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Abstract

Chemokines and galectins are simultaneously upregulated and
mediate leukocyte recruitment during inflammation. Until now,
these effector molecules have been considered to function inde-
pendently. Here, we tested the hypothesis that they form molecu-
lar hybrids. By systematically screening chemokines for their
ability to bind galectin-1 and galectin-3, we identified several
interacting pairs, such as CXCL12 and galectin-3. Based on NMR
and MD studies of the CXCL12/galectin-3 heterodimer, we identi-
fied contact sites between CXCL12 b-strand 1 and Gal-3 F-face resi-
dues. Mutagenesis of galectin-3 residues involved in heterodimer
formation resulted in reduced binding to CXCL12, enabling testing
of functional activity comparatively. Galectin-3, but not its
mutants, inhibited CXCL12-induced chemotaxis of leukocytes and
their recruitment into the mouse peritoneum. Moreover, galectin-3
attenuated CXCL12-stimulated signaling via its receptor CXCR4 in
a ternary complex with the chemokine and receptor, consistent
with our structural model. This first report of heterodimerization
between chemokines and galectins reveals a new type of interac-
tion between inflammatory mediators that can underlie a novel
immunoregulatory mechanism in inflammation. Thus, further
exploration of the chemokine/galectin interactome is warranted.
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Introduction

Coordinated trafficking of leukocytes is central to host defense and

inflammation. In order to regulate its timing and strategic course of

action, various mediators (such as chemokines and adhesion/

growth-regulatory galectins) are involved to orchestrate leukocyte

recruitment [1–3]. The prototypic CXC chemokine CXCL12 plays a

major role in many inflammatory and homeostatic situations.

CXCL12 activates the Gi protein-coupled receptor CXCR4 that is

expressed by hematopoietic cell types, including T cells, monocytes,

and neutrophils, thus promoting their recruitment [4–6]. The

CXCL12/CXCR4 axis plays a crucial role in the trafficking of these

types of cells in immune homeostasis and in various acute and

chronic inflammatory diseases, such as atherosclerosis and rheuma-

toid arthritis [7–11].

Structurally, chemokines consist of a three-stranded b-sheet and
a C-terminal a-helix [12]. In solution, most chemokines form

homodimers (CXCL12) or higher-order oligomers. Because of their

structural homology, certain CXC and CC chemokines can form

heterodimers with altered functionality compared to their homod-

imer counterparts [13,14]. For example, CXCL12 binds to CCL5 and

inhibits its function, whereas CXCL4 enhances CCL5-mediated

monocyte recruitment in atherosclerosis [15,16].

In addition to proteins, cell surface glycans convey signals rele-

vant to pathophysiological processes. Their relatively complex and

heterogeneous structures are read and translated by various tissue

lectins to effect biological functions [17–19]. (b-)Ga(lactoside-
binding) lectins (=galectins) are a class of potent cis/trans-acting

modulators that function as bridging factors between their carbohy-

drate recognition domain (CRD) and cell surface glycoconjugates

[20,21]. In particular, proto-type galectin-1 (Gal-1) and chimera-type

galectin-3 (Gal-3) are involved in inflammatory cell recruitment
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[22,23]. Both galectins are upregulated in inflammatory diseases

such as atherosclerosis and osteoarthritis that also involve chemoki-

nes [24–27].

Structurally, all galectins share a highly conserved b-sandwich

fold consisting of a six-stranded b-sheet on one face (S-face or

sugar-binding face) and a five-stranded b-sheet on the opposing face

(F-face) [28–30]. Gal-3 is unique among galectins, because it has a

relatively long N-terminal tail (NT) extending out from its CRD. The

NT is relevant to Gal-3 function, self-association, and serine phos-

phorylation, and it can be proteolytically truncated and fully cleaved

from the CRD, thus explaining the term chimera type. Analogous to

chemokines, galectins can also form homodimers and oligomers

[31,32], as well as galectin/galectin heterodimers [33].

