107

Bibliography 112

Acknowledgement 122

Satutory declaration 123

1 Introduction

With the rise of big data and deep neural networks, new techniques for supervised
machine learning, especially in computer vision and natural language processing,
have shown to be very powerful and effective in their performance [Schmidhuber
(2014); LeCun et al. (2015)]. Apart from supervised learning, the task of unsuper-
vised learning such as generation of data following a given distribution, e.g. images
of dogs or cats, is a lively area of machine learning research [Guzel Turhan & Bilge
(2018)].
Especially in the chemical and pharmaceutical field, generating novel compounds
with desired properties to cure diseases is a challenging task. De novo drug design
is complex due to the large chemical space. The space of drug-like molecules is
estimated to be on the order 1023 to 1060 [Polishchuk et al. (2013)].
Focused drug discovery is often described as finding a needle in a haystack [Olive-
crona et al. (2017)]. Finding that needle often entails satisfying constraints that
drug-like compounds should fulfill. For instance, the compounds should be active
against a biological target and/or have melting temperature within a defined range.
Being active against a biological target means for example, that a compound binds
to a protein, which causes an effect in the living organism, or inhibits replication of
bacteria [H. S. Segler et al. (2017)]. There exists a plethora of biological as well as
physicochemical properties that bias the generation process.
In general, the lifecycle of drug discovery can take many years that last at least a
decade (10-20 years) [Brown (2009); Sanchez et al. (2017)]. The regular procedure
of drug discovery follows a set of common stages, shown in Figure 1.

Figure 1: An illustration of typical workflow of a drug discovery endeavor. Source: Brown (2009)

First, a biological target, for example a protein that is part of a disease pathway, is
selected and screened against a large chemical library of compounds in a hit discov-
ery experiment to identify hits. Hits are compounds with an adequate (but usually
weak) activity on the selected biological target. Hit discovery is usually conducted
in High-Throughput-Screening (HTS), a method where thousands of experiments
are conducted in parallel in vitro, on actual physical plates with many wells [Brown
(2009)]. Each of these wells contain a compound and some biological matter of ex-

1

perimental interest, such as protein, cells or an animal embryo. If a desired response
is observed, then the compounds that were tested are referred to as hits. In the fol-
lowing hit-to-lead step, a number of leads from the hits are discovered with various
profiling analyses to determine whether any of these compounds are suitable for the
biological target of interest. The leads can then be converted to candidates by opti-
mizing on the biological activity and other objectives of interest, such as molecular
weight or solubility. Once suitable candidates have been designed, the candidates
enter the next step of preclinical development.
Generative models for focused library design aim to automatically generate large
chemical libraries that contain a high number of hits and leads. By achieving the
aforementioned, the upcoming steps of drug discovery are accelerated and navigating
in (drug-like) chemical space to identify synthesizable compounds can be performed
more efficiently.
It is estimated that an average drug discovery process costs between one [Brown
(2009)] and three billion dollars [Schneider (2019)]. Hence, accerelating the drug
discovery process with powerful generative models to enrich chemical libraries of
compounds is also highly motivated to reduce costs, e.g. less in vitro HTS experi-
ments conducted.

1.1 Generative Models in Drug Discovery

A generative model is a powerful tool for learning any kind of data distribution using
unsupervised learning methods. All variants of generative models aim at learning
the true data distribution of a training set, in order to sample new data points
from this learned distribution. With the preceding rise of deep learning, many new
methods for generative models in the field of image-, text- or music generation have
emerged [Kingma & Welling (2013);Goodfellow et al. (2014)],[Graves (2013);Fedus
et al. (2018)], [Mogren (2016);Yu et al. (2017)]. Those methods rely either on con-
volutional neural networks (CNNs), when dealing with images, or recurrent neural
networks (RNNs) for sequential data such as text or music.

Due to active research in generative modeling, especially generative adversarial net-
works (see Section 2.4), new methods have also emerged in the field of computational
chemistry and de novo molecular generation.
As in any machine learning setting, the representation of data is crucial. Since we
deal with chemical data in terms of molecules, the SMILES representation, a string-
based representation derived from molecular graphs, is often used as representation
for drug discovery generative models.
Within SMILES (described in Section 2.1.2), data lies in form of a sequence of
characters and symbols corresponding to atoms and its bindings as well as special
characters denoting opening and closure of rings and branches.

2

H. S. Segler et al. (2017) trained a recurrent neural network (RNN) on the large
chemical database ChEMBL [Mendez et al. (2018)] as language model, with the
objective to predict the next character conditioned on the previous seen characters
using maximum likelihood estimation to generate drug-like molecules. One charac-
ter can be defined as an atom, except for atom types that comprise two characters
such as ‘Cl’ or ‘Br’. In addition, character symbols for bonding, branches and ring-
openings/closings as well as disconnected structures are included {-,+,=,#,:,(,),
[,], d+} in the SMILES vobaculary, where d+ means digits between 0 and 9.
By applying transfer learning [Weiss et al. (2016)], novel compounds satisfying a bi-
ological target, such as being active towards 5-HT2A-receptor, could be generated.
The method introduced by H. S. Segler et al. (2017) is described in Section 2.2.6.2
in detail.

Olivecrona et al. (2017) also used a RNN as sequence-based generative model to
first learn the training set of ChEMBL and then fine-tune another RNN to bias the
network to generate compounds with specified desirable properties using the policy
gradient algorithm from reinforcement learning [Sutton & Barton (1998)].
In reinforcement learning (RL) a problem is defined as Markov Decision Process
(MDP). The MDP consists of (discrete) states and (discrete) actions that can be
conducted given a current state. Following an action in a given state returns a re-
ward for choosing that action. The final goal in RL is to maximize the expected
reward. For the SMILES RNN language model, possible actions are defined to be
symbols of the SMILES vocabulary and the state can be defined as the current
SMILES sequence obtained. Since a RNN language model outputs a probability
distribution over possible characters conditioned on the previous seen characters,
Olivecrona et al. (2017) fine-tuned the pretrained RNN model to maximize the ex-
pected reward by updating its policy, which is a probability distribution over actions
given a state from RL theory, to generate compounds satisfying certain properties.
The properties, which the generated SMILES should satisfy, were the absence of
sulfur atoms (S), activity towards dopamine receptor type 2, as well as high sim-
ilarity to the drug celecoxib. However, those three properties were fine-tuned as
single-optimization tasks in three single steps resulting to three RNN models.

Gómez-Bombarelli et al. (2016) proposed a variational autoencoder [Kingma &
Welling (2013)] to encode discrete SMILES representation of molecules to a multidi-
mensional continuous (latent) representation that comprises an information bottle-
neck and from this latent representation decode it back to the SMILES representa-
tion. Generating new molecules is done via variational inference by sampling from
the distribution in the latent space. The main idea of autoencoders will be discussed
in Section 2.3.

3

As generative adversarial networks (see Section 2.4 for a detailed explanation of
GANs) have been mostly proposed for learning data with continuous and dense rep-
resentations, Yu et al. (2017) introduced seqGAN, a new methodology to train a
GAN with sequential data, e.g. SMILES representations, using reinforcement learn-
ing. In GAN, a generator network is guided through a discriminator network by
learning from the discriminator‘s feedback. Because the sampling process of the
next character or sequence for the generator is discrete by using the multinomial
distribution, the sampling process is not differentiable.
Hence, in GAN it is impossible to pass gradient updates from the discriminator net-
work to the generator network. Therefore classical gradient-based methods cannot
be applied (see Section 2.2.4 and 2.2.5 for an overview on optimization). The direct
application to molecular generation with the seqGAN algorithm using SMILES no-
tation was executed in ORGAN and ORGANIC models [Guimaraes et al. (2017);
Sanchez et al. (2017)].

Instead of using SMILES representation, Cao & Kipf (2018) directly used the two-
dimensional molecular graph as data input to train a GAN, called MolGAN. Their
proposed method is trained in combination with reinforcement learning to encourage
the generation of molecules with specific desired properties. The generative model
of MolGAN predicts discrete graph structure at once, i.e. non sequentially.

Zhou et al. (2019) introduced Molecule Deep Q-Networks (MolDQN) for molecule
optimization by combining domain knowledge of chemistry and state-of-the-art re-
inforcement learning algorithms. The data representation they work with is the
SMILES notation. By defining the generation of a molecule as a Markov Decision
Process (MDP) with possible three valid actions: (1) atom addition, (2) bond addi-
tion and (3) bond removal, the molecule generated is only dependent on the molecule
being changed and modifications to be made.
The authors claim to directly operate on the molecular generation without validat-
ing the SMILES grammar by defining a set of valid actions given a current state.
Additionally, the authors claim that their framework has the benefit that no pre-
training of the generative model is needed in contrast to Olivecrona et al. (2017).
The goal of multi-objective optimization of properties simultaneously is also included
in their framework.

This work combines several unsupervised learning techniques utilizing the capa-
bility of deep neural networks to learn a continuous chemical space of molecules/-
compounds. If we think of compounds as discrete string representations, following
a certain grammar and vocabulary of characters, such as the SMILES grammar

4

[Weininger (1988)], to my best knowledge, most generative models work in a discrete
space. The generating process of those models can be summarized by a probabilistic
model that samples the next character conditioned on the previous sequence.
If we imagine the chemical space of compounds as a compact continuous space
C ⊂ Rk that comprises a probability density, the goal is to learn this probability
density in order to sample new observations from this respective probability density.
Therefore, this study aims to tackle following subsequent unsupervised learning
goals:

1. Description of a method to learn a continuous space C for compounds using
unsupervised learning techniques [Winter et al. (2018)].

2. Once a training set of compounds, encoded in this continuous space C is given,
the goal is to learn a probability distribution over this training set.
The main algorithm will be a GAN that can model the true training data
distribution within its respective domain space C.

3. Fine-tuning of the learned GAN such that it is able to synthesize new com-
pounds that satisfy certain physico- and/or biochemical properties.

Since this work is mainly utilizing deep neural networks to learn a chemical space,
fundamental network classes, namely feedforward neural networks and recurrent
neural networks are explained in Section 2.2.1 and their application in drug discov-
ery displayed in Section 2.2.6.2.
As one objective of this work is to learn and obtain a continuous vector represen-
tation of compounds, the rationale and theory of an autoencoder is explained in
Section 2.3. Followed by that, the idea of generative adversarial networks will be
presented in Section 2.4, which are powerful methods to model the probability dis-
tribution of a given training set.
In the application part in Section 4.3, the training of a generative adversarial net-
work on a large dataset, extracted from the chemical database ‘ChEMBL’ [Mendez
et al. (2018)], will be described. Furthermore, this trained GAN will be compared
to state-of-the-art models in drug discovery using the GuacaMol benchmark frame-
work. Section 4.4 of this work describes the fine-tuning of the trained GAN in order
to synthesize new compounds that satisfy certain physicochemical properties.

5

2 Theoretical Framework

Notation In the context of machine learning and probability theory, in this work
X denotes a p−dimensional input space. Usually we assume X = Rp. For the
prediction task, we will denote Y as target space, where Y = R or Y = Rk, stating
univariate or k-multivariate regression respectively. Since many machine learning
algorithms are formulated as classification tasks, the target can be either Y = {0, 1}
or Y = {1, ..., nc}, stating binary or nc−class classification, hence Y ⊂ N0.
In case we obtain a dataset of N samples/observations, x(i) = (x(i)

1 , ..., x
(i)
p)T ∈ X

denotes the i−th feature representation from the input/domain space and y(i) the
i−th true target belonging to its corresponding feature.
In conclusion, the entire dataset will be noted as D = {(x(1), y(1)), ..., (x(N), y(N))}.
From a probability theoretical view x is a realisation of the random variable X with
domain X . Hence, Px is the probability distribution on X , concluding X ∼ Px
(sample x which is drawn from X, comes from the distribution Px).
Similarly Px,y is the joint probability on the domain space X ×Y . In this work pX(x)
stands for the probability density function (pdf) of the random variable X for one
sample x ∈ X . This work will not use bold representation of vectors and matrices.

2.1 Molecular Representation

Molecules are complicated real-world objects and the molecular representation refers
to the computer-interpretable (digital) encoding used for each molecule/compound.
‘In cheminformatics, the most popular representation is the two-dimensional (2D)
chemical structure (topology) with no explicit geometric information’ [Brown (2009)].
This representation is the 2D connectivity graph chemists draw to describe a
molecule, from which string-based line notations were derived. The 2D connectivity
graph, called Lewis structure in chemistry, is a molecular graph, in which atoms are
shown as labeled nodes. The edges describe the bonds between atoms, which are
labeled with the bond order (e.g. single, double or triple).
Another way of representing molecules is to use geometric information by using 3D
geometry coordinates of molecules. This method though, is not widely used in
predictive modeling due to the fact that coordinates are not invariant to molecular
translation, rotation and permutation of atomic indexing [Elton et al. (2019)].
This change of coordinates of a molecule is described as conformer problem in compu-
tational chemistry. Since molecules are three-dimensional objects connecting atoms
together, a conformer of a molecule is a single geometric arrangement of atoms in
a molecule. However, a molecule may adopt infinite conformations because it in-
teracts with the (natural) system in its environment and therefore can change its
conformation.
One possible way to generate a conformer or multiple possible conformers is the

6

minimum-energy conformation, a conformation in which the geometric arrangement
of atoms leads to a global minimum in the internal energy of the system [Pearlman
(1987)].

Molecular Descriptors
The generation of informative data from molecular structures in a so-called molecu-
lar descriptor is called featurization [Elton et al. (2019)] and plays an important role
in cheminformatics because those descriptors are often the ‘precursor to permitting
statistical analyses of the molecules’ [Brown (2009)] or predictive modeling tasks.
Hence, a molecular descriptor is mostly a computer-interpretable vector of num-
bers capturing the most salient information of the molecule. Chemical information
can be characterized by experimental measurements, e.g. physicochemical proper-
ties such as molecular weight, hydrogen bond acceptors (HBA) or hydrogen bond
donors (HBD) measurements. Those quantities can be calculated easily in-silico1

as a function of the available atoms within the molecule. For example, molecular
weight is simply the summation function according to the numbers and types of
atoms that are present in the molecule under consideration. The HBA and HBD
can be computed by counting the number of nitrogen (N) and oxygen (O) and NH
and OH groups, respectively [Brown (2009)]. Combining all those physicochemical
descriptors together into one vector leads to the molecular descriptor.
Other vector representations considering the configuration of atoms, based on molec-
ular structure-key fingerprints are also widely used as exemplified in Figure 2.

Figure 2: An example of the encoding of a simple molecule as a structure-key fingerprint using
a defined substructure dictionary. A defined substructure is assigned a single bit position on the
string to which it is mapped or not. Source: Brown (2009)

Molecular fingerprints encode structural or functional features of a molecule in a
bit string format and are commonly used for tasks like virtual screening2, similarity
searching and clustering [Willett et al. (1998); Cereto-Massagué et al. (2014)]. The
structure-key fingerprint uses a dictionary of defined substructures to generate a bi-
nary vector, where each bit in the vector equates to a one-to-one mapping between

1In-silico means that a procedure has been performed in a computer.
2Virtual screening is a computational technique used in drug discovery to search libraries of

small molecules in order to identify those structures which are most likely (true/false) to bind to
a drug target, typically a protein receptor or enzyme [Gillet (2013)] using a predictive model.

7

the molecule and a substructure in the dictionary for presence or absence. Since the
number of potential substrucures can be large (≈ 232), the resulting sparse set of
bits is usually hashed and folded to a much smaller size (≈ 103) at the expense of
hash and bit collisions [Rogers & Hahn (2010)].
A way to obtain an informative continuous vector representation of compounds by
utilizing the power of unsupervised learning methods is described in Section 2.3.1.
The focus in this Section will lie on the InCHI and SMILES representation of
molecules that are both derived from the 2D molecular graph.

2.1.1 InCHI Representation

The InCHI (International Chemical Identifier) [Heller et al. (2015)] notation is a
unique string-based representation of ASCII characters divided into layers and sub-
layers providing different types of information such as the chemical formula, bonds
and charges. The InCHI notation allows to describe a molecule in a very compact
form but is not intended for readability [Brown (2009)].
An example InCHI representation of caffeine is provided in Figure 3.

Figure 3: InCHI representation of caffeine C8H10N4O2.

2.1.2 SMILES Representation

The SMILES (Simplified Molecular Input Line Entry System) [Weininger (1988)]
notation is a non-unique representation that encodes the molecular graph into a
string-based sequence of ASCII characters. In contrast to InCHI, the SMILES nota-
tion is not divided into different information layers but encodes the entire molecular
structure into one sequence including identifiers for atoms as well as identifiers de-
noting topological features like bonds, rings, branches and cycles.
SMILES is a chemical notation language specifically designed for computer use by
chemists and has become popular because it represents molecular structure by a lin-
ear string of symbols, similar to natural language [Weininger (1988); Brown (2009)].
Hydrogen atoms (H) may be ommited (hydrogen-suppressed graphs) or included
(hydrogen-complete graphs).
The simplified topological encoding system consists of several rules [Weininger (1988)].

8

(1) Atoms. Atoms are represented by their atomic symbols. This is the only
required use of letters in SMILES. Each non-hydrogen atom is specified indepen-
dently by its atomic symbol enclosed in square brackets [,]. The second letter
of a two-character symbol must be entered as lower case, such as for the chlorine
(Cl) or bromine (Br) atom. Note that this states one entity and is therefore one
token in terms of language-modeling. Elements in the defined ‘organic subset’,
{B, C, N, O, P, S, F, Cl, Br, I} may be written without brackets if the num-
ber of attached hydrogens conforms to the lowest normal valence consistent with
explicit bonds. Atoms in aromatic rings are specified by lower case letters; e.g.,
normal carbon is presented by the character C, aromatic carbon by c. As attached
hydrogens are implied in the absence of brackets for the elements of the organic
subset, the first four atomic symbols in Table 1 are valid SMILES.

SMILES Name of atom or molecule
C methane (CH4)
N ammonia (NH3)
O water (H2O)
Cl hydrogen chloride (HCl)

[Cl] chlorine atom (Cl)
[C] carbon atom (C)
[Au] element gold (Au)
[H+] proton
[OH-] hydroxil anion
[NH4+] ammonium cation
[Fe+2] iron(II) cation

Table 1: Displayed are SMILES, where the hydrogen number conforms to the lowest normal
valence (row one to four), SMILES representing single atoms (row five to seven) and SMILES,
where charges had been made (row eight to eleven). Source: Weininger (1988)

Attached hydrogens and formal charges are always specified inside the brackets,
where the number of attached hydrogens is shown by the symbol H followed by an
optional digit. Formal charges on the atom itself without hydrogen attachements,
are shown similar by one of the symbols + or - followed by an optional digit. Ex-
amples to display charges are listed in Table 1 rows eight to eleven.
If unspecified, the number of attached hydrogens and charges is assumed to be zero
for an atom inside the bracket as shown in the rows five to seven in Table 1.

9

(2) Bonds. Single, double, triple and aromatic bonds are represented by the sym-
bols {-, =, #, :}, respectively. Single and aromatic bonds are usually omitted.

SMILES Name of atom or molecule
CC ethane (CH3CH3)
C=C ethylene (CH2 = CH2)
CCO ethanol (CH3CH2OH)

O=C=O carbon dioxide (CO2)
C#N hydrogen cyanide (HCN)

[H][H] molecular hydrogen (H2)

Table 2: SMILES displayed with single (rows one, three and six), double (rows two and four) and
triple bonds (row five). Source: Weininger (1988)

(3) Branches. Branches are encoded by round parentheses (,) surrounding the
branching fragment, which may be nested or stacked, as illustrated in Figure 4.

Figure 4: Illustration of branches in SMILES notation. The first two SMILES representations
show topologies with branches that are not nested. The third SMILES representation has a branch
that is nested. Source: Weininger (1988)

(4) Cyclic Structures. Cyclic structures are represented by breaking one single
(or aromatic) bond in each ring. The bonds are numbered in any order, designating
ring-opening (or ring-closure) bond by a number immediately following the atomic
symbol at each ring closure. The result is a connected noncyclic graph, which is
written as a noncycled structure by using the three rules described above. One
example for describing a cyclic structure in SMILES representation is displayed in
Figure 5.

Figure 5: Cyclohexane represented in SMILES notation breaking the ring at a position and
closing the ring. The integer number stands for ring-opening and ring-closure. Source: Weininger
(1988)

10

Since some atoms in a cyclic structure might have different ring-closures, different
SMILES notation for one cyclic structure can be derived. Therefore, the SMILES
representation is non-unique as mentioned in the beginning of this Section and il-
lustrated in Figure 6. When breaking the ring in Figure 6, the rule of branches
is applied differently but leading to valid SMILES, depending on which atom lies
in the ‘main’-chain and which substructure is considered to be a branch (rule 3),
embodied in the parentheses.

Figure 6: 1-methyl-3-bromo-cyclohexene can have different ring-openings and ring-closures lead-
ing to different SMILES representations. Here, the ring-opening and ring-closure is the same for
both valid SMILES representation but the way how to ‘read’ the SMILES and define the branch
is differently. Naturally, representation (a) is the simplest. Source: Weininger (1988)

(5) Disconnected Structures. Disconnected molecules are written as individual
structures seperated by a period. This is important since single bonds are implicit,
and showing the dependency between ions and ligands (molecules) has to be guaran-
teed. If desired, the SMILES of one ion may be imbedded within another, as shown
in the example in Figure 7.

Figure 7: SMILES representation for sodium phenoxide, where one natrium ion is connected to
the ligand that contains the benzene ring. Here, the rules (1:atoms) and (5:cyclic structures) are
combined. Recall that the carbon atoms are included in the (broken) aromatic ring and therefore
written in small letters c. Source: Weininger (1988)

As described in the last two examples, one drawback of the SMILES notation is the
lack of unique representations. The reason for the non-uniqueness lies in the fact
that a molecule with no (aromatic) ring can be encoded from any starting point of
the topological graph. For example, the molecule ethanol has following four valid
SMILES representations: CCO, OCC, C(C)O and C(0)C. When dealing with rings or
disconnected structures, non-unique SMILES representation can occur as well, de-
pending on where the opening of the ring is executed (see Figure 6) and how the
order of nested connection is set (see Figure 7).
For that reason, several canonicalization algorithms have been developed, such as
the Morgan algorithm [Morgan (1965)] to create unique SMILES, which are called

11

canonical SMILES.
The upcoming Figure 8 shows different molecular representations of the 1,3 - Ben-
zodioxole molecule.

Figure 8: Different sequence-based molecular representations of 1,3-Benzodioxole. Modified
Source: Winter et al. (2018)

12

2.2 Deep Learning

Neural networks (NNs) are considered as a part of artificial intelligence (AI) and
designed as an attempt to simulate the human nervous system [Aggarwal (2018)].
In recent years, deep learning has steadily increased in popularity, mainly due to
their state-of-the-art performance in image and speech recognition, text mining and
other related tasks. Deep neural networks endeavor to automatically learn multi-
level representations and features of (large) data and are able to uncover complex
underlying data structures.
The general aim of supervised learning, is to approximate a function f that is used
to predict an outcome y, using an input x, i.e. y ≈ f(x). Nearly all supervised
learning algorithms can be described by three components [Domingos (2012)]:

Learning = Representation + Evaluation + Optimization.

In classical machine learning, one tries to find a mapping from feature to output,
where the performance heavily depends on the representation of the feature data.
Hence, traditional machine learning is also called feature learning.
To improve the performance of a learning algorithm, instead of discovering the
mapping from representation to output, one can also tackle the task of learning
the representation itself. This approach is also known as representation learn-
ing. Learned representations often result in much better performance than can be
obtained with hand-designed representations (e.g. feature engineering) [Goodfellow
et al. (2016)]. In neural networks, new features are represented as intermediate
neurons, called hidden neurons. The basic idea is to apply many simple operations
consecutively to build a computational graph. These simple operations are ex-
plained in the upcoming Section 2.2.2.
The term deep learning was formulated from the idea of building large computa-
tional graphs, e.g. applying/stacking many simple operations one after another for
the final prediction task.
In general, three major classes of neural networks exist:
feedforward neural networks (see Section 2.2.1), convolutional neural networks, which
are mostly used when working with images (not covered in this work) and recurrent
neural networks, mostly used when dealing with sequential data (see Section 2.2.6).

2.2.1 Feedforward Neural Network

The quintessential example of a deep learning model is the feedforward neural net-
work, ormultilayer perceptron (MLP). A multilayer perceptron is simply a math-
ematical function mapping some input values to output values, making use of the
idea of computational graphs. The function is formed by composing many simple
functions. We can think of each application of a different mathematical function as
providing a new representation of the input [Goodfellow et al. (2016)].

13

Figure 9 displays an example a feedforward neural network.

Figure 9: Feedforward neural network with two hidden layers.

MLPs are also called fully-connected neural networks because the output of each
neuron in one layer is fed into each neuron in the next layer. For MLPs, there are
no feedback connections allowing outputs of the model to be fed back to itself. If
the output of a model should be inserted as input in the input layer, one model class
would be recurrent neural networks (RNNs, explained in Section 2.2.6), which
deliver state-of-the-art performances in natural language processing (NLP) tasks,
e.g. speech recognition, automatic language translation etc. and generative drug
discovery as will be explained in Section 2.2.6.2.
In MLP, information flows from the input (forward) from one layer to the following
layer, until it reaches the final output layer (feedforward network). As mentioned
in the beginning of this section, a MLP is composing nl mathematical functions
f (1), f (2), ..., f (nl−1), f (nl) in a chain altogether, where nl is the total number of layers
in the network. The output of the MLP can be expressed by linking these functions
in one entire chain of layers,

f(x) = f (nl)(f (nl−1)(...(f (2)(f (1)(x)))...)), (1)

where f (1) is called the input layer that takes a feature point x as input. The
layers f (2), f (3), ..., f (nl−1) are called hidden layers since their outputs are not directly
accessible or interpretable in the context of a specific prediction task. The hidden
layers are applied in order to model the complex relationships between the input
feature x and the target variable y at the last (output) layer. Therefore, the function
f (nl) is called output layer that contains the final result for the prediction task.

14

The more functions (layers) the neural network contains, the deeper it gets, leading
to the terminology of deep neural networks.

2.2.2 Basics and Building Blocks

Neural networks contain computation units which we will call neurons. The compu-
tational units are connected through weights that symbolize the strengths of synaptic
connections in biological organisms.
The classical neural network contains three different types of layers: input layer,
hidden layers and output layer.
The input layer takes the input x and propagates it to the upcoming first hidden
layer. The hidden layers do all the processing for neural networks. Generally speak-
ing, the more hidden layers the network has, the more accurate the network will
be on a given training set. However, the problem of overfitting the training data
occurs.
Each hidden layer can be thought of a non-linear transformation of in-going data.
For this non-linear transformation, every neuron performs a two-step computation
(earlier mentioned as simple operations) [Bischl (2018a)].

1. Compute the weighted sum of inputs (with bias). This operation only includes
multiplication and summation. We will call this result pre-activations z.

2. Apply an activation function φ(·) to each element of z. This is used for non-
linear transformation of the input. We will call this output activations3, hence
a = φ(z).

2.2.2.1 Weight Matrices and Biases

Weight matrices and bias vectors are learnable parameters that will be adjusted
during training of the neural network.
The weight matrices have the purpose to apply linear transformation to the incoming
data from the current layer to the upcoming layer by computing a dot product of
incoming data and weight matrix. The bias has the purpose to shift the weighted
sum in the upcoming layer.
Assume the neural network contains l hidden layers, leading to a total of (l + 1)
weight matrices W (l), and bias vectors b(i), for i = 0, ..., l.
Concluding to a parametric model we obtain following learnable parameters
θ(i) = {W (i), b(i)}, i = 0, ..., l in a neural network.
Note that θ(0) and θ(l) are the weight matrices and biases for the neural connections
between input and first hidden layer and last hidden layer to output layer.
Let di be the dimensionality4 of the i−th hidden layer.

3Often the results of the activations are also called hidden states.
4Dimensionality is in this case the number of neurons in the i−th hidden layer.

15

The dimension for each weight matrix depends on the number of neurons in the
current layer and next layer. In general, one can say thatW (i) is element of Rdi×di+1 ,
where di is the number of neurons in the current layer i and di+1 is the number of
neurons in the next layer (i + 1). Therefore, each column of the (di × di+1) matrix
corresponds to a single (hidden) neuron. The bias term b(i) is a di+1−dimensional
column vector. Assuming we apply the identity function as activation function,
φ(z) = z, we can compute the pre-activations as follows for all i = 0, ..., l:

z(i+1)︸ ︷︷ ︸
∈Rdi+1

= W (i)T︸ ︷︷ ︸
∈Rdi+1×di

a(i)︸︷︷︸
∈Rdi

+ b(i)︸︷︷︸
∈Rdi+1

, where a(i) = φ(z(i)) = z(i). (2)

When explaining the training of the neural network in the upcoming Section 2.2.4,
the weights and biases are updated in order to improve the performance of the deep
neural network model. For the success of training and optimizing neural networks, it
is vital to initialize the weight matrices and biases with useful values. It is common
in practice, to randomly draw values for weights from a symmetric distribution that
is zero-centered. A normal distribution N (µ = 0, σ2) satisfies this condition. The
Xavier Initialization Rule [Glorot & Bengio (2010)] suggests to draw the elements of
the weight matricesW (i) from N (µ = 0, σ2 = 1

di
), where di is the number of neurons

in the i−th layer. The bias vectors should be initialized with 0 or very small values
such as 0.01.

