MASTER'S THESIS

Analysis of a
Maximal Clique Finding Algorithm
with respect to Runtime and Effectiveness
in High Dimensional Data

Author: Leonie Friederike Litzka

Supervisor: Prof. Dr. Moritz Grosse-Wentrup

Institut fiir Statistik

Fakultat fliir Mathematik, Informatik und Statistik

Ludwig-Maximilians-Universitat Miinchen

28.08.2019

Abstract

A couple of applications require enumerating of all maximal cliques of a graph in
high dimensional data. As this is an NP-complete problem, there is a big interest
in finding algorithms, that are capable of efficiently finding maximal cliques.

In this thesis three different types of graphs are considered for investigating an al-
gorithm put forward by Ding et al. [2008] for finding one maximal clique in a graph.
This algorithm is studied regarding its runtime and its effectiveness for all three
types of graphs. Effectiveness refers to the question, whether the algorithm carried
out on different inputs is able to find different existing maximal cliques in the graph.
Runtime is considered depending on the size of the graph.

The three considered types of graphs cover first manually set graphs with thoughtful
clique structures, secondly random graphs and thirdly random intersection graphs.
For all three types of graphs the mean CPU-runtime of the algorithm was found to
be increasing over-proportionally with the size of the graph within the segment of
considered graph sizes. The non-linearity was examined in more detail by modelling
the logarithm of the mean runtimes and the logarithm of the graph sizes. It indicates
in most of the investigated cases, that the logarithm of the mean runtime increases
more than linear with the logarithm of the number of nodes.

Permutation tests were used for testing differences between the mean runtimes of the
manually set graphs with same size but different clique structures. They indicate,
that in particular graphs with non-overlapping maximal cliques have lower mean
runtimes compared to corresponding graphs with overlapping maximal cliques.
The proportion of found different maximal cliques after having applied the algorithm
on various inputs was found to be relatively low for some graphs, in most cases even
decreasing with the increasing graph size.

Contents

Contents
1 Introduction

2 Theoretical Background

2.1 Notation
2.2 Maximal Clique Finding

2.3 Non-negative Matrix Factorization
2.4 Algorithm

3 Methods

3.1 Python Implementation of the Algorithm
3.1.1 Stopping Criterion,

3.2 Adjacency matrices
3.3 Analysis of the algorithm’s runtime and solutions
3.3.1 Regression oo
3.3.2 Permutation test L L0
3.32.1 Theory

3.3.2.2 Implementation

3.4 Simulation for measuring the runtimes

4 Results

4.1 Runtime
4.1.1 Adjacency Structures
4.1.1.1 Runtime for different matrix sizes

4.1.1.2 Runtime for different structures

4.1.1.3 Runtime for permuted adjacency matrices

4.1.2 Random graphso
4.1.3 Random intersection graphs

4.2 Effectiveness e
4.2.1 Adjacency Structures
4.2.1.1 Effectiveness for different matrix sizes

4.2.1.2 Effectiveness for different structures.

4.2.1.3 Effectiveness for permuted adjacency matrices

4.2.2 Random graphs oo
4.2.3 Random intersection graphs
4.3 Algorithm for enumerating all maximal cliques

5 Summary and Outlook
References

Appendix

List of Figures

List of Figures

= O 00

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Dotplot of mean runtimes for “non-overlapping few big equal-sized cliques” 22
Boxplot of mean runtimes per node for “non-overlapping few big equal-sized

cliques” L 23
Dotplot of log mean runtimes for “non-overlapping few big equal-sized cliques” 24
Boxplot of mean runtimes for 100 nodes 25
Dotplot of mean runtimes for permuted version of “non-overlapping few big
equal-sized cliques” 28
Boxplot of mean runtimes for non-permuted and permuted matrices of
“non-overlapping few big equal-sized cliques” 29
Dotplot of mean runtimes for adjacency matrices of random graphs 31
Boxplot of mean runtimes per node for adjacency matrices of random graphs 32
Dotplot of log mean runtimes for adjacency matrices of random graphs . . 33
Dotplot of mean runtimes for adjacency matrices of random intersection
graphs 34
Dotplot of log mean runtimes for adjacency matrices of random intersection
graphso 35
Barplot of proportion of found existing cliques of “non-overlapping few big
equal-sized cliques” 36
Dotplot of development of proportions of found different cliques among
existing cliques of “non-overlapping few big equal-sized cliques” 37

Dotplot of development of proportions of found different cliques among
existing cliques of “overlapping many small equal-sized cliques” depending
on cumulative mean runtime 38
Dotplot of clique findings for “non-overlapping few big different-sized cliques” 39
Dotplot of clique findings for “non-overlapping many small different-sized

cliques” L L 40
Barplot of proportion of found existing cliques for all structures and 100
NOdeS e 41
Barplot of proportion of found existing cliques for all structures and 1500
nodes L e e 42
Dotplot of development of proportions of found different cliques among
existing cliques for all structures and 100 nodes 43
Barplot of proportion of found different cliques among 100 startvectors of
adjacency matrices of random graphs L 44
Dotplot of development of proportions of found different cliques among 100
startvectors of adjacency matrices of random graphs 45
Barplot of proportion of found different cliques among 100 startvectors of
adjacency matrices of random intersection graphs 46
Dotplot of log mean runtimes for permuted matrices of “non-overlapping
few big equal-sized cliques” oo 53
Barplot of proportion of found existing cliques of “overlapping few big equal-
sized cliques” L L 57
Dotplot of development of proportions of found different cliques among
existing cliques of “overlapping many small equal-sized cliques” 58

List of Tables

26

27

Dotplot of development of proportions of found different cliques among

existing cliques for all structures and 8000 nodes 59
Barplot of proportion of found existing cliques of permuted version of “non-
overlapping few big equal-sized cliques” 60

List of Tables

= W DN =

10

11

12

Overview binary characterizations 13
Overview adjacency matrix structures 14
Tests for comparing non-overlapping and overlapping structures 19
Coefficients and p-values of models for the structure “non-overlapping few
big equal-sized cliques” Lo oL 24
P-values of two-sided permutation tests of all eight adjacency structures
and 100 nodes L 27
Coefficients and p-values of models for permuted version of structure “non-
overlapping few big equal-sized cliques” 30
P-values of one-sided permutation tests of permuted and corresponding
non-permuted structure Lo 31

Coefficients and p-values of models for adjacency matrices of random graphs 33
P-values of one-sided permutation tests for comparison of matrices with

non-overlapping and overlapping cliques 54
P-values of one-sided permutation tests for comparison of matrices with
few big and many small cliques L. %)
P-values of one-sided permutation tests for comparison of matrices with
equal-sized and different-sized cliques 56
Coefficients and p-values of models for adjacency matrices of random in-
tersection graphs L 57

2.1 Notation 2 Theoretical Background

1 Introduction

In these days we are generally confronted with a growing amount of data in many ap-
plications. Dealing with high dimensional data hence is an important task and analysis
techniques must be able to do so. In particular finding maximal cliques in a graph is re-
quired for example in data-intensive fields like the detection of consistently co-expressed
genes in systems biology [Pavlopoulos et al., 2011].

Enumerating all maximal cliques of a graph is an NP-complete problem and therefore
sensitive to increasing dimensionality of the data. Correspondingly there is a strong need
for algorithms, that are capable of efficiently finding maximal cliques. [Hou et al., 2016]

This thesis investigates an algorithm put forward by Ding et al. [2008] for finding one
maximal clique in a graph per run. The thesis studies the algorithm regarding runtime
and effectiveness for three types of graphs, which differ with respect to the structure of
their cliques. While the runtime was examined as function of the size of the graph, i.e.
the number of nodes, effectiveness addresses the question, to what extent the algorithm
is able to find different existing maximal cliques in the graph.

For investigating these questions, three types of graphs were considered. In the first
group of graphs their clique structure was manually set, for understanding the impact of
the clique structure on runtime and effectiveness. The second group were random graphs
[Erdss and Rényi, 1959], the third random intersection graphs [Behrisch and Taraz, 2006],
which were chosen as an attempt of being closer to real-world examples. In order to ex-
amine the runtimes, for all these three groups of graphs various graph sizes were taken
into account.

The thesis is structured as follows. Section 2 will introduce the theory of maximal clique
finding, non-negative matrix factorization and the algorithm published by Ding et al.
[2008|. The implementation of this algorithm and the methods, which were applied for
investigating runtime and effectiveness, will be described in section 3. This is followed by
the presentation of the results in section 4. Finally section 5 will summarize the results
and give an outlook.

2 Theoretical Background

Aim of the following sections is to give the theoretical background for the idea of efficiently
searching maximal cliques in high dimensional data.

Section 2.1 will first introduce the notation of this thesis, after that 2.2 will explain the
concept of maximal clique finding. Section 2.3 will take a closer look at non-negative
matrix factorization. This is followed in section 2.4 by the introduction of the algorithm
put forward by Ding et al. [2008], which is studied in this thesis regarding its runtime and
effectiveness.

2.1 Notation

The notation of formulas coming from cited sources is adapted on the notation of this
thesis.

Capital letters like B are used for matrices. In particular A denotes adjacency matrices,
which are introduced in section 2.2. An entry of a matrix B in the i-th row and j-th

2.2 Maximal Clique Finding 2 Theoretical Background

column is denoted by B;;. B, is the i-th row, B the j-th column of B. A vector is
indicated by a lower-case letter like x, the i-th element of a vector by x;. The letters 7, j
and k are used for indices, running indices as well as for nodes. The letters r, m and n
represent numbers and dimensions of matrices. Especially n also stands for the number
of nodes of a graph.

If vectors or matrices are iteratively updated, the current iteration respectively update
step is marked via a superscript (k) in round brackets like z®)_ In the following section
the theory of maximal clique finding will be presented.

2.2 Maximal Clique Finding

Finding maximal cliques is a problem of the field of graph theory. A graph consists of a
set of nodes respectively nodes and edges, which do or do not connect the nodes of the
graph. If two nodes are connected by an edge, they are called adjacent. A graph can be
directed or undirected, which depends on whether the edges of the graph are directed or
undirected. This thesis considers undirected graphs, in which all edges have no direction
i.e. no in and out ends. [Pearl et al., 2016|

An undirected graph G = (V, E) consists of two sets V and E. V = {1,2,...,n} is a
set containing the n nodes of the graph. These nodes in V' are connected via edges, which
are the elements of the set E. If two nodes i, j are connected via an edge (7,j), then
(1,7) € E. |Belachew and Gillis, 2017|
The so called adjacency matrix A of an undirected graph G is a binary matrix filled with
0 and 1. A is quadratic and has as many columns respective rows as there are nodes in
the graph. In particular A is symmetric, since the matrix element in row ¢ and column j
is the same as the element in row j and column . It indicates, whether node 7 and node j
are adjacent. The nodes are adjacent if they are connected via an edge, i.e. if (i,7) € E.
So A;; = Aj; = 1 if and only if the nodes ¢ and j are adjacent, otherwise these entries in
A are equal to zero. [Belachew and Gillis, 2017

A so called “clique in an undirected graph G is a subset of its [...| [nodes| such that
the corresponding subgraph is complete” [Belachew and Gillis, 2017, p. 280]. So every
node in a clique C' is adjacent to all other nodes, that are part of the same clique. This
means every node is connected via an edge to every other node in the clique:

V i,7€C with i#j5: (i,j)eFE
A clique C'is called a maximal clique, if there exists no larger clique, in which the clique
C is contained. So if there would exist a node k, which is not part of a clique C' and which
is adjacent to all nodes of the clique, this clique would not be maximal. There would exist
a larger clique Cjgrger, in which C' is contained. This larger clique would be the union of
the nodes of the clique C' and the node k: Cjgrger = C' U {k}. |Belachew and Gillis, 2017|
The largest clique of all maximal cliques of an undirected graph G is called the maximum
clique of graph G. The maximum clique has the largest number of nodes and therefore
also the largest number of edges, as all nodes of a clique have to be adjacent per definition

of a clique. The number of nodes contained in the maximum clique is referred to as the
clique number of the graph G. [Belachew and Gillis, 2017]

2.3 Non-negative Matrix Factorization 2 Theoretical Background

Now the question arises, how to find such maximal cliques of a graph. Corresponding
to Ding et al. [2008] the formulation of an optimization problem can help to compute
maximal cliques of a graph. The so called Motzkin and Straus formulation is as follows
with setting A;; = 0 [Ding et al., 2008|:

T

n
max x! Az, s.t.in =1, x>0
i=1

Motzkin and Straus [1964] consider a maximal clique of size k of a graph G with n nodes,
corresponding adjacency matrix A and a simplex S in euclidean n-dimensional space.
This simplex is given by S = {z € R* | 2; >0, > x; = 1}. They show, that the

maximum of the function max > (ijyec Tix; is given by f(G) := $(1 — 4) for z with
T1 = 0 =T = % and xpy = -+ = x, = 0. So the maximum of f(G) is given for a
vector x, that indicates the membership in the clique for the nodes 1,...,k via the entry

%, whereas the nodes in G, that are not part of the clique, are marked by the entry 0.

[Motzkin and Straus, 1964|

Gibbons et al. [1996] look at the Motzkin-Straus formulation of the Maximum Clique
Problem
mar r'Ax/2 st efx=1, >0

for a graph G and its adjacency matrix A. They derive, that maximal cliques of the graph
G correspond to local maxima of the optimization problem. Hence for finding maximal
cliques of a graph, the Motzkin-Straus formulation can be used, whilst computing the
local maxima of this optimization problem. [Gibbons et al., 1996|

Finding all maximal cliques of a graph is also called maximal clique enumeration
[Hou et al., 2016]. This is “NP-Complete and thus computationally intensive at scale”
[Hou et al., 2016, p. 219]. So for high-dimensional data and resulting large graphs it is
important to find an efficient algorithm for finding the maximal cliques. Ding et al. [2008|
provide an algorithm for finding a maximal clique via the framework of non-negative
matrix factorization. This algorithm will be put forward in section 2.4. First the theory
of non-negative matrix factorization itself will be presented in the following section.

2.3 Non-negative Matrix Factorization

Non-negative matrix factorization is praised by Ding et al. [2008] as having great success
in machine learning literature. Ding et al. [2008| use non-negative matrix factorization as
a framework for several optimization problems of the field of data mining. One of these
optimization problems is maximal clique finding, for which the resulting algorithm will
be introduced in section 2.4.