Until now, chemokines and galectins have been investigated as

physically separate and functionally independent entities. Here, we

test the hypothesis that they can associate as heterodimers with

functional consequences, a hitherto unappreciated concept. We

first demonstrate by screening that several CC and CXC chemoki-

nes can interact with Gal-3 and Gal-1, and then, we focus work

on the specific case of CXCL12/Gal-3. Nuclear magnetic resonance

(NMR) studies reveal that CXCL12 and Gal-3 form heterodimers

and allow for a molecular dynamics (MD) simulation-based struc-

tural model to be made. This model is validated by investigating

several Gal-3 CRD mutants (engineered by replacing key residues

at the interface with CXCL12) that reveal reduced binding to

CXCL12. Functionally, wild-type (WT) Gal-3 CRD, but not the

mutants, blocks CXCL12-mediated leukocyte migration, indicating

relevance of the structurally defined association. Impairing CXCR4

signaling by the CRD is presumably due to its capacity to build a

ternary complex with the chemokine and its receptor on the cell

surface.

Results

Physical interaction of Gal-3, Gal-3 CRD, and Gal-1 with CC and
CXC chemokines

Our initial evidence supporting the new concept for interactions

between chemokines and galectins was obtained by using a solid-

phase immunoassay with membrane-adsorbed chemokines and

biotinylated Gal-3 and Gal-1 in solution. Chemokine-dependent

association in the mix was detected with horseradish peroxidase

(HRP)-conjugated streptavidin (SA) and chemiluminescence.

Figure 1A–D shows an exemplary image and qualitative analysis of

a chemokine blot incubated with biotinylated Gal-3. Examination of

a comprehensive panel of CC and CXC chemokines with these galec-

tins revealed multiple cases of interaction with a similar binding

pattern (Fig 1E). Figure EV1A–D shows an image with qualitative

analysis of a chemokine blot incubated with biotinylated Gal-1.

Surface plasmon resonance (SPR) experiments were also

performed with these chip-conjugated galectins and soluble chemo-

kines. Excluding artifactual effects from surface adsorption, we

found that results from both assays were consistent (Fig EV1E–G).

A negative result from the solid-phase assay (e.g., CXCL9 and

CXCL11 show no interaction with Gal-3) may be attributed to inacti-

vation and/or inaccessibility of the binding site due to surface

adsorption. SPR binding kinetics of CXCL12 with chip-immobilized

Gal-3 allowed us to derive a CXCL12/Gal-3 KD of 80 nM when Gal-3

was coupled via its sole cysteine (Fig 1F). Immobilized Gal-3 CRD

bound CXCL12 with a slightly higher affinity of 34 nM (Fig 1G),

suggesting that the NT of Gal-3 is not the site of interaction with

CXCL12 and may even interfere with CXCL12 binding due to its

transient interactions with the CRD [34]. The affinity of Gal-3 was

about 10-fold higher than that of the proto-type (homodimeric) Gal-1,

supporting the idea of a galectin-specific interaction (Fig 1H).

Lactose, the canonical ligand for the galectin CRD, did not inhibit

the interaction between CXCL12 and Gal-3 (Appendix Fig S1A and

B). This result indicates that the contact region for the chemokine

does not involve the canonical glycan-binding site on the S-face of

the CRD, as is the case for pairing of Gal-3 CRD via the NWGR motif

(W is central for lactose binding due to C-H/p-interaction) with Bcl-2

family proteins [35]. Besides, unfractionated heparin blocked the

binding of Gal-3 CRD to CXCL12 (Appendix Fig S1C), indicating that

CXCL12 residues relevant to glycosaminoglycan (GAG) binding

contribute to the heterodimer interface.

We then compared the affinity of Gal-3 for CXCL12 with that for

a panel of chemokines that showed a robust response to the Gal-3

chip (Figs EV1E and EV2A–F). Whereas CCL17 gave uninterpretable

weak responses (Fig EV2C), the other chemokines examined (CCL1,

CCL5 E66S, CCL22, CCL26, and CXCL11) gave well-detectable

signals with KD values falling into the range from 7.9 to 99 nM

(Fig EV2G). In this experiment, we used the E66S mutant of CCL5

that cannot form higher-order homooligomers, because WT CCL5

did not permit accurate determination of KD values. For subsequent

structural and functional studies, we selected the Gal-3/CXCL12 pair

due to its broad tissue distribution, co-expression in diverse organs,

and biological relevance (Appendix Fig S2) [36].

In conclusion, Gal-3 interacts with CC and CXC chemokines

primarily via its CRD, and without direct involvement of the canoni-

cal glycan-binding S-face of the CRD.