16

2.2.2.2 Activation Functions

The activation function has the purpose to incorporate non-linearity of incoming
data. To amplify this thought, one can think of a simple binary classification prob-
lem. In many machine learning algorithms such as logistic regression, the goal is
to find a linear hyperplane to discriminate/seperate data points into two classes.
Assume the data points lie in R2 and the two classes are not linearly seperable. In
this case logistic regression will fail to classify all samples correctly. By transform-
ing the data points to a hidden representation, for example from cartesian to polar
coordinates, the transformed data points are linearly seperable as shown in Figure
10.

Figure 10: In the original representation, there exists no linear line to perfectly discriminate
between the two classes (red and blue). If the original features are transformed into a new rep-
resentation, what a neural network does in the hidden layers, the data might become perfectly
linearly separable for a classifier. Source: Bischl (2018a)

The term activation function arises from models of biological neurons in the brain
and defines the expected firing rate of the neuron as a function of the incoming
signals at synapses [Dayan & Abbott (2005)]. Hence, the main purpose is to convert
an input signal (weighted sum + bias) of a node into an (activated) output signal,
where the output signal is then used as input for the next layer.
Note that all upcoming activation functions will be applied element-wise to each
component of a real-valued vector z.
There are many different popular choices of non-linear activation functions (see
Figure 11), for example the sigmoid function (also used as activation in logistic
regression to compute positive class probability)

σ(z) = 1
1 + exp (−z) , (3)

or the hyperbolic tangent function

tanh(z) = exp (z)− exp (−z)
exp (z) + exp (−z) . (4)

17

(a) sigmoid function and its derivative. (b) tanh function and its derivative.

(c) ReLU function and its derivative. (d) ELU function and its derivative.

Figure 11: Example activation functions often used in neural networks. Each subplot also displays
the first derivative of the respective activation function.

Currently the most common activation function for deep neural networks is the
rectifier linear unit (ReLU). The ReLU function was first introduced by Nair &
Hinton (2010) in neural networks and is formulated as

relu(z) = max(0, z). (5)

Before the usage of ReLU, most hidden layers of deep neural networks were acti-
vated using sigmoid or tanh. This has often caused the vanishing gradient problem5

and led to slow convergence and little effect on the weight update when doing back-
propagation (see Section 2.2.5.2). ReLU has beneficial properties [Goodfellow et al.
(2016)] such a piecewise linearity which preserves many of the properties that make
a linear model easy to optimize with gradient-based methods. Another popular ac-
tivation function is the exponential linear unit (ELU) [Clevert et al. (2015)] that has
been successfully applied in convolutional neural networks for image classification.

elu(z) = max(0, z) + min(0, α(exp (z)− 1)), with default α = 1. (6)
5It is one example of unstable behaviour when training deep neural networks. The vanishing

gradient problem is caused when the neural network is unable to propagate useful gradient in-
formation from the output layer of the model, back to the layers near the input of the model.
This is caused by the chain rule when multiplying partial derivatives (note that for example the
derivatives of sigmoid and tanh are restricted to (0, 0.25) and (0, 1)). If very small numbers |δ| > 0
(partial derivatives in the last layers) are multiplied with each other, the product (in this case a
partial derivative in the very first layers) will be very small. Hence, the weight update for any
gradient-based method will not make any change.

18

This activation function does not have the dying ReLU problem6 and is a combi-
nation of linear and non-linear function in one term, leading to better generalization.

In MLP, the output layer takes the input from the activations of the last hidden
layer to do a prediction task (either regression or classification). Computing the
weighted sums and activations from the input layer right up to the output layer
leading to the prediction is called forward pass.
The MLP in Figure 9 contains two hidden layers and one output layer with three
output neurons. Assume that the neural network is a classifier, where the output
variable has three possible categories. We conclude that each output neuron oi states
the predicted class probability of belonging to class i for a given sample x.
Hence, oi = P(y = i|x), i ∈ {0, 1, 2}.
To squash the output neurons into range (0, 1) and guarantee that the sum of all
output neurons equals to one, the softmax function will be used as an activation
function for the output layer when dealing with a multi-class classification problem.

softmax(zj) = exp (zj)∑
k exp (zk)

. (7)

2.2.2.3 Loss Functions

In supervised learning, the goodness of prediction y = f(x|θ) is measured by a loss
function L(y, f(x|θ)), where f(x|θ) is the model parameterized with θ.
The aim is to find an optimal θ that performs well on a training set but also gener-
alizes well on an unseen test set. Good performance means to have a minimal risk.
Hence, we face the folllowing optimization problem:

min
θ
R(f |θ) = min

θ
E

(x,y)∼Px,y
[L(y, f(x|θ))] = min

θ

∫
L(y, f(x|θ))dPx,y. (8)

The objective in equation (8) is not feasible or practical since the joint probability
Px,y is unknown. Instead, the risk can be approximated with the empirical risk
based on a dataset D with N samples, which leads to the following optimization
problem:

min
θ
Remp(f |θ) = min

θ

1
N

N∑
i=1

L(y(i), f(x(i)|θ)). (9)

Loss functions should include some relevant properties such as [Bischl (2019b)]:

1. Differentiability.

2. Robustness.
6The derivative of ReLu for values less than zero is equal to zero. Hence, no gradient information

is propagated back when the input is negative as illustrated in Figure 11c.

19

3. Convexity.

Differentiability is desired in order to optimize. Section 2.2.5 describes gradient-
based approaches such as gradient descent which are used to train deep neural
networks. Robustness shows how strong a loss function reacts to deviation of errors,
i.e. ε = y−f(x|θ), and convexity guarantees that a global minimum exists (this will
in most cases not hold for deep neural networks as we want to model non-convex
functions). In regression, L1 and L2 loss (shown in Figure 12) are usually used,
leading to the following empirical risks L1 and L2 on a dataset D:

L1 = 1
N

N∑
i=1

L1(y(i), f(x(i)|θ)) = 1
N

N∑
i=1
|y(i) − f(x(i)|θ)|, (10)

L2 = 1
N

N∑
i=1

L2(y(i), f(x(i)|θ)) = 1
N

N∑
i=1

1
2(y(i) − f(x(i)|θ))2. (11)

(a) L1 loss function. (b) L2 loss function.

Figure 12: Example of loss functions for regression task. The horizontal axis shows the deviance
ε = y−f(x|θ) of a model f(x|θ) w.r.t. a true target y corresponding to the feature x. The vertical
axis shows the loss value for a given deviance/residual.

In binary or multi-class classification, one common loss function is the cross-entropy
loss. If the neural network is a classifier, then the output layer consists of nc neuron
units, where nc is the number of classes the target variable y can have. By introduc-
ing the one-hot encoding, we can derive a vector which assigns the class membership
(indexed as 1/True and 0/False). In a classification task with nc different classes
c, the class label cj of the i−th data point can be encoded by a label vector y(i) as
stated below:

y(i) = (l1, l2,, lnc)T, lj =

1, if ci = cj

0, else.
(12)

This encoded vector can be interpreted as vector of class probabilities because the
provided label is the ground truth and encoded as 100% probability for this specific
class.

20

Therefore, the softmax activated (see equation (7)) output layer ŷ = f(x|θ) = o

yields the predicted one-hot encoded target variable.
The cross-entropy loss between y and ŷ = f(x|θ) = o is defined as

LCE(y, ŷ) = −
nc∑
j=1

yj log(ŷj), (13)

and the empirical risk with cross-entropy loss is computed with

LCE = 1
N

N∑
i=1

LCE(y(i), ŷ(i)) = − 1
N

N∑
i=1

nc∑
j=1

y
(i)
j log(ŷ(i)

j). (14)

2.2.3 Regularization

Since the objective in training neural networks is to minimize empirical risk, the
value in equation (9) should decrease during training. If the model is good, the
value of L will be small and the model performs bad if the empirical risk L is com-
paratively large. If the empirical risk on the training set decreases and the empirical
risk for an unseen test set increases, we face the problem of overfitting. The model
fθ has learned the training data too well and does not generalize well on unseen
test data anymore. Therefore, one naive way in machine learning is to split the
entire data set into training and validation set with the ratios 2

3 and 1
3 for each set

respectively, where the validation set is held out during training. During training of
the neural network, the training loss and validation loss can be monitored and used
for early stopping as a way to avoid overfitting. For the early stopping method, the
training of the neural network will be stopped if the validation error increases but
the training error still decreases as illustrated in Figure 13.

Figure 13: Early stopping is applied when the validation error increases but the training error still
decreases. This method is often used as a regularization method when training neural networks.

Other regularization methods for neural networks are the parameter norm penalty
Ω(θ), e.g. weight decay, or the dropout method. The weight decay (L2) regular-
ization is similar to ridge regression, where the 2-norm is applied to the learnable

21

parameter θ in order to shrink the components of the parameters and prevent the
model from overfitting.

Lreg. = L+ λΩ(θ) = L+ λ||θ||22, (15)

where λ > 0 states the coefficient of the norm penalty and Lreg. needs to be mini-
mized. Another choice for Ω(θ) could be the 1-norm, as done in the lasso regression.
The dropout method [Srivastava et al. (2014)] is another simple technique to regu-
larize a deep neural network. The main idea in dropout is to randomly drop hidden
units (along with their connections) as shown in Figure 14. By including dropout,
the neural network cannot rely on any hidden node too much, since each node has
a random probability of being removed. Therefore, the neural network will be cau-
tious to give high weights to certain features, because they might disappear.

Figure 14: Dropout neural network. Left (a): A standard MLP with two hidden layers. Right
(b): An example of a thinned neural network produced by applying dropout to the network on
the left. Crossed units have been dropped. Source: Srivastava et al. (2014)

For model evaluation, when comparing different complex model architectures, so-
phisticated cross-validation methods [Hastie et al. (2001)] are often applied, where
the entire dataset is split into training and test set and the cross-validation is exe-
cuted on the training set.

2.2.4 Training

Training deep neural networks consists of two parts: forward- and back-propagation.
The forward-propagation consists of computing the predicted output ŷ = f(x|θ) by
feeding the input x through the network. Subsequently the loss between the true
target y and predicted target ŷ is computed. In the backpropagation process, the
partial derivatives of the loss with respect to all θ(i) in each layer are calculated in
order to update them, such that in the next forward propagation the loss is smaller
than before. The final goal is to minimize the loss function on a training set.

22

2.2.5 Optimization

Defining a loss function at the output layer of a neural network enables us to measure
the performance of the model with respect to its empirical loss in equation (9).
The next step is to improve the model by varying the model parameters θ in such
a way that the loss decreases. Hence, we turned the machine learning problem
of supervised learning into a numerical optimization problem, where we want to
minimize the empirical risk. Since deep neural networks mostly model complex data
structures and are non-convex, no closed-form solution for minimizing the empirical
risk exists. One of the widest used optimization algorithm is the gradient descent7

algorithm. It is a first-order optimization algorithm because it requires the gradient
/ first derivative of a function, which needs to be minimized.
For updating the model parameter, one has to compute the derivative of the objective
with respect to θ and change the parameter in the opposite direction of the gradient,
i.e. −∇θRemp(f |θ), because we are minimizing the objective function.

2.2.5.1 Gradient Descent

The goal of gradient descent is to minimize a differentiable function in an iterative
procedure. The key idea is the following: suppose you are standing on a mountain
and want to get to the ground. By iteratively stepping into the direction of steepest
descent we will finally arrive at the (local) minimum, which states the ground. The
size of step we take in each iteration depends on a learning rate α.
Gradient descent is a first-order order optimization algorithm since it involves the
first derivative of an objective function.
In general, gradient descent works in the following way:
assume we have a function L : Rp −→ R that is differentiable and we want to
minimize. In this case, L is the empirical (regularized) risk of a predictive model
f parameterized with θ. The optimization problem is stated in equation (9) or
(15). The update rule now states to move the model parameters in the direction of
steepest descent,

θ ←− θ − α∇θL. (16)

In general, there are three methods to perform gradient descent [Dabbura (2017)].
Batch gradient descent uses the entire dataset D in order to perform one gradient
update. This method can be very memory inefficient and computational expensive
when dealing with many samples and complex networks because all instances and
results need to be saved in memory when computing the gradient ∇θRemp(f |θ).
Nevertheless, this method approximates the gradient at best and reduces the vari-
ances since the gradient is averaged over all N samples.

7Since we want to minimize the empirical risk we do gradient descent. In case we want to
maximize a function, gradient ascent will be used.

23

Another method is Stochastic gradient descent that allows to update the model pa-
rameters, after one random sample x(j) is fed into the model to approximate the
gradient for the entire dataset [Bischl (2019a)]. This method includes high variance
since the gradient for the entire dataset is approximated with only one example j,
that means ∇θL(y(j), f(x(j)|θ)). During training of the model, the convergence can
be very slow as will be illustrated in the next Figure 15.
As a compromise between the two variants, mini-batch (stochastic) gradient descent
performs a gradient update after a certain number of random samples have been
forwarded in the model. We call this number batch-size.
Here, we estimate the gradient ∇θRemp(f |θ) with the gradient of a randomly small
chosen subset of batch-size m:

∇θRemp(f |θ) =
∑N
i=1∇θL(y(i), f(x(i)|θ))

N
≈
∑m
i=1∇θL(y(i), f(x(i)|θ))

m
. (17)

(a) Gradient descent to find the (local) min-
imum of walking down a mountain. (b) Gradient descent minimizing a function

that depends on two parameters
W = (w1, w2)T.

Figure 15: Gradient descent variant’s trajectories towards reaching the minimum (red point).
Each arrow describes one gradient update step. As the batch-size m decreases, the more variance
our gradient estimate gets and we will get more ‘zig-zag’ arrows.

Figure 15b shows a simplified case, where the loss function only depends on two
parameters w1 and w2. The larger ellipses far from the optimal minimum describe
parameter combinations, where the objective (loss) is large and the smaller ellipses,
where the loss is small. Here, we have to calculate the derivative of the objective
with respect to the parameters w1 and w2 via

∇WL =
(
∂L
∂w1

,
∂L
∂w2

)T

. (18)

Now the parameter update in this example would be as follows

(w1, w2)T ←− (w1, w2)T − α∇WL. (19)

24

The learning rate α plays a key-role in the convergence of the algorithm. If the step
size is too small, the training process may converge very slowly. If the step size is
too large, the process may not converge and rather diverge because it jumps around
the optimal point. The behaviour of gradient descent with varying learning rates is
illustrated in Figure 16.

(a) Slow convergence of gradient descent if
the learning rate is too small.

(b) Divergence of gradient descent
if the learning rate is too large.

Figure 16: Gradient descent trajectories for small and high learning rate α. The objective function
only depends on two parameters W = (w1, w2)T. Source: Bischl (2018b)

To sum it up, in practice mostly mini-batch stochastic gradient descent is used
because of the computational efficiency when calculating gradients over a smaller
subset of data. Additionally, the stochastic component assists to leave a local mini-
mum, where an exact gradient descent approach might get stuck. For the learning
rate α, it is common to decrease it during training, e.g. exponential learning rate de-
cay or specific learning rate schedules [Suki (2017)]. In addition to that, during the
years many novel optimization techniques, which are all based on gradient-descent,
were developed to accelerate training of deep neural networks and overcome one
potential problem such as being stuck in a local optima. For more in-depths over
various optimization techniques, Ruder (2016) provides a detailed list of gradient-
based variants.

2.2.5.2 Backpropagation

Now that we learned to improve the simple model earlier, which only consists of
two parameters W = (w1, w2)T, we need to take a further look when dealing with
deeper neural networks, which usually consist of many parameters. The update rule
in equation (16) stays the same. We just need to think about, how to efficiently
compute the gradients. As stated in Section 2.2.2.1, deep neural networks consist
of many hidden layers (let the number be nl), where each layer consists of a weight

25

matrix and bias vector. Therefore, our entire network is parameterized with

θ = {θ(0), θ(1), ..., θ(nl)} = {W (0), b(0);W (1), b(1); ...;W (nl), b(nl)},

where the parameter update rule reads (for each weight matrix and bias vector):

W ←− W − α∇WL, (20)

b←− b− α∇bL. (21)

The empirical risk in equation (9) however, does only directly depend on the param-
eters from the last hidden layer connecting to the output layer, i.e. (W (nl), b(nl)). To
efficiently compute the gradient of the (batch) cost / empirical risk function with re-
spect to all network parameters, the backpropopagation algorithm was proposed
by Rumelhart et al. (1986). One of the main ideas in backpropagation is that (gradi-
ent) information flows from the cost function backwards (on the so called backward
pass) through the network. Furthermore, this gradient information describes, how
the cost depends on a specific parameter. The backpropagation algorithm exploits
the chain-like structure of composing functions in neural networks. Suppose we have
a shallow8 network with three hidden layers, i.e.

f(x) = f (3)(f (2)(f (1)(x))).

The model can be explained with stacked operations (matrix multiplication, acti-
vation function, ...) and the chain rule of differentiation can be used to compute
derivatives of the composition of two or more functions [Bischl (2018b)]:

• Let x ∈ Rm, y ∈ Rn

g : Rm −→ Rn and f : Rn −→ R.

• If y = g(x) and z = f(y), the chain rule yields:

dz

dxi
=

n∑
j=1

dz

dyj

dyj
dxi

, (22)

or in vector notation:

∇xz =
(
dy

dx

)>
∇yz, (23)

where dy
dx

is the (n×m) jacobian matrix of g.

• In case x and y are one-dimensional, the chain rule is stated as9

d

dx
z = d

dx
[f(g(x))] = g′(f(x)) · f ′(x).

8Shallow neural networks contain a small number of hidden layers, mostly up to three.
9Derivative of two-composed function, where each component is one-dimensional: ‘outer deriva-

tive with inner function times inner derivative’.

26

Computational Graph
Computational graphs are very helpful tools to visualize and understand the chain
rule. As mentioned in Section 2.2.2, every neuron consists of two general operations:
matrix multiplication and activation. Within a computational graph each node
represents a variable, where operations are applied among one or more variables as
visualized in Figure 17.

Figure 17: The computational graph for the expression H = σ(XW + b). Source: Bischl (2018b)

To illustrate the expressive power of computational graphs in combination with the
chain rule of calculus, consider the two graphs below in Figure 18.

(a) Computational graph such that
x = f1(w), y = f2(x), z = f3(y)

(b) Computational graph such that
(y1, y2) = f1(x1, x2), z = f2(y1, y2)

Figure 18: Examples computational graphs. Source: Bischl (2018b)

By iteratively applying the chain rule from equation (23) to get dz
dw

in example 18a
results to

dz

dw
= dz

dy

dy

dx

dx

dw

= f ′3(y)f ′2(x)f ′1(w)

= f ′3(f2(f1(w)))f ′2(f1(w))f ′1(w),

27

and computing ∇xz in example 18b yields to

∇xz =
 dz
dx1
dz
dx2

 =
 dy1
dx1

dy2
dx1

dy1
dy2

dy2
dx2

 dz
dy1
dz
dy2

 =
(
dy

dx

)>
∇yz.

It will be helpful and beneficial when computing partial derivatives (w.r.t. weights
and biases) from the cost of the output layer, to save those partial derivatives and
when computing the partial derivatives of one previous (hidden) layer, to use those
saved ones because they are required for computation due to the chain rule. To
elaborate this thought and based on this fundamental rule we can compute the
derivatives

∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

of the cost function w.r.t. all parameters associated with neurons not directly
connected with the output layer.
As mentioned earlier, a common problem in training deep neural networks is the
vanishing gradient problem, when computing partial derivatives as a product of
intermediate partial derivatives (see equation (22)). The vanishing gradient problem
appears if activation functions like sigmoid or tanh are used (Figure 11a and 11b)
because their derivatives can easily saturate towards zero. Therefore, the choice
of activation function and weight initialization is crucial for the success of training
deep neural networks. A detailed and illustrative description of the backpropagation
algorithm with the update rule are provided by Graves (2008) and Nielsen (2018).

2.2.6 Recurrent Neural Network

Recurrent neural networks (RNNs) are a class of neural networks dealing with se-
quential data. Sequential data is a stream of (finite) data which is interdependent
and has variable lengths. Examples of sequential data are time series data, texts or
audio. In a text, a single sentence can have a different meaning than the entire flow
of sentences. This lies in the fact how human process information during reading
because reading the entire sequence of words is crucial in order to understand the
text. The same holds for time series data, e.g. stock market data: a single point
means the current price but a full day’s sequence of this stock market price shows
the movement of this stock and allows to take decision whether to buy or sell.
In contrast to convolutional neural networks and feedforward networks, RNNs are
comprising the idea of memory by allowing cyclical connections between hidden
units. The motivation for RNNs can be inspired by the way how humans read a
sentence: one word at a time. So, if we read a sentence from beginning to end, we
retain some information about the words that we have already read and use this in-
formation to understand the meaning of the entire sentence. Therefore, the classical

28

RNN cell has the ability to retain some information about past inputs. The success
for the use of RNNs are mainly due to the application of long-short term mem-
ory (LSTM) units [Hochreiter & Schmidhuber (1997)] and gated recurrent units
(GRUs) [Cho et al. (2014)]. These two variants of RNNs are mostly used nowadays
when working with sequential data because they can handle long-term dependen-
cies, i.e. remembering information for long periods. In theory, the classical vanilla
RNN (as explained in Section 2.2.6.1) can handle long-term memory as well, but
suffers from the vanishing gradient problem due its (simple) definition of recurrent
cell by deploying tanh activation function only. Classic RNN is known to have strong
short-term memory but weak long-term memory because distant past information
has to propagate through many layers to the current position. LSTM and GRU
cells however, have more complex definitions of the recurrent cell by adding gates
in order to forget, update or reset the states and overcome the vanishing gradient
problem.

2.2.6.1 Vanilla Recurrent Neural Network

In this Section we will explain the basic workflow for a simple RNN following the
example of Graves (2008) using a single, self connected hidden layer, as shown in
Figure 19. The recurrent connections in the hidden layer allow a memory of previous
inputs to persist in the network’s internal state, and thereby influence the network
output.

Figure 19: A simple recurrent neural network. The input layer consists of three units and the
hidden layer aims to keep track of the history by its recurrent connections. The RNN is fed with
one sample xt = (x(1,t), x(2,t), x(3,t))T at timestep t to predict the outcome yt = (y(1,t), y(2,t))T.
Source: Graves (2008)

Assume a sequence of vectors x1:t = (x1, x2, ..., xt), where xt ∈ R3 is the input data
point at timestep t (e.g. stock market price for three indices A,B,C).
The RNN handles the variable-length sequence x1:t by having a recurrent hidden
state, whose activations ht ∈ R4 at each time t is dependent on that of the previous
time ht−1 and the current input xt. Hence, the definition of the recurrent hidden

29

state ht is formulated as

ht =

0 , t = 0

φ(ht−1, xt) , otherwise,
(24)

where φ is a non-linear activation function such as the composition of a tanh, see
equation (4), with an affine transformation as described in Section 2.2.2.1.
For the vanilla RNN, the update of the recurrent hidden state in equation (24) is
computed with

ht = tanh (Wxhxt +Whhht−1 + b), (25)

where Wxh ∈ R3×4 denotes the weight matrix for the connection between input xt
and hidden state ht at timestep t and b ∈ R4 the bias vector for the hidden layer.
The weight matrix Whh ∈ R4×4 is used for the hidden state vector. This allows
memorization of information from previous timesteps.
For generalization and to abstract the calculation of the hidden state ht, all the op-
erations included for its computation can be formulated in a recurrent cell block A.
Viewing an RNN as an unrolled graph makes it easier to generalize to networks with
more complex update dependencies (such as LSTMs or GRUs), which are defined
within a recurrent cell block A, see Figure 20.

Figure 20: The repeating module in a standard RNN contains a single layer of affine transfor-
mation as stated in equation (25). Note that the input xt and the hidden state activations ht are
vectors. Source: Olah (2015)

The recurrence in Figure 20 is illustrated by passing a sequence of three input vec-
tors. The hidden state ht is affected by the current input vector xt and the previous
hidden state ht−1 as defined in equation (25).
For the cell block A in vanilla RNN, it is worth mentioning that the weights within a
RNN are shared for each layer for each timestep. To explain this further, note that
the weights Wxh and Whh in equation (24) are shared over all time steps t = 1, ..., T .
This has the advantage that the number of parameters to learn in a RNN decreases
in contrast to feedforward networks. One drawback for vanilla RNN comes with the
vanishing gradient problem when backpropagating the errors in the backpropagation
through time (BPPT) algorithm [Graves (2008)].
The vanishing gradient in vanilla RNN is caused due to its simple recurrent cell

30

block A with tanh activation. This will lead to forget the information from input
samples seen in the very beginning of a sequence, as illustrated in Figure 21.

Figure 21: The vanishing gradient problem for (vanilla) RNNs. The shading of the nodes
in the unrolled network indicates their sensitivity to the inputs at t = 1 (the darker the shade, the
greater the sensitivity). The sensitivity decays over time as new inputs overwrite the activations
of the hidden (recurrent) layer, and the network ‘forgets’ the first inputs. Note that each circle is
a vector and illustrates a layer. Source: Graves (2008)

Mathematically, the reason for vanishing gradient in vanilla RNN lies in the multi-
plication of the derivatives of the hidden states at previous timesteps, which due to
the tanh activation are restricted in range (0, 1) as illustrated in Figure 11b.

Figure 22: The vanishing gradient in vanilla RNN is caused due to the multiplication of many
partial derivatives for different timesteps. Since each partial derivative is bounded within (0, 1),
the product of those small partial derivatives will saturate towards zero. Source: Bischl (2018c)

The vector z in Figure 22 denotes the hidden state and V the weight matrix for the
recurrent hidden layer. The goal in that example is to predict the target at timestep
(t+ 1) denoted as f (t+1). L(t+1) states the loss for predicting f (t+1) when compared
to the true target y(t+1).
For the BPPT algorithm, the partial derivatives w.r.t. the hidden state for all
timesteps have to be computed by

dL

dz1 = dL

dzt+1
dzt+1

dzt
dzt

dzt−1 ...
dz2

dz1 ,

31

which can saturate towards zero since each partial derivative is restricted within
(0,1).
Therefore, many modifications on the recurrent cell block A, such as LSTM or GRU
cells, have been introduced to overcome problems like vanishing gradient.

The output layer in RNNs also enables a variable-length sequence y1:t = (y1, y2, ..., yt),
depending on the model task as illustrated in Figure 23.

Figure 23: RNNs can be used in tasks that involve multiple inputs and/or multiple outputs.
Each rectangle represents a vector and arrows represent functions, such as nonlinear composition
of affine transformations. Input vectors are red, output vectors are in blue and green vectors hold
the RNN’s hidden state. Source: Karpathy (2015)

Different problem settings are:

• Many-To-One: Sentiment analysis, document classification.

• One-To-Many: Image captioning.

• Many-To-Many: Language modeling, machine translation, time-series predic-
tion.

Following the example in Figure 19, the output at timestep t is two-dimensional
with yt ∈ R2. For example, yt could be the predicted stock prices for two other
stock indices D,E at time t. Finally, we need to define the operation for the output
layer.

yt = act(Whyht + by), (26)

where act(·) is an output activation function such as softmax, sigmoid or identity
function (in case we want to do regression). Why ∈ R4×2 represents the weight ma-
trix between the hidden state layer and the output layer and by ∈ R2 the bias vector
for the output layer.

Character-Level Language Models
Knowing the structure of RNNs with the hidden state layer(s) and shared weights
over all timesteps, this paragraph shows a small example of a character-level lan-
guage model as ‘many-to-many’ model proposed by Karpathy (2015). To train this
model, we will input a chunk of text into the RNN and ask it to predict the prob-
ability distribution of the next character given a sequence of previous characters.

32

Suppose we have a defined vocabulary of only four possible letters V = {h, e, l, o}
and the goal is to train an RNN on the training sequence ‘hello’. Since we have
a character-level model, this sequence consists of four different training samples.
We conclude that, first the probability of ‘e’ should be high given the context of
‘h’, second the probability of ‘l’ should be high given the context of ‘he’, third the
probability for the character ‘l’ should also be high given ‘hel’ and finally ‘o’ should
have a high probability given the context of ‘hell’.
By one-hot encoding each one of the four training samples into 4−dimensional one-
hot vectors10, we can feed the RNN the four training samples as a sequence as
illustrated in Figure 24 below (many-to-many task).

Figure 24: An example RNN with 4−dimensional input and output layers and one hidden layer
of three neurons. This diagram shows the activations in the forward pass, when the RNN is fed
the characters ‘hell’ as input. The output layer contains confidence values that are assigned by
the RNN for the next character (note the vocabulary is V = {h, e, l, o}). The objective in training
is that the green numbers in the output layer are high and the red numbers low. No activation
is applied on the output layer. Usually softmax activation, see equation (7), is composed on the
output layer to obtain probability values for each character of the vocabulary. Here, the act(·)
function is the identity function. Source is modified from: Karpathy (2015)

For training, we see that in the first timestep the RNN inputs the character ‘h’ and
assigns a confidence value of 1.0 for the next character to be ‘h’ again, 2.2 for the
next letter to be ‘e’ and so on. Since the training data string is ‘hello’, the predicted
next character when inputting the sequence ‘hell’ should be ‘o’, as indicated by the
green value in the output vector at time step four, y4. Since the RNN consists
of differentiable operations, we can run the BPPT algorithm to adjust the weights
θ = {Whh,Wxh,Why, b, by} such that the green values in the output layer increase.
If we were to feed the same sample sequence ‘hell’ to the RNN again, all the green
values in the output layer would be slightly higher because the confidence values
increased after one backpropagation update.
It is worth noticing that the first time the character ‘l’ is input in timestep three

10Since the vocabulary consists of only four letters.