It’s the aim of non-negative matrix factorization to factorize a non-negative matrix V'
into two non-negative matrices W and H, so that V' ~ W H. This non-negativity con-
straint is based on the idea of learning a parts-based representation as explained by Lee
and Seung [2001]. The matrix H contains so called hidden variables, whereas V' consists
of the visible variables. “Each hidden variable coactivates a subset of visible variables, or

2.3 Non-negative Matrix Factorization 2 Theoretical Background

‘part’. Activation of a constellation of hidden variables combines these parts additively
to generate a whole.” [Lee and Seung, 1999, p. 790]

Lee and Seung [1999] use facial images for demonstrating the parts-based representation.
Because all elements of W and H are required to be non-negative, only additive combina-
tions are possible, no subtractions. This corresponds to the idea of putting parts together
to build a whole [Lee and Seung, 1999]. Another motivation is mentioned by Hoyer [2004]
and aims on applications, where the involved quantities cannot be negative because of
rules of physics as an example.

In particular the representation W H of V' found by the non-negative matrix factoriza-
tion is not only parts-based but also linear. Define V' as a n xm matrix, W as a n xXr matrix
and H as a r x m matrix. As Hoyer [2004] explains, for each measurement vector V, with
ke l,...,min V an approximation is given by V =~ 22:1 W,Hy = WH,. The
columns of W are the r so called basis vectors W, that also can be seen as the ““build-
ing blocks’ of the data” [Hoyer, 2004, p. 1458]. Underlying features should be extracted
in the form of these basis vectors [Berry et al., 2007] and make the “latent structure in
the data explicit” [Hoyer, 2004, p. 1457|. The vectors H j, that were called the hidden
variables by Lee and Seung [1999], contain the coefficients, that indicate, “how strongly
each building block is present in the measurement vector V,.”. Hoyer [2004] emphasizes,
that non-negative matrix factorization is - as well as for example the principal component
analysis - a matrix factorization, only with different objective functions and/or constraints.

An important point of non-negative matrix factorization is data compression. If r

is smaller than n or m and hence W and H also smaller than V', corresponding to Lee
and Seung [2001] these two matrices build a “compressed version of the original data
matrix [V]” [Lee and Seung, 2001, p. 2]. So dimension reduction can be achieved via
non-negative matrix factorization. Lee and Seung [1999] call r the rank of the factoriza-
tion and give as a rule for it (n +m)r < nm, to achieve W H being a compressed version
of V. Berry et al. [2007] state the choice of r being a critical point and often chosen as
“l...][r] << min(m,n)".
Lee and Seung [2001] point out, that “each data vector |...] [V] is approximated by a lin-
ear combination of the columns of W, weighted by the components of |...] |H x]”|Lee and
Seung, 2001, p. 2|. As aforementioned r and thus the number of vectors, that are used to
represent the data vectors V, is chosen relatively small, to gain data compression. So Lee
and Seung [2001] reason the quality of the approximation of V' via W H being dependent
on whether latent structure in the data is discovered by the approximation.

To obtain the matrices W and H, there exist numerical approaches, which can be
categorized corresponding to Berry et al. [2007] into three classes. One class consists of
multiplicative update algorithms based on an algorithm provided by Lee and Seung [2001].
A second class represents gradient descent algorithms, whereas the third class consists of
alternating least squares algorithms.

The multiplicative update algorithm explained by Lee and Seung [2001] needs a cost
function for assessing the goodness of the approximation of V' by W H. For this purpose
two measures of distance are proposed by Lee and Seung [2001], the squared Euclidean

2.4 Algorithm 2 Theoretical Background

Distance and the Divergence. As an example the Euclidean Distance for two matrices P
and @ is given here [Lee and Seung, 2001]:

P — QH2 = Z (P — Qij)2
)

With each of those two cost functions the non-negative matrix factorization can be for-
mulated as an optimization problem. It is minimizing the respective cost function “with
respect to W and H, subject to the constraints W, H > 0" |[Lee and Seung, 2001, p. 3.
Lee and Seung [2001] state, that the two cost functions Euclidean Distance and Divergence
are not convex in both W and H at once, but in both of them by itself. They formulate
hence the aim of finding local instead of global minima via numerical optimization. [Lee
and Seung, 2001|

The optimization problem using the Euclidean Distance as cost function is “[...] [mini-
mizing] ||V — W H||*> with respect to W and H, subject to the constraints W, H > 0” [Lee
and Seung, 2001, p. 3|. Doing this by multiplicative update rules is suggested by Lee and
Seung [2001] as a “good compromise between speed and ease of implementation” [Lee and
Seung, 2001, p. 3|. The multiplicative update rule of Lee and Seung [2001] is as follows,
if the Euclidean Distance is used as cost function:

(WTV),;
(WTWH)U’

(VHT)M

H;; « H;; —
! (WHHT),

Wit < Wi
As Berry et al. [2007] report, the algorithm using these multiplicative update rules does
not converge to a local minimum. The proof of convergence to a local minimum by Lee
and Seung [2001] corresponding to Berry et al. [2007] only “shows a continual descent
property, which does not preclude descent to a saddle point” [Berry et al., 2007, p. 158|.
Therefore several references are given by Berry et al. [2007|. Berry et al. [2007] instead
state about the algorithm of Lee and Seung [2001]: “When the algorithm has converged
to a limit point in the interior of the feasible region, this point is a stationary point. This
stationary point may or may not be a local minimum. When the limit point lies on the
boundary of the feasible region, its stationarity cannot be determined” |Berry et al., 2007,
p. 158].

Berry et al. [2007] mark, that algorithms using the above mentioned multiplicative update
rules, often converge in practice, but slower than algorithms of the other two at the be-
ginning of this section mentioned classes of gradient descent and alternating least squares
algorithms.

The framework of non-negative matrix factorization is used by Ding et al. [2008] in
the next section 2.4 for finding maximal cliques.

2.4 Algorithm

The algorithm studied in this thesis regarding its runtime and effectiveness comes from
Ding et al. [2008]. They use the concept of non-negative matrix factorization, which was
described in the previous section 2.3 as an optimization framework for different purposes,
amongst other things for finding maximal cliques.

9

2.4 Algorithm 2 Theoretical Background

The basis of the algorithm described by Ding et al. [2008] is the theorem of Motzkin and
Straus [1964]. As explained in section 2.2 maximal cliques can be found via solving this
optimization problem. Ding et al. [2008] use a generalized version of this optimization
problem, which is given as follows:

The parameter [incorporates a L,-norm constraint y ., 27 = 1. Ding et al. |2008] show,
that for an adjacency matrix, whose main diagonal is filled with 1, and for 8 =146, 0 <
0 << 1, a maximal clique is found. If the nonzero elements C' = {i|z; > 0} of the vector
x all have the same value, C' is a maximal clique. The vector x then contains as many
nonzero elements as the found maximal clique contains nodes, i.e. |C| nonzero elements.

All other elements are equal to zero. The nonzero elements are all equal to — and are
|C|?

placed in the entries of x, whose indices correspond to the indices of the nodes in the

adjacency matrix A. |Ding et al., 2008|

First input of the algorithm by Ding et al. [2008] is the adjacency matrix A of an
undirected graph, of which maximal cliques should be found. The adjacency matrix is
filled with 0 and 1. The elements in the main diagonal are all equal to 0. As second input
a vector (9 is required, which will be updated by the algorithm step by step. The length
of this vector has to be equal to the number of rows respectively columns of the adjacency
matrix. [Ding et al., 2008]

The algorithm incorporates a multiplicative update rule also used by Pelillo [1995]. The
(t

update rule is given for each element z;) of a current solution z® as |Ding et al., 2008|:
({8 = o) (Az);
g ¢ [z®]T Ag®
For proving the optimality of the algorithm, Ding et al. [2008| show, that the first
Karush-Kuhn-Tucker conditions are fulfilled. The Lagrangian has the following form
with A\ as the “Lagrangian multiplier for enforcing the L,-norm constraint” [Ding et al.,

2008, p. 188]:
L=a2"Ar —)\(Z a? —1)

The Karush-Kuhn-Tucker condition corresponding to this Lagrangian is [Ding et al., 2008,
p. 188]:

The KKT-condition is satisfied at convergence by the following update rule, which yields
the previously presented update rule by substituting A3 = A3 >"" | [z;]? = 227 Az |Ding
et al., 2008, p. 188|:

B o (Az);

D] = 40 (Ae®); @ (A29);
Y- VA Y O Ag®
2

7

As the “Lagrangian function L [...] is monotonically increasing (nondecreasing)” [Ding
et al., 2008, p. 189| and the objective function is bounded from above, the convergence

10

3.1 Python Implementation of the Algorithm 3 Methods

of the algorithm is given, as Ding et al. [2008| argue.

The following section will present the methods, which were used to study the just
introduced algorithm regarding its runtime and effectiveness for three types of graphs.

3 Methods

After the theoretical background was presented in section 2, section 3.1 now explains,
how the algorithm of Ding et al. [2008] is implemented for generating results, that can be
used for studying its runtime and effectiveness for three different types of graphs.

3.1 Python Implementation of the Algorithm

The algorithm, the analyses of runtime and effectiveness and their depictions were imple-
mented in Python, version 3.7.3 [Python Core Team, 2019]. Important Python modules,
that were used for these purposes, are numpy [van der Walt et al., 2011|, matplotlib
[Hunter, 2007|, timeit [timeit], time [time|, networkx [Hagberg et al., 2008|, seaborn
[Michael Waskom et al., 2017], pandas [McKinney, 2010], statsmodels [Seabold and Perk-
told, 2010] and permute.core [Millman et al., 2019].

For finding maximal cliques in a given graph, the algorithm requires the corresponding
adjacency matrix and startvectors. These had to be generated. Therefore a seed was set,
so that the analyses are reproducible. One startvector corresponds to a vector, whose
length is equal to the number of rows respectively columns of the adjacency matrix. So
every element in a startvector corresponds to the node of the graph underlying the given
adjacency matrix, which in turn corresponds to the respective row and column in the adja-
cency matrix. The elements of the startvectors were randomly chosen in the interval |0, 1[.

The given adjacency matrix was modified according to Ding et al. [2008] via setting
all elements on the main diagonal to zero. With every startvector then the following
procedure was performed.

The update step of the algorithm is repeatedly applied on the current startvector until
a stopping criterion is met. This criterion is explained in more detail in section 3.1.1.
The number of iterations is restricted to 10000. When the updating step is done, either
ended by the stopping criterion or the restriction of the number of iterations, the resulting
solution vector is found.

Then a strategy also used by Belachew [2014] is applied to extract the elements of the
found solution vector, i.e. the nodes, that build the clique in the found solution. There-
fore the elements of the solution vector are ordered descendingly. Each element of the
ordered vector is added to the clique one by one, if it is adjacent to all elements, that
were added to the clique before. When the first element is not adjacent to all previously
added elements, the process is stopped and the clique of the current solution is found.
To be sure, that the identified clique is really a clique as well as a maximal clique, the
adjacency matrix is used. If all elements identified as clique members are pairwise adja-
cent in the adjacency matrix, the found clique indeed is a clique. After that it’s checked,
whether there exists another node, which is pairwise adjacent to all the identified clique

11

3.1 Python Implementation of the Algorithm 3 Methods

members. If not, the identified clique is in particular a maximal clique.
Hereinafter in this thesis always maximal cliques are meant, even if for shortness only
clique is written.

For measuring the runtime of the algorithm, the process time of the update step was
measured for every startvector. I.e. the process time was measured from the first update
of the startvector until the stopping criterion was met or the restriction of the number of
iterations stopped the updating step. The function timeit of the timeit module [timeit|
in Python was used with setting its timer to “process time” for measuring the CPU-time
instead of wall clock time. The timeit function offers the possibility of repeating a time
measurement. In this thesis for each startvector the time measurement was repeated 10
times. The arithmetic mean of these 10 measurements was used as estimation of the run-
time of the algorithm on the respective adjacency matrix and the respective startvector.
Hereinafter the expression mean runtime refers to this arithmetic mean of the 10 repeated
measurements.

Also the effectiveness of the algorithm was investigated. To do so, the solutions, that
resulted when applying the algorithm on the startvectors, were used. For each adjacency
matrix there were 100 startvectors randomly chosen as described previously and the al-
gorithm was run on each startvector. Each startvector led to a solution, which was then
identified as a clique as described above.

The considered adjacency matrices will be described in more detail in section 3.2. The
analyses, that were applied on the runtimes and solutions for studying the runtime and
effectiveness of the algorithm, will be presented in the subsequent section 3.3. Beforehand
section 3.1.1 will give some more details on the stopping criterion of the algorithm.

3.1.1 Stopping Criterion

The algorithm needs a stopping criterion to decide, when to stop the iterations for updat-
ing the current startvector z. Belachew [2014] uses [|z*+1) — 2®)||2 < 1071 as stopping
criterion as suggested by Pelillo [1995]. This stopping criterion looks at the squared Eu-
clidean Distance between two successive states 21 and 2*).

The sto(pping criterion, that was used in the implementation for this thesis, is given
as S (Y —)25 ()2 < 1079, The intention behind this choice was, to
obtain a convergence criterion, which is independent from the length of the vector z, i.e.
the number of nodes in the graph.

The following section will introduce the three groups of graphs and the associated

adjacency matrices, that are were for investigating runtime and effectiveness of the algo-
rithm.

12

3.2 Adjacency matrices 3 Methods

’ Binary characterizations | Clique properties ‘
characterization 1 non-overlapping | overlapping
characterization 2 few big many small
characterization 3 equal-sized different-sized

Table 1: Overview of the three binary characterizations used for building eight adjacency
matrix structures.

3.2 Adjacency matrices

As aforementioned for this thesis various types of graphs and thus various groups of
adjacency matrices were considered. Background for choosing such different adjacency
matrices were considerations about possible influencing factors on the runtime of the al-
gorithm as well as its effectiveness.

First of all the size of the graphs respectively of the adjacency matrices was consid-
ered. As explained in section 2.2 an adjacency matrix is symmetric and its number of
rows respectively number of columns corresponds to the number of nodes in the underly-
ing graph of the adjacency matrix. The numbers of nodes taken into account here reach
for most of the matrices from 100 over 500, 1000, 1500, 2000, 4000, 6000, 8000 to 10000.