Formation of CXCL12/Gal-3 heterodimers

To identify the interacting contact surfaces between CXCL12 and

Gal-3, we performed 1H–15N HSQC experiments with 15N-labeled

CXCL12 and unlabeled Gal-3 CRD, as well as with 15N-labeled Gal-3

CRD and unlabeled CXCL12. Since CXCL12 itself forms relatively

weak homodimers in fast exchange on the chemical shift timescale,

the equilibrium between CXCL12 monomers and dimers can be

shifted to mostly monomer by lowering the pH [37,38]. Addition of

unlabeled Gal-3 CRD to 15N-labeled CXCL12 (and vice versa)

resulted in some significant chemical shift changes as shown in the

HSQC spectral expansions and chemical shift maps provided in

Fig 2A and B. The entire HSQC spectra from which these expansions

were made are provided in Appendix Fig S3A and B with some key

interacting residues boxed in. Changes in resonance line widths and

chemical shifts indicate that binding interactions occur in the inter-

mediate exchange regime on the NMR chemical shift timescale,

which in turn suggests that the heterodimer dissociation constant,

KD, falls in the 10�6 M range [39], slightly higher than from our SPR

measurements. In addition, our HSQC data showed that lactose did

not disturb the interaction, consistent with our SPR data

(Appendix Fig S1A and B). Chemical shift changes identify regions

of inter-protein contacts, as highlighted in orange and red on the

structures of CXCL12 (Fig 2C) and Gal-3 CRD (Fig 2D). In support
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of these NMR data, silver staining of SDS–PAGE gels loaded with

CXCL12, the cross-linker BS(PEG)5, and increasing concentrations

of Gal-3 CRD exhibited bands at the position expected for the

CXCL12/Gal-3 CRD heterodimer (Appendix Fig S4).

Whereas Gal-3 CRD exists as a compact monomer in solution,

full-length Gal-3 is characterized by intramolecular dynamics via

transient backfolding of the NT onto the CRD F-face and a very

weak tendency for self-association, both of which complicate struc-

tural interaction analyses [34]. Nevertheless, we assessed CXCL12-

induced chemical shift changes in 15N-labeled full-length Gal-3 and

found that chemical shifts were overall reduced (Appendix Fig S5).

In addition to the residues within the CRD, residues 5-15 near the N-

terminus were also chemically shifted (Appendix Fig S5). This may

reflect competition of chemokine/galectin heterodimer formation

with intramolecular interactions between the NT and CRD [34]. In

any event, our ligand blotting, SPR, and cross-linking results show

that the NT of Gal-3 is not required for formation of Gal-3/CXCL12

heterodimers (Figs 1E and G, and EV1F, and Appendix Fig S4). Of
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Figure 1. Physical interaction of Gal-3 and Gal-1 with CC and CXC chemokines.

A–E Chemokine–galectin interactions were detected by using a solid-phase immunoassay. For this, 46 human CC and CXC chemokines were adsorbed on nitrocellulose
membranes and the stripes incubated in parallel with (A) TBS or (B) TBS containing biotinylated galectins (the representative image shows a processed membrane
tested with labeled Gal-3). Signals had been generated by using SA-HRP and chemiluminescence reagents. (C, D) The blots were subjected to densitometric
analysis, and (E) all independent experiments were combined (binding chemokines in light blue, Gal-3: n = 5, Gal-3 CRD: n = 5, Gal-1: n = 4).

F–H For SPR-based experiments, (F) Gal-3 (density 650 RU), (G) Gal-3 CRD (density 1180 RU), and (H) Gal-1 (density 130 RU) were immobilized and increasing
concentrations of CXCL12 were passed over the flow cells. The red curve represents a single-site fit to the data. Insets are representative sensorgrams of CXCL12
testing on immobilized galectin. Data represent the mean � SD from six (F) or three (G and H) independent experiments.
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note, analyses of interactions between Gal-1 and CXCL12 are likely

hampered by homodimerization of Gal-1 that is favored over

heterodimerization (data not shown), thus likely explaining its

weaker affinity for CXCL12 compared to Gal-3 (Fig 1F and H).

Having identified mutual sites of interaction on CXCL12 and Gal-3

CRD (Fig 2A–D), we performed MD simulations started after manu-

ally docking the Gal-3 CRD to CXCL12 in 10 different rotational

orientations that were all consistent with our HSQC data.