33

x3 = (0, 0, 1, 0)T, the target (y3) is ‘l’, but the second time ‘l’ is input in timestep
t = 4, the target is ‘o’. Hence, the RNN cannot only rely on the input (x4) but needs
the hidden state h3 from the recurrent connections to keep track of the context and
predict the correct next character y4.

2.2.6.2 Application of RNNs in Drug Discovery

Training language models is one of the common tasks in natural language process-
ing. Recall that an RNN takes a sequence of input vectors x1:t = (x1, ..., xt) and
an initial hidden state vector h0 = 0 to return a sequence of hidden states for each
timestep h1:t = (h1, ..., ht) as well as a sequence of output vectors ŷ1:t = (ŷ1, ..., ŷt).
Given a sequence of characters x1:t = (x1, ..., xt), language models predict the dis-
tribution of the next (t + 1)th character xt+1, i.e. yt

11. At each timestep t, the
hidden state from the previous timestep ht−1, along with the next character xt are
inputs to the hidden layer to produce a new hidden state ht, see equation (24), which
then affects the final prediction output ŷt (see Figure 24 and equation (26)). Those
computations can be summarized with

RNN(h0, x1:t) = h1:t, y1:t , (27)

ht = A(ht−1, xt), where A is a recurrent cell, see Figure 20, (28)

ŷt = O(ht), (29)

where O(·) is a composition of affine linear transformations and activations, e.g.
one fully-connected layer as defined in equation (26).

H. S. Segler et al. (2017) trained a character-based language model using the SMILES
representation of compounds and its vocabulary as described in Section 2.1.2. For
example, if the model receives the sequence c1ccccc, there is a high probability
that the next symbol will be 1, which closes the ring, and yields benzene. Assume
the SMILES characters are contained in a vocabulary V and |V| = nv is the number
of characters from this vocabulary. The input characters are encoded as one-hot
vectors [Graves (2013)] regarding the SMILES vocabulary similar to equation (12)
and exemplified in Figure 25.
Recall that the SMILES vocabulary contains symbols of atoms and notations for
bonds, branches and ring openings and closings.

11If we split the training data set into feature set and label set. Since language models are a
supervised learning task, given a sample x we want to predict the label y. Here: given a sequence
of characters x1:t = (x1, .., xt), we want to predict the next character yt = xt+1.

34

Figure 25: Depiction of an one-hot encoded representation derived from the SMILES of a
molecule. Here a reduced vocabulary is shown, while in practice the vocabulary is much larger,
covering all tokens (unique characters) present in the training data. Source: Olivecrona et al.
(2017)

The RNN language model needs to be able to deal with long-term dependencies
because it has to learn the SMILES grammar with all the defined rules in Section
2.1.2. Especially, the RNN needs to learn the SMILES grammar in terms for ring
openings and closings as illustrated in Figure 26.

Figure 26: Examples of molecules and their SMILES representation. To correctly create SMILES,
the model has to learn long-term dependencies, for example to close rings (indicated by the colored
numbers) and brackets. Source: H. S. Segler et al. (2017)

More formally, given a sequence of one-hot encoded SMILES characters
x1:t = (x1, ..., xt) the probability given by the network, parameterized by a set of
weights combined in θ, to the input sequence x1:t is decomposed as

pθ(x) = pθ(x1, ..., xt) =
t∏

j=1
pθ(xj|xj−1, ..., x1), (30)

where we want to maximize this probability by fitting the model to a dataset D.
Since the RNN contains an output layer for modeling the class probabilities of the
next character, ŷ ∈ (0, 1)nv ⊂ Rnv , RNNs usually use cross-entropy as loss function,
since language modeling is a supervised task as exhibited in Figure 24.
Given a timestep t, we have the one-hot encoded character xt and want to predict
the next character ŷt, where the next character label yt is given and the RNN model

35

keeps track of the history by having the hidden state ht. The probability distribution
of pθ(ŷt|xt, ..., x1) = RNNθ(xt|ht−1) (29)= O(ht) is computed using softmax activation
function (see equation (7)) to create probability values for each character in the
SMILES vocabulary. As each timestep t the RNN model outputs (class) probabilities
ŷt for each character of the vocabulary, it is straightforward to use cross-entropy loss
(see equation (13)) as a loss function. Categorical cross-entropy implies that we try
to optimize the logarithmized probability of the correct character. As an example we
will denote this dependency as ŷt = RNNθ(xt|ht−1) = softmax(Whyht+by) ∈ (0, 1)nv .
Hence, the cross-entropy loss at timestep t is defined with

LCE(yt,RNNθ(xt|ht−1)) = −
nv∑
j=1

yt,j log(ŷt,j). (31)

Suppose we obtained a pre-processed dataset D12 for language modeling with N

one-hot encoded sequences {x(i)}Ni=1 and its corresponding one-hot encoded next-
character labels {y(i)}Ni=1. Empirical risk minimization as done in equation (9) over
a dataset leads to

L = − 1
N

N∑
i=1

nv∑
j=1

y
(i)
j log(ŷ(i)

j) −→ min
θ
, (32)

where the partial derivatives of the empirical risk L w.r.t. network weights can be
efficiently calculated with backpropagation through time algorithm [Graves (2008)].
Once the model is trained, the sampling procedure can be described with Figure 27.

Figure 27: Sampling process. Start with a random seed symbol s1, here c, which gets converted
into a one-hot vector x1 and input into the model. The model updates its internal state h0 and
h1 and outputs ŷ1, which is the probability distribution over the next symbols. Here, sampling
yields s2 = 1. Converting s2 to x2, and feeding it to the model leads to updated hidden state h2
and output y2, from which can be sampled again. This iterative symbol-to-symbol procedure is
continued until the end-of-line token \n is sampled. Here the result yields the benzene ring. The
hidden state enables to keep track of opened brackets and rings, to ensure that they will be closed
again. Here the SMILES vocabulary V = {c,1,\n} is used. Source: H. S. Segler et al. (2017)

12Note that when implementing, the sequences need to be split by timestep. For example, if
we have the word ‘hello’ and set the split for t = 1, the corresponding features and labels (x, y)
will be (h,e), (e,l), (l,l), (l,o) which furthermore must be one-hot-encoded. Therefore, RNNs get
three-dimensional tensors as input with the shape=(batch-size, time-step, nv).

36

2.3 Autoencoders

An autoencoder falls under the category of unsupervised learning, where the ob-
jective is to learn a representation of features x, e.g. through manifold learning or
dimensionality reduction. It is called unsupervised because in contrast to supervised
learning, no corresponding target variable y is needed.
The basic idea of an autoencoder is to obtain a model that is able to reconstruct its
input, where the autoencoder consists of two neural networks, an encoder network
and decoder network, as illustrated in Figure 28 below.

Figure 28: Illustration of the autoencoder model architecture on the MNIST dataset. The
MNIST dataset is a large set of handwritten digits that is commonly used for training various
image processing systems. Source: Weng (2018)

The two neural networks have the following tasks:

• Encoder network gφ: It encodes the original high-dimensional input x into a
latent low-dimensional code z. The input size is usually larger than the output
(code) size, formally z = gφ(x).

• Decoder network fθ: It reconstructs the original feature from the com-
pressed code, formally x′ = fθ(z) = fθ(gφ(x)) ≈ x.

The case above is an undercomplete autoencoder because the autoencoder would be
of no use, if it simply learns the identity fθ(gφ((x)) = x. In fact, we want the autoen-
coder to learn useful and significant properties of the features (by compressing
them into a continuous bottleneck code). Also, classical principal component anal-
ysis (PCA) can be viewed as an autoencoder, if the encoder and decoder networks
are just applying linear transformations and the reconstruction loss is the L2 loss.
For a proof of the statement earlier please refer to Khapra (2019).

37

The parameters (φ, θ) are learned together end-to-end by minimizing the reconstruc-
tion error with L2 loss as stated in equation (11), leading to the empirical risk

LAE = 1
N

N∑
i=1

L2(x(i), fθ(gφ(x(i)))) = 1
N

N∑
i=1

(x(i) − fθ(gφ(x(i))))2, (33)

where as optimization algorithm stochastic batch gradient descent and backpropa-
gation (see Section 2.2.5.2) for updating the encoder and decoders network weights
can be applied to minimize this empirical risk.

Once the autoencoder is trained, the latent code is often used for various down-
stream tasks such as supervised learning by taking it as input feature for a predictive
model. In case of a clustering task, the clustering can also be applied in the latent
space. Therein the main idea is that by compressing the feature representation into
the latent code, samples might be disentangled and lie within different groups in the
encoded latent space.
Since many variants of autoencoder exist and are a field of active research, a sum-
mary of the fundamental variants and extensions is provided by Weng (2018) and
Goodfellow et al. (2016).

38

2.3.1 Translation Model to Learn Molecular Descriptors

The objective by Winter et al. (2018) is to learn informative molecular descriptors
(see Section 2.1) from low-level molecular encodings such as SMILES or InCHI. In
contrast to the basic idea of autoencoders, where the autoencoder has the purpose
to reconstruct its input, Winter et al. (2018) borrow ideas from neural machine
translation [Seq2Seq model by Sutskever et al. (2014) to translate between English
and French text.]: it translates between two semantically equivalent but syntacti-
cally different representations of molecular structures, compressing the meaningful
information in both representations in a low-dimensional representation code vector,
called cddd (Continuous Data-Driven Descriptor).
For example, one possible translation model would receive as input an InCHI rep-
resentation of a compound, encode it into the latent space, which is the desired
molecular descriptor, and then decode that molecular descriptor to the canonical
SMILES representation of the respective compound as displayed in Figure 29.

Figure 29: General architecture of a translation model using the example of translating between
the InCHI and SMILES representation of 1,3-Benzodioxole. Source: Winter et al. (2018)

The translation model was trained on a large dataset of approximately 72 million
compounds. Since the translation model works with sequential data, tokenization
of sequences into one-hot vector representations was done as illustrated earlier in
Figure 25. By defining a lookup-table for both, SMILES and InCHI vocabulary, the
SMILES vocabulary consists of 38 unique characters and the InCHI vocabulary of
28 unique characters. The translation model itself comprises two neural networks
as shown in Figure 29. For implementation details and network architectures please
refer to the supplementary information (SI) from Winter et al. (2018).
Once the translation model is trained, the molecular descriptor can be extracted for
any compound and utilized as molecular descriptor for several downstream tasks,
such as predictive modeling in quantitative structure-activity relationships (QSAR)
tasks. Since the goal was to learn good feature representations that could be used for
further downstream tasks, Winter et al. extended the translation model with an ad-
ditional predictive model forecasting nine continuous molecular properties, a ∈ R9,
which contributes into the overall loss function. By including this additional model,

39

the translation model is forced to learn meaningful continuous representations.
The predictive (regression) model is a three-layer fully connected neural network dη
that takes as input the molecular descriptor cddd and outputs a molecular property
vector of dimension nine. It is trained simultaneously with the translation model.
The encoder gφ and decoder network fθ are both RNNs as illustrated in Figure 30.

Figure 30: The final model architecture comprises the translation model, where the encoder and
decoder network each use three-stacked GRU layers [Cho et al. (2014)] with sizes 512, 1024, 2048.
Additionally, the prediction network is included. Source is modified from SI: Winter et al. (2018)

To explain the translation process further, the encoder RNN gφ takes as input the
one-hot encoded token/character at timestep t, computes the hidden state for each of
the three GRU layers and maps the concatenated (hidden) cell states from the three
GRU layers (colored blue in Figure 30) of gφ to one fully-connected layer, which
then outputs the molecular descriptor as 512−dimensional vector activated with
tanh function. The decoder RNN fθ takes as input the latent cddd-representation
and maps it into one fully-connected layer of a size 512 + 1024 + 2048 = 3548, where
the activated neurons of this layer are used to initialize the hidden states for the
three recurrent GRU layers of the decoder (colored orange in Figure 30). Since the
translation model is a Seq2Seq-autoencoder, the decoder network predicts the
class probability for each character of the SMILES vocabulary at timestep t, as the
input for the encoder was also a token at timestep t. Hence, the decoder network
needs as input the one-hot encoded token at timestep (t − 1) and the initialized
hidden states from the processed cddd-embedding in order to predict the character
at timestep t. The hidden state from the last GRU layer is mapped to an output
layer to predict probabilities for the different tokens via one fully-connected layer
with softmax activation function similar to the model by H. S. Segler et al. (2017)
explained in Section 2.2.6.2. The complete translation model is trained on minimiz-
ing cross-entropy between this probability distribution and the one-hot transformed
correct characters in the target sequences, stating the translation loss Lφ,θ between
encoder and decoder, as well as minimizing the mean-squared error for the property
prediction Lφ,η, via the prediction network dη.

40

The total empirical risk containing cross-entropy and L2 loss is defined with

L = − 1
N

N∑
i=1

 nv∑
j

y
(i)
j log(ŷ(i)

j)
+ 1

N

N∑
i

(
a(i) − dη(gφ(x(i)))

)2
, where ŷ(i) = fθ(gφ(x(i)))

(34)
and a(i) is the i-th molecular property vector of a compound. Recall that this
function is minimized w.r.t. φ, θ and η. Since dη inputs a cddd, when backpropa-
gating errors, useful gradient information can be passed to the encoder network gφ,
adjusting its parameters to create better molecular descriptors. This enforces that
the translation model, besides performing well in translation, is also well suited to
extract meaningful molecular descriptors from the input sequence x.
The overall best translation model Sml2canSml, also considering the predictive
modeling objective, is achieved when translating SMILES to their canonical form.

Figure 31: Performance of the best model on four different translation tasks during the first
20000 training steps. The Sml2canSml* run was trained without the additional predictive model
dη. (a) Translation accuracy, (b) Mean performance on the lipophicity regression task, (c) Mean
performance on the Ames (bioactivity) classification task. For (b) and (c), the translation model
at the respective step was utilized to extract the molecular descriptor cddd and fed into a SVM to
model both tasks (on a QSAR validation set). Source: Winter et al. (2018)

Figure 31 shows the comparison for different translation tasks (from which sequence
type to translate from and to) regarding the translation accuracy and secondly
displays the predictive performance of the molecular descriptor on two additional
validation tasks. Regarding the translation accuracy, if no predictive modeling vali-
dation task is considered, the translation from SMILES to canonical SMILES as well
as InCHI to SMILES performs good and the pure autoencoding task from canonical
SMILES to canonical SMILES performs best. However, when looking at the valida-
tion tasks in Figure 31a and 31b, the pure autoenconding task leads to molecular
descriptors that are not well suited for the two predictive modeling tasks.
This strengthens the initial idea that the translation between two syntactically differ-
ent sequences enforced the translation model to capture the ‘true’ molecular essence
that both input and output sequences have in common.

41

2.4 Generative Adversarial Networks

The generative adversarial network (GAN) [Goodfellow et al. (2014)] is an unsuper-
vised learning method that aims to estimate a probability distribution of the features
of a real dataset D, i.e. learn pr. Classical traditional approaches accomplish this
by learning a parametric family of densities {pθ}θ∈Rd and finding the parameter θ∗

that maximizes the likelihood on the real data. Suppose the dataset contains N i.i.d
samples, leading to the dataset D = {x(i)}Ni=1.
The maximum likelihood problem can be formulated as

θ∗ = arg max
θ

N∏
i=1

pθ(x(i))

= arg max
θ

log
N∏
i=1

pθ(x(i))

= arg max
θ

N∑
i=1

log(pθ(x(i)))

= arg max
θ

1
N

N∑
i=1

log(pθ(x(i))). (35)

The maximum likelihood optimization is easiest achieved in logarithm space since
it simplifies the objective function and does not change the optimum θ∗, as will be
explained in the following. When working with the logarithm, the objective function
simplifies from a product to a sum, where the derivatives of the log likelihood are
numerical less prone to arithmetic underflow by multiplying several small proba-
bilities. Multiplying with a constant such as 1

N
will not change the optima either

but will prove to be useful when analyzing behavior as the number of data points
gets infinitely large. In the limit as N −→ ∞ the maximum likelihood estimation
is equivalent to minimizing the Kullback-Leibler divergence as shown in Appendix B.

In the GAN setting, instead of trying to directly estimate pr through a parametric
family {pθ}θ∈Rd , one defines a random variable Z13 and pass it through a paramet-
ric function gθ : Z −→ X , such as a deep neural network, that directly generates
observations following a certain distribution pθ. By changing the parameter θ, one
can change this distribution pθ and push it closer to the real data distribution pr,
obtaining following approximation

x̃ = g(z|θ)
pr≈ x.

Note that this formulation is mathematically not correct and ‘≈’ states that the
generated sample x̃ is approximately equal to x, where x is a true sample and that

13The random variable Z usually has the property that it is computational cheap to sample from
and follows a fixed distribution p(z) on its domain Z.

42

both derive from the same probability distribution pr.
In general, the GAN framework consists of two competing instances, namely the
generator G and the discriminator D. Typically those two instances are modeled
using the class of neural networks.
GANs have recently gained substantial popularity and have found numerous recent
applications, such as video generation [Vondrick et al. (2016); Xiong et al. (2017)],
image synthesis, audio generation [Donahue et al. (2018)] and usage in bioinformatics
[S & Thilak Chaminda (2017)] as well as cheminformatics [Schwalbe-Koda & Gómez-
Bombarelli (2019); Elton et al. (2019)]. For that reason, GANs are an active and
vivid field of research leading to publications of many new GAN variants.
This work includes the description and explanation of the classical vanilla GAN
and two improved variants the Wasserstein GAN and Wasserstein GAN-GP.

2.4.1 Divergence Metrics

Since we are trying to approximate a real probability density function indirectly
through a parametric function modeled as neural network, it is necessary to mea-
sure how close the model distribution pθ and real distribution pr are, or correspond-
ingly, define a distance or divergence ϕ(pr, pθ). The notion of (statistical) distance
between probability measures has found many applications in probability theory,
mathematical statistics and information theory [Sriperumbudur et al. (2012)] but
can be misleading sometimes, since statistical distance measures are mostly not
metrics and do not need to be symmetric as can be seen in the next Section. This
work will describe variants coming from two popular families of distances/diver-
gences between probability measures, namely the f-divergence/φ-divergence and
integral probability metric (IPM). For a detailed definition of those general
distance metrics and their advantages as well as disadvantages, it is worth read-
ing the manuscript of Sriperumbudur et al. (2012). In the following we assume pr
and pθ to be continuous probability densities on X = Rp. The logarithm operation
throughout this work is stated as the natural logarithm to the base e.

2.4.1.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence is a φ-divergence and has its origin in infor-
mation theory. It is a non-symmetric measure of difference between two probability
distributions pr(x) and pθ(x) and states the information lost, when pθ(x) is used to
approximate pr(x). Formally, the KL divergence is defined as

ϕKL(pr||pθ) =
∫
x
pr(x) log pr(x)

pθ(x)dx. (36)

Although the KL divergence measures the ‘distance’ between two probability distri-
butions, it is not a distance in a sense as metric. The reason lies in the fact that the

43

KL divergence is not symmetric, i.e. ϕKL(pr||pθ) 6= ϕKL(pθ||pr) and does not satisfy
the triangle inequality. The KL-divergence holds the two following properties

1. ϕKL(pr||pθ) ≥ 0.

2. ϕKL(pr||pθ) = 0 if and only if pr(·) = pθ(·) .

These two properties can be summarized as positive definiteness.
For ϕ to be a metric on X , the properties of positive definiteness, symmetry and
triangle inequality have to be satisfied by ϕ [Makarychev (2015)].
As mentioned earlier in equation (35), the maximum likelihood estimation is equiv-
alent to minimizing the KL divergence between the real data distribution and the
model distribution. One drawback of the KL divergence is that it can get infinitely
large if pr(x) > 0 and pθ(x) −→ 0. This is especially the case if the support of pθ lies
on a low-dimensional manifold (in initial training).
Recall that the support of a (probability density) function p : X −→ (0, 1) is the set
of points in X = Rn, where p is non-zero. Hence, that set A = supp(p) is charac-
terized, where p(x) > 0 holds ∀x ∈ A.
Arjovsky & Bottou (2017) claim that it is very unlikely in the beginning of training,
that all the support of pr lies within the (low dimensional) support of pθ. As a
conclusion, if even a single real data point x lies outside of the support of pθ, the
KL divergence will explode.

2.4.1.2 Jensen-Shannon Divergence

The Jensen-Shannon (JS) divergence was firstly introduced by Lin (1991) and is a
symmetrized and smoothed version of the KL divergence. The JS divergence holds
the two properties mentioned earlier in the KL divergence Section and is symmetric
and bounded and therefore has always finite values. In addition to that, the square
root of the JS divergence yields a metric, satisfying the triangular inequality and
the other properties mentioned earlier [Nielsen (2010)].
Mathematically, the JS divergence has the following form

ϕJS(pr||pθ) = 1
2ϕKL(pr||

1
2(pr + pθ)) + 1

2ϕKL(pθ||
1
2(pr + pθ)) (37)

= 1
2ϕKL(pr||M) + 1

2ϕKL(pθ||M) (38)

= 1
2

∫
x

[
pr(x) log pr(x)

0.5(pr(x) + pθ(x)) + pθ(x) log pθ(x)
0.5(pr(x) + pθ(x))

]
dx

(39)

= 1
2

∫
x

[
pr(x) log 2pr(x)

pr(x) + pθ(x) + pθ(x) log 2pθ(x)
pr(x) + pθ(x)

]
dx, (40)

where M = 1
2(pr + pθ) can be interpreted as the mixture (average) distribution of

the real data distribution pr and approximated data distribution pθ.

44

2.4.1.3 Wasserstein-1 Distance

TheWasserstein-1 distance is also called Earth’s Mover distance (for discrete random
variables) because it describes the minimum amount of ‘work’ required to transform
(probability) mass or earth/dirt from one distribution to another, e.g. pθ to pr. It
has a connection to optimal transport theory [Villani (2008)]. One can understand
a probability distribution by how much mass m ∈ [0, 1] it assigns to a point x.
Suppose we begin with distribution pθ and want to move mass around to change
that distribution into pr. Moving that probability mass m by distance d leads to
the cost of m · d. As an example [Hui (2018)] we can think of a transport plan γ

moving boxes as illustrated in Figure 32. The distance to be considered is only on
the horizontal axis, as in an univariate distribution. We obtain six boxes and want
to move them from the left side to the right location as seen below (note that there
is a desired shape for the discrete probability distribution on the right side).

Figure 32: The goal is to move the boxes from the left side to the right side. Source: Hui (2018)

The distance for moving box 1 from location 1 to location 7 equals to d(1, 7) =
||7−1||1 = ||6||1 = 6. Suppose, we have two different transport plans γ1 and γ2 that
tell us how many boxes from the left location to the right location were moved in
the Figure 33 below. The total transport costs in both cases are the same but the
transport plans are different.

Figure 33: Different transport plans can lead to the same total cost. Source: Hui (2018)

45

However, not all transport plans carry the same cost. Since the objective is to match
the desired distribution on the right hand side pr, many possible ways of moving
the boxes are possible.
Now coming back to continuous random variables: the Wasserstein-1 distance is the
cost of the cheapest transport plan γ∗. The transport plan γ(x, y) describes, how
the amount of probability mass is distributed from one point x ∈ X to another
point y ∈ Y , so as to make pθ follow pr. Usually we assume, X ,Y ∈ Rn describing
the compact domain space for each probability density pθ and pr, which in most
cases is the same domain space. To be a valid transport plan, two marginalization
constraints must also be satisfied

∫
x
γ(x, y)dx = pr(y) and

∫
y
γ(x, y)dy = pθ(x). (41)

Those two constraints ensure that following this plan yields the correct distribu-
tions, e.g. once we finish moving the planned amount of mass from every possible
x to the target y, we end up with exactly the distribution according to the desired
probability distribution pr. In this case, the transport plan can be seen as joint
distribution of the starting distribution pθ and the target distribution pr.
As there are infinitely many sets of transport plans, which satisfy the marginaliza-
tion constraints, we define ∏(pr, pθ) to be the set of all possible joint probability
distributions between pr and pθ.
When treating x as starting point and y as destination point, the total amount of
probability mass moved is γ(x, y) and the moved distance equals to ||x− y||1. Note
that when mentioning Wasserstein distance, precisely Wasserstein-1 distance is con-
sidered. In this case, we define the cost of movement as the l1 distance between two
points, hence ||x− y||1. For that reason, the cost of movement between two points
x and y with a specific amount of mass γ(x, y) equals to γ(x, y) · ||x − y||1. For a
definition of the Wasserstein-p distance please refer to Appendix A.2.
In view of computing the total cost of a transport plan γ and taking into account
that we deal with a joint probability distribution γ(x, y), it is straightforward to
minimize the expected cost with respect to the l1 distance.
The expected cost for one valid transport plan averaged across all (x, y) pairs can
be computed with

∫
x

∫
y
γ(x, y)||x− y||1dydx = E

(x,y)∼γ
[||x− y||1] . (42)

Computing the infimum over all valid transport plans γ of the expected cost, leads
to the Wasserstein-1 distance

ϕW (pr, pθ) = inf
γ∈
∏

(pr,pθ)
E [||x− y||1]

(x,y)∼γ
. (43)

46

2.4.2 Vanilla GAN

The classical vanilla GAN [Goodfellow et al. (2014)] consists of two deep neural
networks, namely the generator G (parameterized with θg that approximates the real
data distribution pr) and the discriminator D (parameterized with θd that estimates
the probability that a passed sample comes from the real data distribution pr). The
two neural networks are trained in an adversarial fashion, such that the training
objective of G is to maximize the probability of D making a mistake, i.e. fool
the discriminator. The training objective of D is to minimize the probability to
make misclassifications, i.e. correctly discriminate a fake sample as fake and a real
sample as real. During the training phase of vanilla GAN, a random sample z ∼ pz

is drawn from a known latent random variable Z, usually uniformly or standard
Gaussian distributed. That random vector z is then fed to the generator network,
producing a fake sample xg = G(z), where xg ∼ pg.14 The observations from the
real data set, xr ∼ pr, together with the generated fake samples xg are fed into
the discriminator. The discriminator in vanilla GAN determines whether the input
samples are real (1) or fake (0) through the discrimination function D(x).
This setting corresponds to a minimax two-player game and can be formulized as
follows

min
G

max
D

V (D,G) = E
x∼pr(x)

[logD(x)] + E
z∼pz(z)

[log(1−D(G(z)))]. (44)

The first term in the loss function is the expected logarithm of D(x), the probability
of correctly accepting a real sample, whereas the second term is the expected loga-
rithm of (1−D(G(z)), the probability of correctly rejecting a fake sample. This loss
function forces the discriminator to improve its real/fake discrimination capability.
The feedback from the discriminator, i.e. D(G(z)), is then used by the generator to
improve the quality of generated fake samples. Figure 34 below shows the workflow
during vanilla GAN training.

Figure 34: Vanilla GAN architecture workflow. The objective of the generator is to fool the
discriminator, whereas the objective of the discriminator is to correctly classify input samples.
Source: Adiga et al. (2018)

14xg follows the distribution of the generator model that is parameterized with θg. Since a
random vector z is fed into the generator network, we implicitly model the real data distribution
pr.

47

Optimizing vanilla GAN is equal to optimizing Jensen-Shannon divergence (see
equation (37)) as can be seen below in the derivation. Before we proceed with
the derivation, some additional equations are required.
Following holds ∀a, b 6= 0:

if y = a log(y) + b log(1− y),

the optimal y,∀y ∈ (0, 1) can be computed by calculating the first derivative of the
right hand side with respect to y and setting it to zero:

d

dy
(a log(y) + b log(1− y)) = a

y
− b

1− y
!= 0,

leads to (∀a, b 6= 0):
a

y
= b

1− y
a(1− y) = by

1− y = y
b

a

1 = y
a+ b

a

y∗ = a

a+ b
.

(45)

The optimization problem in equation (44) is formulated as

min
G

max
D

V (D,G) = E
x∼pr(x)

[logD(x)] + E
z∼pz(z)

[log(1−D(G(z)))]

= E
x∼pr(x)

[logD(x)] + E
x∼pg(x)

[log(1−D(x))]

=
∫
x

[pr(x) logD(x) + pg(x) log(1−D(x))] dx.

If the generator G is fixed, using equation (45) leads to the optimal discriminator

D∗(x) = pr(x)
pr(x) + pg(x) . (46)

The optimization for the generator with the optimal discriminator equals to

min
G
V (D∗, G) = min

G

∫
x

[pr(x) logD∗(x) + pg(x) log(1−D∗(x))] dx

= min
G

∫
x

[
pr(x) log pr(x)

pr(x) + pg(x) + pg(x) log(1− pr(x)
pr(x) + pg(x))

]
dx

= min
G

∫
x

[
pr(x) log pr(x)

pr(x) + pg(x) + pg(x) log pg(x)
pr(x) + pg(x)

]
dx

=: min
G
C(G),

(47)
where the term above includes the Jensen-Shannon divergence.