Then there are three types of graphs resulting in three groups of adjacency matrices,
that were considered in this thesis. For each of these groups additionally the different
matrix sizes were used. Hereinafter the types of graphs will be referred to as the groups
of adjacency matrices, since the algorithm, which was investigated regarding runtime and
effectiveness, takes an adjacency matrix as input.

For the first type of graphs and thus the first group of adjacency matrices, there were
three binary characterizations used for creating eight different clique structures of graphs,
which result in corresponding different structures of the associated adjacency matrices.
These characterizations are given in table 1 and stand for different properties of cliques
in a graph.

Combinations of these three characterizations lead to the eight different clique structures
and thus eight different adjacency matrix structures, that were used for examining the
runtime and effectiveness of the algorithm. These structures are given in table 2 and
describe the properties of the cliques in adjacency matrices with such structures.

The number of cliques differs for the eight matrix structures as given in table 2. In addi-
tion for each of the eight structures the aforementioned nine matrix sizes were considered.
So for each structure nine matrices were created, each with one of the sizes. The cliques
grow proportional with the matrix size, so that all matrices of the same structure always
have the same number of cliques.

Only for one matrix structure, “non-overlapping few big equal-sized cliques”, addition-
ally the matrix size of 15000 nodes was considered.
Also the matrices of this structure were used for looking at the effect of more disorganized
adjacency matrices on the runtime of the algorithm. So far the adjacency matrices con-

13

3.2 Adjacency matrices 3 Methods

’ Characterization 1 ‘ Characterization 2 ‘ Characterization 3 ‘ Number of cliques ‘

few big i 0
equal-sized
non-overlapping many small 3
few big different-sized ;
many small 20
few big equal-sized)
overlapping many small 24
few big different-sized .
many small 34

Table 2: Overview of the eight adjacency matrix structures.

structed by the above mentioned structures have a block-wise structure, as it was easier
to construct them in this way. To investigate the impact of more disorganized matrices
on the runtime, the adjacency matrices the structure “non-overlapping few big equal-sized
cliques” were randomly permuted for creating additionally permuted versions of the ad-
jacency matrices. Therefore a permutation was randomly chosen for each matrix size by
using a seed. Then first the columns and after that the rows were permuted according to
the permutation.

To be able to properly compare the mean runtimes of the non-permuted and permuted
adjacency matrices of the matrix structure “non-overlapping few big equal-sized cliques”,
it seemed important to ensure, that the results are the same for both non-permuted and
permuted matrices. Hence the permuted matrices needed the startvectors of the non-
permuted matrices permuted in the same way, as the matrices were permuted compared
to the non-permuted matrices. Having this guaranteed, for each permuted startvector the
solution of a permuted matrix was the same as the solution of the corresponding non-
permuted matrix and non-permuted startvector. Matrix sizes up to 6000 were considered.

The second type of graphs, the random graphs [Erdés and Rényi, 1959|, and thus the
second group of adjacency matrices refers to another interesting type of adjacency matri-
ces, namely randomly assigned matrices. In such adjacency matrices every edge occurs
with a certain fixed probability independently from the other edges. These matrices differ
from the first group of matrices in the view, that they do not contain special thoughtful
clique structures but instead are completely randomly filled. [Gramm et al., 2009|
Behrisch and Taraz [2006] refer to such randomly filled adjacency matrices as the random
graph model G, ,, introduced by Erdds and Rényi [1959], where n denotes the number
of nodes and p the probability that an edge exists. The matrices used in this thesis were
created using an edge probability of p = 0.1 like in Gramm et al. [2009]. This means,
that all off-diagonal elements of an adjacency matrix are independently set to one with
probability p = 0.1. The matrix sizes, i.e. the number of nodes of the graphs and thus
the number of rows respectively columns of the adjacency matrices, comprised 100, 500,
1000, 1500, 2000, 4000, 6000 and 8000.

Adjacency matrices, that are an attempt of being closer to real-world scenarios than
the previously two considered groups of adjacency matrices, form the third group. They
were generated via using random intersection graphs. Gramm et al. [2009] argue that real-

14

3.3 Analysis of the algorithm’s runtime and solutions 3 Methods

world scenarios “are not completely random; in particular, in most sensible applications
the clique cover is expected to be much smaller than that of a random graph” [Gramm
et al., 2009, p. 12|]. Behrisch and Taraz [2006] see a reason for the lack of reality of
randomly assigned matrices from random graphs in the independence of the edges, which
leads to missing transitivity. They argue that, in real-world scenarios “relations between
[...] [nodes| |...] |i] and [...] |j] on the one hand and between [...] [j] and |...] [k] on the
other hand suggest a connection of some sort between |[...| [nodes] [...] [i] and [...] [k]”
[Behrisch and Taraz, 2006, p. 37].

For generating random intersection graphs and corresponding adjacency matrices, the
Gpmyp model from Behrisch and Taraz [2006] was used like in Gramm et al. [2009]. A
random intersection graph consists of n nodes and m features and each node “chooses each
feature independently with probability p” [Behrisch and Taraz, 2006, p. 38]. As Behrisch
and Taraz [2006| explain, this probability model incorporates transitivity. If two edges
(7,7) and (j, k) are induced by the same feature [...|, then this will also induce the edge
(i, k) [Behrisch and Taraz, 2006, p. 38|.

For a fixed number n of nodes there are the two parameters m and p, that have influence
on the adjacency matrix. Behrisch and Taraz [2006] recommend choosing m depending on
n as m = n’ and focus on 0 < § < 1. In this thesis m was instead chosen fixed as m = 5
and p was chosen as p = 0.8. Aim of these choices was, to obtain adjacency matrices,
that contain not too many cliques and are all based on the same number of features. As
matrix sizes n € {100, 500, 1000, 1500, 2000, 4000} was used.

Summarizing, this leads to 95 adjacency matrices. For each of the considered matrix
sizes 100 startvectors were randomly chosen. So all adjacency matrices among these 95,
which are of the same size, were used with the same 100 startvectors. For each adjacency
matrix and each startvector on the one hand the algorithm was applied for finding a so-
lution - i.e. detecting a maximal clique. On the other hand the CPU-time was measured,
until a solution was found by the algorithm. How these runtime measurements and so-
lutions were analysed regarding runtime and effectiveness, will be explained in the next
section.

3.3 Analysis of the algorithm’s runtime and solutions

Runtime and effectiveness are the properties of the algorithm, that are studied in this
thesis. As mentioned before 100 startvectors were used for every adjacency matrix, for
measuring the runtime and of course also for calculating solutions, such that the effec-
tiveness could be considered as well.

For each adjacency matrix and startvector 10 repetitions of the runtime measurement
were taken, the arithmetic mean of these 10 repetitions was considered as described in
section 3.1.

The runtime can be viewed from two perspectives. For all three groups of adjacency

matrices, the mean runtime was considered depending on the matrix size, i.e. the number
of nodes. This was done for every of the eight structures and the permuted version of

15

3.3 Analysis of the algorithm’s runtime and solutions 3 Methods

structure "‘non-overlapping few big equal-sized cliques"’, which are the matrices of the

first group. For the matrices coming from random graphs, that build group two, this was
likewise done as well as for the matrices coming from random intersection graphs, which
form the third group.

Additionally regression models were used for fitting the mean runtimes depending on the
number of nodes. This approach will be explained in section 3.3.1.

For the adjacency matrices of the first group, which were created using structures
described in section 3.2, a second perspective exists for studying the mean runtimes. It
means looking at the mean runtimes of one matrix size - but for all eight structures. So the
measurements between these structures given a specific matrix size could be compared.
For properly comparing these structures, permutation tests were used. The procedure of
the permutation tests will be presented in detail in section 3.3.2.

For investigating the effectiveness of the algorithm, the solutions were used instead of
the runtime measurements. Each startvector together with an adjacency matrix led to a
solution, which was then identified as a clique. For each adjacency matrix 100 startvectors
were used as already mentioned previously, which resulted in 100 solutions per adjacency
matrix.

For using the algorithm for enumerating the all maximal cliques as mentioned at the end
of section 2.2, whilst applying it on different randomly chosen startvectors, it would be
desirable, that among 100 different startvectors preferably many different cliques are de-
tected and not - to mention an extreme example - 100 times the same clique is found.
Therefore the proportion of found different cliques after 100 startvectors was determined
for every matrix, which belongs to the first group and is thus created by a matrix struc-
ture. It was calculated as the number of detected different cliques among the 100 solutions
divided by the number of existing maximal cliques in the adjacency matrix. For these
adjacency matrices based on the adjacency structures the number of existing cliques was
known by design.

For the other two groups of adjacency matrices, that belong to random graphs and ran-
dom intersection graphs, the number of existing cliques was not known. The routine
find cliques from networkx [Hagberg et al., 2008| in Python was used to calculate the
number of existing maximal cliques of these matrices. These numbers were much bigger
compared to the previously considered matrices created by the adjacency structures. For
example the smallest matrix, which belongs to the second group, had 100 nodes and con-
tained 319 cliques. In particular the numbers of existing cliques exceeded the number of
startvectors for these matrices.

Additionally for the biggest matrix sizes networkx did not manage to assess the number of
cliques because of memory issues. This was the case for the sizes 6000 and 8000 among the
random graphs and the sizes 2000 and 4000 among the random intersection graphs. Hence
for matrices of these two groups not the proportions of found different cliques among the
existing cliques after 100 startvectors were considered. Instead the proportions of detected
different cliques among the 100 startvectors were used. These proportions were calculated
as the number of detected different cliques after 100 startvectors divided by the number
of startvectors, which is 100 for every matrix.

16

3.3 Analysis of the algorithm’s runtime and solutions 3 Methods

For all adjacency matrices of all three groups, the corresponding proportion could
also be calculated after each startvector. Thereby it could be investigated, when a new
clique, which was not found so far by the preceding startvectors, was detected depending
on the index of the corresponding startvector. This was also combined with the mean
runtime via considering the cumulative mean runtime. This means after each startvector
the proportion of found different cliques so far was calculated as well as the cumulative
mean runtime up to this startvector. I.e. up to the currently considered startvector for
each preceding startvector its corresponding mean runtime was taken and summed up to
compute the cumulative mean runtime.

For adjacency matrices of the first group, which are based on the four structures with
different-sized cliques, also the size of the cliques was taken into account. The question
behind this was, whether cliques are found more often than other cliques depending on
their size.

In the following two sections the models and permutation tests, that were used to
investigate the mean runtimes, will be described in more detail.

3.3.1 Regression

To investigate the mean runtime measurements, models were used for fitting these de-
pending on the number of nodes via ordinary least squares estimation of the module
statsmodels [Seabold and Perktold, 2010] in Python. In particular the logarithm to base
10 of the mean runtime measurements and the logarithm to base 10 of the number of
nodes was used for investigating non-linearity of the mean runtime measurements. Here-
inafter for shortness the logarithm to base 10 of the mean runtimes respectively number
of nodes will be referred to as the log mean runtimes and log number of nodes.

Under the assumption, that the mean runtimes ¢;, ¢ € {1,...,m} depend on the number
of nodes n;, i € {1,...,m} polynomially, i.e. y; = c¢-n)' with an exponent 7; and a
constant factor ¢, it follows that logio(t;) = logio(c - n]") = logio(c) + 1 - logio(ns). So if
this equation would be fulfilled, the log mean runtimes plotted against the log number of
nodes should show a straight line with slope ~; and intercept 79 = logio(c). To investigate
this, a linear model was used. The model equation is given below [Fahrmeir et al., 2009].

logio(t:) = Y0 + 71 - logro(ni) + €, i€ {l,....m}

The log mean runtime is the dependent variable, an intercept and the log number of
nodes build the design matrix. The proportion of explained variance by such a model was
calculated as the explained sum of squares divided by the total sum of squares [Fahrmeir
et al., 2011].

Furthermore a second, polynomial model, which includes additionally a quadratic term
of the log mean runtime, was estimated. It regards the question, whether the linear term
is sufficient to model the log mean runtimes depending on the log number of nodes and
thus whether the mean runtimes depend on the number of nodes like described above. Its
model equation is shown in the following |Fahrmeir et al., 2009].

lOgl()(tZ') =% +71 - loglo(ni) + Y9 - (loglo(ni))Q + €, 1 E {1, ,m}

17

3.3 Analysis of the algorithm’s runtime and solutions 3 Methods

For studying the just formulated question, it should be considered, how much much of
the variance in the data was explained by the model with a linear term and whether the
quadratic term in the second model was significant. As well it should be kept in mind,
that in general a model including also higher polynomial terms could be able to model
noise better compared to a model with a less polynomial degree [Fahrmeir et al., 2009].

The next section will explain, how the mean runtimes were compared for different
adjacency structures and same matrix sizes.

3.3.2 Permutation test

For comparing the mean runtimes of different adjacency structures as described in section
3.3, permutation test were used. First their theory and after that their implementation
are described here in more detail.

3.3.2.1 Theory

Permutation tests build a class of hypothesis tests, where permutations of the data are
used to generate a reference distribution. The test statistic is once computed on the
non-permuted data. To generate a distribution under the null-hypothesis and to decide
whether to keep or reject the null-hypothesis, the data is randomly permuted multiple
times. On the basis of each of these permuted datasets the test statistic is again calculated
“to obtain the permutation distribution of [...] [the test statistic|” [Ernst, 2004, p. 681].
Subsequently this distribution is used for computing a p-value.