Appendix Fig S6A shows the resulting heterodimer structures follow-

ing energy minimization, with complex 6 being the energetically

most favorable (�50 kcal/mol). Decomposition analyses of the free

binding energies (DG) for each residue in the Gal-3 CRD

(Appendix Fig S6B) and CXCL12 (Appendix Fig S6C) in complex 6

identify the residue pairing sites (Fig 2). Regions of contact in

complex 6 (Fig 2E) correspond best to those identified by NMR

(Fig 2A and B). A few specific residue pairings are depicted in

Fig 2F. Several amino acids contribute to two major contact sites

within the Gal-3 CRD at the strands b6 and b8-9 (CRD F-face), and

the loop between b4 and b5. Gal-3 strands b6, b8, and b9 (in particu-

lar, residues E185 (b6), H217, Q220, and N222 (b9)) interact with a

dominant binding region in the strands b1 and b2 of CXCL12 (in

particular, R41 (b2), K27 (b1), and K24 (b1); please see Fig 2F, left

panel). In addition, Gal-3 S188 (b6) and residues of the loop between

b4 and b5 (i.e., R168 and R169) interact with the CXCL12 helix resi-

dues Y61, E63, A65, and N67 to establish a neighboring contact site

(Fig 2F, right panel). These HSQC experiments thus revealed that

CXCL12 engages in heterodimer formation with the Gal-3 CRD. Since

the CRD F-face is located on the opposite side of the lactose-binding

b-sheet S-face (Fig 2D), this explains why lactose does not reduce

the binding of Gal-3 to CXCL12 and vice versa.

Using complex 6 (Fig 2E and F, Appendix Fig S6A) and decom-

position analysis (Appendix Fig S6B and C), we selected several

residues at the CXCL12/Gal-3 binding interface, mutated those resi-

dues in silico, and performed MD simulations to calculate BFE

(Appendix Table S1). Whereas some Gal-3 mutants showed rela-

tively small energetically favorable changes (e.g., K210D, Q220D,

Q220E) in binding CXCL12, others showed highly unfavorable ener-

getics (R168A, E185A, H217A, Q220A, Q220K, Q220R, N222A).

Several positively charged residues in CXCL12 are located at the

interface with Gal-3 (Fig 2F, left panel); Q220 of Gal-3 is one of

them, such that introducing a negatively charged residue (i.e., gluta-

mate) at that position (i.e., Q220E) might promote favorable electro-

static interactions and a more negative ΔG value as obtained

in silico (Appendix Table S1). On the other hand, N160 lies on the

opposing, non-interacting S-face in Gal-3 and is known to contribute

to carbohydrate binding (Fig 2F, right panel).

For empirical validation of our model, we used site-directed

mutagenesis to produce several mutants and assess effects on

heterodimer formation. Q220E in NMR and N160A in ligand blots

and SPR were used as controls. Three Gal-3 CRD mutants (Q220E,

Q220K, and H217A) were selected to assess their effects on HSQC

spectra of 15N-labeled CXCL12 when examining mixtures. Even

though all HSQC spectra look highly similar, analysis of the data

could reveal distinct differences. Figure EV3 shows chemical shifts

of 15N-labeled CXCL12 with each of these Gal-3 CRD mutants.

These maps show the same trends as observed with WT Gal-3 CRD.

Although this indicates that WT Gal-3 CRD and its mutants interact

with CXCL12 in the same way, the magnitudes of Δd changes are

different. Compared to WT Gal-3, Q220E Δd values are slightly

increased (Fig EV3A), whereas those for Q220K and H217A are

decreased (Fig EV3B and C). CXCL12 sequence-averaged Δd values

are 0.0061 ppm for WT Gal-3 CRD, 0.0073 for Q220E, 0.0036 for

Q220K, and 0.0048 for H217A. Smaller chemical shift changes

usually indicate weaker intermolecular interactions [39]. Here,

average Δd values suggest slightly stronger binding between

CXCL12 and Q220E, and weaker binding between CXCL12 and

Q220K and H217A. These trends parallel those observed in our MD-

based free energy calculations, which yielded ΔG values of

�50 kcal/mol for WT Gal-3 CRD, �58 kcal/mol for Q220E,

�31 kcal/mol for Q220K, and �38 kcal/mol for H217A

(Appendix Table S1).