48

If we take a deeper look into the JS divergence (see equation (37)), we can derive
that the term C(G) from equation (47) is within the JS divergence.

ϕJS(pr||pg) = 1
2

∫
x

[
pr(x) log 2pr(x)

pr(x) + pg(x) + pg(x) log 2pg(x)
pr(x) + pg(x)

]
dx

= 1
2

∫
x

[
pr(x)(log 2 + log pr(x)

pr(x) + pg(x))
]
dx

+ 1
2

∫
x

[
pg(x)(log 2 + log pg(x)

pr(x) + pg(x))
]
dx

= 1
2

∫
x

[
pr(x) log 2 + pr(x) log pr(x)

pr(x) + pg(x)

]
dx

+ 1
2

∫
x

[
pg(x) log 2 + pg(x) log pg(x)

pr(x) + pg(x)

]
dx

= 1
2

[
log 2 +

∫
x
pr(x) log pr(x)

pr(x) + pg(x)dx
]

+ 1
2

[
log 2 +

∫
x
pg(x) log pg(x)

pr(x) + pg(x)dx
]

(47)= 1
2 [log(4) + C(G)] .

Hence, for the optimal discriminator the generator objective is equal to minimizing
the Jensen-Shannon divergence up to a constant

min
G
V (D∗, G) = min

G
C(G) = min

G
[2ϕJS(pr||pg)− 2 log 2] . (48)

Since the Jensen-Shannon divergence is a statistical distance measure and satisfies
the non-negativity condition ϕJS(pr||pg) > 0 ∀pr, pg, the minimum value of C(G)
is achieved, if and only if the JS divergence is equal to zero. This is the case if
pr(x) = pg(x). Hence, the optimal generator G∗ has to map any random vector z
back into the X space, such that the generator distribution is equal to the real data
distribution and obtaining optimal generator loss of C(G∗) = −2 log 2 ≈ −1.3863.
With pr(x) = pg(x) the optimal discriminator decision is D∗(x) = 1

2 , which intu-
itively makes sense if we think about the idea of zero-sum game.
For training, once both objective functions are defined, the generator and discrimi-
nator are learned jointly by alternating gradient descent updates.
The minmax game between generator and discriminator needs to be solved in an
iterative numerical approach.
‘Optimizing D to completion in the inner loop of training is computationally pro-
hibitive, and on finite datasets would result in overfitting. Instead, one alternates
between diters steps of optimizing D and giters = 1 step of optimizing G.
This results in D being maintained near its optimal solution, as long as G changes
slowly enough.’ [Goodfellow et al. (2014)]

49

One often occurring problem in training deep learning models is the phenomenon of
exploding or vanishing gradients. Early in the training of GAN, when the generator
is poor and not able to create good data samples, the discriminator will directly
recognize the passed input as fake (D(G(z)) ≈ 0). Hence, the gradient ∇θgV (D,G)
for updating the generator weights will be close to zero because the gradient of
log(1 − D(G(z)) saturates close to zero. Recall that when computing the partial
derivatives in early hidden layers, the chain rule states to compute a product of
partial derivatives. So if the initial partial derivative (which comes from the objective
function) is almost zero, the other partial derivatives as product will be close to zero
as well.
So rather training G to minimize log(1 − D(G(z))), we can train G to maximize
log(D(G(z)). The reformulation of this optimization is valid because each decision
made by the discriminator lies within (0, 1), and the two generator objectives are
symmetric to the vertical axis at 0.5 as visualized in Figure 35a below.
For that reason, ‘the maximization of log(D(G(z))) results in the same fixed point
of the dynamics of G and D but provides much stronger gradient early in learning.’
[Goodfellow et al. (2014)]

(a) Generator loss functions. (b) Generator loss derivatives.

Figure 35: Behaviour of saturating and non-saturating generator loss for its output and derivative.
Non-saturating generator loss provides larger gradient values for smaller discriminator values.

In the beginning of training, the generator might output poor data samples, such
that the discriminator decision is small. Hence, it is better to use the alternative
non-saturating generator loss function. As introduced earlier in this Section, the
classical vanilla GAN with saturating generator loss is theoretically motivated from
game theory, and especially the objective in equation (44) is a zero-sum-game
(minimax game). A zero-sum game is a game, ‘in which all player’s cost is always
zero’ [Goodfellow (2016)]. By switching to the heuristic of non-saturating generator
loss, the game is no longer a zero-sum-game anymore. For the generator instead of
minimizing the log probability of the discriminator being correct, the generator now
maximizes the log probability of the discriminator being mistaken.

50

The algorithm for training vanilla GAN with the heuristic non-saturating generator
loss function can be seen below.

Algorithm 1 Vanilla GAN: Minibatch stochastic gradient descent training.
Default values: diters = 1,m = 64, α = 0.002 and non-saturating generator loss.
Require:

α, the learning rate. m, the batch-size.
diters, the number of iterations of the discriminator per generator iteration.

1: for number of training epochs do
2: for diters steps do
3: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz
4: Sample minibatch ofm data samples {x(1), ..., x(m)} from real data x ∼ pr
5: Update the discriminator D by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
. max w.r.t. θd

6: end for
7: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz
8: Update the generator G by ascending its stochastic gradient:

∇θg

1
m

m∑
i=1

logD(G(z(i)))

. max w.r.t. θg
9: end for

10: The gradient-based updates can be used by any standard gradient-based learning
rule. The default is ADAM optimizer with its default values.

Although vanilla GAN was a breakthrough in generative models, it still has some
disadvantages and difficulties to train the two competing networks, such that the
generator produces samples with high quality. In general, training vanilla GAN is
known as slowly and unstable with several problems listed below.

Vanishing Gradient

As mentioned earlier, the optimization of vanilla GAN is performed in a numerical
fashion: first train the discriminator in the inner loop and then the generator in the
outer loop. If the discriminator is (almost) perfect, meaning classifying real samples
as real (D(x) ≈ 1,∀x ∈ supp(pr)) and generated samples as fake (D(x) ≈ 0,∀x ∈
supp(pg)), the generator gradients ∇θgV (D,G) also tend to become zero. Hence,
the generator weights θg cannot be updated properly since no useful gradients are
available. As a result, training vanilla GAN faces a dilemma.

1. If the generator behaves badly and is poor, the generator does not have ac-
curate gradient feedback for updating the generator weights. Switching to

51

non-saturating generator loss as done in Algorithm 1 might improve training
stability as can be seen in Figure 35b.

2. If the discriminator behaves good and can clearly distinguish between real and
fake data, the generator gradients (with saturating generator loss) will be close
to zero and updating the generator weights will have very small changes. As a
result, learning becomes extremely slow. In case of non-saturating generator
loss the gradients of the generator would explode (see figure 35b) and the
learning would diverge and become very unstable.

Mode collapse

In general, real life data distributions are multimodal. Mode collapse in generative
adversarial networks is the lack of diversity in generated samples. In the worst and
extreme case, mode collapse means that the generator network maps any latent
random input z to one specific point x̃.
Theis et al. (2015) and Arjovsky & Bottou (2017) made an in-depth analysis towards
training and evaluating GAN with respect to good sample quality of the generator
network. One key point why GAN training (or rather general machine learning)
is hard, is the choice of objective function. Theis et al. (2015) show the effects of
different divergence metrics on a simple toy example, where an isotropic Gaussian
was fit to data drawn from a mixture of Gaussians. When minimizing KL divergence
(KLD), the fit distribution ‘avoids assigning extremely small probability to any data
point but assigns a lot of probability mass to non-data regions’ [Theis et al. (2015)].
To illustrate this idea for image synthesis, in this case the GAN would produce
samples that look really unrealistic. For minimizing the Jensen-Shannon divergence
(JSD), the fit distribution ‘yields a Gaussian which fits one mode well, but which
ignores other parts of the data’ [Theis et al. (2015)]. In this case, mode collapse
happened, where the GAN always produce data points coming from one mode, e.g.
the generator network always generates images of cats.

Figure 36: An isotropic Gaussian was fit to data drawn from a mixture of Gaussians by either
minimizing Kullback-Leibler divergence (KLD) or Jensen-Shannon divergence (JSD). The different
fits demonstrate different tradeoffs made by two measures of distance between distributions. Image
is modified from source: Theis et al. (2015)

52

It is therefore worth investigating the GAN training for different divergence metrics
regarding probability distributions as done by Arjovsky et al. (2017), leading to a
new variant of GAN described in the next Section 2.4.3.

2.4.3 Wasserstein GAN

The Wasserstein GAN (WGAN) is a variant of the vanilla GAN and minimizes
the Wasserstein-1 distance as stated in equation (43) between the distribution of
real data and the distribution of generated data [Arjovsky et al. (2017)]. However,
the infimum over the set of all possible joint distributions γ ∈ ∏(pr, pθ) is highly
intractable. On the other hand, the Kantorovich-Rubinstein duality [Villani (2008);
Santambrogio (2015); Herrmann (2017)] enables formulating the primal problem in
equation (43) into its dual form

ϕW (pr, pθ) = W (pr, pθ) = sup
||f ||L≤1

E
x∼pr

[f(x)]− E
x∼pθ

[f(x)], (49)

where the supremum (least upper bound) is over all 1−Lipschitz functions
f : X −→ R. Now, we do not need to find the optimal transport plan15 γ∗, which
satisfies the two marginalization constraints in equation (41), but instead a function
f that is 1−Lipschitz continuous. The mathematical definition of K−Lipschitz
continuity and its application in a sketch of proof formulating the primal problem
to its dual version is provided in the Appendix A.1 and A.3.
Intuitively, a Lipschitz continuous function is restricted in how fast it can change.
Let dX and dY be distance functions16 on two compact spaces X and Y . A function
f : X −→ Y is K−Lipschitz if there exists a real constant K ≥ 0, such that for all
x1, x2 ∈ X the following property holds

dY (f(x1), f(x2)) ≤ KdX(x1, x2). (50)

Consider the example of a real-valued function f : R −→ R. This function is called
K−Lipschitz if and only if there a exists a real constant K ≥ 0, such that for all
x1, x2 ∈ R, when using l1-norm in R, following constraint holds

|f(x1)− f(x2)| ≤ K|x1 − x2|
|f(x1)− f(x2)|
|x1 − x2|

≤ K.

The constraint above restricts the slope of a secant between two points of the
K−Lipschitz function by an upper bound K. The linear function f(x) = x is
1−Lipschitz continuous on R as shown in Example 1 in Appendix A.1.

15Also called joint probability density of pr and pθ. In terms of optimal transport theory, this is
often called coupling.

16E.g., the lp norm applied on the difference of two points x1, x2 leading to dX = ||x1 − x2||p.

53

Since the optimization over all 1−Lipschitz functions is still intractable, the objec-
tive in equation (49) can be approximated by considering K−Lipschitz functions.
If we replace the supremum over 1−Lipschitz functions with the supremum over
K−Lipschitz functions, then the supremum isK·W (pr, pθ) because everyK−Lipschitz
function is 1−Lipschitz if we divide it by K. The supremum over K−Lipschitz func-
tions {f : ||f ||L ≤ K} is still intractable but approximating is easier: suppose we
have a parameterized function family {fw}w∈W , where w are some weights and W
is the set of all possible weights for this function family. Further suppose that these
functions f are allK−Lipschitz for someK ≥ 0. It is always possible to approximate
the supremum with a maximum in case the supremum cannot be reached,

max
w∈W

E
x∼pr

[fw(x)]− E
x∼pθ

[fw(x)] ≤ sup
||f ||L≤K

E
x∼pr

[f(x)]− E
x∼pθ

[f(x)]

= K ·W (pr, pθ).
(51)

The reason for this approximation is to consider solving the optimization problem,

max
w∈W

E
x∼pr

[fw(x)]− E
x∼pθ

[fw(x)]. (52)

If the supremum in equation (51) is attained for some weight w ∈ W , then the
Wasserstein-1 distance W (pr, pθ) was successfully computed, scaled by a constant
K. Nevertheless, the authors of the WGAN claim that the supremum probably will
not be achieved by solving the above optimization. In this case, the approximation
quality depends on what K−Lipschitz functions are missing from {fw}w∈W . Coming
back to the framework of GANs, where the discriminator is competing against a
generator, the Wasserstein GAN attempts to solve following optimization problem

min
G

max
D∈D

E
x∼pr(x)

[D(x)]− E
z∼pz(z)

[D(G(z))]. (53)

It is worth mentioning that the discriminator takes the role as a critic and out-
puts a real-valued number instead of a probability ∈ (0, 1) for an observation to
be true or fake. Furthermore, D has to come from a set D that states the set of
1−Lipschitz continuous functions. The critic is trained to learn a K−Lipschitz con-
tinuous function to help computing the approximation of Wasserstein-1 distance.
As the loss decreases in training, the Wasserstein-1 distance gets smaller and the
samples generated by the generator model gets closer to the real data distribution.
One can observe that the maximum in equation (53) is obtained, when as large as
possible values are allocated to samples from pr and as as small as possible values to
samples from pg. Meanwhile the minimum over the generator network G attempts
to minimize that difference as a competing counterpart towards the critic.
Hence, the generator network G is forced to push the distribution pg as close to pr
such that the Wasserstein-1 distance is equal to zero. The Wasserstein-1 distance is

54

zero if and only if the generated data distribution pg is exactly the real data distri-
bution pr. The WGAN has several significant practical benefits over the standard
vanilla GAN (in equation (44)) [Arjovsky et al. (2017)].

1. A meaninful loss metric that correlates well with the generator’s convergence
and sample quality.

2. Improved stability of the optimization process.

The first point can be explained that within the WGAN algorithm the critic D is
trained in the inner optimization relatively well up to convergence, before the outer
optimization for the generator is proceeded. As the overall loss function decreases,
one can observe that the generated samples by G have high quality and are like
samples from the true data distribution. The second point goes along with the first
point. Since the authors of the WGAN advise to train the critic up to convergence,
useful gradient information can be passed to the generator17 because the better
the critic is trained, the better the approximation of the Wasserstein-1 distance is
achieved. Arjovsky et al. (2017) claim that one major drawback of vanilla GAN was
the vanishing gradient, if the discriminator was trained too long and could tell any
generated sample from the generator G as fake. In that case as seen in Figure 35b,
the gradients passed to the generator are almost zero. But with WGAN, the van-
ishing gradient problem is solved as the gradient of the overall objective in equation
(53) w.r.t. G(z) is linear as shown in Figure 37 below.

Figure 37: Optimal discriminator and critic when learning to differentiate two Gaussians. The
discriminator of a vanilla GAN saturates and results in vanishing gradients. The WGAN critic
however, provides very clean gradients on all parts of the space. Source: Arjovsky et al. (2017)

It is important to remember that the WGAN algorithm only works if the critic D
is a 1−Lipschitz function. The reason for this constraint lies in the Kantorovich-
Rubinstein duality that enables to formulate the primal problem (infimum) to its
dual version (supremum), see Appendix A.3. The authors of WGAN suggest to
restrict the model weights w of the critic into a compact space, e.g. a fixed box

17Since the generator G is coupled through the critic D through D(G(z)).

55

W = [−0.01, 0.01]l. In terms of MLPs, this means that the values of the weight ma-
trices and bias vectors for each hidden layer are clipped into the range [−0.01, 0.01]
after each gradient update. Reasons, why weight clipping can enforce the 1−Lipschitz
continuity is explained by Anil et al. (2019). Nevertheless, Arjovsky et al. (2017)
argue that ‘weight clipping is clearly a terrible way to enforce a Lipschitz constraint’
since the lower and upper clipping bounds are hyperparameters and affect the train-
ing of WGAN substantially: ‘if the clipping parameter is large, then it can take a
long time for any weights to reach their limit, thereby making it harder to train
the critic up to optimality. If the clipping is small, this can easily lead to vanishing
gradients when the number of layers is big [because the chain rule requires a prod-
uct of partial derivatives]’. For that reason, research on the WGAN has been made,
leading to the Improved WGAN that will be explained in the next Section 2.4.4.
Just like in vanilla GAN training, Wasserstein GAN is achieved in the same way.
First we fix the generator G and train the criticD for diters steps (up to convergence).
Then we fix the critic and train the generator for giters = 1 step. By training the
critic up to convergence, we hope to approximate the Wasserstein-1 distance well,
such that when backpropagating errors for the generator model via the critic, useful
(non-saturating) gradient information can be passed backwards.

Algorithm 2 Wasserstein GAN with weight clipping:
Default values: diters = 5, α = 0.00005, c = 0.01,m = 64.
Require:

α, the learning rate. c, the clipping parameter. m, the batch-size.
diters, the number of iterations of the critic per generator iteration.

1: for number of training epochs do
2: for diters steps do
3: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz
4: Sample minibatch ofm data samples {x(1), ..., x(m)} from real data x ∼ pr
5: Update the critic D by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
D(x(i))−D(G(z(i)))

]
. max w.r.t. θd

6: Clip the critic weights: θd ←− clip(θd,−c, c)
7: end for
8: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz
9: Update the generator G by descending its stochastic gradient:

∇θg

1
m

m∑
i=1
−D(G(z(i)))

. min w.r.t. θg
10: end for
11: The gradient-based updates can be used by any standard gradient-based learning

rule. The default is RMSProp optimizer with its default values.

56

2.4.4 Improved Wasserstein GAN

It was proposed by Arjovsky et al. (2017) to train a generator and critic network by
minimizing the primal Wasserstein-1 distance (equation (43)). The authors claim
that the proposed distance measure holds better properties compared to the Jensen-
Shannon divergence (equation (48)) from vanilla GAN in terms of convergence and
sample quality. The change of divergence metric in WGAN introduced a new opti-
mization problem (see equation (53)) that required the critic network to lie within
the space of 1−Lipschitz functions. The authors of WGAN enforced this constraint
through weight clipping, i.e. by constraining the entries of weight matrices and bias
vectors of the critic to be smaller than a given value in magnitude.
However, the weight clipping method can lead to undesired behaviour as analyzed by
Gulrajani et al. (2017) and will be summarized later in this Section. In the Improved
Wasserstein GAN algorithm, Gulrajani et al. (2017) propose a regularization term
based on results from optimal transport theory [Villani (2008)]. This regularization
term is a gradient penalty term, penalizing any deviation of the gradient 2-norm
of the critic network (w.r.t its input) from the value one. The main idea for this
regularization term comes from their stated proposition and logical conclusion from
this, regarding an optimal critic function f ∗.

Proposition 1. Let Pr and Pg be two distributions in X , a compact metric space.
Then, there is a 1−Lipschitz function f ∗ which is the optimal solution of the problem
max||f ||L≤1 Ey∼Pr [f(y)]−Ex∼Pg [f(x)] (equation (49)). Let π∗ be the optimal coupling
between Pr and Pg, defined as the minimizer of (the primal Wasserstein-1 objective)
W (Pr,Pg) = infπ∈∏(Pr,Pg) E(x,y)∼π[||x − y||], where ∏(Pr,Pg) is the set of joint dis-
tributions π(x, y) whose marginals are Pr and Pg, respectively. Then, if f ∗ is dif-
ferentiable, π∗(x = y) = 0, and xt = tx + (1 − t)y with 0 ≤ t ≤ 1, it holds that
P(x,y)∼π∗

[
∇f ∗(xt) = y−xt

||y−xt||

]
= 1.

Corollary 1. f ∗ has gradient norm one almost everywhere under Pr and Pg, on each
secant xy, where the points (x, y) are samples from the optimal coupling: (x, y) ∼ π∗.

A proof for Proposition 1 is provided by Gulrajani et al. (2017).
Proposition 1 makes use of the 1−Lipschitz continuity: for all (x, y) in the support
of the optimal coupling π∗, the maximal norm of a partial derivative at any point
into any direction is one. So now, when considering the line between x and y, for
each point xt = tx + (1 − t)y the partial derivative has norm equal to one into the
direction pointing from the real data point x to the generated data point y (which
are coupled by the optimal π∗). Now using the conclusion from the sentence before,
since the maximal norm of a partial derivative at any point into any direction is
one, the chosen direction is the direction of maximal descent/ascent, leading to the
gradient. Therefore, the gradient for each point between x and y has a norm of one.

57

Difficulties with weight constraints
Gulrajani et al. (2017) found out that ‘weight clipping in [classical] WGAN leads
to optimization difficulties’. In addition to classical hard clipping of the magnitude
for each weight, Gulrajani et al. (2017) tried different weight constraints, such as
L1 and L2 weight decay (see equation (15)). Nonetheless, soft constraints still led
to difficulties as mentioned in their paper. In general, Gulrajani et al. (2017) state
two main problems that are caused by weight clipping as illustrated in Figure 38.

(a) Value surfaces of WGAN critics trained
to optimality on toy datasets using (top)
weight clipping and (bottom) gradient
penalty. Critics trained with weight clipping
fail to capture higher moments of the real
data distribution.

(b) (left) Gradient norms of WGAN crit-
ics during training on the Swiss-Roll dataset
either explode or vanish when using weight
clipping, but not when using gradient
penalty. (right) Weight clipping (top) pushes
weights towards two values (the extremes of
the clipping range), unlike gradient penalty
(bottom).

Figure 38: Gradient penalty in WGAN does not exhibit undesired behaviour like weight clipping.
Source: Gulrajani et al. (2017)

Capacity underuse
Applying hard clipping on the weights on a lipschitz continuous function restricts the
critic towards much simpler functions. In order to illustrate this, several experiments
on the toy datasets 8-Gaussians, 25-Gaussians, Swiss-Roll were conducted as shown
in Figure 38a. For those toy datasets, the metric space is two-dimensional, hence
X ⊂ R2. In those experiments Gulrajani et al. (2017) compared the critic network
behaviour regarding its value function D(·) in WGAN with weight clipping against
the WGAN with gradient penalty. The authors held the generator network fixed to
be the real data added with standard Gaussian noise. For both algorithms, the critic
was trained up to convergence and a level set / contour plot on the critic’s value over
a batch of fixed generator samples was plotted. The yellow dots in the Gaussians toy
datasets show the mode of data whereas the yellow dots in the Swiss-Roll visualize
real data points. For both algorithms, the yellow contour lines correspond to high
values and purple lines to low values for the critic D. The WGAN with weight
clipping (first row in Figure 38a) did not capture the modes very well in contrast to
WGAN with gradient penalty (second row).

58

Exploding and vanishing gradients
As mentioned in the end of Section 2.4.3, the weight clipping procedure can lead for
arbitrary small or large clipping bounds to vanishing or exploding gradients. This
was also investigated by Gulrajani et al. (2017) in Figure 38b. The authors trained a
feedforward network critic on the Swiss-Roll dataset comparing WGAN with weight
clipping and gradient penalty. When updating the model weights during backpropa-
gation (see Section 2.2.5.2), the partial derivatives for the early layers either explode
or vanish due to the multiplication of large or small partial derivatives computed
from the back layers.

Gradient Penalty
In order to enforce the critic D to be 1−Lipschitz continuous, the gradient penalty
term is included when updating the critic in the inner loop. ‘A differentiable func-
tion is 1−Lipschitz if and only if it has gradients with euclidean norm at most one
everywhere, so we consider directly constraining the gradient norm of the critic’s
output with respect to its input’ [Gulrajani et al. (2017)].

GP = λ E
x̂∼px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
. (54)

Concluding from Corrolary 1, Gulrajani et al. (2017) choose that the point x̂ is
sampled uniformly from a secant between pairs of points from themarginals x ∼ pr

and y ∼ pg. Formally, we obtain the linear dependency, as shown in Figure 39.

x̂ = tx+ (1− t)y , where t ∼ U(0, 1), x ∼ pr, y ∼ pg. (55)

Figure 39: x̂ is sampled uniformly from the marginals x ∼ pr and y ∼ pg.
Source: modified from Viehmann (2017)

This sampling approach though, does not follow Corrolary 1 because Proposition 1
states that the optimal critic D∗ will have gradient norm one (almost everywhere)
only between pairs x and y that are sampled from the optimal coupling π∗(x, y)

59

and not the marginals pr and pg respectively, which Kodali et al. (2018) and Wei
et al. (2018) identified as potential caveats. Kodali et al. (2018) suggest to use
a local penalty for real data points instead of the coupled penalty of marginals.
Referring to Figure 39, the selected point would then be closer to the green point.
Wei et al. (2018) take further analysis and propose another regularization term
that directly works with the definition of Lipschitz continuity (equation (50)) for
noisy (real data) points. Nonetheless for completion, Gulrajani et al. (2017) suggest
following maximization problem for solving the dual problem with gradient penalty
regularization term as defined in equation (54) to enforce 1−Lipschitz continuity.

max
w∈W

E
x∼pr

[fw(x)]− E
x∼pg

[fw(x)]− λ E
x̂∼px̂

[(||∇x̂fw(x̂)||2 − 1)2]. (56)

The minmaxWGAN-GP optimization problem is again solved in alternating fashion
within two inner loops, i.e.

min
G

max
D∈D

E
x∼pr(x)

[D(x)]− E
z∼pz(z)

[D(G(z))]− λ E
x̂∼px̂

[(||∇x̂D(x̂)||2 − 1)2]. (57)

Algorithm 3 Wasserstein GAN with gradient penalty:
Default values: diters = 5, α = 0.0001, λ = 10, m = 64, β1 = 0.5, β2 = 0.9.
Require:

α, the learning rate. λ, the gradient penalty coefficient. m, the batch-size.
diters, the number of iterations of the critic per generator iteration.

1: for number of training epochs do
2: for diters steps do
3: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz
4: Sample minibatch ofm data samples {x(1), ..., x(m)} from real data x ∼ pr
5: Sample minibatch of m random numbers {t(1), ..., t(m)} ∼ U(0, 1)
6: Compute {x̂(1), ..., x̂(m)}, where x̂(i) = t(i)x(i) + (1− t(i))G(z(i))
7: Update the critic D by ascending its stochastic gradient:

∇θd

1
m

m∑
i=1

[
D(x(i))−D(G(z(i)))− λ(||∇x̂(i)D(x̂(i))||2 − 1)2

]
. max w.r.t. θd

8: end for
9: Sample minibatch of m noise samples {z(1), ..., z(m)} from prior z ∼ pz

10: Update the generator G by descending its stochastic gradient:

∇θg

1
m

m∑
i=1
−D(G(z(i)))

. min w.r.t. θg
11: end for
12: The gradient-based updates can be used by any standard gradient-based learning

rule. The default is ADAM optimizer with β1 and β2 from default values.

60

3 Dataset

The datasets for training a generative model for drug discovery (Section 4.3 and 4.4)
were provided by BenevolentAI ’s GuacaMol Benchmark [Brown et al. (2019)] and
are split into training, test and validation sets.
The datasets for training the generative models were extracted from ChEMBL-24
database [Mendez et al. (2018)]. One main advantage of ChEMBL-24 is that it
only contains chemical structures which have been synthesized and tested against a
biological target18, such as Dopamine receptor D2 (DRD2) [Olivecrona et al. (2017)]
or EGF-Receptor and BACE1 [Winter et al. (2019)].
Another benchmark study named MOSES [Polykovskiy et al. (2018)] used the ZINC
database [Irwin & Shoichet (2005)] as basis and applied filtering. One disadvantage
of the ZINC database is that it contains molecules which have not been synthesized
yet.
The datasets provided by GuacaMol have been further preprocessed including fol-
lowing steps [Brown et al. (2019)]:

1. removal of salts.

2. charge neutralization.

3. removal of molecules with SMILES strings longer than 100 characters.

4. removal of molecules containing any atomatic element other than from the set
{H, B, C, N, O, F, Si, P, S, Cl, Se, Br, I}.

5. removal of molecules with a larger ECFP4 similarity19 than 0.323 compared to
a holdout set consisting of ten marketed drugs (celecoxib, aripiprazole, cobime-
tinib, osimertinib, troglitazoe, ranolazine, thiothixene,albuterol, fexofenadine,
mestranol). This allows to define similarity benchmarks for targets that are
not part of the training set.

The training set consists of 1 273 104 unique SMILES representations. Test set and
validation set each contains 238 706 and 79 568 unique samples. Those two sets will
not be included in the training of the GAN used for learning the ChEMBL data
space in Section 4.3. The reason for that decision lies in the fact that a fair way of
conducting the distribution-learning benchmark from GuacaMol is wanted.
After a short analysis it turns out that the training set consists of 1 272 852 canonical
SMILES. Nevertheless, the training of the GAN in Section 4.3 will be performed on
the provided full training set that includes the 252 non-canonical SMILES.

18In de novo drug design this methodology is often called inverse QSAR: the objective is to find
compounds which are biological active against a target, i.e. have high (predicted) binding-affinity

19The ECFP4 is a bit vector representation for molecules using molecular fingerprints as illus-
trated in Figure 2. For computing the similarity between two bit vectors the Tanimoto coefficient
was selected.