To achieve the permutation distribution and thus the exact p-value it is necessary to
use all possible permutations of the data. The number of these permutations can become
“very large as the samples become only moderate in size” [Ernst, 2004, p. 682]. Therefore
Monte Carlo Sampling can be applied. Here the exact p-value is estimated via using a
sample from the permutation distribution. As Ernst [2004] explains this estimated p-value
can be calculated as the proportion of test statistics coming from permuted data sets, that
are “as extreme or more extreme than the observed value” [Ernst, 2004, p. 682] of the
test statistic computed on the non-permuted data. So permutations of the data and their
corresponding test statistics are randomly chosen and the proportion can be calculated.
Ernst [2004] argues, that a few thousand test statistics from the permutation distribution
should be adequate for calculating an accurate estimate of the exact p-value. [Ernst, 2004|

A special case concerns paired samples, i.e. there exist measurements x and y of two
variables X and Y on the same subjects. The null hypothesis reads, “that F'x = Fy against
the alternative that the distributions differ by a location shift” [Einsporn and Habtzghi,
2013, p. 768|. Einsporn and Habtzghi [2013] describe a standard permutation test for
such a scenario. Permuting means in the context of paired samples “possible interchanges
of |...] [the two variables| within each of the |...| pairs” |Einsporn and Habtzghi, 2013,
p. 768-769|. For n pairs there exist 2" possibilities. As test statistic the mean difference
d =T —7 is used. This test statistic is calculated for the non-permuted data as well as for
the permuted versions of the data, i.e. the interchanged versions as described above. For

18

3.3 Analysis of the algorithm’s runtime and solutions 3 Methods

’ Clique subgroup ‘ Non-overlapping structure ‘ Overlapping structure ‘
few big equal-sized non-ov. few big eq.-sized ov. few big eq.-sized
many small equal-sized non-ov. many small eq.-sized | ov. many small eq.-sized
few big different-sized non-ov. few big diff.-sized ov. few big diff.-sized
many small different-sized | non-ov. many small diff.-sized | ov. many small diff.-sized

Table 3: Table containing the clique subgroups and the corresponding non-overlapping
and overlapping structures, that are compared in permutation tests.

large n again a sample of the permutations can be used to calculate the p-value. Einsporn
and Habtzghi [2013]

The following section will introduce, how the permutation tests were applied on the
mean runtime measurements of the different adjacency matrices, that were created using
the structures described in section 3.2.

3.3.2.2 Implementation

As for each of the considered adjacency matrices 100 startvectors were used and for each
of the startvectors the mean runtime was measured, there resulted 100 mean runtimes
per adjacency matrix. The startvectors were randomly chosen as described above for each
matrix size. So the mean runtimes of those adjacency matrices sharing the same size are
based on the same startvectors.

For comparing the mean runtimes of adjacency matrices, which belong to the first group
and have the same size but differ in their structures, the permutation test was used. Since
the mean runtimes are based on the same startvectors, they were treated as a paired sam-
ple. So the permutation test was conducted as described in the previous section for a
paired sample, to compare the mean runtimes of two different matrices. This was done
in Python using the module permute.core [Millman et al., 2019|. For each test 10000
permutations were considered.

Of special interest was the comparison of the three characterizations, on which the
matrix structures are invented in section 3.2. Permutation tests were used to properly
test on differences in the mean runtimes between the different structures given the same
matrix size. First two-sided tests were conducted with the null hypothesis, that the dis-
tributions of the runtimes of two different adjacency matrices are the same.

The characterization “non-overlapping against overlapping cliques” is now used to de-
scribe, which tests were conducted. Aim is comparing the mean runtimes of matrices of
the same size regarding this characterization. For one matrix size there exist eight struc-
tures, four with non-overlapping cliques and four with overlapping cliques. Among these
two categories there is a one-to-one correspondence of the structures regarding the other
two characterizations. Hence for each matrix size four permutation tests were conducted,
to compare the mean runtimes of matrices with non-overlapping and overlapping cliques
in those four subgroups. The tests are listed here in table 3.

For the other two characterizations the subgroups and tests were formulated in the
same fashion. Additionally the mean runtimes of the structure “non-overlapping few big
equal-sized cliques” were tested against the mean runtimes of the permuted version of

19

3.4 Simulation for measuring the runtimes 3 Methods

this structure for testing on differences between the non-permuted and permuted time
measurements.

All these two-sided tests were additionally conducted as a one-sided test. The correspond-
ing alternative hypotheses will be described in detail in section 4.1, when the results will
be displayed.

If one wants to take a test decision, a significance level has to be chosen. As the

runtime data of one structure and one matrix size was used in several tests - one test for
testing the characterization ‘“non-overlapping against overlapping cliques”, one for “few
big against many small cliques” and one for “equal-sized against different-sized cliques”
- some adjustment for multiple testing should be chosen. In the case of structure “non-
overlapping against overlapping cliques” even another test was conducted for testing on
differences to the permuted version. A possibility for adjustment is offered by the Bon-
ferroni correction [Bland and Altman, 1995].
Given one matrix size in total 26 tests were conducted, if a test on the permuted version
was conducted, which was the case for the matrix sizes up to 6000. For bigger matrix
sizes 24 tests were conducted. In this thesis the Bonferroni correction is used to adjust
a = 0.05 for multiple testing. The choice of the denominator for this thesis was con-
servative and corresponds to the number of tests conducted for one matrix size. So the
significance level is v = 0.05/26 respectively a = 0.05/24 depending on the matrix size.
Another possibility may be choosing the maximum number of tests, conducted on the
same data - which were eight here.

The results of these analyses will be presented in section 4. First some more details
concerning the realization of the runtime measurements are given in the next section.

3.4 Simulation for measuring the runtimes

The runtime measurements were conducted on the CoolMUC2 Infiniband cluster of the
Leibniz Supercomputing Centre (LRZ). The CPU is Intel Xeon E5-2697 v3 ("Haswell")
with 28 Cores and 64 GB RAM. The batch system on the LRZ is SLURM.

In section 3.2 the considered adjacency matrices were described. For every of these adja-
cency matrices an own job was used for measuring the runtime of the algorithm for the
respective adjacency matrix. To be sure, that the runtime measurements are not biased
by other processes, the order, with which these jobs are submitted, was randomly chosen.
So for example not the jobs of all randomly chosen adjacency matrices were submitted
one after the other followed by the random intersection graphs and then the jobs of the
matrices of the different structures. In such a setting the runtime measurements could
be biased just as comparative analyses based on these measurements. To avoid this, the
runtime measurements were realized like explained above.

The following section now will present the results regarding runtime and effectiveness of
the algorithm.

20

4.1 Runtime 4 Results

4 Results

4.1 Runtime

As first property of the algorithm the results regarding the runtime are presented. As for
each adjacency matrix and startvector 10 repetitions of the runtime measurement were
taken, the arithmetic mean of these 10 repetitions is considered as described in section 3.1.

4.1.1 Adjacency Structures

First in this section the runtime measurements of the adjacency matrices of the first group
are considered. These adjacency matrices were created by using the eight structures de-
scribed in section 3.2.

For these matrices belonging to the first group, the mean runtimes can be viewed from
two perspectives. On the one hand the mean runtime can be considered for one of the
eight matrix structures depending on the matrix size, i.e. the number of nodes. The other
possibility is to look at one matrix size but all eight matrix structures and compare the
measurements between the structures given a specific matrix size. The latter will be done
in section 4.1.1.2, the former in the following section.

4.1.1.1 Runtime for different matrix sizes

The runtime in connection with the adjacency matrix sizes is considered in this sec-
tion. As an example in this entire section the results of the structure “non-overlapping
few big equal-sized cliques” are presented, since the results are very similar for all the
structures.

There exist ten matrices with this specific structure, since only for this structure an ad-
jacency matrix with 15000 nodes was used. As stated previously in section 3.2 the other
seven structures only comprise nine different matrices with up to 10000 nodes.

Figure 1 shows the number of nodes on the x-axis and the arithmetic mean of the
10 repeated runtime measurements in seconds on the y-axis. Every point refers to one
startvector of one adjacency matrix. The colours additionally visualize the number of
nodes and are used in all figures hereinafter, that display results of matrices of different
sizes. For figure 1 the adjacency matrices with the structure “non-overlapping few big
equal-sized cliques” are used, they differ in their matrix sizes i.e. their number of nodes.
As for each of the considered numbers of nodes 100 startvectors were used, these 100
points partially overlap in the figure. For the segment from 100 to 15000 nodes on the
x-axis one can see, that the mean runtime increases with the number of nodes, i.e. with
the increasing size of the adjacency matrix. For each of the other seven structures such a
dotplot of the mean runtime measurements looks similar to figure 1 apart from the fact,
that it covers only a segment from 100 to 10000 nodes on the x-axis.

21

4.1 Runtime 4 Results

Number of nodes vs Mean runtime in seconds per startvector
with each 10 repetitions for 100 startvectors for
5 non-overlapping equal-sized cliques

35

S g0

o}

o

9 70

£

§ 60

3 50 ® 100 nodes
£ ® 500 nodes
..g 40 ® 1000 nodes
5 ® 1500 nodes
Q 30 ® 2000 nodes
2 ® 4000 nodes
= 20

< 6000 nodes
2 10 8000 nodes
§ 9 10000 nodes
= 0 eee®® 15000 nodes

0 2000 4000 6000 8000 10000 12000 14000
Number of nodes

Figure 1: Dotplot of the mean runtimes in seconds of the adjacency matrices with structure
“non-overlapping few big equal-sized cliques” with the number of nodes on the x-axis
and the mean runtime per startvector and adjacency matrix on the y-axis. The colours
represent the number of nodes.

In particular the mean runtime seems to increase non-linearly and over-proportionally
with the number of nodes. To illustrate this, figure 2 shows the boxplots of the mean
runtimes shown in figure 1 divided by the corresponding number of nodes. This can be
interpreted as the mean runtime per node. The boxes are obviously not on the same
horizontal line, i.e. the mean runtime per node is not the same for the different matrix
sizes. As the mean runtime per node particularly increases with the number of nodes,
the mean runtime increases over-proportionally with the number of nodes. For the other
structures the boxes are as well not on the same horizontal line.

To take a closer look at the non-linearity of the increase of the mean runtime for the
matrices with structure “non-overlapping few big equal-sized cliques”, figure 3 shows a
dotplot with the log mean runtimes on the y-axis and the log number of nodes on the
x-axis. Additionally a fitted regression line is drawn. The corresponding linear model is
described in the next paragraph. Under the assumption, that the mean runtimes depend
on the number of nodes polynomially, the points in figure 3 should show a straight line as
explained in section 3.3.1. To investigate this, a linear model is used with the log mean
runtime as the dependent variable, an intercept and the log number of nodes building
the design matrix. The resulting fitted regression line is drawn in figure 3, its slope cor-
responds to the coefficient estimate in table 4 and amounts to 1.4756, its p-value is 0.0.
The proportion of explained variance by this model with a linear term is 98.5%.

22

4.1 Runtime 4 Results

Mean runtime proportional to number of nodes
for 5 non-overlapping equal-sized cliques
with each 10 repetitions for 100 different startvectors

>

0.005

0.004

0.003

4

-

e

o
o
S
N

0.001
—*—i
—-—-*---
100 500 1000 1500 2000 4000 6000 8000 10000 15000
Number of nodes

Mean runtime proportional to number of nodes

Figure 2: Boxplot of the mean runtimes in seconds divided by the number of nodes of
the adjacency matrices with structure “non-overlapping few big equal-sized cliques”. The
whiskers end on the last point less than the third quartile plus 1.5 times the interquar-
tile range respectively the last point greater than the first quartile minus 1.5 times the
interquartile range. The colours represent the number of nodes.

Table 4 shows the estimated coefficients and their corresponding p-values for this lin-
ear and a second, polynomial model, which includes additionally a squared term of the
log number of nodes. This squared term has as well a p-value of 0.0. Regarding the
question, whether the linear term is sufficient to model the log mean runtimes depending
on the log number of nodes and thus whether the mean runtimes depend polynomially
on the number of nodes, the following points should be considered. First the model with
a linear term explains much of the variance in the data. Second a model including also a
polynomial term of order two could be able to model noise better than a model without.
On the whole for being able to make a statement about the above formulated question,
it will be helpful to investigate this further with more runtime measurements for even
bigger matrices than considered in this thesis.

23

4.1 Runtime 4 Results

’ Model \ Covariable \ Coefficient \ P-value
linear model intercept -4.6032 0.0
logip(number of nodes) 1.4756 0.0
intercept -2.5843 0.0
polynomial model | log;o(number of nodes) 0.1251 0.0
(logio(number of nodes))? | 0.2153 0.0

Table 4: Table containing the coefficients and their p-values for two models fitted for the
structure “non-overlapping few big equal-sized cliques” with the log mean runtime to the
basis 10 as dependent variable.

Logarithm of number of nodes to base 10
vs Logarithm of mean runtime to base 10
in seconds per startvector and regression line
with each 10 repetitions for 100 startvectors for
5 non-overlapping equal-sized cliques

o 2.0

® 15

23

2§ 10

e]

=2 05 ® 100 nodes

5 E ® 500 nodes

p £ 00 ® 1000 nodes

39 @ 1500 nodes

EE o5 0 ® 2000 nodes

e~

on ® 4000 nodes

g o -1.0 6000 nodes

£ o

'% 8000 nodes

o -1.5 0 10000 nodes

— 15000 nodes
-2.0

2.0 2.5 3.0 3.5 4.0
Logarithm of number of nodes to base 10

Figure 3: Dotplot of the log mean runtimes in seconds to the basis 10 of the adjacency
matrices with structure “non-overlapping few big equal-sized cliques” with the log number
of nodes to the basis 10 on the x-axis and the log mean runtime to the basis 10 per
startvector and adjacency matrix on the y-axis. A regression line of the linear model
fitted on this data is drawn. The colours represent the number of nodes.

After having studied the mean runtimes of the first group of adjacency matrices de-
pending on the matrix size in this section, the following one will compare these mean
runtimes between the different structures given the same matrix size.

24

4.1 Runtime 4 Results

4.1.1.2 Runtime for different structures

The differences of the mean runtimes between the structures are compared in this
section given a specific matrix size. The smallest considered matrix size with 100 nodes
is used for illustrating the mean runtimes. Figure 4 contains the boxplots of the mean
runtimes in seconds for the matrix size 100 for all eight structures. Based on figure 4 the
eight structures can be compared regarding the three characterizations, that were used to
create the structures as described in section 3.2.

Mean runtime in seconds for 100x100 matrices
with each 10 repetitions for 100 different startvectors

0.060 . ¢
¢
0.055
0.050 R g
—’—
0.045 ¢

== T Il —

Mean runtime per startvector in seconds

o o o o
o o o o
RN @ ®
© o o O

‘|o pazis-"ba ‘A0-uou g

‘|o pazis-"ba *A0-uou g
‘|o pazIs-"yIp ‘AO-UOU €
|0 pazIs-"JIp "A0-UOU OZ
‘|0 pazis-"ba ‘A0 6

‘[0 pazis-"ba ‘A0 17

‘1o POZIS-"HIp "AO ¥

10 POZIS-"HIP "AO ¢

Mafrix structure

Figure 4: Boxplot of the mean runtimes in seconds for all eight matrix structures and 100
nodes. The whiskers end on the last point less than the third quartile plus 1.5 times the
interquartile range respectively the last point greater than the first quartile minus 1.5
times the interquartile range.

25

4.1 Runtime 4 Results

For comparing the two categories of the first characterization - non-overlapping and
overlapping cliques - e.g. “non-overlapping few big equal-sized cliques” among the non-
overlapping structures is compared to its corresponding overlapping structure “overlap-
ping few big equal-sized cliques”. Regarding a box of a non-overlapping structure, this
box is shifted downwards compared to the respective box of the corresponding overlapping
structure. So the structures with non-overlapping cliques seem to have on average slightly
shorter mean runtimes compared to those with overlapping cliques.

Another recognizable pattern is given by comparing via the second characterization the
structures with few big cliques to those structures with many small cliques in the same
fashion as explained above for the first characterization. Hence the structure “non-
overlapping few big equal-sized cliques” now is compared to “non-overlapping many small
equal-sized cliques”. In figure 4 it seems, that the structures with few big cliques have
on average higher mean runtimes compared to the structures with many small cliques, as
the boxes of structures with few big cliques are shifted upwards compared to those with
many small cliques.

The third option for comparing the matrix structures is looking at differences in the mean
runtimes between structures with equal-sized cliques and such with different-sized cliques.
Therefore e.g. “non-overlapping few big equal-sized cliques” is compared to the structure
“non-overlapping few big different-sized cliques”. Here it seems referring to the boxes in
figure 4, that structures with equal-sized cliques have on average lower mean runtimes
than those with different-sized cliques.

So for all three characterizations, that were used to create the structures of the adjacency
matrices, the just described patterns in the mean runtimes can be suspected after looking
at figure 4. These patterns partly show up in the corresponding figures for the bigger
matrix sizes. But there are also many exceptions and cases, where the patterns seem to
be the other way round than in figure 4. In addition the figures of the other matrix sizes
are much more disorganized than figure 4. That means, there are greater differences in
the interquartile range as well as the length of the whiskers as well as the existence of
outliers between the boxes than in figure 4.

Permutation tests are used to properly test the mean runtimes of two different matrix
structures given the same matrix size. First two-sided tests were conducted as described
in section 3.3.2. The results are displayed exemplary for the matrix size 100 in table 5.
Correcting the significance level by using the Bonferroni correction as described in section
3.3.2 all the tests in table 5 are significant. In the first test in table 5 for example the mean
runtimes of adjacency matrices with few big equal-sized cliques are considered. According
to this test, the differences between the mean runtimes of the non-overlapping cliques and
the overlapping cliques are significantly different from zero for adjacency matrices with
few big equal-sized cliques and 100 nodes.

Now the test results for all matrix sizes are considered. For testing on differences
in mean runtime between non-overlapping and overlapping cliques, for each matrix size
and each of the four corresponding clique subgroups given in the table 5 a two-sided test
was conducted. All these tests were significant using the adjusted significance level using
the Bonferroni correction. The differences in mean runtime between few big and many
small cliques as well as the differences between equal-sized and different sized cliques are

26

4.1 Runtime 4 Results

’ Matrix size ‘ Kind of test ‘ Clique subgroup ‘ P-value ‘
few big equal-sized 1.9-107°
. . many small equal-sized 1.9-1075
non-overlapping vs overlapping few big different-sized 1.9-107°
many small different-sized 1.9-107°
non-overlapping equal-sized 1.9-107°
. non-overlapping different-sized | 1.9 - 107°
100 nodes | few big vs many small overlappinlg)peqfal—size d 19.10-5
overlapping different-sized 1.9-107°
non-overlapping few big 1.9-107°
: . . non-overlapping many small 1.9-107°
equal-sized vs different-sized overlapping few big 1.9.10-5
overlapping many small 1.9-107°

Table 5: Table containing the p-values of the two-sided permutation tests conducted on

the mean runtimes of matrices of all eight adjacency structures and the number of nodes
100.

significant in all matrix sizes and all respective clique subgroups, too.

As the patterns suspected in figure 4 are quite regularly compared to patterns, one
would formulate looking at the more disorganized figures of the bigger matrix sizes, the
patterns of figure 4 were taken as alternative hypotheses of one-sided permutation tests.
The first hypothesis taken from figure 4 concerns the comparison of the mean runtimes of
adjacency matrices containing non-overlapping and overlapping cliques. For each matrix
size and each of the four corresponding clique subgroups a one-sided test was conducted
using the alternative hypothesis, that matrices containing non-overlapping cliques have
on average shorter mean runtimes compared to matrices with overlapping cliques. The
results of all these tests are displayed in table 9 in the appendix. All these one-sided tests
have a p-value of 9.9-107%. Thus the tests are significant using the corrected significance
level. So in every of the four clique subgroups and all matrix sizes, the null hypothesis
can be rejected in favor of the alternative, which is based on a pattern of figure 4.

The second hypothesis taken from figure 4 covers the comparison of the mean run-
times of adjacency matrices with few big and many small cliques. The one-sided test was
applied on each matrix size and each of the four corresponding clique subgroups. The
alternative hypothesis reads, that matrices with few big cliques have on average higher
mean runtimes than those with many small matrices. The results of all these tests are
displayed in table 10 in the appendix. For bigger matrix sizes than 100 at least two clique
subgroups have a test result with a p-value of 1 except for the matrix size 6000. So the
null hypothesis cannot be rejected in at least two clique subgroups of most of the matrix
sizes.

The third alternative hypothesis is that matrices with equal-sized cliques have on av-

erage shorter mean runtimes than matrices containing different-sized cliques. A one-sided
test was applied for every matrix size and every corresponding clique subgroup, the results

27

4.1 Runtime 4 Results

are shown in table 11 in the appendix. Except for the matrix sizes 6000 and 8000 every
matrix size bigger than 100 has at least in two of the four subgroups a test result with a
p-value of 1. So the null hypothesis cannot be rejected for most of the matrix sizes in at
least two clique subgroups.

Summing up the results of the one-sided tests, that use the three alternative hy-
potheses based on the patterns found in figure 4, only the first null hypothesis regarding
the comparison of non-overlapping and overlapping cliques can be rejected in all matrix
sizes and all subgroups, if the adjusted significance level using the Bonferroni correction is
applied. The other two hypotheses are not significant in all matrix sizes and all subgroups.

In this section all eight structures were compared given the same matrix size. For one
of the eight structures also permuted versions of the adjacency matrices were created. The
runtimes of these permuted matrices will be compared to the runtimes of the corresponding
non-permuted matrices in the following section.

4.1.1.3 Runtime for permuted adjacency matrices

Number of nodes vs Mean runtime in seconds per startvector
with each 10 repetitions for 100 startvectors for
5 non-overlapping equal-sized permuted cliques

[2]

©

[

8 12

(]

w

< 10

9o

O

Q8

hud

)

» 5

5 ® 100 nodes
Q ® 500 nodes
g 4 ¢ ® 1000 nodes
= ® 1500 nodes
2 2 PR ® 2000 nodes
S 1 ® 4000 nodes
20 o @ 6000 nodes

0 1000 2000 3000 4000 5000 6000

Number of nodes

Figure 5: Dotplot of the mean runtimes in seconds of the permuted adjacency matrices
with structure “non-overlapping few big equal-sized cliques” with the number of nodes on
the x-axis and the mean runtime per startvector and adjacency matrix on the y-axis. The
colours represent the number of nodes.

For investigating the impact of more disorganized matrices on runtime, the adjacency

28

4.1 Runtime 4 Results

matrices of the structure “non-overlapping few big equal-sized cliques” were randomly
permuted.

Mean runtime in seconds for permuted and non-permuted matrices
with 5 non-overlapping equal-sized cliques
with each 10 repetitions for 100 different startvectors

2}
E 0
812
o ¢
c
— 10
O
-
5
S 8
=
©
»
. 6
o
o
CD4 -*-
£
-+
-
2 2
% T ==
= 0 ——
—_ —_ [é)] (4] RN RN — — N N EEN SN (e)] D
o o o o o o (€)] (&)} o o o o o o
o o o o o o o o o o o o o o
- = o o o (=] o o o o o (]
© © = - - - =
) () © © © © ©
= 3 D [0})) D
3 3 = = = = =
c c 3 3 3 3 3
@ 5} = S =3 S S
o o D [0 0} (9} @
o o o o o

Number of nodes

Figure 6: Boxplot of the mean runtimes in seconds of the adjacency matrices with struc-
ture “non-overlapping few big equal-sized cliques” next to the boxplot of the permuted
adjacency matrices of the structure “non-overlapping few big equal-sized cliques”. The
whiskers end on the last point less than the third quartile plus 1.5 times the interquar-
tile range respectively the last point greater than the first quartile minus 1.5 times the
interquartile range. The colours represent the number of nodes.

The dotplot of the mean runtimes of these permuted matrices in figure 5 is the coun-
terpart of figure 1 described in 4.1.1.1. The curve in figure 5 looks very similar to the one
of the corresponding block-wise matrices in figure 1. The mean runtimes seem to increase
non-linearly with increasing matrix size.

As in section 4.1.1.1 two models were used for investigating the non-linearity of this

29

4.1 Runtime 4 Results

’ Model ‘ Covariable ‘ Coefficient ‘ P-value
linear model intercept -4.2668 0.0
logip(number of nodes) 1.3551 0.0
intercept -2.9305 0.0
polynomial model | log;o(number of nodes) 0.3901 0.0
(logio(number of nodes))? | 0.1671 0.0

Table 6: Table containing the coefficients and their p-values for two models fitted for the
permuted version of the structure “non-overlapping few big equal-sized cliques” with the
log mean runtime to the basis 10 as dependent variable.

increase. The corresponding plot of the log mean runtimes and log mean number of nodes
with the fitted regression line of the linear model can be found in the appendix in figure
23. The proportion of explained variance of the linear model is high with 98.33% - similar
as in section 4.1.1.1 for the non-permuted adjacency matrices. The quadratic term in the
second, polynomial model has likewise a p-value of 0.0. To be able to make a statement
about the sufficiency of a linear term for modelling the log mean runtimes depending on
the log nodes, additional bigger matrix sizes should be considered in further investigation
as recommended for the non-permuted matrices of structure “non-overlapping few big
equal-sized cliques”.

For comparing the mean runtimes of permuted and non-permuted matrices, figure
6 shows for all matrix sizes up to 6000 the boxplots of the mean runtimes of the non-
permuted and the permuted matrices of the structure “non-overlapping few big equal-sized
cliques”. Next to each other the boxes of the same matrix size are drawn. The boxes of
the permuted matrices are shifted compared to the boxes of the respective matrix size
of the non-permuted matrices - but not in a regular way. Some boxes of the permuted
matrices are shifted upwards, some downwards.

Two-sided permutation tests were used for comparing the mean runtimes of the non-
permuted and the permuted adjacency matrices for each matrix size. The p-value is
1.9998 - 107° for every tested matrix size. Additionally one-sided tests were conducted
for studying the alternative hypothesis, that non-permuted matrices have shorter mean
runtimes than permuted matrices. The results are shown in table 7. The null hypothesis of
this test cannot be rejected for the matrix sizes 500, 2000 and 4000, since the corresponding
p-values are 1.

4.1.2 Random graphs

So far the results concerning the runtime of the adjacency matrices of the first group,
which are based on eight structures, were presented. In this section the runtime of the
second group of considered adjacency matrices, created on random graphs, are demon-
strated.

30

4.1 Runtime

4 Results

’ Matrix size \ Kind of test \ Clique subgroup \ P-value
100 nodes 9.9-107°
500 nodes 1.0
1000 nodes 9.9-107°
1500 nodes | non-permuted vs permuted | non-overlapping few big equal-sized | 9.9 - 1076
2000 nodes 1.0
4000 nodes 1.0
6000 nodes 9.9-1076

Table 7: Table containing the p-values of the one-sided permutation tests conducted on the
mean runtimes of the permuted and non-permuted matrices of structure “non-overlapping

few big equal-sized cliques”.

Number of nodes vs Mean runtime in seconds per startvector

100

80

60

40

20

Mean runtime per startvector in seconds

0

with each 10 repetitions for 100 startvectors for

1000

randomly assigned matrices

0 oo..'

2000

of random graphs

3000 4000 5000
Number of nodes

6000

7000

8000

100 nodes

500 nodes

1000 nodes
1500 nodes
2000 nodes
4000 nodes
6000 nodes
8000 nodes

Figure 7: Dotplot of the mean runtimes in seconds of adjacency matrices of random
graphs with the number of nodes on the x-axis and the mean runtime per startvector
and adjacency matrix on the y-axis. The colours represent the number of nodes.

Figure 7 shows, that the mean runtimes of matrices of random graphs increase with
increasing matrix size. It is difficult to tell from the figure, whether the increase is over-
proportional in the number of nodes or not. Looking at the mean runtimes per node in
figure 8 does not help much either. The boxes are not much shifted compared to each
other. It cannot be told from figure 8, whether the mean runtimes per node differ for

varying matrix sizes.

31

4.1 Runtime 4 Results

Mean runtime proportional to number of nodes
for randomly assigned matrices of random graphs
with each 10 repetitions for 100 different startvectors

¢
0.012
0.010 ¢
0.008 ¢ ¢
¢
0.006
¢ ¢

o
o
o
N

¢ ¢
100 500 1000 1500 2000 4000 6000 8000
Number of nodes

.

0.000

Mean runtime proportional to number of nodes

Figure 8: Boxplot of the mean runtimes in seconds divided by the number of nodes of
adjacency matrices of random graphs. The whiskers end on the last point less than the
third quartile plus 1.5 times the interquartile range respectively the last point greater
than the first quartile minus 1.5 times the interquartile range. The colours represent the
number of nodes.