61

https://github.com/BenevolentAI/guacamol
https://github.com/molecularsets/moses

4 Application

The application of this thesis is divided into two general parts, using the three ex-
plained variants of generative adversarial networks for continuous data.
Section 4.2 describes the training of GANs to learn multivariate normal data as a
proof-of-concept experiment.
The main idea behind this is to come up with an optimal network architecture and
algorithm for training the generative model. Furthermore, training a GAN on mul-
tivariate normal data has the purpose to show that GANs are powerful generative
models that can learn a (dense) data distribution, even in high dimensional space.
Section 4.3 explains the training of GANs to learn the distribution of continuous
data-driven molecular descriptors (cddd) as described in Section 2.3.1.
In both two parts, different optimization parameters and network architectures were
extensively analyzed by trying out different settings. However, due to the scope of
this thesis, a comprehensive evaluation of different architectures, optimization algo-
rithms, activation functions, and weight initializations would be infeasible for this
work. This study uses the vanilla GAN with non-saturating generator loss (Algo-
rithm 1), Wasserstein GAN with weight clipping (Algorithm 2) and Wasserstein
GAN with gradient penalty (Algorithm 3) algorithms for learning the respective
data spaces in Section 4.2 and Section 4.3. At the beginning of each training epoch,
several evaluation metrics are computed to display, whether the GAN is able to
synthesize reasonable and good samples. Note that those evaluation metrics are
not included in the overall optimization objective of the aforementioned algorithms.
Since we want to exploit the power and capacity of GANs, additional loss terms,
e.g. the mean of a set of generated samples being close to the mean of a set from
real samples, are not included in the overall optimization objective. This in prac-
tice, however, is possible and depends on the application for each machine-learning
engineer.

4.1 Technical Information

This study utilizes the Pytorch [Paszke et al. (2017)] deep learning framework as
backend with the programming language Python 3.6 [Van Rossum & Drake Jr
(1995)] as frontend to train neural networks. Since training deep neural networks is
computationally expensive, the Pytorch library with gpu-support was selected. This
library utilizes other libraries such as CUDA and cuDNN [Chetlur et al. (2014)] which
are highly optimized for parallel computation of linear algebra operations on GPUs
(graphical processung units).
All models were trained on a linux cluster with seven Tesla M40 GPUs, each con-
sisting of 24 GB ram. For visualization and plotting graphs and training processes,
either matplotlib [Hunter (2007)] or tensorboardX [Huang (2017)] was used.

62

4.2 Learning Multivariate Normal Distribution

For learning a multivariate normal distribution with a specific mean vector md ∈
Rd and identity covariance matrix Id ∈ Rd×d, the dimension was selected to be
d = 50. The mean value vector md was set to ~4. Since the data generating process
(DGP) is known, a random dataset of nsamples=1 000 000 samples following the above
distribution was generated and saved on the local disk. This dataset was retrieved
in the training process and has the matrix shape of 1000000× d.
The random noise distribution was selected to be the uniform distribution with lower
bound −1 and upper bound +1, i.e. Z ∼ U(−1, 1).

4.2.1 Evaluation Metrics

At the beginning of each training epoch, a batch of b fake samples is synthesized
by the generator network. Let x̃(i) with x̃(i) ∈ Rd be the i−th sample of the batch
i = 1, ..., b. Let X̃ = [x̃(1)T, ..., x̃(b)T] be the fake sample (batch) data matrix with
X̃ ∈ Rb×d. In order to evaluate the generated samples, a mean value metric and two
covariance metrics are computed. As the generative model gets better, we expect
those computed metrics to decrease with increasing epoch number. As stated at
the beginning of Section 4, the upcoming introduced evaluation metrics are not
included into the optimization objective to see, whether the GAN can learn the true
data distribution without any additional loss function terms.

Mean Criterion

The mean criterion has the purpose to evaluate whether the GAN can model the
first moment of the real data distribution. With increasing training epoch we expect
each synthesized sample from the generator network to be close to ~4 ∈ Rd, which is
the true mean vector of the normal distribution from the DGP. In conclusion, when
computing the mean over the rows for each (column)-dimension of the batch data
matrix X̃, we expect the row-mean vector x̄ to be close to ~4. The row-mean of the
batch matrix is computed with

x̄ = (x̄1, ..., x̄d)T, (58)

where x̄j = 1
b

∑b
i=1 X̃(i, j) is the mean of the j−th column and X̃(i, j) denotes

the element in row i and column j of the batch data matrix. Finally, the mean
evaluation criterion cm is defined with

cm(X̃) := 1
d

d∑
j=1
|x̄j − 4|, (59)

where we expect cm to decrease and converge towards zero during training.

63

Covariance Criteria

In order to define the two upcoming covariance criteria, the estimated covariance
matrix from a generated batch X̃ ∈ Rb×d needs to be computed with

Σ̂
X̃

= 1
b− 1X̃

T
c X̃c, (60)

where X̃c = X̃−1bx̄T denotes the centered batch matrix, 1b the b−dimensional unit
(column) vector and x̄ the row-mean vector from equation (58).
The correlation matrix is obtained with the estimated covariance matrix

R̂
X̃

= D−1Σ̂
X̃
D−1, (61)

where D is the matrix of square-rooted diagonal elements from the estimated co-
variance matrix, i.e. D =

√
diag(Σ̂

X̃
).

The first covariance criterion cl1 is based on the l1 norm and computes the sum
of absolute differences between sample correlation matrix R̂

X̃
and unit correlation

matrix Id.

cl1(X̃) := 1
d2

d∑
i=1

d∑
j=1
|R̂

X̃
(i, j)− Id(i, j)|, (62)

where (i, j) is the element in the i−th row and j−th column of the respective
matrix.
The second covariance criterion cfb is based on the frobenius norm. The frobenius
norm of a matrix Σ ∈ Rn×m is defined as

||Σ||F =
√√√√ n∑
i=1

m∑
j=1

Σ(i, j)2 . (63)

In order to compare the estimated correlation matrix with the unit correlation
matrix, the second covariance criterion is defined as

cfb(X̃) := 1
d

[
||R

X̃
||F − ||Id||F

]
. (64)

Similar to the mean criterion metric, the two covariance criteria are expected to
decrease with increasing training epoch.

In this proof-of-concept showcase, several network architectures were tested and
their evaluation metrics compared. The final results with the training settings as
well as network structures are displayed in the next Section. For all experiments, ei-
ther ADAM optimizer [Kingma & Ba (2014)] or RMSprop optimizer [Hinton (2012)]
were chosen to update the network parameters. In the first experiment, the three
GAN variants were compared to each other. The intention was to confirm whether

64

the Wasserstein GAN with gradient penalty (Algorithm 3) is superior to vanilla
GAN and Wasserstein GAN with weight clipping. For that reason, the same net-
work architectures with different optimizers were selected.

4.2.2 Results

In this proof-of-concept experiment, batch normalization as well as layer normal-
ization [Ba et al. (2016)] for the generator network were tested. It turns out that
adding batch normalization layers [Ioffe & Szegedy (2015)] in the generator network
is crucial for generating good samples. In batch normalization, an activated batch
B ∈ Rb×d, will be normalized by subtracting the batch-mean µ ∈ Rd and dividing by
the batch standard deviations σ ∈ Rd along the batch dimension b. Layer normaliza-
tion computes the layer-mean and standard deviations along the feature dimension
d to obtain µ ∈ Rb and σ ∈ Rb. Normalizing is conducted in the similar way along
the feature dimension. The architectures for selected generator and discriminator
network are shown below.
Table 3: Illustration of the generator network
architecture. It consists of three fully connected
hidden layers with batch normalization and leaky
ReLU activation [Xu et al. (2015)].

Name Type Input size Output size
input input: z ∼ U(−1, 1) 100 -
FC1 linear 100 256

batch normalization 256 256
leaky ReLU 256 256

FC2 linear 256 512
batch normalization 512 512

leaky ReLU 512 512
FC3 linear 512 256

batch normalization 256 256
leaky ReLU 256 256

output linear 256 50
batch normalization 50 50

Table 4: Illustration of the discriminator/critic
network architecture. Depending on the algo-
rithm, sigmoid activation function (equation (3))
is deployed in the output layer. This only holds
for the vanilla GAN Algorithm 1.

Name Type Input size Output size
input input: x ' N (4, I) 50 -
FC1 linear 50 128

leaky ReLU 128 128
FC2 linear 128 256

leaky ReLU 256 256
FC3 linear 256 512

leaky ReLU 512 512
output linear 512 1

The learning rates for the generator and discriminator/critic networks were set to
αg = 0.0002 and αd = 0.0004 for both RMSprop- and ADAM optimizer.
All GAN variants were trained for nepochs = 150 epochs. At the beginning of every
epoch, b = 5000 samples were generated and the metrics from equation (59), (62)
and (64) computed for evaluation. In this experiment, the same architectures for
generator and discriminator network were used (see Table 3 and 4) for all three GAN
variants with the only difference of optimizer choice. All GAN variants are able to
generate data with mean value µ = 4 as demonstrated in Figure 40.
The Wasserstein GAN with weight clipping and RMSprop optimizer performs best
regarding the mean value evaluation criterion, followed by its improved version with
gradient penalty (and ADAM optimizer) and lastly the vanilla GAN (both ADAM

65

or RMSprop).

Figure 40: Mean evaluation criterion. Every GAN variant is able to generate samples with mean
value ~4 very quickly after even one epoch of training.

When analyzing the capability to model the second moment, the corresponding
evaluation curves for the Wasserstein GAN with weight clipping are unstable and
fluctuate strongly as shown in Figure 41. The Wasserstein GAN with gradient
penalty and ADAM optimizer (as suggested by default in Algorithm 3) seems to
be most robust regarding the two covariance criteria, generating samples that come
from a normal distribution N (µ = 4, Σ = I50).

(a) (b)

Figure 41: The two covariance evaluation criteria suggest that Improved WGAN with ADAM
optimizer (Algorithm 3) is the best method to choose. The generator is able to generate samples
which have a mean value of ~4 as well as generate samples, where all column features of the samples
have a (very) low pairwise correlation.

When analyzing the l1-criterion, the generator from Improved WGAN with ADAM
optimizer seems to produce samples, where its feature columns have low correlation
as indicated in Figure 41a. Ideally, the estimated correlation matrix from the batch
evaluation data matrix is approximately the identity matrix.
For the frobenius norm criterion, the Improved WGAN with ADAM optimizer per-
forms best as well. Considering the results from this experiment, the Improved

66

WGAN and ADAM optimizer is chosen as the best algorithm for learning multivari-
ate normal data. Of course, an extensive hyperparameter search can be conducted.
Since the goal was to try out different settings and (empirically) show that WGAN
with gradient penalty is superior to vanilla GAN and WGAN with weight clipping,
no further investigation in hyperparameter tuning was conducted.

Another interesting evaluation step is to select the generator network for the epochs
i = 0, 1, 50, 150, sample 5000 observations and extract any arbitrary column out of
the generated batch data matrix, e.g. the first column. Knowing the data generating
process for the multivariate normal distribution with identity matrix as the covari-
ance matrix, we conclude that the joint probability can be factorized as a product of
independent univariate Gaussians [Do (2008)]. So when training the GAN, as shown
in Figure 40, a distribution shift in the univariate case with increasing epoch towards
N (µ = 4, σ2 = 1) is expected. To observe this expectation, a kernel density estima-
tion (KDE) on the generated samples was computed. Since the Improved WGAN
with ADAM optimizer is learning the true data very fast20 even after one epoch,
we perceive that the univariate Gaussian for the generator model shifts towards the
true Gaussian with mean value of four as illustrated in Figure 42.

Figure 42: The generator network is learning to produce samples that follow an univariate
N (µ = 4 σ2 = 1) even after one epoch of training. For this plot, the first column of the training
and generated batch data matrix was selected. The reason why the KDE of generated samples
in epoch zero looks Gaussian is because the weights of the generator network are initialized using
Gaussian random numbers with zero mean and variance depending on the hidden layer size as
stated in the end of Section 2.2.2.1 with the Xavier Initialization Rule [Glorot & Bengio (2010)].

20The results after one epoch are so strong since the dataset is large with 1 million samples
and the training was performed with a batch-size of m = 256. In this case, approximately
1000000/256 = 3906.25 generator updates are executed within one epoch.

67

4.3 Learning ChEMBL space using CDDD Representations

The first step was to encode the SMILES representation of compounds in the train-
ing set D into their continuous vector representation by using the translation model
from Winter et al. (2018) (see Section 2.3.1). We denote the (discrete) space of all
(valid) SMILES as S and assume D ⊂ S .
Since the final goal is to perform the distribution-learning benchmark from Gua-
caMol and show the benefits on operating on a continuous-learned data space C, the
translation model by Winter et al. (2018) was trained on the provided training set
D, to fairly evaluate the GAN in the benchmark.
The encoder network of the translation model translates a SMILES representation
into a 512−dimensional vector (which we will denote as cddd), where its components
are bounded within the range (−1, 1).
Consequently, the cddd space holds the property C ⊆ (−1, 1)512.
The decoder network of the translation model translates the cddd back into a (canon-
ical) SMILES. This step is required to evaluate the GAN, to verify if the model is
able to generate cddd-vectors, which after translating back to SMILES representa-
tion, are indeed molecules. Recall that the motivation is to generate compounds
to enrich chemical compound libraries. Since the cddd representations are latent
representations, interpreting them is difficult. Therefore, the usage of the decoder
network is indispensable to obtain the SMILES representation that is interpretable.

4.3.1 Evaluation Metrics

One main controversy in deep generative modeling research is how to quantitatively
evaluate the performance of one model as well as compare it to other generative
models. The construction of evaluation metrics in Section (4.2) was straightforward
since we knew the data generating process and held the view that the data space
was compact and easy enough to learn from.
For evaluating the GANs in this drug discovery use case, we need to think about
the target space to evaluate from: should the evaluation metric be a function of
the operating space, i.e. the continuous space C, or of the discrete (valid) SMILES
space S ? Since most evaluation metrics in drug discovery are based on SMILES
representations, the decoder network of the translation model is used to retrieve the
SMILES representation of generated samples.
Nonetheless, I hold the view that constructing evaluation metrics in the correspond-
ing C space can improve the GAN due to the consequence of being able to directly
backpropagate errors of generated cddd vectors. This idea can be explained by how
GAN training is proceeded: if we had an additional network dη that evaluates a
generated sample xg = G(z) via dη((G(z)), we can use gradient information from
this respective term, to update the generator weights by using feedback from the
additional network. Note that this is similar as using the feedback from the discrim-

68

inator network and also included by Winter et al. (2018) in the additional L2-loss.
A possible implementation for an extra network dη is explained after the description
of the first evaluation metric.

For this distribution-learning task on a feature space C with a large training set
of approximately 1.2 million samples, it suffices to exploit the capacity of GANs and
evaluate on the discrete SMILES space.
The construction of more sophisticated evaluation metrics (especially in the case of
focused drug discovery, see Section 4.4) is left for further research.
For evaluating the goodness of the generator network, at the beginning of each train-
ing epoch b fake samples were generated. After synthesizing the b fake samples, the
decoder network of the translation model was utilized to transform the generated
cddd samples back to the SMILES representation. The upcoming evaluation criteria
are using the SMILES representation as input and are not included into the overall
objective of the GAN.
So formally, in every evaluation step we generated b = 5000 fake cddd samples
{x̃(i)}bi=1, decoded them back so SMILES {s̃(i)}bi=1, where s̃(i) = dec(x̃(i)), and com-
puted the evaluation metrics based on the decoded sequences S̃ := {s̃(i)}bi=1.
The upcoming presented evaluation metrics are motivated by the GuacaMol bench-
mark paper [Brown et al. (2019)].

Validity

As stated in Section 2.1.2, the SMILES representation [Weininger (1988)] encodes
the topological 2D information of a molecule into a string, based on common chemi-
cal bonding rules within a predefined grammar. Hence, when decoding the generated
cddd back into character-based sequences, it is possible to have invalid expressions
that cannot be parsed back to a valid molecule. The python library RDKit [Lan-
drum (2006)] was utilized to input the decoded cddd samples into a wrapped RDKit
function val(·), which returns 1, if the sequence can be successfully parsed and 0,
otherwise.

cvalidity(S̃) := 1
b

b∑
i=1

val(s̃(i)), (65)

where we expect this measure to increase and converge towards one over the training
of the generative adversarial network.
In order to guide the generator network G to synthesize cddd samples, which after
decoding back to strings are indeed valid SMILES, a loss for invalid SMILES can
be introduced. One could include an additional validation network dη whose task
it is, to discriminate whether a cddd = G(z) is valid in terms of the SMILES
grammar. The loss function could be binary cross-entropy loss. By backpropagating
errors for invalid cddd=G(z) samples, the sampling process for the generator network

69

G would be adjusted such that in the upcoming sampling process the generator
network produces samples that are more valid. This network dη however, has to
be pre-trained on valid and invalid cddd samples which can be problematic in our
case, but is still possible. If the validation network dη was included in the training
process as an additional loss, it would be beneficial to weight the loss with a small
parameter β > 0 in order to confine the effect of the validation network when doing
backpropagation. The reason for confining the feedback of dη is to reduce possible
bias due to the fact that dη is also a predictive model.
The SMILES validation loss w.r.t. one batch B = {G(z(i))}bi=1 could be defined as

Lsv = −1
b

b∑
i=1

[
v(i) log(dη(G(z(i)))) + (1− v(i)) log(1− dη(G(z(i))))

]
, (66)

where v(i) is the validity label computed earlier with the RDKit function in equation
(65). If this loss was included, it would be indispensable to initially pretrain the
validation network for nsv epochs, e.g. 50 epochs. After dη has learned to discrimi-
nate between invalid and valid cddd samples by minimizing equation (66) w.r.t. η,
the loss in equation (66) is used to update parameters of the generator network,
when the evaluation step is proceeded with the beginning of epoch 51. Hence, the
gradient updates w.r.t. the validation and generator networks are performed with

η ←− η − ζ∇ηLsv, for epochs zero to nsv, (67)

θg ←− θg − β∇θgLsv, for epochs (nsv+1) to nepochs, (68)

where ζ > 0 is the learning rate for updating the parameters of the validation
network. This additional loss however, was not included and tested due to time
constraints and scope of this thesis.

Uniqueness

A generative model would not make sense if it always generates the same sample.
Especially in drug discovery, it is desired to explore chemical space and generate
new (unseen) compounds. In the procedure of the uniqueness metric, duplicates in
{s̃(i)}bi=1 are removed and the number of remaining sequences obtained. Let that
number be nu, where nu ≤ b. The uniqueness metric is then computed via

cuniqueness(S̃) := nu
b
, (69)

where we expect this measure to increase and converge towards one, meaning that
the generator network is able to produce unique samples. Note that this metric does
not include the validity check. This means that within the set of unique samples
lies the possibility that also invalid decoded sequences are present.

70

Novelty

The generative model should produce a variety of samples and not follow the problem
of mode collapse by only generating duplicate observations. Apart from achieving a
high uniqueness score, it is also desired that the generated SMILES are indeed novel
and not present in the training reference set. Let nn denote the number of novel
molecules which are not present in the training set. This number is calculated by
iterating all samples from S̃ through the training set and check whether it is present
(returning 0) or not (returning 1). Hence, the novelty measure is calculated as

cnovelty(S̃) := nn
b
, (70)

where we expect this measure to increase and converge towards one. Like the
uniqueness metric, this evaluation metric does not include the validity check.

Fréchet Chemnet Distance (FCD)

The Fréchet Chemnet Distance (FCD) by Preuer et al. (2018) measures how close
the distribution of generated compounds pg is to the distribution of compounds in
a training set pr, by considering chemical and biological information. To obtain a
numerical representation of a molecule, which comprises valuable chemical and bi-
ological information, the hidden layer activations from a third-party network called
ChemNet21 are extracted. Since ChemNet was trained to predict biological activity,
Preuer et al. (2018) claim that the activations of the penultimate hidden layer com-
prise biological and chemical properties and are reasonable numerical descriptors
(because the input layer consists of chemical compounds and the output layer is the
layer for predicting biological activity).
Precisely, the mean m and covariance C (see equation (58) and (60)) of those ac-
tivations for the generated set S̃ = {s̃(i)}bi=1 and a randomized reference (training)
set Ds ⊂ D, with |Ds| = b, are required to obtain the FCD22 measure.

cFCD(S̃,Ds) = ||mr −mg||22 + Tr(Cr + Cg − 2(CrCg)
1
2), (71)

where low FCD values indicate similar molecular distributions. During the training
of the generative model, we desire this measure to decrease. For computing the FCD
score, the open-source python library FCD23 distributed on github was used.

21This network was trained to predict biological activity on a dataset of about 6000 assays
available in three major drug discovery databases (ChEMBL [Mendez et al. (2018)], ZINC [Irwin
& Shoichet (2005)], PubChem [Wang et al. (2017)]).

22The FCD measure is the Wasserstein-2 distance (equation (79)) between two multivariate
normal distributions. When computing the estimated sample means and covariances of activations
for generated set (mg, Cg) and training reference set (mr, Cr), Preuer et al. (2018) assume that
those activations come from a multivariate normal distribution. Hence the Wasserstein-2 distance
for two multivariate normal distributions has a closed-form solution stated in equation (71).

23https://github.com/bioinf-jku/FCD

71

https://github.com/bioinf-jku/FCD

4.3.2 Results

The initial motivation for the first experiment was to compare the three GAN vari-
ants described in Section 2.4 with respect to the earlier defined evaluation metrics.
For that reason, the three GAN variants were trained with the same network archi-
tecture but different optimizers. For training vanilla GAN, RMSProp and ADAM
optimizers were used, to see differences in evaluation metrics between the two op-
timizers. For the WGAN with weight clipping, RMSprop optimizer was used. The
WGAN with gradient penalty used the ADAM optimizer. The learning rates for
discriminator and generator were set to αd = 0.0009 and αg = 0.0003 for all three
GAN algorithms. The noise distribution Z was selected as the 100−dimensional
Gaussian with zero mean and unit covariance. The baseline network architectures
for comparing the three GAN variants are presented in Table 5 and 6.

Table 5: Illustration of the generator network ar-
chitecture. It consists of two fully connected hid-
den layers with batch normalization and ELU ac-
tivation [equation (6), Clevert et al. (2015)]. The
output layer contains the tanh activation (equa-
tion (4)) since the cddd space is bounded within
(−1, 1)512.

Name Type Input size Output size
input input: z ∼ N (0, 1) 100 -
FC1 linear 100 256

batch normalization 256 256
ELU 256 256

FC2 linear 256 512
batch normalization 512 512

ELU 512 512
output linear 512 512

batch normalization 512 512
tanh 512 512

Table 6: Illustration of the discriminator/critic
network architecture. Each hidden layer consists
of leaky ReLu activation with no batch normal-
ization. Depending on the algorithm, sigmoid ac-
tivation (equation (3)) is deployed in the output
layer. This only holds for the vanilla GAN Algo-
rithm 1.

Name Type Input size Output size
input input: x ' C 512 -
FC1 linear 512 256

leaky ReLU 256 256
FC2 linear 256 128

leaky ReLU 128 128
output linear 128 1

The GANs with baseline generator and discriminator networks were trained for
nepochs = 200 epochs with a batch-size of m = 256. The results illustrated in Figure
43 show that WGAN with gradient penalty performs best in terms of FCD measure,
followed by WGAN with weight clipping and the two vanilla GANs. Interestingly, all
three algorithms with the selected baseline architecture for generator and discrim-
inator network are producing on average around 94% valid compounds/molecules
with almost perfect uniqueness score and high novelty measure. It seems that vanilla
GAN, optimized with RMSProp (blue line) is exploring the cddd space the most,
which can be seen in the novelty plot in Figure 43. Out of 5000 generated samples
almost every sample is indeed novel. On average around 94% valid SMILES are
generated. However, the molecules that are generated from the two vanilla GANs
are not firmly ChEMBL-like as shown in the FCD plot.
Since the goal is to learn a generative adversarial network that can generate ChEMBL-

72

like data as provided in the training dataset, the WGAN with gradient penalty Al-
gorithm 3 was selected for the upcoming experiments.

Figure 43: Evaluation metrics for baseline models. The Improved WGAN with gradient
penalty is producing samples which are most likely coming from ChEMBL space, as shown
in the FCD plot. All GAN variants peform well in validity, novelty and uniqueness.

The evaluation metrics in Figure 43 are based on the models trained on the provided
training set of GuacaMol with approximately 1.2 million samples (see Section 3).
Since GANs are known to be trained for many epochs on large datasets in general,
the problem of overfitting the training data might occur. In order to empirically
show that the Improved WGAN model is superior to the other three baseline models,
the FCD metric was computed with respect to the provided test and evaluation set
from GuacaMol. Those two sets together consist of 318 274 samples. The novelty
metric was not computed with respect to the test and validation set because novelty
is not an indicator if a model has been overfitted. The novelty metric could act as
an synthetic-indicator for generated samples, which are existent in the unseen set.
If the generated samples were in the unseen sets, the GAN would be a good model
because it can generate compounds that really exist.
Recall that the FCD metric considers the ‘biochemial’ distribution of generated
samples compared to the training reference set. Since the goal is to obtain a GAN
model that is capable of sampling ChEMBL-like data, the FCD metric was chosen
as deciding metric. A smaller validity for a GAN model is in practice neither bad

73

nor expensive. Remind that one advantage of GANs is that sampling can be con-
ducted efficiently, since sampling from Z is computational cheap and feasible. So if
generated samples are not valid, the sampling process can be executed so long, until
the desired number of valid samples is achieved. For a generative model, it would be
advantageous if it can generate valid samples without errors. One way to improve
the validity metric could be to include the additional validation loss from equation
(66). Since the validity reaches on average about 94%, the validation network from
equation (66) was not included into the training process. The FCD metric plot for
the baseline models with respect to the test and evaluation sets from GuacaMol is
shown in Figure 44.

Figure 44: FCD metric for baseline models regarding training and test+validation set. The FCD
metric as deciding evaluation metric is not overfitted by the Improved WGAN model as shown in
the test+validation set curves.

As the FCD plot in Figure 44 shows the superiority of Improved WGAN, the final
algorithm for the next experiments was Algorithm 3.
In order to explore the capacities of the Improved WGAN Algorithm 3, different
network architectures were tested in a second experiment and compared w.r.t. the
evaluation metrics. Especially the improvement in the FCD metric for deeper gen-
erator networks was questioned. Remember that GANs are implicitly modeling the
true data distribution through a deterministic generator network. If the generator
network gets deeper, it is reasonable to hypothesize that the underlying true data
distribution can be approximated better.
Furthermore, it was interesting to investigate, how the complexity of the critic affects
the generated samples. Recall that the critic network D is crucial for estimating an
approximation of the Wasserstein-1 distance as stated in equation (53). As claimed
by Arjovsky et al. (2017) and Gulrajani et al. (2017), useful gradient information
will be passed to the generator from the critic, the better the critic network approx-
imates the Wasserstein-1 distance. For the second experiment, several GAN models
following the Improved WGAN Algorithm 3 were trained for nepochs = 50 epochs

74

with different optimizers and learning rates. The results and plots are illustrated in
Appendix C.1. After conducting the parameter experiment, it turned out that batch
normalization in the generator network and neither batch nor layer normalization
should be included in the critic network. Additionally, including leaky ReLU as
an activation function in both, generator and critic network seems to stabilize the
training and generate novel molecules after evaluating the FCD metric.
In the parameter experiments, hidden layer sizes from one up to six were tested.
The number of neurons in each hidden layer was set arbitrarily to the exponential
with base 2. The final setting is listed below in Table 7 and 8.

Table 7: Illustration of the selected generator
network architecture.

Name Type Input size Output size
input input: z ∼ N (0, 1) 100 -
FC1 linear 100 128

batch normalization 128 128
leaky ReLU 128 128

FC2 linear 128 256
batch normalization 256 256

leaky ReLU 256 256
FC3 linear 256 512

batch normalization 512 512
leaky ReLU 512 1024

FC4 linear 1024 1024
batch normalization 1024 1024

Leaky ReLU 1024 1024
FC5 linear 1024 512

batch normalization 512 512
Leaky ReLU 512 512

output linear 512 512
batch normalization 512 512

tanh 512 512

Table 8: Illustration of the selected critic net-
work architecture.

Name Type Input size Output size
input input: x ' C 512 -
FC1 linear 512 512

leaky ReLU 512 512
FC2 linear 512 256

leaky ReLU 256 256
FC3 linear 256 256

leaky ReLU 256 256
FC4 linear 256 128

leaky ReLU 128 128
FC5 linear 128 128

leaky ReLU 128 128
output linear 128 1

The generator and critic networks were trained using RMSprop optimizer with learn-
ing rates of αg = 0.0002 and αd = 0.0006. The learning rates were multiplied by 0.99
in each increasing training epoch in order to decrease them and stabilize training.
The batch-size was set to m = 256 and the critic was updated for diters = 3 steps
followed by one generator step. The coefficient for the gradient penalty term was
set to λ = 10 as stated in the defaults. The training was executed five times with
different seeds for nepochs = 200 epochs. Additionally, the baseline Improved WGAN
model with architectures from Table 5 and 6 was trained five times with different
seeds to compare the performance to the best model.
In order to check that both models are not overfitting the training data, the FCD
metric was computed for baseline and best models with respect to the test and
validation set from GuacaMol (see Section 3). The evaluation metrics measured at
epochs 50, 100, 150 and 200 for both models are listed in Appendix C.2.

75

Figure 45 shows the four evaluation metrics for the selected best model compared
to the best baseline model. The mean value (solid line) for each evaluation criterion
was plotted with +/− 2σ deviation (shaded area) for each epoch, since the experi-
ment was conducted five times with different seeds.
The best model is able to generate samples that are very ChEMBL-like because it
outperforms the baseline model in terms of FCD measure. Increasing the complexity
of the generator network by adding more layers, helps to generate samples which are
very likely to come from the training ChEMBL dataset as shown in the first plot in
Figure 45.

Figure 45: Evaluation metrics for the best model compared to the best baseline model.

Only in terms of novelty, the baseline model is (slightly) better than the best model.
This finding is indirectly coupled with the FCD measure. Remember that the
FCD score measures how close a generated set of samples is to the training ref-
erence set (ChEMBL). Since the baseline model is generating (slightly) more novel
molecules, the FCD score is higher. This does not necessarily mean that the gener-
ated molecules from the baseline model are not ‘good’ molecules. It merely means
that they are not similar to molecules from ChEMBL space. Since the objective
is to obtain a GAN that can approximate the (training) reference distribution, we
will hold to the best model with network architectures described in Table 7 and
8. Figure 46 shows the Wasserstein loss from equation (53) and Wasserstein loss
with gradient penalty from equation (57) in order to investigate the 1−Lipschitz
continuity and judge the sample quality of the generator network.

76

(a) Wasserstein loss. (b) Wasserstein loss with gradient penalty.

Figure 46: Wasserstein losses for the baseline and best model. The Wasserstein losses are
multiplied with (−1) in order to see a decreasing function. Recall that the Wasserstein
GAN attempts to solve a minimax optimization problem. The ideal value to be achieved
is zero, i.e. when the generator distribution equals the real data distribution.

Note that Arjovsky et al. (2017) and Gulrajani et al. (2017) argued that the Wasser-
stein loss correlates well with the sample quality of the generator network. This
means that if the (negative) Wasserstein loss decreases, the generated samples should
have good quality. This claim is confirmed when comparing Figure 46a and the FCD
evaluation plot in Figure 45. As the Wasserstein loss decreases, the FCD measure de-
creases as well. This indicates that the samples generated by the generator network
are ChEMBL-like. When comparing Figure 46a and 46b the only difference in the
vertical magnitude is the gradient penalty term GP = λEx̂∼px̂ [(||∇x̂D(x̂)||2 − 1)2]
from equation (54), where x̂ is a linear interpolation between real data sample xr
and generated sample xg = G(z). This term was introduced by Gulrajani et al.
(2017) to enforce the 1−Lipschitz continuity of the critic network. Remark that the
Wasserstein- and Wasserstein GP losses are almost the same with increasing epoch.
This implies that the gradient penalty term is close to zero, concluding that the critic
network is indeed a 1−Lipschitz function, where its gradient has norm one. When
comparing the Wasserstein GP loss from the baseline model with the best model,
we observe that the baseline model has higher variance, e.g. around epoch 125.
This indicates that the gradient penalty term is affecting the overall Wasserstein
GP loss and the baseline critic is less stable regarding the 1−Lipschitz continuity.
The reason for this might be that the critic does not have a gradient norm of one
for some of the linear interpolated points x̂, concluding that the generated points
xg = G(z) are not resembling the true data distribution. This thought is also indi-
cated by higher FCD evaluation scores for the baseline model. Hence, Proposition
1 is violated and leads to larger gradient penalty terms. Increasing the complexity
of the generator network by adding more hidden layers, stabilized the training and
led to better samples with lower FCD scores as shown by the best model (called
cdddGAN), which also has a smaller Wasserstein loss than the baseline model.

77

4.3.3 Druglikeness of Generated Molecules

In order to additionally verify that cdddGAN has learned the ChEMBL training
data, a set of 10 000 valid and unique molecules was generated. This generated set
was used to compute the QED score, which is a Quantitative Estimate of Druglikeness
(QED) of a molecule and was introduced by Bickerton et al. (2012).
The ‘chemical beauty of drugs’ measured as QED score is a geometric mean of eight
individual desirability functions. Those eight individual desirability functions each
measure the chemical beauty of one physicochemical property such as molecular
weight, octanol-water partition coefficient (logP) or the number of hydrogen bond
donors (HBD) and aromatic rings compared to a fixed reference set of ‘orally ab-
sorbed approved drugs’ [Bickerton et al. (2012)].
To compute the QED score for the generated set, the python library RDKit [Landrum
(2006)] was utilized. In order to compare the generated set with the true ChEMBL
reference training set, the QED score for a random subset containing 10 000 SMILES
from the training set was computed. To show that the 10 000 generated valid and
unique SMILES are ChEMBL-like, a histogram with absolute count values for the
QED scores from generated set and training subset was computed and a plot gener-
ated as shown in Figure 47.

Figure 47: The QED absolute distribution of generated molecules and training reference set. The
shape of both histograms looks equal, indicating that the generated molecules follow the QED
distribution from the training reference set.

Figure 48 shows the 2D topological graphs of six generated compounds of cdddGAN
with their respective SMILES representation and QED score. All six compounds are
not present in the training set.

78

Figure 48: Generated sampels from cdddGAN with their QED values.

4.3.4 GuacaMol: Distribution-Learning Benchmark

The GuacaMol distribution-learning benchmark [Brown et al. (2019)] consists of five
evaluation benchmarks to evaluate a generative model regarding the criteria of

1. Validity.

2. Uniqueness.

3. Novelty.

4. Fréchet Chemnet Distance (FCD).

5. Kullback-Leibler divergence (KLD).

Every single benchmark is performed five times and the results are saved. Each
single benchmark outputs a score between zero and one, where one is the best
achievable value and zero the worst. The final score for each benchmark is the
average over the saved results. In each benchmark 10 000 samples are generated.
Except for the validity benchmark, the sampling is conducted until 10 000 valid
molecules are generated followed by the computation of the final benchmark result.
The benchmark metrics are computed similar to the evaluation metrics in Section
4.3.1. For the FCD measure, a normalization into range (0,1) is done through

FCD = exp (−0.2cFCD), (72)

79

where cFCD is from equation (71).
The KL divergence as defined in equation (36) measures how well a probability dis-
tribution pg approximates another distribution pr. ‘For the KL divergence bench-
mark, the probability distributions of a variety of physicochemical descriptors for
the [reference] training set and a set of generated molecules are compared, and the
corresponding KL divergences are calculated’ [Brown et al. (2019)]. This benchmark
differs from the FCD benchmark in a sense that the FCD captures an overall nu-
merical representation of chemical and biological properties of a molecule, whereas
the KL divergence benchmark has selected specified physicochemical properties.
In total there are k = 9 numerical physicochemical descriptors that are calculated
using the RDKit python library [Landrum (2006)]. Example physicochemical de-
scriptors are NumAromaticRings, MolLogP, NumHAcceptors. Since some physico-
chemicals are discrete, e.g. NumAromaticRings and NumHAcceptors, a histogram is
estimated within the GuacaMol library to compute the respective empirical distri-
butions. For continuous descriptors such as MolLogP, a kernel density estimation is
performed to compute the probability density function.
Once the histograms or kernel density estimations for a specific physicochemical de-
scriptor i = 1, .., k are attained, the KL divergence ϕKL,i between training reference
set and generated molecule set can be computed.

The final KL divergence benchmark metric is a normalized value that ranges between
zero and one, where one is the best achievable value.

KLD = 1
k

k∑
i=1

exp (−ϕKL,i) (73)

Note that this metric is similar to the QED score mentioned in Section 4.3.3 in terms
of combining different physicochemical properties into a final score, which here is a
normalized KL divergence score.

Results

The results of the GuacaMol distribution-learning benchmark with comparison to
the generative models from the leaderboard (https://benevolent.ai/guacamol,
accessed: 4th November 2019) are displayed in Table 9.

benchmark AAE Graph MCTS Random Sampler SMILES LSTM VAE ORGAN cdddGAN
Validity 0.822 1.000 1.000 0.959 0.870 0.379 0.934

Uniqueness 1.000 1.000 0.997 1.000 0.999 0.841 1.000
Novelty 0.998 0.994 0.000 0.912 0.974 0.686 0.985

KLD 0.886 0.522 0.998 0.991 0.982 0.267 0.972
FCD 0.529 0.015 0.929 0.913 0.863 0.000 0.851

Table 9: Results of the GuacaMol distribution-learning benchmark. The values highlighted in
red font are from our proposed cdddGAN model.

The Random Sampler in Table 9 is a practical baseline model for comparison as it
selects random samples from the original training set. For that reason, the novelty

80

https://benevolent.ai/guacamol

benchmark of the Random Sampler is zero. Additionally, the FCD and KLD bench-
mark scores of the Random Sampler are comparison values for all other generative
models, as those metrics are computed based on the ground truth ChEMBL data.
The Graph MCTS [Jensen (2019)] is a genetic algorithm that works on the molecu-
lar graph (see Figure 8) of compounds and is identified by a high degree of validity,
uniqueness and novelty. Nevertheless, this model is not able to reproduce the chemi-
cal properties of the true ChEMBL reference set as demonstrated in the poor results
in the KLD and FCD benchmark scores.
The SMILES LSTM [H. S. Segler et al. (2017)] has overall the best evaluation scores
and performs best in the KLD and FCD benchmarks. Recall that the SMILES
LSTM model is a next-character prediction model (see Section 2.2.6.2) and uses the
string-based SMILES representation of compounds as input, similar to AAE, VAE
and ORGAN. Since the SMILES LSTM model obtains a validity benchmark score
of 95.90%, it has not perfectly learned the SMILES grammar. Nonetheless, it is able
to generate novel and diverse compounds that are ChEMBL-like as shown in the
high FCD and KLD scores.
The VAE by Gómez-Bombarelli et al. (2016) is comparable to our proposed method
in a sense that the authors trained a variational autoencoder similar to the trans-
lation model by Winter et al. (2018). In their VAE, the bottleneck-layer, which
comprises the latent (hidden) representation of compounds, follows a multivariate
normal distribution24. Our proposed method differs that the translation model was
trained to learn a meaningful continuous representation of compounds in an ini-
tial step. Based on these continuous representations, we trained a GAN to learn
the feature space of the the encoded compounds. Our cdddGAN model beats the
VAE in terms of validity, uniqueness and novelty. However, our model does not
perform as good as the VAE regarding the FCD and KLD scores that characterize
‘distribution-properties’ towards the ChEMBL database.
Combining the idea of variational autoencoder and generative adversarial networks,
the AAE [Kadurin et al. (2017)] obtains outstanding results in uniqueness and nov-
elty. In terms of KLD and FCD scores, the AAE is not able to generate samples
following certain chemical properties of the reference set.
The ORGAN [Guimaraes et al. (2017); Sanchez et al. (2017)] model is performing
at worst in all benchmarks. Remember that the ORGAN model is also a GAN but
works with the SMILES representation as input.
Our cdddGAN model outperforms ORGAN in all benchmarks that indicates, when
using GANs to learn a distribution over a training set, it is better achieved when
the GAN is learning on continuous representations, e.g. cddd, than discrete repre-
sentations, e.g. SMILES.

24So the generating process in their case is to sample the latent hidden representation and then
use the decoder network to map back to SMILES representation.

81

4.4 Optimizing Molecules in Learned ChEMBL Space

Since this thesis is titled with ‘De novo drug design in continuous space’, this Sec-
tion describes the training of a generative model that is able to synthesize new
molecules that satisfy certain physicochemical properties. As mentioned in Section
1.1, most generative models in drug discovery are trained on the discrete SMILES
representation of compounds. It is worth remembering that the novel approach
conducted earlier in Section 4.3 was to train a GAN on an unsupervised-learned
continuous data space. During research of this thesis, Prykhodko et al. (2019) pub-
lished their generative model called latentGAN that is also a generative adversarial
network trained on a latent representation of molecules. This latent representation
is learned in an unsupervised fashion through a heteroencoder similar to the model
by Winter et al. (2018).

The first goal of this application was to learn the distribution of a large dataset of
chemical compounds using GANs. This was successfully achieved as demonstrated
in the results from the GuacaMol distribution-learning benchmark in Table 9.
The next goal after successfully learning a large chemical space was to train a GAN
that is able to sample novel molecules, satisfying certain physicochemical conditions.
Due to the scope of this thesis, we aimed towards a single-objective optimization
for the QED25 druglikeness score, which was explained earlier in Section 4.3.3.
We followed the procedure from H. S. Segler et al. (2017), who first trained a prior
generative model that can generate molecules from a large training set, and sub-
sequently conducted the optimization step for specific biochemical conditions of
interest, such as bioactivity on a defined protein. The optimization was achieved
via transfer-learning, i.e. training the prior generative model on a subset of data.
This subset of data was filtered from the initial training set and satisfied the desired
biochemical criterion. By learning on this subset of data, the pre-trained generative
model was able to narrow/bias the already learned distribution towards a new dis-
tribution of molecules that is active against a defined protein.
For this application of optimizing QED score, a filter was applied on the provided
training set from GuacaMol to extract only SMILES representations that have a
QED score higher than 0.9.
Applying this filter led to a new training subset of 31 778 samples.

To visualize and show that molecules with higher druglikeness scores might lie in a
manifold within the cddd space, a principal component analysis (PCA) for a ran-
dom subset of the training set (consisting of 1.2 million observations) and filtered

25To be precise, the QED score is an aggregation of specific desired physicochemical descriptors
derived by Bickerton et al. (2012). This means that this metric actually comprises multi-objective
criteria. Since the GAN is only taking into account the QED value for a molecule, we will still call
it single-objective optimization.

82

set (consisting of around 31 thousand observations) was conducted. The number
of components for the PCA was set to 50. Figure 49 shows the first two principal
components, which explain 10.77% of the total variance, for the training and filtered
dataset.

Figure 49: Principal component analysis on a random subset of 5 000 samples each from the
full training set and filtered QED set. The PCA was conducted on the 512−dimensional cddd
representations from the random subsets. The blue region that visualizes the ‘filtered’ dataset
indicates that molecules with QED > 0.90 lie there.

For optimizing the QED score, we applied transfer-learning similar to H. S. Segler
et al. (2017), by optimizing the best pre-trained GAN model (cdddGAN) from the
distribution-learning (see Table 7 and 8) on the filtered dataset. In addition to the
pure transfer-learning approach, we incorporated another optimization technique by
Gupta & Zou (2019), which includes a feedback mechanism called FeedbackGAN.

4.4.1 FeedbackGAN

Gupta & Zou (2019) introduced FeedbackGAN in the context of generating DNA
sequences and optimizing them with regard to certain biochemical properties. Their
algorithm incorporates an external function analyzer to score generated sequences
concerning the properties of interest. One advantage of their method is that the
function analyzer does not have to be differentiable. It can be any black-box model
and might range from a machine learning algorithm such as support vector machine,
random forest, or functionality from RDKit, up to the opinion of an expert in biology
or chemistry. The task of the function analyzer is to return a score for an input
sample. Gupta & Zou (2019) declare that the feedback-loop mechanism consists
of two components. ‘The first component is the GAN, which generates novel gene

83

sequences which have not been enriched for any properties. The second component
is the analyzer. [...] The GAN and analyzer are linked by the feedback mechanism
after an initial number of pre-training epochs so that the generator is producing
valid sequences. Once the feedback mechanism starts, [in the beginning] of every
epoch a set number of generated sequences are sampled from the generator and in-
put into the [function] analyzer.’ [Gupta & Zou (2019)]
After passing the generated samples to the function analyzer, the top nd most favor-
able and desirable samples which satisfy the desirability condition, are inserted into
the training set and the nd oldest training samples replaced by the newly inserted
ones. ‘As the feedback process continues, the entire training set of the discriminator
is replaced repeatedly by generated [samples] that have received high scores from
the [function] analyzer.’ [Gupta & Zou (2019)] The workflow of FeedbackGAN after
the initial pre-training phase is illustrated in Figure 50.

Figure 50: FeedbackGAN workflow.

In our case, the function analyzer is the QED score function provided by the RDKit
library. At the beginning of each epoch, b = 5000 samples are generated, translated
back into SMILES representations, i.e. S̃ = {s̃i}bi=1, and only valid SMILES are
evaluated by the QED function analyzer. After applying the function analyzer, those
samples whose druglikeness value is above 0.9 are filtered and added to the desirable
set S̃d, if s̃i is not present in the current training set. This step prevents the presence
of non-unique samples in the training set. Finally, a set S̃d that consists of nd = |S̃d|
samples is obtained. Once the desirable set S̃d is obtained, the nd oldest samples in
the training set are replaced by the nd samples from the desirable set S̃d. The GAN
is trained according to Algorithm 3 over nepochs = 100 epochs with a batch-size of
m = 128. The optimizer settings are equal to the optimizer settings from cdddGAN.

84

4.4.2 Results

The pre-trained cdddGAN from the distribution-learning described in Section 4.3
was fine-tuned by training on the filtered dataset with druglikeness values larger
than 0.9. One point of interest was to examine, whether the feedback-loop from
FeedbackGAN improves the optimization step. Recall that with the absence of the
feedback-loop, the approach resembles pure transfer-learning, i.e. training the GAN
on a fixed dataset. Whereas when updating the dataset in every epoch with newly
generated data points, the FeedbackGAN might be able to explore the chemical
space with high QED values better, since it shifts the distribution to learn from to-
wards the region of interest (with high QED values). Nevertheless, it is still true
that the fixed region for the pure transfer-learning is also a region of interest, as the
samples from this filtered training set are all molecules which have high QED values.
To investigate the difference between the pure transfer-learning approach and feedback-
loop mechanism, the number of generated samples that satisfy the druglikeness con-
dition is saved. Hence, in every evaluation step, b = 5000 samples are generated
and the number of samples nd that satisfy the desirability condition QED > 0.90 is
saved. This number should ideally increase over the training epochs, showing that
the GAN is able to generate a batch of compounds that (all) satisfy the druglike-
ness condition. Similar to the distribution-learning benchmark, the FCD, validity,
novelty and uniqueness metrics were computed in each epoch to evaluate the per-
formance of the GAN. Additionally, the mean QED-score over the set of generated
valid samples S̃valid ⊆ S̃ that contains bvalid ≤ b compounds was calculated with

cq(S̃valid) := 1
bvalid

∑
s̃∈S̃valid

QED(s̃), (74)

where we expect this value to converge to the maximal QED value of 0.95.

(a) Number of samples that satisfy the QED
condition.

(b) Average QED score of generated samples.
The mean druglikeness score is 0.9195.

Figure 51: (a) The GAN with feedback-loop mechanism is able to generate more samples that
satisfy the QED condition. (b) The average druglikeness score from the valid SMILES batch should
converge at least to the mean QED value of the filtered training set, which is 0.9195.

85

It turns out that including the feedback-loop mechanism increases the number of
generated samples that meet the druglikeness condition as illustrated in Figure 51a.
The experiment was conducted five times with different seeds for the settings with
and without feeback-loop. Similar to the evaluation plots from the distribution-
learning task, the solid lines for each curve represent mean values over the five
different runs and the shaded parts visualize +/ − 2σ deviations. The purpose of
those shaded areas is to show how the evaluation metric differs for each seed-run.
Regarding the evaluation metrics introduced in the distribution-learning benchmark,
we observe that the pure transfer-learning approach with no feedback-loop performs
better concerning the FCD measure.

(a) FCD metric. (b) Novelty metric.

(c) Validity metric. (d) Uniqueness metric.

Figure 52: Evaluation metrics for the pre-trained GANs with and without feedback-loop.

The novelty and uniqueness metrics are both still satisfying and the validity in-
creases. The increase in validity for both models might be caused since the filtered
dataset to learn from is reduced. Recall that learning the full ChEMBL training
set included a large continuous space. Hence, the chance to generate invalid cddd
representations is higher. If the probability space to learn from is smaller, the GAN
is less prone to generate invalid samples. The FCD measure increases for both mod-
els. This is due to the difference between true reference (ChEMBL) training set and
generated set. Remind that the FCD score in equation (71) computes whether the

86

activations26 a from a generated set S̃ and a training reference set Ds differ. The
FCD score is a metric containing the estimated mean m and covariance C of those
activations. If the respective means mg,mr and covariances Cg, Cr differ much,
the FCD measure will increase. The difference of the two respective moments is
caused since the true reference set is the full ChEMBL training set. Recall that the
ChEMBL training set contains compounds with druglikeness scores ranging from
0 to 0.95 as displayed in Figure 47. So if ChEMBL is compared to the generated
set, which only contains samples with high druglikeness values, it is natural that
the FCD metric is high. Since the model weights for each epoch were saved, it was
straightforward to compute the FCD metric regarding the filtered dataset. This
was done in an additional step, leading to the following two FCD evaluation plots
in Figure 53. Those two plots compare the FCD metric behavior for both models
regarding the reference set to be compared with.

(a) Reference set: filtered subset with 31 778
samples.

(b) Reference set: full set with approxi-
mately 1.2 mio samples.

Figure 53: For both filtered training set and full training set, the FCD metric increases over the
time of training for both models. The FCD score for FeedbackGAN increases strongly, indicating
that the generated samples are not ChEMBL-like.

Figure 53a shows the FCD scores computed w.r.t. the fixed filtered dataset. The
FCD score decreases in the first 15 epochs because the two pre-trained GANs are
learning the distribution of compounds with druglikeness above 0.90.
With the start of epoch 20, the FCD score for FeedbackGAN increases actively be-
cause chemical space is possibly explored stronger and the dataset updated in such
way that only artificial generated compounds are present. It is also worth mention-
ing that the FCD metric is more volatile for FeedbackGAN with increasing epoch,
indicated by larger deviations in the blue shaded areas in Figure 53a. One reason
for this could be the diversity of generated samples, when compared to the true
fixed filtered training set. The diversity enhanced by FeedbackGAN is shown in the
volatility of FCD scores with increasing epoch for each seed-run, concluding that the

26Recall that the activations a are selected from a third-party network, called ChemNet that
was trained to predict biological activity of chemical compounds on biological targets.

87

chemical space is probably explored stronger. However, the samples generated by
FeedbackGAN are not ChEMBL-like anymore as indicated by the increasing FCD
metric. Additionally, it seems that if the training of FeedbackGAN was conducted
for more epochs, e.g. 100 epochs, the FCD metric would have increased steadily.
After epoch 20, the FCD metric stays almost constant for the GAN that was trained
without the feedback mechanism since the exploration of chemical space is not so
strong because learning is performed on a fixed dataset.
Regarding Figure 53b, the FCD increases for both GANs since the reference training
set is the full training set provided by GuacaMol. Nevertheless, the FCD measure in-
creases stronger for the generated samples if the GAN is trained with feedback-loop
in both plots in Figure 53. This finding can be explained with the two plots in Fig-
ure 51: the FeedbackGAN can generate more samples that satisfy the QED > 0.90
condition. For example, in epoch 100 out of approximately 5000 generated valid
samples, 3500 samples possess a druglikeness score higher than 0.90, whereas the
GAN fine-tuned without feedback-loop only achieves around 2200 samples satisfying
the condition. In addition to that, the mean QED score for the model with feedback-
loop converges to the mean druglikeness score of the filtered training set of 0.9195,
whereas the model without feedback seems to converge towards the value of 0.85.
However, it is important to mention that FeedbackGAN has a high potential to
include bias in the training process. If the training set of FeedbackGAN is entirely
replaced with artificial samples27, the bias for upcoming artificial samples is rein-
forced. This bias moves on throughout the training process because FeedbackGAN
learns the distribution of the new (biased) training data.
If the goal was to explore chemical space stronger, FeedbackGAN would be a possi-
ble optimization technique. Optimization often faces the trade-off dilemma between
exploration and exploitation. It seems that FeedbackGAN explores the chemical
space stronger, as indicated by the increasing FCD score. The exploitation is shown
by the GAN, trained without the feedback mechanism since it learns on a fixed and
limited but promising region of the search space.
For FeedbackGAN, one could also say that the exploration goes along with the ex-
ploitation because the QED function is used as a filter criterion. The QED function,
however, is based on several desired physicochemical properties introduced by Bick-
erton et al. (2012), and inserting new samples into the training set based on only
this criterion should be considered with care. One possible way to overcome this
issue is by additionally computing the Synthetic Accessibility (SA) score [Ertl &
Schuffenhauer (2009)]. The SAscore describes the compound synthetic accessibility
as a score between one (easy to make) and ten (very difficult to make) and could
be inserted as a second filtering step for samples that satisfy the QED condition.
The SAscore, however, is also based on empirical results but seems reasonable as an

27This can be seen starting from epoch 20 in Figure 53a.

88

additional filter criterion before inserting samples that just satisfy the druglikeness
condition. This additional method was not included but is worth investigating.

When projecting a set of generated samples on the PCA conducted earlier, Fig-
ure 54a shows that both sets from the model with and without feedback lie in the
region of the filtered training set28. However, some samples lie outside of that re-
gion, for example in the upper right region. Figure 54a indicates that the generated
samples from the FeedbackGAN might explore chemical space stronger, as the green
triangles stand out of the concentrated region from the filtered training set, have
high FCD metric and have high QED values. Since this finding also holds for gen-
erated samples from the model without feedback but with smaller FCD metric, we
can assume that the two principal components are, as a latent representation, not
sufficient and not able to visualize the true druglikeness property. Remind that the
two prinicipal components only explained 10.77% of the total variance. Hence, we
can only assume that the samples from FeedbackGAN somehow hold other proper-
ties which lead to high QED and FCD scores but also to the fact that some of the
samples lie outside of the centered region.

(a) PCA on filtered and generated sets. (b) KDE plot on filtered and generated sets.

Figure 54: (a) The samples from both models lie in the centered training region. (b) Feedback-
GAN can generate more samples with high QED values as shown in the mode value.

Figure 54b shows that the empirical distributions between true filtered set and the
set generated by FeedbackGAN differ, especially in their mode value. The empirical
distribution of the GAN without feedback resembles the fixed filtered training distri-
bution as expected. The kernel-density plot29 suggests that FeedbackGAN can push

28For visualization only 3000 samples from the filtered training set were projected to the first
two principal components. For the generated sets, each 500 samples from the last training epoch
were projected onto the first two principal components.

29The KDE-plot was generated with 5000 samples each from the true filtered set, generated set
with and without feedback loop for each model from the last training epoch 100.

89

towards regions of maximum druglikeness scores by iteratively inserting new data
points with high scores, i.e. QED � 0.90 such as QED> 0.92. This thought is easier
understood when plotting the mean or median QED values of generated samples from
FeedbackGAN that satisfy the druglikeness condition as shown in Figure 55.

Figure 55: The QED score over epochs. Only samples of FeedbackGAN are inserted into the
training set. The graphs show mean and median QED values of samples that satisfy the druglikeness
condition. The median value is plotted to show that the training set for FeedbackGAN is updated
with samples that almost have maximum QED score. Hence, the FeedbackGAN model learns on
almost perfect drug-like samples and therefore also generates almost perfect drug-like samples.
The samples generated by the GAN without feedback that satisfy the QED condition obtain on
average a QED value of 0.923, whereas the FeedbackGAN model can generate samples that reach
the maximum druglikeness score as demonstrated in the mode value in Figure 54b.

The final FeedbackGAN model is then able to generate new samples with maximum
QED score, whereas the model without feedback seems to be restricted by the true
reference (filtered) training set it has learned from in terms of exploration of chem-
ical space. The current FeedbackGAN algorithm, however, might include bias into
the training process as explained earlier.

As indicated by the increasing high FCD scores (see Figure 52a) for FeedbackGAN,
novel and diverse structures are explored which are in fact not ChEMBL-like but
still hold a high druglikeness score (see Figure 55).
In order to postulate that FeedbackGAN is indeed superior to pure transfer-learning,
additional evaluation steps have to be included. Especially the step of inserting new
samples into the training set has to be evaluated properly, for example with the
SAscore. As shown in the novelty plot in Figure 52b, the model without feedback
loop is also able to generate samples that are novel and not existent in the filtered
training set. The generated samples without feedback seem to be more reasonable
and ChEMBL-like and should be evaluated and compared to the samples from the
FeedbackGAN model.

90

Figure 56 displays six generated molecules/compounds of the FeedbackGAN model
in its last training epoch.

Figure 56: Samples generated by the FeedbackGAN model in the last training epoch with their
respective druglikeness score and SMILES representation. The six randomly selected compounds
are diverse and not included in the initial filtered training set.

All six compounds contain two aromatic rings meeting the desired number of aro-
matic rings by Bickerton et al. (2012) as listed in Table 10.

ci QED logP molWeight TPSA HBD HBA nROTB nAROM
1 0.9310 2.5751 275.283 64.11 1 4 4 2
2 0.9103 2.6853 340.471 50.16 1 4 5 2
3 0.9152 3.4328 320.436 32.34 1 2 5 2
4 0.9292 3.8320 323.364 46.17 1 2 4 2
5 0.9032 3.8868 273.763 29.10 1 1 3 2
6 0.9414 2.7873 312.388 32.34 1 2 4 2

Table 10: Molecular statistics of compounds {ci}. The approximate desired values from Bick-
erton et al. (2012) (SI) are: [logP: 2.5, molWeight [g

mol]: 300, TPSA: 35 HBD: 1, HBA: 3,
nROTB: 4, nAROM: 2, ALERTS: 0]. The number of structural alerts (ALERTS) is not shown but
included in the computation of the druglikeness score. The statistics were calculated using the
RDKit python library.