For the matrices of the random graphs as well the log mean runtimes are considered.
Figure 9 shows on the y-axis the log mean runtimes against the log number of nodes on
the x-axis. The log mean runtimes have higher variation than the ones of the previously
considered matrices, which belong to the first group. Additionally the fitted regression
line of a linear model with a linear term is drawn in figure 9. The proportion of ex-
plained variance by this model amounts to 92.80%. The quadratic term of the second
fitted model has a p-value of 0.341. For a significance level of o = 0.05 the coefficient
of the quadratic term is not significantly different from zero. Hence it seems, that it
could be sufficient to model the log mean runtimes of randomly filled adjacency matrices
with a linear term of the log number of nodes for the interval of 100 to 8000 nodes. The
coefficient of the linear model, whose results are displayed in table 8, amounts to 1.2795,
i.e. logio(t;) = —3.8505 + 1.2795 - logio(n;). This means corresponding to section 3.3.1,
that the exponent ~; of the relationship between the mean runtimes and the number of
nodes is estimated as 1.2795 for a segment of nodes from 100 to 8000. Apart from these
results of the model estimations, for the randomly filled adjacency matrices as well bigger

32

4.1 Runtime 4 Results

’ Model \ Covariable \ Coefficient \ P-value
linear model intercept -3.8505 0.0
logip(number of nodes) 1.2795 0.0
intercept -3.6862 0.0
polynomial model | log;o(number of nodes) 1.1642 0.0
(logip(number of nodes))? | 0.0193 0.341

Table 8: Table containing the coefficients and their p-values for two models fitted for adja-
cency matrices of random graphs with the log mean runtime to the basis 10 as dependent
variable.

matrix sizes should be considered in future research, for investigating the non-linearity of
the mean runtimes depending on the number of nodes in more detail and for even bigger
matrix sizes than 8000.

Logarithm of number of nodes to base 10
vs Logarithm of mean runtime to base 10
in seconds per startvector and regression line
with each 10 repetitions for 100 startvectors for
for randomly assigned matrices of random graphs

= 2.0

P

o L2 1.5 .

25

o9 1.0

E®

= c

ST 05

p ..8 ® 100 nodes

8 q>_) 0.0 ® 500 nodes

E Fu ® 1000 nodes

Owm —05 ® 1500 nodes

Es ° ® 2000 nodes

£ 10 ® 4000 nodes

®

87 6000 nodes

— -15 8000 nodes
2.0 2.5 3.0 3.5 4.0

Logarithm of number of nodes to base 10

Figure 9: Dotplot of the log mean runtimes in seconds to the basis 10 of adjacency matrices
of random graphs with the log number of nodes to the basis 10 on the x-axis and the log
mean runtime to the basis 10 per startvector and adjacency matrix on the y-axis. A
regression line of the linear model fitted on this data is drawn. The colours represent the
number of nodes.

33

4.1 Runtime 4 Results

4.1.3 Random intersection graphs

The third group of considered adjacency matrices to investigate runtime and effectiveness
of the algorithm comprises adjacency matrices created by using the concept of random
intersection graphs. Their runtime will be studied in this section.

Number of nodes vs Mean runtime in seconds per startvector
with each 10 repetitions for 100 startvectors for
randomly assigned matrices
of random intersection graphs

100 nodes
500 nodes
1000 nodes
1500 nodes
2000 nodes

¢ 4000 nodes

Mean runtime per startvector in seconds

0 o

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes

Figure 10: Dotplot of the mean runtimes in seconds of adjacency matrices of random
intersection graphs with the number of nodes on the x-axis and the mean runtime per
startvector and adjacency matrix on the y-axis. The colours represent the number of
nodes.

Figure 10 shows the mean runtimes for such adjacency matrices. For the considered
segment of 100 to 4000 nodes the mean runtime is increasing with the number of nodes.
Figure 11 shows on the y-axis the log mean runtimes against the log number of nodes on
the x-axis. For studying, whether the log mean runtimes could depend linearly on the log
number of nodes, again a linear model with a linear term was fitted. The corresponding
fitted regression line is drawn in figure 11, the proportion of explained variance of this
model with a linear term amounts to 98.80%. The quadratic term of a second, polynomial
model has a p-value of 0.0. The coefficients and p-values of both models are displayed in
table 12 in the appendix. Runtime measurements on bigger matrix sizes could help for
further investigating the non-linearity of the mean runtimes dependent on the number of
nodes.

34

4.2 FEffectiveness 4 Results

For all three groups of considered adjacency matrices the runtime of the algorithm
was examined in this completed section 4.1. The effectiveness will now be studied in the
following section.

Logarithm of number of nodes to base 10
vs Logarithm of mean runtime to base 10
in seconds per startvector and regression line
with each 10 repetitions for 100 startvectors for
for randomly assigned matrices of random intersection graphs

0.5

0.0

-0.5

100 nodes
500 nodes
1000 nodes
1500 nodes
2000 nodes
4000 nodes

-1.0

-1.5

Logarithm of mean runtime to base 10
per startvector in seconds

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Logarithm of number of nodes to base 10

Figure 11: Dotplot of the log mean runtimes in seconds to the basis 10 of adjacency
matrices of random intersection graphs with the log number of nodes to the basis 10 on
the x-axis and the log mean runtime to the basis 10 per startvector and adjacency matrix
on the y-axis. A regression line of the linear model fitted on this data is drawn. The
colours represent the number of nodes.

4.2 Effectiveness

Not only runtime is an interesting property of the algorithm. Also the detected different
cliques are informative and can tell more about the effectiveness of the algorithm.

4.2.1 Adjacency Structures

Again the adjacency matrices of the first group, that were created by using the eight
matrix structures coming from three binary characterizations, are considered first in this
section. As for studying the runtime, two perspectives can be used for examining the
effectiveness. For one of the eight matrix structures effectiveness can be investigated
depending on the matrix size or for one matrix size compared between the eight matrix
structures. The latter is done in section 4.2.1.2, the former in the following section.

35

4.2 FEffectiveness 4 Results

4.2.1.1 Effectiveness for different matrix sizes

The structure “non-overlapping few big equal-sized cliques” is chosen for illustrating
the proportion of found different cliques among all existing cliques after 100 startvectors.
For every adjacency matrix created by the structures the number of existing cliques in
the matrix is known by design. The proportion of found different cliques was calculated
as the number of different cliques found by the algorithm after 100 startvectors divided
by the number of existing cliques in the adjacency matrix. All matrices of the structure
“non-overlapping few big equal-sized cliques” contain five cliques. Figure 12 shows, that
for all these matrices all five cliques are found after 100 startvectors.

Proportion of found different cliques among existing cliques
for 100 startvectors for
5 non-overlapping equal-sized cliques

1000 1500 2000 4000 6000 8000 10000 15000
Number of nodes

o o o o -
(N EN o o o

Proportion of found different cliques

o
o

Figure 12: Barplot of the proportion of found different cliques among the five existing
cliques after 100 startvectors in adjacency matrices of the structure “non-overlapping few
big equal-sized cliques”. The colours represent the number of nodes.

The just considered structure and “non-overlapping many small equal-sized cliques”
are the only two structures, for which in all matrix sizes 100% of the existing cliques were
found after 100 startvectors. These two structures have both non-overlapping equal-sized
cliques.

For all other structures in none of the matrix sizes 100% of the existing cliques were

36

4.2 FEffectiveness 4 Results

found after 100 startvectors. Their proportions of found different cliques among the ex-
isting cliques after 100 startvectors in particular decrease with increasing matrix size. As
an example figure 24 shows this for the structure “overlapping few big equal-sized cliques”
in the appendix. The highest proportion is reached for the smallest matrix size. With
increasing matrix size the proportion diminishes.

Another interesting point to investigate is, when the different cliques are found for the
first time, i.e. at which startvector. Therefore the proportion of found different cliques
was calculated after each startvector like explained in section 3.3. In figure 13 these pro-
portions are drawn as points. Whenever the proportion goes up, this means a new clique
was found. The number of used startvectors up to this point is drawn on the x-axis and
the respective proportion on the y-axis. The different colours again stand for the different
matrix sizes.

Number of startvectors vs
Proportion of found different cliques among existing cliques
for 100 startvectors for 5 non-overlapping equal-sized cliques

1.0
»
g =
k=)
© 0.8
2 /
§:’ 0.6 —8— 100 nodes
T / —— 500 nodes
-8 7 —@— 1000 nodes
2 04 —e— 1500 nodes
S ' —8— 2000 nodes
g —0— 4000 nodes
= 0.2 6000 nodes
s 0.
Q 8000 nodes
S 10000 nodes
0.0 15000 nodes

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5
Number of startvectors

Figure 13: Dotplot of development of proportions of found different cliques among the
existing cliques for the adjacency matrices of the structure “non-overlapping few big equal-
sized cliques”. The proportion of found different cliques is depicted on the y-axis, the
number of the startvectors on the x-axis. Every dot represents a change in the proportion
because of a new found clique in an adjacency matrix. The colours represent the number
of nodes.

It seems in figure 13, that there is no clear tendency between the curves of the different
matrix sizes. One could maybe say, that the curves of the bigger matrices seem to be
slightly shifted to the right on the x-axis compared to the curves of the smaller matrices.
This would mean, that bigger matrices need slightly more startvectors to reach a certain

37

4.2 FEffectiveness 4 Results

proportion of found different cliques. But there are also exceptions like for example the
curve of the matrix with 100 nodes, which needs most startvectors of all matrices of the
structure ‘“non-overlapping few big equal-sized cliques” to find all five existing cliques.
Overall, one can say that the differences between the curves seem to be small and without
a clear tendency concerning the matrix sizes. All matrices reach 100% of the existing
cliques between the sixth and 18 startvector. This appears as the corresponding curves
stop ahead of the respective mark on the x-axis. This means, that the following startvec-
tors only find cliques, that were already detected previously.

The other structures show similar figures and seem to have as well no clear tendency
of a shift on the x-axis concerning the matrix size. As 100% of the existing cliques is
only reached for matrices of the two structures with non-overlapping equal-sized cliques,
these curves of the corresponding figures of the other structures don’t reach up to 1 on
the y-axis. Figure 25 displays this exemplary for the structure “overlapping many small
equal-sized cliques” in the appendix.

Cumulative runtime vs
Proportion of found different cliques among existing cliques
for 100 startvectors for 5 non-overlapping equal-sized cliques

1.0
)
0]
=)
=)
© 0.8
o
110:) —&— 100 nodes
= 0.6
ko) —8— 500 nodes
2 —e— 1000 nodes
>3
O 04 ¢ —8— 1500 nodes
S —8— 2000 nodes
g —0— 4000 nodes
© 0.2 6000 nodes
5 0.
8' 8000 nodes
E 10000 nodes
0.0 15000 nodes

0 1000 2000 3000 4000 5000
Cumulative runtime in seconds

Figure 14: Dotplot of development of proportions of found different cliques among the
existing cliques for the adjacency matrices of the structure “overlapping many small equal-
sized cliques”. The proportion of found different cliques is depicted on the y-axis, the
cumulative mean runtime on the x-axis. FEvery dot represents the proportion for each
startvector and each matrix. The colours represent the number of nodes.

Instead of plotting the proportion of found different cliques against the number of
startvectors as in 13 and 25, there is also the possibility of plotting it against the cumu-
lative mean runtime in seconds as explained in section 3.3. This is plotted in figure 14.

38

4.2 FEffectiveness 4 Results

In this figure for every startvector a dot is plotted and not as in figure 13 only for those
startvectors, which find a new clique. As expected, the curves are shifted to the right
with increasing number of nodes. Based on the preceding figures 1 and 13 it seems, that
this shift is more due to the mean runtimes increasing with the matrix size as shown in
figure 1 than to differences in required startvectors for reaching a certain proportion of
found different cliques in figure 13. This is similar for the other structures.

For the structures with different-sized cliques, another interesting question is, whether
- and if yes - which of the cliques are found more often than other cliques depending on
their size. As for every adjacency matrix 100 startvectors were used, a clique can be found
at maximum 100 times.
As an example the structure “non-overlapping few big different-sized cliques” chosen for
illustrating. The matrices of this structure were created such, that the number of existing
cliques is three for each adjacency matrix. The biggest clique contains 45% of the nodes
for every matrix size, the other two cliques 35% and 20% of the nodes. Figure 15 shows,
that the biggest clique was found in most of the cases for the matrix size 100. For the
bigger matrix sizes the biggest clique was found by even all 100 startvectors.

Number of nodes vs number of findings per clique
for 100 startvectors for 3 non-overlapping different-sized cliques

100 .,.—.—H @ @ @ @

80
2]
(®)]
=
o -@- 45 % of nodes
é 60 @~ 35 % of nodes
Y— 20 % of nodes
(@]
o
o 40
€
>
Z

20

o &

0 2000 4000 6000 8000 10000
Number of nodes

Figure 15: Dotplot of the number of findings of the different cliques in the adjacency
matrices of the structure “non-overlapping few big different-sized cliques”. On the y-axis
the number of findings is depicted, on the x-axis the number of nodes. The colours
represent the proportion of nodes the cliques are covering.

As another example adjacency matrices of the structure “non-overlapping many small
different-sized cliques” contain 20 cliques. Their sizes correspond to either 4%, 5% or 6%

39

4.2 FEffectiveness 4 Results

of the nodes. Five of the 20 cliques are the biggest cliques covering 6% of the nodes.
These five cliques were most often found among all the considered matrix sizes, as one
can see in figure 16. In particular for a matrix size of 4000 nodes and bigger, these five
cliques are the only ones, that were found.

Number of nodes vs number of findings per clique
for 100 startvectors for 20 non-overlapping different-sized cliques

w
o

N
(¢}

4 % of nodes
=@~ 5 % of nodes
=@~ 6 % of nodes

- N
(@] o

Number of findings
o

0 ® @ @

0 2000 4000 6000 8000 10000
Number of nodes

Figure 16: Dotplot of the number of findings of the different cliques in the adjacency
matrices of the structure “non-overlapping many small different-sized cliques”. On the
y-axis the number of findings is depicted, on the x-axis the number of nodes. The colours
represent the proportion of nodes the cliques are covering.

For the overlapping structures with different-sized cliques the same patterns can be
discovered. Cliques with the biggest size were most often found. With increasing matrix
size at some point the cliques with biggest size were the only ones to be found.

4.2.1.2 Effectiveness for different structures
As well as for the runtime also the proportion of found different cliques can be con-

sidered for matrices of the same size but with different structures, which is presented in
this section.

40

4.2 FEffectiveness 4 Results

Proportion of found different cliques among existing cliques
for 100 startvectors for 100x100 matrices

Matrix structure

1.0

0.8

0.

D

0. clique sizes
mm few big

mm many small

Proportion of found different cliques
N

o
(N

0.0

‘|0 pazis-"ba *A0-uou G
[o pazis-"be "A0-uou (g
‘|0 pazis-"yIp "A0-UOU §
|0 pazis-"YIp *A0-UOU OZ

Figure 17: Barplot of proportions of found different cliques among the existing cliques
after 100 startvectors for the adjacency matrices of all structures and 100 nodes. The
proportion of found different cliques is depicted on the y-axis. The colours represent,
whether a structure has few big or many small cliques.