All compounds except the first and fourth ones seem reasonable and synthesizable
according to a computational chemist of our group. The first compound might not
be stable due to the connection of the NH fragment next to an aromatic ring that
contains nitrogen (N). The fourth compound contains a squared block next to an
aromatic ring which is uncommon in chemical libraries of synthesized compounds,
e.g. ChEMBL.

91

5 Discussion

At the beginning of the application part in Section 4, the capabilities of generative
adversarial networks were shown in a proof-of-concept experiment by learning mul-
tivariate normal data with mean vector µ = 4 and unit covariance matrix Σ = I.
The dimensionality was set to d = 50. Three evaluation metrics were introduced
that measure the goodness of synthesized samples by the generator network in the
beginning of each training epoch. Often in generative modeling, evaluation metrics
are a useful way of displaying the performance of the generative model. Where most
generative models in image synthesis are easily evaluated by visual inspection, in
our case with multidimensional data, visual evaluation of generated samples is not
possible. Hence, it is worth mentioning that defining evaluation metrics in the do-
main of application is crucial for observing the performance of the generative model,
in our case the GAN. Additionally, it is important to state that those evaluation
metrics were not included into the overall objective function that was optimized over
the training process.
In the proof-of-concept experiment, the three GAN variants (vanilla GAN, Wasser-
stein GAN with weight clipping and Wasserstein GAN with gradient penalty) were
trained with different generator and discriminator architectures to investigate their
performance for learning multivariate normal data. It turned out that all three
variants were able to learn the true data distribution, if the generator network in-
corporated batch normalization. This insight was confirmed by the fact that the
generated samples for each GAN variant minimized the defined evaluation criteria.
Hence, the generated samples of the GANs followed a multivariate normal distribu-
tion with mean vector 4 and unit covariance matrix.

For the main application, several GANs were trained to learn a probability dis-
tribution over a training set of molecules, which were encoded in their continuous
representations using the translation model by Winter et al. (2018). The provided
training set by GuacaMol consists of SMILES representations and was translated
into the continuous cddd-space C, using the encoder network from the provided
translation model in an initial preprocessing step. Since one goal was to conduct the
distribution-learning benchmark from GuacaMol, four evaluation metrics namely,
validity, uniqueness, novelty and Fréchet Chemnet Distance (FCD) were described
and implemented in an evaluation step at the beginning of each training epoch of
the GAN. Similar to the evaluation step for learning multivariate normal data, those
evaluation metrics were not included into the overall objective of the GAN model.
Furthermore, it is important to mention that the four listed evaluation metrics re-
quired the SMILES representation as input. Hence, in each evaluation step the
generated cddd-representations were translated back into their SMILES representa-

92

tions by utilizing the decoder network of the translation model.
After training and comparing the performances between the three GAN variants,
which all had shallow30 network architectures for generator and discriminator, the
Wasserstein GAN with gradient penalty Algorithm 3 was selected to be further used
in the next extensive experiments. Those experiments included trying out different
network architectures and optimizers. It turned out that batch normalization in the
generator network was crucial for the GAN’s capability to synthesize good samples
that are ChEMBL-like and follow the distribution of the training set. In addition,
increasing the complexity of the generator network by adding more hidden layers,
facilitated the GAN to learn the true data distribution better. Hence, deeper gener-
ator networks with batch normalization could synthesize samples with smaller FCD
measures. The Fréchet Chemnet Distance is a measure to show, how ChEMBL-
like a set of generated samples is, and therefore the main evaluation metric taking
into consideration when evaluating the GANs. Nonetheless, for the final cdddGAN
model, besides the FCD criterion, the other three evaluation metrics validity, nov-
elty and uniqueness were also satisfying. In order to check whether the GAN has
not overfitted the training set, the FCD metric was additionally computed w.r.t.
the provided test and validation set from GuacaMol. After evaluating on the two
sets, we found out that our final GAN model did not overfit the training set.
For the validity, out of 5 000 generated samples, after decoding back into their
SMILES representations, around 94% were valid. For the uniqueness and novelty
metric, out of 5 000 samples, almost 100% uniqueness and novelty was achieved.
Since the novelty criterion is almost perfect, our proposed cdddGAN is indeed a
valuable generative model. It is able to generate samples that are ChEMBL-like
and therefore resemble the true training set in a ‘biochemical-way’ and secondly
able to generate valid and novel samples, which do not exist in the training refer-
ence set.

Finally in the distribution-learning application, the GuacaMol benchmark was per-
formed in order to compare our trained cdddGAN to other state-of-the-art generative
models in a fair way. After conducting the GuacaMol distribution-learning bench-
mark, our final GAN model outperforms the ORGAN [Guimaraes et al. (2017)]
model in all benchmark evaluation metrics. The ORGAN model is also a GAN but
trained with the discrete SMILES representation of compounds in contrast to our
proposed model, which is trained on the unsupervised-learned cddd vector represen-
tation of compounds.
Our final model is comparable with the overall two best generative models SMILES
LSTM [H. S. Segler et al. (2017)] and VAE [Gómez-Bombarelli et al. (2016)], where
the first one is a next-character prediction model (see Section 2.2.6.2) and the second

30Shallow networks are networks which are not deep and mostly consists of only one or two
hidden layers.

93

one a variational autoencoder similar to the one trained by Winter et al. (2018), but
with the additional constraint that the latent bottleneck layer follows a pre-defined
probability distribution. Both aforementioned generative models also work with the
discrete SMILES representation of compounds.

Since we have obtained a GAN that is able to generate valid and novel compounds
from a large chemical space, the next step was to use this model to fine-tune its
generative process with the goal, to sample new compounds that have high drug-
likeness scores, i.e. QED > 0.90. The optimization / fine-tuning towards generating
compounds with high druglikeness values was achieved by training the learned cd-
ddGAN model on a filtered subset of the original training data, where the filter
criterion was to select only compounds with druglikeness score greater than 0.90.
The reason for applying transfer-learning was to obtain a GAN that is able to gen-
erate compounds with high druglikeness score, i.e. learn the distribution of drug-
like compounds. One naive way to achieve the aforementioned would be to use
the cdddGAN model, sample compounds and select those compounds that have a
QED > 0.9. This procedure, however, is based on randomness and generating large
chemical compound libraries31 with this method would be impractical.
By filtering, we narrowed the distribution to be learned from in a sense, that the
GAN had to learn the space of compounds with high druglikeness values. In addition
to fine-tuning the pre-trained cdddGAN on the filtered dataset, which was called
as pure transfer-learning approach, the feedback-loop mechanism was included in
the fine-tuning of the model. In contrast to the pure transfer-learning approach,
where the GAN learned from a fixed filtered set, the GAN trained with feedback-
loop mechanism learned on an iteratively updated training set, where in each epoch,
novel and unique generated compounds satisfying the druglikeness condition were
inserted into the training set.
By enabling the feedback-loop mechanism it turned out that the GAN was able to
explore the chemical space of very drug-like (QED > 0.90) compounds better than
the pure-transfer learning GAN, and generated samples that on average converged
towards the mean QED value of the filtered training set.
However, the FeedbackGAN algorithm has to be used with care due to the effect of
including bias into the training process. Since the FeedbackGAN algorithm includes
samples that only satisfy the QED condition, possible unrealistic molecules can be
inserted into the training set. If the training set is completely replaced by artificial
samples, the bias can proceed further and could lead to a chemical manifold that
is characterized with high druglikeness but low synthetic ability. Hence, additional
evaluation steps before inserting samples into the training set should be undertaken.

31Recall from Figure 1 that the building of large chemical libraries is crucial and the initial step
in the drug discovery process. Speeding up the drug discovery process in the first steps with in
silico (computer-based) methods is desired.

94

The FCD increased for both models since the generated compounds have QED >
0.90 in contrast to the reference set (provided by GuacaMol) that contained com-
pounds with QED values ranging from 0 up to the maximum value of 0.95.
As one goal of de novo drug design is generating novel (unknown) compounds that
satisfy certain physico- and/or biochemical properties, high FCD scores for gener-
ated samples from both models do not mean that the samples are bad or poor. Since
the FCD metric measures, whether a generated set is ChEMBL-like, a high FCD
score for a generated set simply means that it is not ChEMBL-like. Recall that
the ChEMBL database consists of compounds that have actually been synthesized.
So if a compound is not ChEMBL-like, we can weakly neglect this point for the
optimization of compounds in the task of de novo [new] drug design.
The FCD metric was only important for the distribution-learning benchmark since
there the goal was to train a GAN to learn the probability distribution of a training
set, which was extracted from the ChEMBL database.
As indicated in Figure 53b though, the generated samples from FeedbackGAN and
the model without feedback should be compared due to the fact that both models
increase in terms of the FCD score but the model without feedback is not increasing
as strong as the model with feedback. The difference might lie in the case that bias
into the training set from FeedbackGAN was included, when the complete initial
training set was replaced by artifical samples from the generator network.

To sum it up, the main application starting from Section 4.3 showed the power-
ful capabilities of generative adversarial networks to learn a data distribution of
the ChEMBL training set. The novel idea in our approach is that the training set
consists of unsupervised-learned continuous representation of compounds, whereas
most state-of-the-art de novo models rely on the discrete SMILES representation
of compounds. We hold the view that using the unsupervised-learned continuous
representation of compounds (cddd) provides benefits such as when using deep neu-
ral networks for any generative model, e.g. GANs or VAEs, optimizing the overall
objective function becomes feasible. The feasiblity comes from the fact that the ob-
jective function is differentiable, since the included networks consists of differentiable
activation functions and the generated input itself is continuous. Additionally, we
hold the view that the cddd representation of compounds characterizes the chemical
information of compounds better than the SMILES representation. Hence, opti-
mization in the cddd space becomes easier as done by Winter et al. (2019) using the
particle swarm optimization (PSO) algorithm to generate candidates of cddd com-
pounds that satisfy multi-objective criteria. For most de novo generative models
that used SMILES representation as inputs, algorithms from reinforcement learning
were included in order to optimize the generated sequences towards certain biochem-

95

ical properties [Olivecrona et al. (2017); Popova et al. (2018)]. The reinforcement
learning approach was mainly utilized because the generated sequences are not dif-
ferentiable because the next characters are sampled from a discrete multinomial
distribution.

5.1 Outlook / Future Work

Future work on this application might include the formulation of multi-objective
optimization for the (pre-trained) GAN model. If the approach from Feedback-
GAN is proceeded, a desirability-function as proposed by Winter et al. (2019) needs
to be implemented. The main idea behind FeedbackGAN is straightforward. For a
generated set of compounds, compute their desirability scores and add those com-
pounds into the training set, if the desirability condition is satisfied. For the simple
single-optimization task of druglikeness (QED), this desirability score was already
normalized between zero and one, by its definition32.
Furthermore, a stronger evaluation of FeedbackGAN before inserting generated sam-
ples into the training set should be executed. As FeedbackGAN is prone to bias
the training process, the synthetic accessibility score (SAscore) for samples with
QED>0.90 could be computed as an additional filter criterion.
The typical drug discovery process as shown in Figure 1 starts with the enrichment
of large chemical libraries of compounds specified for a biological target such as a
protein included in a disease. The target in this application was the druglikeness
score, which in regular drug discovery processes falls into the ‘Lead-to-Candidate’
optimization step of compounds. The problem of selecting the biological target as
the ‘optimization’ criterion is that an additional bioactivity prediction model is re-
quired, to validate if a set of compounds is active or not. This requires pre-training
of the bioactivity model on assay data, which in practice is often limited.

Another approach that is more straightforward, is to train a conditional GAN [Mirza
& Osindero (2014); Odena et al. (2017); Miyato & Koyama (2018); Gong et al.
(2019)], where the condition c could be the concatenation of criteria we want to pre-
serve. By training a conditional GAN (cGAN) we obtain a generator network that
can sample new compounds x̃ that satisfy certain conditions c. Hence, in cGAN the
generator network and discriminator network take the condition into consideration,
i.e. x̃ = G(z|c) and for the discriminator network D(x|c). By inserting additional
information in form of conditions/labels, the GAN is supposed to perform better
on learning the probability distribution of samples conditioned on their labels. The
exploration of capabilities from cGAN in de novo drug design is an interesting and
promising next step and left for research.

32Note that the RDKit-QED function only returns values between 0 and 0.95 in contrast to the
stated maximum value in the original paper by Bickerton et al. (2012).

96

Appendices

A Derivation of Wasserstein GAN

The following paragraphs include various mathematical definitions in order to under-
stand the initial objective of the Wasserstein-1 distance as applied in the Wasserstein
GAN Algorithm 2. Furthermore, a sketch of the proof to derive the dual form of
the primal Wasserstein-1 distance will be shown.

A.1 K-Lipschitz Continuity

Given two metric spaces (X , dX) and (Y , dY), where dX : (X × X) −→ R+ and
dY : (Y ×Y) −→ R+ are distance functions in the respective metric space, a function
f : X −→ Y is said to be K−Lipschitz continuous, if there exists a (smallest possible)
real constant K ≥ 0 such that

dY (f(x1), f(x2)) ≤ KdX(x1, x2),∀x1, x2 ∈ X . (75)

In many applications of GANs the metrics dX and dY are l1 or l2 distances.
Assume that X ,Y ⊆ R and we have the l1 distance, e.g. dX(x1, x2) = |x1 − x2| and
dY (f(x1), f(x2)) = |f(x1)− f(x2)|.
The upcoming two examples have the purpose to understand the lipschitz continuity
on a function f and its relation to the gradient norm of f .

Example 1.
Let f(x) = x be on the interval I = [a, b], where a > b and a, b ∈ R.
For f to be K-Lipschitz continuous in the interval I, following has to hold:

|dY (f(x1)), f(x2))| = |f(x1)− f(x2)| = |x1 − x2| ≤ KdX(x1, x2) = K|x1 − x2|,

which turns into equality, if and only if the smallest K = 1.
Hence, f(x) is 1−Lipschitz continuous in the interval I and in fact in R.
Additionally, note that

|dY (f(x1)), f(x2))|
dX(x1, x2) = |f(x1)− f(x2)|

|x1 − x2|
= |x1 − x2|
|x1 − x2|

= 1,

where the secant between (x1, f(x1)) and (x2, f(x2)) has (maximal) slope of one.
Since f itself is a linear function and 1−Lipschitz continous, the gradient is one and
also has gradient norm one over all the metric space X = R.

97

Example 2.
Let f(x) = x2 be on the interval I = [a, b] = [0, 1]. Then we can derive the following
Lipschitz continuity by definition in equation (75) as:

dY (f(x1), f(x2)) = |x2
1 − x2

2| = |x1 − x2||x1 + x2| ≤ K|x1 − x2|,

where K = 2max(|a|, |b|) = 2max(0, 1) = 2.
Hence, the function f is 2−Lipschitz continuous in interval [0, 1]. Note that the
gradient for this function is f ′(x) = 2x and the gradient has maximal norm of the
value two in the defined interval, where it is 2−Lipschitz continuous. Also recall
that if a secant between f(x1) and f(x2), where x1, x2 ∈ (0, 1) is drawn, the slope of
the secant is bounded by the maximal value of two, which follows from the Lipschitz
continuity.

Figure 57: The function f(x) = x2 is globally 2−Lipschitz continuous in the interval I = [0, 1].
Furthermore its derivative is bounded with maximal norm two in the interval. If a secant is drawn
for any points f(x1) and f(x2), the slope is also bounded with maximal value of two.

Also note that f(x) = x2 would be 1−Lipschitz continuous in I if we divide f by
K = 2.

98

A.2 Definition Wasserstein-p Distance

Let X ,Y be two compact spaces on Rn and pθ and pr be two probability distributions
on the spaces X and Y . We will denote dp(x, y) : X × Y −→ R+ with its definition
dp(x, y) := ||x−y||p = (∑n

i=1 |xi−yi|p)
1
p as lp distance norm for samples coming from

pθ and pr. Since we usually deal with continuous well defined probability densities,
X = Y = Rn. The Wasserstein-p distance between two probability measures pθ and
pr on the joint space M = (X × Y) is defined as

Wp(pr, pθ) :=
(

inf
γ∈
∏

(pr,pθ)

∫
X×Y

dp(x, y)pdγ(x, y))
) 1
p

=
(

inf
γ∈
∏

(pr,pθ)
E(x,y)∼γ[dp(x, y)p]

) 1
p

,

(76)

where ∏(pr, pθ) denotes the set of marginal distributions such that the following
two constraints are satisfied

∫
x
γ(x, y)dx = pr(y) and

∫
y
γ(x, y)dy = pθ(x). (77)

The Wasserstein-p distance can be interpreted as the minimum cost to transport
the model distribution pθ to the real distribution pr.

Example 1: Wasserstein-1 distance.

W1(pr, pθ) := inf
γ∈
∏

(pr,pθ)

(
E

(x,y)∼γ
[||x− y||11]

) 1
1

= inf
γ∈
∏

(pr,pθ)
E

(x,y)∼γ
[||x− y||1] . (78)

Example 2: Wasserstein-2 distance.

W2(pr, pθ) :=
(

inf
γ∈
∏

(pr,pθ)
E

(x,y)∼γ
[||x− y||22]

) 1
2

. (79)

A.3 Derivation Sketch Dual Problem of Wasserstein-1 Distance

For the upcoming sketch, || · || denotes the p = 1 norm, hence || · || = || · ||1 .
Recall that the Wasserstein-1 distance has to find the optimal transport plan/-
coupling γ∗ that minimizes equation (78). In the following part, we will derive a
formulation how we can rewrite the constraint of any transport plan γ ∈ ∏(pr, pθ)
to satisfy the marginalization property in equation (77).

99

Consider following optimization problem

sup
f

[∫
f(y′)pr(y′)dy′ −

∫ ∫
f(y)γ(x, y)dxdy

]

= sup
f

[
E

y′∼pr
[f(y′)]− E

(x,y)∼γ
[f(y)]

]
,

(80)

where f can be any function on Rn. We observe the following points.

• Left-hand side: Expectation of f under pr.

• Right-hand side: Expectation of f under the marginal distribution
∫
γ(x, y)dx.

• This expression is clearly zero for all possible f , if the marginal constraint
over pr is met since the two terms will then be identical. Hence, it must
satisfy the marginalization constraint

∫
γ(x, y)dx ≡ pr(y). If the constraint is

not satisfied, the supremum is ∞.

In order to prove the duality, we need to reformulate the constrained optimization
(which has the condition on the transport plan / coupling γ) in the primal problem in
equation (78) as a less constrained optimization that does not include γ but rather
the 1−Lipschitz continuity on f . We will achieve this by adding suitable terms
regarding the set of all possible transport plans γ ∈ ∏(pr, pθ) := π, to reformulate
the condition and rule out those transport plans that do not follow ∏(pr, pθ) and
violate the marginalization property. Adding the term from equation (80) into the
Wasserstein-1 distance from equation (78) leads to

W1(pr, pθ) = inf
γ∈π

E(x,y)∼γ[‖x− y‖]

= inf
γ
E(x,y)∼γ[‖x− y‖] + 0γ∈π +∞γ 6∈π

= inf
γ
Ex,y∼γ[‖x− y‖]

+ sup
f

E
s∼pr

[f(s)]− E
t∼pθ

[f(t)]− E(x,y)∼γ[(f(y)− f(x))]︸ ︷︷ ︸
=0, if γ ∈ π, else ∞.

= inf
γ

sup
f

E
x,y∼γ

[||x− y||] + E
s∼pr

[f(s)]− E
t∼pθ

[f(t)]

− E(x,y)∼γ[(f(y)− f(x))] ,

(81)

creating a bilevel optimization similar to the minmax game for any GAN.
Note that in line four when adding the term (two times), we made use of the bilinear-
ity of the expectation, where E(x,y)∼γ[(f(y)−f(x))] = E(x,y)∼γ[f(y)]−E(x,y)∼γ[f(x)].
The next step is to make use of the minmax-principle that states that in certain
cases (which we will not prove here) the order of inf and sup can be reverted without
changing the solution using Sion’s minimax theorem.

100

https://en.wikipedia.org/wiki/Sion%27s_minimax_theorem

Applying Sion‘s minimax theorem on equation (81) leads to

W1(pr, pθ) = sup
f

inf
γ

E
(x,y)∼γ

[||x− y|| − (f(y)− f(x))] + E
s∼pr

[f(s)]− E
t∼pθ

[f(t)]

= sup
f

E
s∼pr

[f(s)]− E
t∼pθ

[f(t)] + inf
γ

E
(x,y)∼γ

[||x− y|| − (f(y)− f(x))].
(82)

The term ||x−y|| can be rewritten since the 1-norm is a proper norm satisfying the
homogeneity property, ||x− y|| = ||(−1)(−x+ y)|| = |(−1)| · ||y−x|| = ||y−x|| and
we can see the term of 1−Lipschitz continuity in the infimum over the expectation.

||f(y)− f(x)|| ≤ ||y − x||

||f(y)− f(x)|| − ||y − x|| ≤ 0

||y − x|| − ||f(y)− f(x)||︸ ︷︷ ︸
=:l(x,y)

> 0.
(83)

Note that the bilevel optimization is supf infγ, where the terms related to γ are
coupled to the function f . Hence, it is desired to have as solution for the inner
optimization (inf states the greatest lower bound) 0 rather than −∞, which could
be the case if f is not 1−Lipschitz continuous. We constrain l(x, y) > 0 for all
x, y then the infimum is 0 and reached by assigning the whole probability density
γ(x, y) on the x = y subspace. Conversely, if there is a region, where l(x, y) < 0, the
cost can become arbitrarily large by assigning an arbitrarily large amount of density
to that region, leading to (−1) · ∞. Finally, we obtain the following optimization
problem, where we can change the condition into a constraint.

W1(pr, pθ) = sup
f

E
s∼pr

[f(s)]− E
t∼pθ

[f(t)] + inf
γ

E
x,y∼γ

[||y − x|| − (f(y)− f(x))]︸ ︷︷ ︸
=0, if ||f ||L ≤ 1, else −∞

= sup
||f ||≤1

E
s∼pr

[f(s)]− E
t∼pθ

[f(t)],
(84)

finishing the sketch proof, where ||f ||L ≤ 1 means that the function f is a 1−Lipschitz
function.

101

B Maximum Likelihood Optimization and Kullback-Leibler
Divergence Minimization

Proof of equation (35) that solving the maximum likelihood problem is equivalent
to minimizing the KL-divergence as N −→∞.
Recall from equation (36) that the Kullback-Leibler divergence is formulated as

ϕKL(pr||pθ) =
∫
x
pr(x) log pr(x)

pθ(x)dx.

The law of the unconscious statistician (LOTUS) [Ringnér (2009)] states that if X
is a random variable, so is the transformation g(X).
One does not need to find the probability distribution fg(X)(x) in order to compute
E[g(X)]. With LOTUS one can compute the mean of the transformed (unknown)
probability distribution fg(X)(x) via

E[g(X)] =
∫
R
g(x)fX(x)dx,

where fX(x) is the known probability distribution of the random variable X. With
the strong law of large numbers as the sample size increases, it holds that the sample
average of an i.i.d sample from g(X) = log(X) will converge almost surely to E[g(X)]
leading to the proof:

lim
N−→∞ arg maxθ∈Rd

1
N

N∑
i=1

log pθ(x(i)) = arg maxθ∈Rd E[log pθ(X)]

= arg maxθ∈Rd
∫
x
pr(x) log pθ(x)dx

= arg minθ∈Rd −
∫
x
pr(x) log pθ(x)dx

= arg minθ∈Rd
∫
x
pr(x) log pr(x)dx−

∫
x
pr(x) log pθ(x)dx

= arg minθ∈Rd
∫
x
pr(x) log pr(x)

pθ(x)dx

= arg minθ∈Rd ϕKL(pr||pθ),

where in the third line we switch from maximization to a minimization by multiply-
ing the objective with −1. In the fourth line, since the minimization is over θ ∈ Rd

we can add terms that are not dependent on θ, as this does not affect the mini-
mization. The last two lines are showing that the maximum likelihood optimization
problem is equal to the KL-divergence minimization.

102

C Distribution-Learning

This Appendix paragraph shows additional results for the distribution learning.

C.1 Exploring different Architectures and Settings

In this experiment, several neural network architectures were tested and trained fol-
lowing the Improved WGAN Algorithm 3 over 50 epochs. It turns out that the GAN
model is learning to generate molecules resembling the training set, i.e. ChEMBL
space, if the generator network includes batch normalization [Ioffe & Szegedy (2015)]
in each hidden layer and the critic network does not incorporate batch nor layer
normalization (see Figure 58). If the generator network does not support batch nor-
malization or contains layer normalization [Ba et al. (2016)], the generator network
is not able to generate good samples that minimize the FCD measure as illustrated
in Figure 59. Furthermore, when applying batch normalization in the generator
network as well as in the critic network, the generated molecules are also not mini-
mizing the FCD measure, see param10 in Figure 59.
To conclude, batch normalization should be applied in the generator network batch
normalization and the critic should not contain any normalization within the hid-
den layers. The hidden layers of the critic should compose only the activation of an
affine transformation, i.e. weighted sum shifted with a bias.
Regarding the legend in the plots, the normalization can contain following attributes:
{batch normalization ‘batch’, layer normalization ‘layer’, no normalization ‘no’}.

Figure 58: Including batch normalization in the generator network enables the generator to
sample compounds that minimize the FCD measure. The critic network should not support any
normalization.

The legend for each plot shows the optimizer and batch-size used for each parameter-

103

run. Additionally, the generator network structure with the number of hidden layers
and their respective neurons within each layer are displayed followed by the normal-
ization attribute. The same logic is included for the critic network.

Figure 59: Including layer- or no normalization in the generator network leads to samples that
do not minimize the FCD measure. param10 deteriorates over the training.

For the validity, uniqueness and novelty the presence of batch normalization in
generator- and no normalization in critic network is best as shown in Figure 60, 61
and 62.

Figure 60: Validity is overall good except for param10. Surprisingly, if the generator network has
no batch normalization, validity converges to 100% but with the disadvantage of high FCD scores.

104

Figure 61: Uniqueness metrics. For param10 the phenomenon of mode collapse happened. Apart
from the mode collapse issue, param10 is not able to create valid SMILES as seen in Figure 60.

Figure 62: Novelty metrics. The model from param10 performs worst in novelty as well.

This experiment was extensively conducted and the parameter settings were arbi-
trarily chosen. Additionally, sampling from a uniform distribution Z ∼ U(−1, 1)
was tested. There was almost no difference when sampling from the uniform distri-
bution compared to the standard Gaussian. Including batch normalization in the
critic network in param10 led to poor evaluation metrics. A possible reason why
batch normalization degraded the Improved WGAN Algorithm 3 is the Lipschitz
continuity, which is enforced through the gradient penalty term. By enabling batch

105

normalization the gradient penalty could have affected the critic weights in such
way that the 1−Lipschitz constraint is strongly violated. After an analysis of the
Wasserstein GP loss curve for param10 this hypothesis is confirmed.

Figure 63: The Wasserstein GP loss is deteriorating for the run param10. The loss decreases up
to -25000. Recall that the minmax WGAN optimization problem has the optimal value of zero.
Batch normalization in the critic network seems to disturb the 1−Lipschitz continuity and hence
should not be included in the critic network.

Figure 64 shows the Wasserstein GP loss of the parameter runs except for param10.

Figure 64: The Wasserstein GP loss is improving for all parameter runs. All those parameter
runs include a critic network that does not support batch normalization.

106

After an analysis of the evaluation, the parameter settings from param12 were se-
lected as model architecture for generator and critic network for the final best model,
i.e. cdddGAN. The deciding criterion was the FCD metric, shown in Figure 58.

C.2 Comparison Baseline Model and Best Model

In the following Table 11 the four evaluation metrics for validity, uniqueness, novelty
and Fréchet Chemnet Distance (FCD) for the baseline model (Improved WGAN with
baseline network architectures from Table 5 and 6) and the selected best model
(Improved WGAN with best network architectures from Table 7 and 8) for the
epochs 50,100,150 and 200 are shown.
Since the experiments were conducted five times with different seeds, the mean value
for each evaluation metric and its standard deviation are shown. Those metrics were
computed w.r.t. the provided training set from GuacaMol.

Metric Epoch Best model Baseline
validity 50 0.9321± (0.0040) 0.9356± (0.0011)

100 0.9325± (0.0032) 0.9354± (0.0029)
150 0.9350± (0.0048) 0.9362± (0.0017)
200 0.9366± (0.0029) 0.9376± (0.0015)

uniqueness 50 1.0000± (0.0000) 1.0000± (0.0000)
100 1.0000± (0.0000) 1.0000± (0.0000)
150 0.9998± (0.0002) 0.9999± (0.0001)
200 1.0000± (0.0000) 1.0000± (0.0000)

novelty 50 0.9898± (0.0013) 0.9941± (0.0010)
100 0.9903± (0.0011) 0.9939± (0.0012)
150 0.9888± (0.0022) 0.9944± (0.0003)
200 0.9878± (0.0014) 0.9943± (0.0007)

FCD 50 1.2178± (0.0422) 1.8850± (0.0568)
100 1.1516± (0.0278) 1.7868± (0.0529)
150 1.1146± (0.0162) 1.7688± (0.0511)
200 1.0813± (0.0204) 1.7182± (0.0684)

Table 11: Mean criteria value c and its standard deviation σ. The displayed value is c± (σ)

In addition, the results for a ‘random baseline’ were computed. The random baseline
is method, where 5000 samples are drawn from U ∼ (−1, 1) and then translated back
to the SMILES representation. By adding this, the most naive way of learning the
cddd space C = (−1, 1)512 is illustrated.
It turned out that out of five runs with different seeds, the random baseline generated
samples with 0.3011± (0.0064) validity.
Uniqueness and novelty metric were almost perfect having value of one but not useful
for application since the generated samples were not valid SMILES. The FCD metric
was not computable due to the invalid SMILES. Even after filtering out the valid
SMILES representations, the FCD metric could not be calculated.

107

List of Figures

1 Drug discovery steps . 1
2 Example of molecular fingerprint . 7
3 InCHI representation of caffeine . 8
4 Illustration for Nested Branches in SMILES notation 10
5 Illustration for Cycles in SMILES notation I 10
6 Illustration for Cycles in SMILES notation II 11
7 Illustration for disconnected structures in SMILES notation 11
8 Molecular representations of 1,3-Benzodioxole 12
9 Example feedforward neural network 14
10 Linear separability after activation 17
11 Example activation functions . 18
12 Example loss functions for regression 20
13 Early stopping as regularization method 21
14 Dropout as regularization method . 22
15 Illustration convergence of gradient descent 24
16 Convergence behaviour for gradient-descent dependent on learning

rate α . 25
17 Example computational graph I . 27
18 Example computational graph II . 27
19 Example of a recurrent neural network 29
20 Illustration of a recurrent cell block 30
21 Vanishing gradient in vanilla RNN I 31
22 Vanishing gradient in vanilla RNN II 31
23 Model tasks of RNNs . 32
24 Example Char-RNN language model 33
25 Example one-hot encoding on SMILES 35
26 SMILES RNN model must model long-term depencies 35
27 Sampling procedure for SMILES RNN language model 36
28 Illustration of an autoencoder model architecture 37
29 General architecture of the translation model by Winter et al. (2018) 39
30 Recurrent translation model . 40
31 Performance of the best model on four different translation tasks . . . 41
32 Wasserstein-1 Distance Explanation Example 1 45
33 Wasserstein-1 Distance Explanation Example 2 45
34 Vanilla GAN architecture workflow 47
35 Saturating and non-saturating generator loss 50
36 Illustration of divergence metrics to toy example of Gaussian mixture 52
37 Gradient information for WGAN . 55

108

38 Gradient penalty in WGAN does not exhibit undesired behaviour like
weight clipping . 58

39 Linear interpolation of coupled points for GP 59
40 Mean evaluation criterion . 66
41 Covariance evaluation criteria . 66
42 Distribution shift over epochs for univariate Gaussian 67
43 Baseline results for ChEMBL cddd space learning 73
44 Baseline: FCD metric w.r.t. test and validation set 74
45 Final results for ChEMBL cddd space learning 76
46 Wasserstein losses for baseline and best model 77
47 Druglikeness histogram plot . 78
48 Examples from generated samples with QED value 79
49 PCA plot on training and filtered QED set 83
50 FeedbackGAN workflow . 84
51 Comparison GAN with and without feedback mechanism I 85
52 Comparison GANs with and without feedback mechanism II 86
53 FCD plot in QED w.r.t. filtered dataset 87
55 QED scores over epochs satisfying condition 90
56 Samples generated by the FeedbackGAN model 91
57 Example Lipschitz continuity on f(x) = x2 98
58 FCD metrics for parameter runs I . 103
59 FCD metrics for parameter runs II 104
60 Validity metrics for parameter runs 104
61 Uniqueness metrics for parameter runs 105
62 Novelty metrics for parameter runs 105
63 Wasserstein GP loss parameter experiment I 106
64 Wasserstein GP loss parameter experiment II 106

109

List of Tables

1 Examples SMILES rule (1) . 9
2 Examples SMILES rule (2) . 10
3 MV-Data: Selected generator network architecture 65
4 MV-Data: Selected discriminator/critic network architecture 65
5 CDDD-Data: Baseline generator network architecture 72
6 CDDD-Data: Baseline discriminator/critic network architecture . . . 72
7 CDDD-Data: Selected generator network architecture 75
8 CDDD-Data: Selected critic network architecture 75
9 GuacaMol distibution-learning benchmark results 80
10 Molecular statistics of generated samples from FeedbackGAN 91
11 Comparison baseline model and best model 107

110

List of Algorithms

1 Vanilla GAN with non saturating generator loss 51
2 Wasserstein GAN with weight clipping 56
3 Wasserstein GAN with gradient penalty 60

111

Bibliography

Adiga, S., Attia, M., Chang, W.-T. & Tandon, R. (2018), On the tradeoff between
mode collapse and sample quality in generative adversarial networks, pp. 1184–
1188.

Aggarwal, C. C. (2018), Neural Networks and Deep Learning - A Textbook, Springer.
URL: https://doi.org/10.1007/978-3-319-94463-0

Anil, C., Lucas, J. & Grosse, R. (2019), Sorting out Lipschitz function approxi-
mation, in K. Chaudhuri & R. Salakhutdinov, eds, ‘Proceedings of the 36th In-
ternational Conference on Machine Learning’, Vol. 97 of Proceedings of Machine
Learning Research, PMLR, Long Beach, California, USA, pp. 291–301.
URL: http://proceedings.mlr.press/v97/anil19a.html

Arjovsky, M. & Bottou, L. (2017), ‘Towards principled methods for training gener-
ative adversarial networks’, ArXiv abs/1701.04862.

Arjovsky, M., Chintala, S. & Bottou, L. (2017), ‘Wasserstein gan’, ArXiv
abs/1701.07875.

Ba, J., Kiros, J. R. & Hinton, G. E. (2016), ‘Layer normalization’, ArXiv
abs/1607.06450.

Bickerton, R., Paolini, G., Besnard, J., Muresan, S. & Hopkins, A. (2012), ‘Quanti-
fying the chemical beauty of drugs’, Nature chemistry 4, 90–8.

Bischl, B. (2018a), ‘Lecture notes in ’deep learning’ chapter 1: Introduction to dl’.
https://moodle.lmu.de/course/view.php?id=4192.

Bischl, B. (2018b), ‘Lecture notes in ’deep learning’ chapter 2: Optimization i’.
https://moodle.lmu.de/course/view.php?id=4192.

Bischl, B. (2018c), ‘Lecture notes in ’deep learning’ chapter 7: Recurrent neural
networks’. https://moodle.lmu.de/course/view.php?id=4192.

Bischl, B. (2019a), ‘Lecture notes in ’cim 1 - statistical computing’, lecture 11 - mul-
tivariate unrestringierte optimierung’. https://moodle.lmu.de/course/view.
php?id=3927.

Bischl, B. (2019b), ‘Lecture notes in ’predictive modelling’ chapter 1: Introduction
and formalization’. https://moodle.lmu.de/course/view.php?id=4769.

Brown, N. (2009), ‘Chemoinformatics—an introduction for computer scien-
tists’, ACM Comput. Surv. 41(2), 8:1–8:38.
URL: http://doi.acm.org/10.1145/1459352.1459353

112

https://moodle.lmu.de/course/view.php?id=4192
https://moodle.lmu.de/course/view.php?id=4192
https://moodle.lmu.de/course/view.php?id=4192
https://moodle.lmu.de/course/view.php?id=3927
https://moodle.lmu.de/course/view.php?id=3927
https://moodle.lmu.de/course/view.php?id=4769

Brown, N., Fiscato, M., Segler, M. H. & Vaucher, A. C. (2019), ‘Guacamol: Bench-
marking models for de novo molecular design’, Journal of Chemical Information
and Modeling 59(3), 1096–1108.
URL: https://doi.org/10.1021/acs.jcim.8b00839

Cao, N. D. & Kipf, T. (2018), ‘Molgan: An implicit generative model for small
molecular graphs’, ArXiv abs/1805.11973.

Cereto-Massagué, A., Montes, M., Valls, C., Mulero, M., Garcia-Vallve, S. & Pu-
jadas, G. (2014), ‘Molecular fingerprint similarity search in virtual screening’,
Methods (San Diego, Calif.) 71.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.
& Shelhamer, E. (2014), ‘cudnn: Efficient primitives for deep learning.’, CoRR
abs/1410.0759.
URL: http://dblp.uni-trier.de/db/journals/corr/corr1410.htmlChetlurWVCTCS14

Cho, K., van Merriënboer, B., Bahdanau, D. & Bengio, Y. (2014), On the proper-
ties of neural machine translation: Encoder–decoder approaches, in ‘Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation’, Association for Computational Linguistics, Doha, Qatar, pp. 103–
111.
URL: https://www.aclweb.org/anthology/W14-4012

Clevert, D.-A., Unterthiner, T. & Hochreiter, S. (2015), ‘Fast and accurate deep
network learning by exponential linear units (elus)’, CoRR abs/1511.07289.

Dabbura, I. (2017), ‘Gradient descent algorithm and its variants’.
URL: https://towardsdatascience.com/gradient-descent-algorithm-and-its-
variants-10f652806a3

Dayan, P. & Abbott, L. F. (2005), Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems, The MIT Press.

Do, C. B. (2008), ‘More on multivariate gaussians’. http://cs229.stanford.edu/
section/more_on_gaussians.pdf.

Domingos, P. (2012), ‘A few useful things to know about machine learning’, Com-
mun. ACM 55(10), 78–87.
URL: http://doi.acm.org/10.1145/2347736.2347755

Donahue, C., McAuley, J. & Puckette, M. (2018), Adversarial audio synthesis, in
‘ICLR 2019’.

113

http://cs229.stanford.edu/section/more_on_gaussians.pdf
http://cs229.stanford.edu/section/more_on_gaussians.pdf

Elton, D., Boukouvalas, Z., D. Fuge, M. & W. Chung, P. (2019), ‘Deep learning
for molecular design - a review of the state of the art’, Molecular Systems Design
Engineering .

Ertl, P. & Schuffenhauer, A. (2009), ‘Estimation of synthetic accessibility score of
drug-like molecules based on molecular complexity and fragment contributions’,
Journal of cheminformatics 1, 8.

Fedus, W., Goodfellow, I. J. & Dai, A. M. (2018), ‘Maskgan: Better text generation
via filling in the

′,ArXivabs/1801.07736.

Gillet, V. (2013), ‘Ligand-based and structure-based virtual screening’, University Lec-
ture.

Glorot, X. & Bengio, Y. (2010), ‘Understanding the difficulty of training deep feedfor-
ward neural networks’, Journal of Machine Learning Research - Proceedings Track
9, 249–256.

Gong, M., Xu, Y., Li, C., Zhang, K. & Batmanghelich, K. (2019), ‘Twin auxiliary
classifiers gan’.

Goodfellow, I., Bengio, Y. & Courville, A. (2016), Deep Learning, MIT Press. http:
//www.deeplearningbook.org.

Goodfellow, I. J. (2016), ‘Nips 2016 tutorial: Generative adversarial networks’, ArXiv
abs/1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. & Bengio, Y. (2014), Generative adversarial nets, in Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence & K. Q. Weinberger, eds, ‘Advances in
Neural Information Processing Systems 27’, Curran Associates, Inc., pp. 2672–2680.
URL: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Graves, A. (2008), Supervised sequence labelling with recurrent neural networks, in
‘Studies in Computational Intelligence’.

Graves, A. (2013), ‘Generating sequences with recurrent neural networks’, ArXiv
abs/1308.0850.

Guimaraes, G. L., Sanchez-Lengeling, B., Farias, P. L. C. & Aspuru-Guzik, A. (2017),
‘Objective-reinforced generative adversarial networks (organ) for sequence genera-
tion models’, ArXiv abs/1705.10843.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. (2017), Improved
training of wasserstein gans, in ‘Proceedings of the 31st International Conference
on Neural Information Processing Systems’, NIPS’17, Curran Associates Inc., USA,

114

http://www.deeplearningbook.org
http://www.deeplearningbook.org

pp. 5769–5779.
URL: http://dl.acm.org/citation.cfm?id=3295222.3295327

Gupta, A. & Zou, J. (2019), ‘Feedback gan for dna optimizes protein functions’, Nature
Machine Intelligence 1, 105–111.

Guzel Turhan, C. & Bilge, H. (2018), Recent trends in deep generative models: a
review.

Gómez-Bombarelli, R., Duvenaud, D., Miguel Hernández-Lobato, J., Aguilera-
Iparraguirre, J., D. Hirzel, T., P. Adams, R. & Aspuru-Guzik, A. (2016), ‘Automatic
chemical design using a data-driven continuous representation of molecules’, ACS
Central Science 4.

H. S. Segler, M., Kogej, T., Tyrchan, C. & P. Waller, M. (2017), ‘Generating focused
molecule libraries for drug discovery with recurrent neural networks’, ACS Central
Science 4.

Hastie, T., Tibshirani, R. & Friedman, J. (2001), The Elements of Statistical Learning,
Springer Series in Statistics, Springer New York Inc., New York, NY, USA.

Heller, S. R., McNaught, A., Pletnev, I., Stein, S. & Tchekhovskoi, D. (2015),
‘InChI, the IUPAC International Chemical Identifier’, Journal of Cheminformat-
ics 7(1), 23+.
URL: http://dx.doi.org/10.1186/s13321-015-0068-4

Herrmann, V. (2017), ‘Wasserstein gan and the kantorovich-rubinstein duality’.
URL: https://vincentherrmann.github.io/blog/wasserstein/

Hinton, G. (2012), ‘Neural networks for machine learning: Lecture 6e - rmsprop, divide
the gradient by a running average of its recent magnitude’.
URL: https://www.cs.toronto.edu/ tijmen/csc321/slides/lectureslideslec6.pdf

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural compu-
tation 9, 1735–80.

Huang, T.-W. (2017), ‘tensorboardX: A module for visualization with tensorboard for
Pytorch’. [Online; accessed 04.09.2019].
URL: https://github.com/lanpa/tensorboardX

Hui, J. (2018), ‘Gan - wasserstein gan wgan-gp’.
URL: https://medium.com/@jonathanhui/gan−wasserstein− gan−wgan− gp−
6a1a2aa1b490

Hunter, J. D. (2007), ‘Matplotlib: A 2d graphics environment’, Computing in Science
& Engineering 9(3), 90–95.

115

Ioffe, S. & Szegedy, C. (2015), Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in ‘Proceedings of the 32Nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37’,
ICML’15, JMLR.org, pp. 448–456.
URL: http://dl.acm.org/citation.cfm?id=3045118.3045167

Irwin, J. & Shoichet, B. (2005), ‘Zinc a free database of commercially available
compounds for virtual screening’, Journal of chemical information and modeling
45, 177–82.

Jensen, J. (2019), ‘Graph-based genetic algorithm and generative model/monte carlo
tree search for the exploration of chemical space’, Chemical Science 10.

Kadurin, A., Nikolenko, S. I., Khrabrov, K., Aliper, A. & Zhavoronkov, A. (2017),
‘drugan: An advanced generative adversarial autoencoder model for de novo gen-
eration of new molecules with desired molecular properties in silico.’, Molecular
pharmaceutics 14 9, 3098–3104.

Karpathy, A. (2015), ‘The unreasonable effectiveness of recurrent neural networks’.
URL: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Khapra, M. (2019), ‘Cs7015 (deep learning) : Lecture 7 autoencoders and relation to
pca, regularization in autoencoders, denoising autoencoders, sparse autoencoders,
contractive autoencoders’.
URL: https://www.cse.iitm.ac.in/ miteshk/CS7015/Slides/Handout/Lecture7.pdf

Kingma, D. P. & Ba, J. (2014), ‘Adam: A method for stochastic optimization’, CoRR
abs/1412.6980.

Kingma, D. P. & Welling, M. (2013), ‘Auto-encoding variational bayes’. cite
arxiv:1312.6114.
URL: http://arxiv.org/abs/1312.6114

Kodali, N., Abernethy, J. D., Hays, J. & Kira, Z. (2018), On convergence and stability
of gans.

Landrum, G. (2006), ‘Rdkit: Open-source cheminformatics’.

LeCun, Y., Bengio, Y. & Hinton, G. (2015), ‘Deep learning’, Nature 521(7553), 436–
444.

Lin, J. (1991), ‘Divergence measures based on the shannon entropy’, IEEE Transac-
tions on Information Theory 37(1), 145–151.

Makarychev, Y. (2015), ‘Basic properties of metric and normed spaces’.
URL: https://ttic.uchicago.edu/ yury/courses/geom2015/notes/metric.pdf

116

Mendez, D., Gaulton, A., Bento, A. P., Chambers, J., De Veij, M., Félix, E., Magar-
iños, M., Mosquera, J., Mutowo, P., Nowotka, M., Gordillo-Marañón, M., Hunter,
F., Junco, L., Mugumbate, G., Rodriguez-Lopez, M., Atkinson, F., Bosc, N.,
Radoux, C., Segura-Cabrera, A., Hersey, A. & Leach, A. (2018), ‘ChEMBL: towards
direct deposition of bioassay data’, Nucleic Acids Research 47(D1), D930–D940.
URL: https://doi.org/10.1093/nar/gky1075

Mirza, M. & Osindero, S. (2014), ‘Conditional generative adversarial nets’, ArXiv
abs/1411.1784.

Miyato, T. & Koyama, M. (2018), ‘cgans with projection discriminator’.

Mogren, O. (2016), ‘C-rnn-gan: Continuous recurrent neural networks with adversarial
training’, ArXiv abs/1611.09904.

Morgan, H. L. (1965), ‘The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service.’, Journal of Chemical
Documentation 5(2), 107–113.
URL: https://doi.org/10.1021/c160017a018

Nair, V. & Hinton, G. E. (2010), Rectified linear units improve restricted boltzmann
machines, in ‘Proceedings of the 27th International Conference on International
Conference on Machine Learning’, ICML’10, Omnipress, USA, pp. 807–814.
URL: http://dl.acm.org/citation.cfm?id=3104322.3104425

Nielsen, F. (2010), ‘A family of statistical symmetric divergences based on jensen’s
inequality’, CoRR abs/1009.4004.
URL: http://dblp.uni-trier.de/db/journals/corr/corr1009.htmlabs-1009-4004

Nielsen, M. A. (2018), ‘Neural networks and deep learning’.
URL: http://neuralnetworksanddeeplearning.com/chap2.html

Odena, A., Olah, C. & Shlens, J. (2017), Conditional image synthesis with auxiliary
classifier gans, in ‘Proceedings of the 34th International Conference on Machine
Learning - Volume 70’, ICML’17, JMLR.org, pp. 2642–2651.
URL: http://dl.acm.org/citation.cfm?id=3305890.3305954

Olah, C. (2015), ‘Understanding lstm networks’.
URL: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. (2017), ‘Molecular de-novo
design through deep reinforcement learning’, Journal of Cheminformatics 9(1), 48.
URL: https://doi.org/10.1186/s13321-017-0235-x

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Des-
maison, A., Antiga, L. & Lerer, A. (2017), ‘Automatic differentiation in pytorch’.

117

Pearlman, R. (1987), ‘Rapid generation of high quality approximate 3d molecular
structures’, Chem. Des. Automa pp. 5–7.

Polishchuk, P., Madzhidov, T. & Varnek, A. (2013), ‘Estimation of the size of drug-like
chemical space based on gdb-17 data’, Journal of computer-aided molecular design
27.

Polykovskiy, D., Zhebrak, A., Sanchez-Lengeling, B., Golovanov, S., Tatanov, O.,
Belyaev, S., Kurbanov, R., Artamonov, A., Aladinskiy, V., Veselov, M., Kadurin,
A., Nikolenko, S., Aspuru-Guzik, A. & Zhavoronkov, A. (2018), ‘Molecular Sets
(MOSES): A Benchmarking Platform for Molecular Generation Models’, arXiv
preprint arXiv:1811.12823 .

Popova, M., Isayev, O. & Tropsha, A. (2018), ‘Deep reinforcement learning for de novo
drug design’, Science Advances 4(7), eaap7885.
URL: http://dx.doi.org/10.1126/sciadv.aap7885

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. & Klambauer, G. (2018), ‘Fréchet
chemnet distance: A metric for generative models for molecules in drug discovery.’,
Journal of chemical information and modeling 58 9, 1736–1741.

Prykhodko, O., Johansson, S., Kotsias, P.-C., Bjerrum, E., Engkvist, O. & Chen, H.
(2019), ‘A de novo molecular generation method using latent vector based generative
adversarial network’.

Ringnér, B. (2009), ‘The law of the unconscious statistician’. URL: http://www.
maths.lth.se/matstat/staff/bengtr/mathprob/unconscious.pdf.

Rogers, D. & Hahn, M. (2010), ‘Extended-connectivity fingerprints’, Journal of chem-
ical information and modeling 50 5, 742–54.

Ruder, S. (2016), ‘An overview of gradient descent optimization algorithms.’. cite
arxiv:1609.04747Comment: Added derivations of AdaMax and Nadam.
URL: http://arxiv.org/abs/1609.04747

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), ‘Learning Representations
by Back-propagating Errors’, Nature 323(6088), 533–536.
URL: http://www.nature.com/articles/323533a0

S, S. & Thilak Chaminda, H. (2017), Generate bioinformatics data using generative
adversarial network: A review.

Sanchez, B., Outeiral, C., L Guimaraes, G. & Aspuru-Guzik, A. (2017), ‘Optimizing
distributions over molecular space. an objective-reinforced generative adversarial
network for inverse-design chemistry (organic)’.

118

http://www.maths.lth.se/matstat/staff/bengtr/mathprob/unconscious.pdf
http://www.maths.lth.se/matstat/staff/bengtr/mathprob/unconscious.pdf

Santambrogio, F. (2015), Wasserstein distances and curves in the Wasserstein spaces,
Springer International Publishing, Cham, pp. 177–218.
URL: https://doi.org/10.1007/978-3-319-20828-25

Schmidhuber, J. (2014), ‘Deep learning in neural networks: An overview’, CoRR
abs/1404.7828.
URL: http://arxiv.org/abs/1404.7828

Schneider, G. (2019), ‘Mind and machine in drug design’, Nature Machine Intelligence
1.

Schwalbe-Koda, D. & Gómez-Bombarelli, R. (2019), ‘Generative models for automatic
chemical design’, arXiv preprint arXiv:1907.01632 .

Sriperumbudur, B., Fukumizu, K., Gretton, A., Schölkopf, B. & Lanckriet, G. (2012),
‘On the empirical estimation of integral probability metrics’, Electronic Journal of
Statistics 6, 1550–1599.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014),
‘Dropout: A simple way to prevent neural networks from overfitting’, J. Mach.
Learn. Res. 15(1), 1929–1958.
URL: http://dl.acm.org/citation.cfm?id=2627435.2670313

Suki (2017), ‘Learning rate schedules and adaptive learning rate methods for deep
learning’.
URL: https://towardsdatascience.com/learning-rate-schedules-and-adaptive-
learning-rate-methods-for-deep-learning-2c8f433990d1

Sutskever, I., Vinyals, O. & Le, Q. V. (2014), Sequence to sequence learning with
neural networks, in ‘Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2’, NIPS’14, MIT Press, Cambridge, MA,
USA, pp. 3104–3112.
URL: http://dl.acm.org/citation.cfm?id=2969033.2969173

Sutton, R. & Barton, A. (1998), Reinforcement learning: an introduction, MIT Press,
Cambridge.

Theis, L., van den Oord, A. & Bethge, M. (2015), ‘A note on the evaluation of gener-
ative models’.

Van Rossum, G. & Drake Jr, F. L. (1995), Python tutorial, Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands.

Viehmann, T. (2017), ‘More improved training of wasserstein gans and dragan’.
URL: https://lernapparat.de/more-improved-wgan/

119

Villani, C. (2008), Optimal transport – Old and new, Vol. 338, pp. xxii+973.

Vondrick, C., Pirsiavash, H. & Torralba, A. (2016), ‘Generating videos with scene
dynamics’, ArXiv abs/1609.02612.

Wang, Y., Bryant, S. H., Cheng, T., Wang, J., Gindulyte, A., Shoemaker, B. A.,
Thiessen, P. A., He, S. & Zhang, J. (2017), Pubchem bioassay: 2017 update, in
‘Nucleic Acids Research’.

Wei, X., Gong, B., Liu, Z., Lu, W. & Wang, L. (2018), Improving the improved
training of wasserstein gans: A consistency term and its dual effect., in ‘ICLR
(Poster)’, OpenReview.net.
URL: http://dblp.uni-trier.de/db/conf/iclr/iclr2018.htmlWeiGL0W18

Weininger, D. (1988), ‘Smiles, a chemical language and information system. 1. intro-
duction to methodology and encoding rules’, Journal of Chemical Information and
Computer Sciences 28(1), 31–36.
URL: https://pubs.acs.org/doi/abs/10.1021/ci00057a005

Weiss, K., Khoshgoftaar, T. &Wang, D. (2016), ‘A survey of transfer learning’, Journal
of Big Data 3.

Weng, L. (2018), ‘From autoencoder to beta-vae’, lilianweng.github.io/lil-log .
URL: http://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-
vae.html

Willett, P., Barnard, J. M. & Downs, G. M. (1998), ‘Chemical similarity searching’,
Journal of Chemical Information and Computer Sciences 38(6), 983–996.
URL: https://doi.org/10.1021/ci9800211

Winter, R., Montanari, F., Noé, F. & Clevert, D.-A. (2018), ‘Learning continuous
and data-driven molecular descriptors by translating equivalent chemical represen-
tations’.

Winter, R., Montanari, F., Steffen, A., Briem, H., Noé, F. & Clevert, D.-A. (2019), ‘Ef-
ficient multi-objective molecular optimization in a continuous latent space’, Chemical
Science .

Xiong, W., Luo, W., Ma, L., Liu, W. & Luo, J. (2017), ‘Learning to generate time-lapse
videos using multi-stage dynamic generative adversarial networks’.

Xu, B., Wang, N., Chen, T. & Li, M. (2015), ‘Empirical evaluation of rectified activa-
tions in convolutional network’, ArXiv abs/1505.00853.

Yu, L., Zhang, W., Wang, J. & Yu, Y. (2017), ‘Seqgan: Sequence generative adversarial
nets with policy gradient’, ArXiv abs/1609.05473.

120

Zhou, Z., Kearnes, S., Li, L., Zare, R. & Riley, P. (2019), ‘Optimization of molecules
via deep reinforcement learning’, Scientific Reports 9, 10752. 10.1038/s41598-019-
47148-x.

121

Acknowledgement

At this point I would like to thank everyone who supported and motivated me dur-
ing the preparation of this work.

First of all I would like to thank Prof. Dr. Ulrich Mansmann and Dr. Roman
Hornung for the opportunity to work on this interesting topic as part of a master’s
thesis and for their supervision and assessment of this thesis.

I would also like to thank the Bayer AG and in particular Dr. Djork-Arné Clevert
for enabling me to write my master’s thesis as an accompanying research intern-
ship. The work in the Machine Learning Research Group was very instructive and
the stimulating discussions on the theory of neural networks and its application in
cheminformatics were very interesting, as I do not have a chemistry background.
Also, I would like to thank Santiago Villalba and Robin Winter from the Machine
Learning Research Group who both supported me during the research internship
with inspiring advices to efficiently implement clean programming code as well as
explanations on some parts on unsupervised learning theory.

Last but not least I would like to thank my family and friends for the proofreading
of my master thesis.

122

Satutory declaration

I hereby confirm that I composed the present thesis with the title

De novo drug design in continuous space

independently and that I have used no other sources other than those cited in the
text. The text passages which are taken from other works in wording or meaning
I have identified in each individual case by stating the source. This applies also to
all graphics, drawings, maps and images included in the thesis. Neither this, nor a
similar work, has been published or presented to an examination committee.

Tuan Le Date

123

	Introduction
	Generative Models in Drug Discovery

	Theoretical Framework
	Notation
	Molecular Representation
	InCHI Representation
	SMILES Representation

	Deep Learning
	Feedforward Neural Network
	Basics and Building Blocks
	Weight Matrices and Biases
	Activation Functions
	Loss Functions

	Regularization
	Training
	Optimization
	Gradient Descent
	Backpropagation

	Recurrent Neural Network
	Vanilla Recurrent Neural Network
	Application of RNNs in Drug Discovery

	Autoencoders
	Translation Model to Learn Molecular Descriptors

	Generative Adversarial Networks
	Divergence Metrics
	Kullback-Leibler Divergence
	Jensen-Shannon Divergence
	Wasserstein-1 Distance

	Vanilla GAN
	Wasserstein GAN
	Improved Wasserstein GAN

	Dataset
	Application
	Technical Information
	Learning Multivariate Normal Distribution
	Evaluation Metrics
	Results

	Learning ChEMBL space using CDDD Representations
	Evaluation Metrics
	Results
	Druglikeness of Generated Molecules
	GuacaMol: Distribution-Learning Benchmark

	Optimizing Molecules in Learned ChEMBL Space
	FeedbackGAN
	Results

	Discussion
	Outlook / Future Work
	Appendices
	Derivation of Wasserstein GAN
	K-Lipschitz Continuity
	Definition Wasserstein-p Distance
	Derivation Sketch Dual Problem of Wasserstein-1 Distance

	Maximum Likelihood Optimization and Kullback-Leibler Divergence Minimization
	Distribution-Learning
	Exploring different Architectures and Settings
	Comparison Baseline Model and Best Model

	Bibliography
	Acknowledgement

	Satutory declaration