The proportion of found different cliques among the existing cliques after 100 startvec-
tors is shown in figure 17 exemplary for the matrix size 100. It’s a barplot for all eight
structures. There one can see, that for the two structures with non-overlapping equal-
sized cliques after 100 startvectors all existing cliques were found. For all matrix sizes
this pattern also shows up, whereas for the other six structures this is never the case. A
second recognizable pattern is among those six last mentioned structures and matrix size

41

4.2 FEffectiveness 4 Results

100, that these structures with few big cliques have lower proportions than the structures
with many small cliques. This pattern also shows up for the matrix size with 500 nodes.
But then it changes for the structures with different-sized cliques. The structures with
many small different-sized cliques have smaller proportions than the structures with few
big different-sized cliques for matrix size 1500 and bigger matrix sizes. The corresponding
barplot of the matrix size 1500 in figure 18 shows this.

Proportion of found different cliques among existing cliques
for 100 startvectors for 1500x1500 matrices

clique sizes
mmm few big
I B many small

Matrix structure

1.0

0.8

0.6

0.

Proportion of found different cliques
N

o
(N

0.0

‘|0 pazis-"ba *A0-uou G
[o pazis-'ba "A0-uou (g
[0 PaZIS-"}Ip "AO-UOU €
‘|0 pazis-"YIp *A0-UoU OZ

Figure 18: Barplot of proportions of found different cliques among the existing cliques
after 100 startvectors for the adjacency matrices of all structures and 1500 nodes. The
proportion of found different cliques is depicted on the y-axis. The colours represent,
whether a structure has few big or many small cliques.

42

4.2 FEffectiveness 4 Results

As in section 4.2.1.1 for adjacency matrices of one structure one can also look at the
proportion of found different cliques after each startvector for adjacency matrices of one
matrix size. The corresponding plot for matrix size 100 is shown in figure 19. For those
four structures with many small cliques there are still many new cliques found after 20
startvectors. For the other structures with few big cliques, nearly all cliques that were
found, were detected before the mark of the 20" startvector.

Required number of startvectors vs
Proportion of found different cliques among existing cliques
for 100 startvectors for 100x100 matrices

1.0
0.8

0.6

5 non-ov. eq.-sized cl.
20 non-ov. eq.-sized cl.
3 non-ov. diff.-sized cl.
20 non-ov. diff.-sized cl.
9 ov. eq.-sized cl.

24 ov. eq.-sized cl.

4 ov. diff.-sized cl.

34 ov. diff.-sized cl.

0.4

0.2

Proportion of found different cliques

teedetee

0.0

0 20 40 60 80 100
number of startvectors

Figure 19: Dotplot of development of proportions of found different cliques among the
existing cliques for the adjacency matrices of all eight matrix structures and 100 nodes.
The proportion of found different cliques is depicted on the y-axis, the number of the
startvectors on the x-axis. Every dot represents a change in the proportion because
of a new found clique in an adjacency matrix. The colours represent the eight matrix
structures.

Regarding the bigger matrix sizes the two structures with many small equal-sized
cliques are remarkable as there was still a reasonable number of new cliques detected
after 20 startvectors in all matrix sizes. Figure 26 shows this exemplary for the matrix
size of 8000 nodes in the appendix.

The next section shortly addresses the effectiveness of the permuted adjacency matrices
of the structure “non-overlapping few big equal-sized cliques”.

4.2.1.3 Effectiveness for permuted adjacency matrices

The effectiveness of the algorithm considered for the permuted adjacency matrices of
the structure “non-overlapping few big equal-sized cliques” leads as in section 3.2 expected

43

4.2 FEffectiveness 4 Results

to the same results as for the non-permuted matrices of this structure. The proportions
after 100 startvectors based on these permuted matrices are displayed in figure 27 in the
appendix. The proportions are the same as in figure 12, as the startvectors were permuted
in the same fashion as the adjacency matrices and hence the results of the algorithm are
the same. The only difference is, that the permuted matrices were only considered up to
matrix size 6000.

The completed section 4.2.1 addressed the effectiveness for the first group of adjacency
matrices. The following section will look at the effectiveness for adjacency matrices of the
second group.

4.2.2 Random graphs

Proportion of found different cliques among 100 startvectors for
for randomly assigned matrices
of random graphs

IIIIIlm

1000 1500 2000 4000 6000 8000
Number of nodes

o o o o -
[IN o) ® o

Proportion of found different cliques

o
o

Figure 20: Barplot of the proportion of found different cliques among 100 startvectors
after 100 startvectors in adjacency matrices of random graphs. The colours represent the
number of nodes.

As motivated in section 3.3 for matrices of random graphs not the proportions of found
different cliques among the existing cliques are considered. Instead the proportions of

44

4.2 FEffectiveness 4 Results

detected different cliques among the 100 startvectors were used. These proportions con-
sidered in this section were calculated as the number of detected different cliques after
100 startvectors divided by the number of startvectors, which is 100.

Figure 20 shows the proportion of found different cliques for randomly filled adjacency
matrices with up to 8000 nodes. The proportions decrease with increasing matrix size,
the only exception is the smallest matrix size with 100 nodes. Here the proportion is
remarkably lower than the proportion of the next higher matrix size.

Number of startvectors vs
Proportion of found different cliques among 100 startvectors
for 100 startvectors for for randomly assigned matrices
of random graphs

1.0

0.8

)

0]

>

g

©

T

o

[0)

Y

-"_5 0.6

_8 —&— 100 nodes

§ 0.4 —8— 500 nodes

5 —8— 1000 nodes

g —8— 1500 nodes

= 0.2 —®— 2000 nodes

s 0.

8' —O— 4000 nodes

L’t 6000 nodes
0.0 o 8000 nodes

0 20 40 60 80 100
Number of startvectors

Figure 21: Dotplot of development of proportions of found different cliques among 100
startvectors for adjacency matrices of random graphs. The proportion of found different
cliques is depicted on the y-axis, the number of the startvectors on the x-axis. Every
dot represents a change in the proportion because of a new found clique in an adjacency
matrix. The colours represent the number of nodes.

For all matrix sizes new cliques were detected over all the 100 startvectors, as one can
see in figure 21. This is different compared to the adjacency structures from section 4.2.1,
where for some structures no new cliques were found anymore after some first startvectors.

Finally the next section will examine the adjacency matrices of the third group re-
garding the effectiveness of the algorithm.

45

4.2 FEffectiveness 4 Results

4.2.3 Random intersection graphs

For the adjacency matrices of the third group, that are created by using random inter-
section graphs, the proportions among 100 startvectors are calculated in the same way as
for the matrices of random graphs. Matrix sizes up to 4000 are considered.

Figure 22 makes clear, that for every matrix size among 100 startvectors only one clique is
found. For each matrix the respective clique is found 100 times. So the figure concerning
the startvectors, at which new cliques are found, is not necessary.

Proportion of found different cliques among 100 startvectors for

for randomly assigned matrices
of random intersection graphs

o o o -
IN o ® o

Proportion of found different cliques
o
R

o
o

100 500 1000 1500 2000 4000
Number of nodes

Figure 22: Barplot of the proportion of found different cliques among 100 startvectors
after 100 startvectors in adjacency matrices of random intersection graphs. The colours
represent the number of nodes.

In this and the previous section 4.1 the results of the algorithm regarding runtime and
effectiveness for the three types of graphs respectively groups of adjacency matrices were
presented. Based on that the following section will assess the possibility of applying the
algorithm for enumerating all maximal cliques of a graph.

46

4.3 Algorithm for enumerating all maximal cliques 4 Results

4.3 Algorithm for enumerating all maximal cliques

Based on the results of the sections 4.1 and 4.2 it seems, that the algorithm is not very ap-
propriate for enumerating all maximal cliques of a graph for high dimensional data. First
especially for random intersection graphs, which should be closer to real-world examples
than the other two groups of adjacency matrices, only one clique was found among 100
startvectors. Hence it seems difficult to ensure, that all maximal cliques can be found
by applying the algorithm on randomly chosen startvectors. Second the mean runtime
seems to increase non-linearly for some of the considered adjacency matrices, which is not
optimal regarding the application for high dimensional data.

47

5 Summary and Outlook

5 Summary and Outlook

This thesis investigated an algorithm for finding one maximal clique in a graph, which
was proposed by Ding et al. [2008]. It was studied regarding its effectiveness and runtime,
which was measured as mean CPU-runtime. For this purpose three types of graphs as
well as various different graph sizes, i.e. adjacency matrix sizes, were used. The first type
of graphs comprises eight adjacency matrix structures, which were manually defined, one
of them was additionally permuted. The second type of graphs are random graphs, the
third type are random intersection graphs.

For all the adjacency matrices of all three types of graphs the mean runtime of the
algorithm per startvector was found to be increasing over-proportionally with the number
of nodes within the each considered segment of the matrix size.

In order to characterize the non-linearity of the runtime increase, both the runtimes and
the numbers of nodes were transferred to the logarithmic space with the base of 10, thus
leading to the logarithmic mean runtime as function of the logarithmic number of nodes.
Based on this, linear models and polynomial models with quadratic term were estimated.
The linear models have quite high proportions of explained variance. But also the ad-
ditional quadratic term of the quadratic models was significant for every type of graphs
except for the random graphs. Further research should examine the need for the quadratic
term with even bigger matrix sizes.

In the first group of graphs two-sided permutation tests revealed significant differences
between the mean runtimes of matrices with same size but different structures. Matrix
structures with non-overlapping maximal cliques were found to have significantly lower
mean runtimes compared to their corresponding structures with overlapping maximal
cliques in one-sided tests, which were additionally conducted.

The algorithms’ effectiveness was investigated with the first type of graphs by com-
puting the proportion of found maximal cliques of existing maximal cliques. Beside this,
the graphs of types two and three were used to examine the number of found maximal
cliques when feeding the algorithm with 100 different startvectors. Both proportions are
relatively low for some of the graphs and even decreasing with increasing matrix size for
most of the graphs, which is a major drawback regarding the application of the algorithm
for finding all maximal cliques of a graph in the area of high dimensional data. Addition-
ally bigger maximal cliques are more often detected than smaller ones.

Some topics need further investigation in future.
The algorithm’s runtime and effectiveness should be examined with even bigger matrix
sizes and in particular with real-world datasets.
As the chosen startvectors have a strong impact on the found maximal cliques, optimized
initialization strategies might improve the algorithm’s effectiveness and might even speed
up its convergence [Berry et al., 2007].

48

References

References

M. Behrisch and A. Taraz. Efficiently covering complex networks with cliques of similar
vertices. Theoretical Computer Science, 355(1):37-47, 2006.

M. T. Belachew. Nmf-based algorithms for data mining and analysis: Feature
extraction, clustering, and maximum clique finding: Phd thesis, 2014. URL
https://galileo.dm.uniba.it/dottorato/dottorato-di-ricerca-disattivato/
tesi_dottorato/tesimelisewteferabelachew.pdf.

M. T. Belachew and N. Gillis. Solving the maximum clique problem with symmetric
rank-one non-negative matrix approximation. Journal of Optimization Theory and
Applications, 173(1):279-296, 2017.

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons. Al-
gorithms and applications for approximate nonnegative matrix factorization. Com-
putational Statistics & Data Analysis, 52(1):155-173, 2007. ISSN 01679473. doi:
10.1016/j.csda.2006.11.006.

J. M. Bland and D. G. Altman. Multiple significance tests: the bonferroni method. BM.J,
310(6973):170, 1995.

C. Ding, T. Li, and M. I. Jordan. Nonnegative matrix factorization for combinatorial
optimization: Spectral clustering, graph matching, and clique finding. In 2008 Eighth
IEEE International Conference on Data Mining, pages 183-192. IEEE, 2008.

R. L. Einsporn and D. Habtzghi. Combining paired and two-sample data using a permu-
tation test. Journal of Data Science, 11(4):767-779, 2013.

P. Erd6s and A. Rényi. On random graphs i. Publicationes Mathematicae, 6:290-297,
1959.

M. D. Ernst. Permutation methods: A basis for exact inference. Statistical Science, 19
(4):676-685, 2004.

L. Fahrmeir, T. Kneib, and S. Lang. Regression: Modelle, Methoden und Anwendungen.
Statistik und ihre Anwendungen. Springer, Berlin Heidelberg, 2nd ed. edition, 2009.

L. Fahrmeir, R. Kiinstler, I. Pigeot, and G. Tutz. Statistik: Der Weg zur Datenanalyse.
Springer-Lehrbuch. Springer, Berlin and Heidelberg, 7th ed., corr. reprint edition, 2011.

L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana. Continuous character-
izations of the maximum clique problem. DIMACS Technical Report, (9), 1996.

J. Gramm, J. Guo, F. Hiiffner, and R. Niedermeier. Data reduction and exact algorithms
for clique cover. Journal of Experimental Algorithmics, 13, 2009.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,
and function using networkx. In G. Varoquaux, T. Vaught, and J. Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11 — 15, Pasadena, CA
USA, 2008.

49

https://galileo.dm.uniba.it/dottorato/dottorato-di-ricerca-disattivato/tesi_dottorato/tesimelisewteferabelachew.pdf
https://galileo.dm.uniba.it/dottorato/dottorato-di-ricerca-disattivato/tesi_dottorato/tesimelisewteferabelachew.pdf

References

B. Hou, Z. Wang, Q. Chen, B. Suo, C. Fang, Z. Li, and Z. G. Ives. Efficient maximal
clique enumeration over graph data. Data Science and Engineering, 1(4):219-230, 2016.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of
Machine Learning Research, 5:1457-1469, 2004.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engi-
neering, 9(3):90-95, 2007.

D. Lee and H. Seung. Algorithms for non-negative matrix factorization. In Advances in
Neural Information Processing Systems 13 - Proceedings of the 2000 Conference, NIPS
2000. Neural information processing systems foundation, 1 2001.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factor-
ization. Nature, 401:788-791, 1999.

W. McKinney. Data structures for statistical computing in python. In S. van der Walt
and J. Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51
- 56, 2010.

Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius Lukauskas, David
C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi Warmen-
hoven, Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas, Santi Vil-
lalba, Gero Kunter, Eric Quintero, Pete Bachant, Marcel Martin, Kyle Meyer, Alistair
Miles, Yoav Ram, Tal Yarkoni, Mike Lee Williams, Constantine Evans, Clark Fitzger-
ald, Brian, Chris Fonnesbeck, Antony Lee, and Adel Qalieh. Mwaskom /seaborn: V0.8.1
(september 2017), 2017.

K. J. Millman, K. Ottoboni, and P. B. Stark. Core functions — permutation tests and
confidence sets 0.1.alphab documentation, 2019. URL https://statlab.github.io/
permute/api/core.html.

T. S. Motzkin and E. G. Straus. Maxima for graph and a new proof of a theorem of turan.
American Mathematical Society, Notices, 11(382):533-540, 1964.

G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, T. G. Soldatos, S. Kossida, J. Aerts,
R. Schneider, and P. G. Bagos. Using graph theory to analyze biological networks.
BioData Mining, 4(10):1-27, 2011.

J. Pearl, M. Glymour, and N. P. Jewell. Causal inference in statistics: A primer. John
Wiley & Sons Ltd, Chichester, West Sussex, UK, 2016.

M. Pelillo. Relaxation labeling networks for the maximum clique problem. Journal of
Artificial Neural Networks, 2(4):313-328, 1995.

Python Core Team. Python: A dynamic, open source programming language. Python
Software Foundation, 2019. URL https://www.python.org/.

S. Seabold and J. Perktold. Statsmodels: Econometric and statistical modeling with
python. In 9th Python in Science Conference, 2010.

20

https://statlab.github.io/permute/api/core.html
https://statlab.github.io/permute/api/core.html
https://www.python.org/

References

time. time — time access and conversions — python 3.7.4 documentation, 2019. URL
https://docs.python.org/3.7/1library/time.html.

timeit. timeit — measure execution time of small code snippets — python 3.7.4 docu-
mentation, 2019. URL https://docs.python.org/3.7/library/timeit.html.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: A structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22-30,
2011. ISSN 1521-9615.

51

https://docs.python.org/3.7/library/time.html
https://docs.python.org/3.7/library/timeit.html

Appendix

Appendix

Electronic Appendix

The electronic appendix Masterthesis Litzka is structured as follows. It contains seven
folders.

The folder data consists again of four folders. For all considered adjacency matrices
both runtime measurements were done as well as the results of the algorithm, i.e. the
cliques, were computed. The runtime measurements of all matrices are stored in folder
data_sim, the results of the matrices of the first group in folder data results struct,
the results of the matrices of the other two groups in folder data results rand. The
fourth folder test results contains the results of the permutation tests.

The code files for performing the runtime measurements are embodied in the folder
code sim. Every file is identified by a number and corresponds to one adjacency matrix.
The folder batch _files sim contains the corresponding batch files. FEach file is as well
numbered. A batch file does not call the code file with its corresponding number, instead
the number of the code file corresponds to the order, that was randomly chosen for measur-
ing the runtimes of the adjacency matrices. The additional file construct adjacencies.py
in folder code sim is not intended for being run, instead it contains the code snippets
for creating all adjacency matrices and their numbering as well as the choice of the order,
with which the runtime measurements were taken.

The respective code files for computing the solutions, i.e. the cliques, of the adjacency
matrices can be found in folder code sol. The folder batch files sol contains the
corresponding batch files.

The code files for analysing the runtime measurements and the solutions are embodied
in folder code analysis. The file results_struct.py creates the figures for the matrices
of the first group. The corresponding file for the two other groups is results rand.py.
The figures for displaying, which of the cliques are found for matrices of the first group
with different-sized structures, were created in a third file called results cliques.py. The
permutation test were conducted in file permtest.py, the models of the log mean runtimes
and their figures in file regression _timeits.py.

All the figures are stored in the sixth folder plot results.

In all code files there is a comment at some point, where the working directory should be
set. After this point relative paths are used. These relative paths only work, if the folder
Masterthesis Litzka is chosen as working directory.

52

Appendix

Additional

Logarithm of number of nodes to base 10
vs Logarithm of mean runtime to base 10
in seconds per startvector and regression line
with each 10 repetitions for 100 startvectors for
5 non-overlapping equal-sized permuted cliques

1.0
0.5
0.0

-0.5 100 nodes
500 nodes
1000 nodes
1500 nodes
2000 nodes
4000 nodes

6000 nodes

-1.0

-1.5

Logarithm of mean runtime to base 10
per startvector in seconds

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75
Logarithm of number of nodes to base 10

Figure 23: Dotplot of the log mean runtimes in seconds to the basis 10 of the permuted
adjacency matrices with structure “non-overlapping few big equal-sized cliques” with the
log number of nodes to the basis 10 on the x-axis and the log mean runtime to the basis
10 per startvector and adjacency matrix on the y-axis. A regression line of the linear
model fitted on this data is drawn. The colours represent the number of nodes.

93

Appendix

’ Kind of test \ Matrix size \ Clique subgroup \ P-value ‘
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
100 nodes few big different-sized 9.9-10°°¢
many small different-sized | 9.9 - 10~¢
few big equal-sized 9.9-10°°
many small equal-sized 9.9-10°¢
500 nodes few big different-sized 9.9-107°
many small different-sized | 9.9 - 10~°
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
1000 nodes few big different-sized 9.9-107°
many small different-sized | 9.9 - 10~°
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
1500 nodes | ¢ © big different-sized 9.9-10°¢
many small different-sized | 9.9 - 1076
few big equal-sized 9.9-10°°
-si .10-6
non-overlapping vs overlapping | 2000 nodes g;ngizrg?gefg;i;fgd 88 ' 18_6
many small different-sized | 9.9 - 10~¢
few big equal-sized 9.9-107°
many small equal-sized 9.9-10°¢
4000 nodes | big different-sized 9.9-10°°¢
many small different-sized | 9.9 - 10~°
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
6000 nodes few big different-sized 9.9-10°¢
many small different-sized | 9.9 - 10~¢
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
8000 nodes | ¢ big different-sized 9.9-10°¢
many small different-sized | 9.9 - 10~°
few big equal-sized 9.9-10°°
many small equal-sized 9.9-1076
10000 nodes | ¢ big different-sized 9.9-10°°¢

many small different-sized | 9.9 - 10~¢

Table 9: Table containing the p-values of the one-sided permutation tests for comparing
the mean runtimes of matrices with non-overlapping and overlapping cliques in the four
resulting clique subgroups and all numbers of nodes up to 10000.

54

Appendix

‘ Kind of test ‘ Matrix size ‘ Clique subgroup ‘ P-value ‘
non-overlapping equal-sized 9.9-107°
non-overlapping different-sized | 9.9 - 1076
100 nodes overlapping equal-sized 9.9-10°¢
overlapping different-sized 9.9-10°¢
non-overlapping equal-sized 9.9-107°
non-overlapping different-sized | 1
500 nodes overlapping equal-sized 9.9-107¢
overlapping different-sized 1
non-overlapping equal-sized 1
1000 nodes non—over.lappmg dﬁerent—smed 1
overlapping equal-sized 1
overlapping different-sized 1
non-overlapping equal-sized 9.9-10°°
non-overlapping different-sized | 1
1500 nodes overlapping equal-sized 9.9-10°6
overlapping different-sized 1
non-overlapping equal-sized 9.9-107°
. non-overlapping different-sized | 1

few big vs many small | 2000 nodes overlapping equal-sized 9.9.10-
overlapping different-sized 1
non-overlapping equal-sized 1

_ . . o . —6

4000 nodes | 2on over.lapplng dlfferent sized | 9.9 10
overlapping equal-sized 1
overlapping different-sized 9.9-10°¢
non-overlapping equal-sized 9.9-10°°
non-overlapping different-sized | 9.9 - 1076

6000 nodes overlapping equal-sized 9.9-107¢
overlapping different-sized 9.9-10°¢
non-overlapping equal-sized 1

2000 nodes non—over}appmg dﬁerent—smed 1
overlapping equal-sized 1
overlapping different-sized 1
non-overlapping equal-sized 9.9-107°
non-overlapping different-sized | 1

10000 nodes overlapping equal-sized 9.9-10°¢
overlapping different-sized 1

Table 10: Table containing the p-values of the one-sided permutation tests for comparing
the mean runtimes of matrices with few big and many small cliques in the four resulting
clique subgroups and all numbers of nodes up to 10000.

95

Appendix

‘ Kind of test ‘ Matrix size ‘ Clique subgroup ‘ P-value ‘
non-overlapping few big 9.9-10°°
non-overlapping many small | 9.9 - 107¢

100 nodes overlapping few big 9.9-1076
overlapping many small 9.9-1076
non-overlapping few big 1

500 nodes non—over.lapplng many small | 1
overlapping few big 1
overlapping many small 1
non-overlapping few big 1

- i .10-6

1000 nodes | 2P over.lappmg marny small | 9.9 - 10
overlapping few big 1
overlapping many small 9.9-107°
non-overlapping few big 1

1500 nodes non—over}appmg many small | 1
overlapping few big 1
overlapping many small 1
non-overlapping few big 1

equal-sized vs different-sized | 2000 nodes f)l\?:;l(;‘;e;iligpf:f gllgny small 1
overlapping many small 1
non-overlapping few big 9.9-10°°
non-overlapping many small | 1

4000 nodes overlapping few big 9.9-1076
overlapping many small 1
non-overlapping few big 9.9-107°
non-overlapping many small | 9.9 - 1076

6000 nodes overlapping few big 9.9-10°¢
overlapping many small 9.9-107°
non-overlapping few big 9.9-107°
non-overlapping many small | 9.9 - 1076

8000 nodes overlapping few big 9.9-1076
overlapping many small 9.9-10°¢
non-overlapping few big 1

- i . 106

10000 nodes | 2% over'lapplng many small | 9.9 - 10
overlapping few big 1
overlapping many small 9.9-106

Table 11: Table containing the p-values of the one-sided permutation tests for comparing
the mean runtimes of matrices with equal-sized and different-sized cliques in the four
resulting clique subgroups and all numbers of nodes up to 10000.

26

Appendix

| Model | Covariable | Coefficient | P-value |
linear model intercept -4.2159 0.0
logip(number of nodes) 1.3460 0.0
intercept -2.8723 0.0
polynomial model | log;o(number of nodes) 0.3371 0.0
(logip(number of nodes))? | 0.1821 0.341

Table 12: Table containing the coefficients and their p-values for two models fitted for
adjacency matrices of random intersection graphs with the log mean runtime to the basis
10 as dependent variable.

Proportion of found different cliques among existing cliques
for 100 startvectors for
9 overlapping equal-sized cliques

1000 1500 2000 4000 6000 8000 10000
Number of nodes

o o o o =
(N EN o ™ o

Proportion of found different cliques

o
o

Figure 24: Barplot of the proportion of found different cliques among the twenty existing
cliques after 100 startvectors in adjacency matrices of the structure “overlapping few big
equal-sized cliques”. The colours represent the number of nodes.

a7

Appendix

Number of startvectors vs
Proportion of found different cliques among existing cliques
for 100 startvectors for 24 overlapping equal-sized cliques

1.0

0.8

0.6 100 nodes

500 nodes
1000 nodes
1500 nodes
2000 nodes
4000 nodes
- 6000 nodes
8000 nodes
0.0 10000 nodes

0 20 40 60 80
Number of startvectors

0.4

tPedee

0.2

Proportion of found different cliques

Figure 25: Dotplot of development of proportions of found different cliques among the
existing cliques for the adjacency matrices of the structure “overlapping many small equal-
sized cliques”. The proportion of found different cliques is depicted on the y-axis, the
number of the startvectors on the x-axis. Every dot represents a change in the proportion
because of a new found clique in an adjacency matrix. The colours represent the number
of nodes.

o8

Appendix

Required number of startvectors vs
Proportion of found different cliques among existing cliques
for 100 startvectors for 8000x8000 matrices

1.0
n
o)
T
= —0
C 0.8
<
o
()
b=
S 0.6
-8 —&— 5 non-ov. eq.-sized cl.
§ 0.4 —8— 20 non-ov. eq.-sized cl.
‘S —8— 3 non-ov. diff.-sized cl.
g —8— 20 non-ov. diff.-sized cl.
F=a) —8— 9ov. eq.-sized cl.
§. —@— 24 ov. eq.-sized cl.
a —8— 4 ov. diff.-sized cl.

0.0 —@— 34 ov. diff.-sized cl.

0 20 40 60 80

number of startvectors

Figure 26: Dotplot of development of proportions of found different cliques among the
existing cliques for the adjacency matrices of all eight matrix structures and 8000 nodes.
The proportion of found different cliques is depicted on the y-axis, the number of the
startvectors on the x-axis. Every dot represents a change in the proportion because
of a new found clique in an adjacency matrix. The colours represent the eight matrix
structures.

29

Appendix

Proportion of found different cliques among existing cliques
for 100 startvectors for
5 non-overlapping equal-sized permuted cliques

1000 1500 2000 4000 6000
Number of nodes

o o o -
EN o o o

Proportion of found different cliques
o
R

o
o

Figure 27: Barplot of the proportion of found different cliques among the five existing
cliques after 100 startvectors in permuted adjacency matrices of the structure “non-
overlapping few big equal-sized cliques”. The colours represent the number of nodes.

60

Statutory Declaration

I declare that I, Leonie Friederike Litzka, have authored this thesis independently, that
I have not used other than the declared sources, and that I have explicitly marked all
material which has been quoted either literally or by content from the used sources.

Place, Date Signature

	Introduction
	Theoretical Background
	Notation
	Maximal Clique Finding
	Non-negative Matrix Factorization
	Algorithm

	Methods
	Python Implementation of the Algorithm
	Stopping Criterion

	Adjacency matrices
	Analysis of the algorithm's runtime and solutions
	Regression
	Permutation test
	Theory
	Implementation

	Simulation for measuring the runtimes

	Results
	Runtime
	Adjacency Structures
	Runtime for different matrix sizes
	Runtime for different structures
	Runtime for permuted adjacency matrices

	Random graphs
	Random intersection graphs

	Effectiveness
	Adjacency Structures
	Effectiveness for different matrix sizes
	Effectiveness for different structures
	Effectiveness for permuted adjacency matrices

	Random graphs
	Random intersection graphs

	Algorithm for enumerating all maximal cliques

	Summary and Outlook
	References
	Appendix