Densitometric analysis of CXCL12 binding to variants of Gal-3

(Appendix Fig S7A) and Gal-3 CRD (Appendix Fig S7B) demon-

strates that residues N222 and E185 are indeed involved in the inter-

action with CXCL12, whereas N160 is not. Similarly, the affinity of

CXCL12 injected over sensor chips with immobilized Gal-3 mutants

R168A, E185A, H217A, and Q220K was reduced, whereas the affin-

ity of N160A was not (Appendix Fig S8A–H). In addition, Gal-3

mutant binding to the N-glycans of a common galectin binder, i.e.,

the glycoprotein asialofetuin (ASF), was only impaired in the case

of N160A that showed no significant effect on heterodimer forma-

tion (Appendix Fig S8I–L), which supports our findings that

CXCL12/Gal-3 heterodimer formation is not significantly affected by

glycan binding (Appendix Fig S1A and B).

Gal-3-mediated inhibition of CXCL12-induced
leukocyte migration

We next investigated the functional consequences of CXCL12:Gal-3

heterodimerization. Initially, we examined whether Gal-3 affects

CXCL12-induced migration of Jurkat T cells, and discovered that

both Gal-3 and Gal-3 CRD inhibited chemotaxis in a dose-dependent

manner (Fig 3A and B). In contrast, Gal-1 only inhibited migration

at 1 lM (Fig 3C). These results with Jurkat cells were replicated

using primary cells, i.e., activated human CD4+ T cells (Fig 3D). A

bell-shaped chemotaxis curve was observed upon increasing the

◀ Figure 2. Formation of the CXCL12/Gal-3 CRD heterodimer.

A, B Expansions of 1H–15N HSQC spectra are overlaid, and Dd values are plotted vs. the amino acid sequences, along with secondary structures: (A) 10 lM 15N-enriched
CXCL12 alone (black peaks) and in the presence of 330 lM Gal-3 CRD (red peaks; assignments reported by Murphy et al [74]) and (B) 30 lM 15N-enriched Gal-3
CRD alone (black peaks) and in the presence of 500 lM CXCL12 (red peaks; assignments for Gal-3 reported by Ippel et al [34]).

C–E X-ray crystal structures are depicted (C) for the CXCL12 homodimer (PDB access code 4UAI; monomer in magenta) and (D) for Gal-3 CRD bound with lactose (PDB
access code 1A3K; in light green). (E) The energy-minimized structure of the CXCL12/Gal-3 CRD heterodimer was calculated by MD simulations. Residues with the
largest Dd values in HSQC spectra are highlighted in red (2SD-1SD) and orange (1SD-mean).

F A model structure of the CXCL12/Gal-3 CRD heterodimer interface is shown with Gal-3 CRD in light green, the CXCL12 monomer in magenta, mutated residues in
red, and hydrogen bonds as dashed orange lines.
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concentration of CXCL12, with the height of the curve being signifi-

cantly reduced in the presence of 0.1 nM Gal-3 CRD (Fig 3 E and F).

Consistent with our concept, the CXCL12 chemotaxis curve with

Gal-1 remained unchanged even in the presence of 100 nM lectin

(Fig 3G). Because the affinity of CXCL12 for Gal-1 is lower than that

for Gal-3 and Gal-1 has no apparent effect on chemotaxis, we

assumed that chemotactic inhibition resulted from the physical

interaction between Gal-3 and CXCL12. Galectins alone at 1 lM had

no effect on Jurkat cell migration or viability (Fig 3H and I), consis-

tent with a previous report [40].

Extending the scope of our investigation to other CXCR4-expres-

sing cell types, we found that Gal-3 and Gal-3 CRD also inhibited
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Figure 3. Gal-3-mediated inhibition of CXCL12-induced leukocyte migration in vitro.

A–C Jurkat T cells migrated in the presence of 10 nM CXCL12 with increasing concentrations of (A) Gal-3, (B) Gal-3 CRD, and (C) Gal-1 (A–C: n = 4).
D Human CD4+ T cells migrated in the presence of 10 nM CXCL12 alone and with 10 nM Gal-3 (dark green), Gal-3 CRD (light green), and Gal-1 (blue, n = 3).
E, F (E) Jurkat T cells migrated to increasing concentrations of CXCL12 alone (black) and CXCL12 in the presence of 0.1 nM of Gal-3 CRD (light green). (F) The inhibitory

effect of Gal-3 CRD is shown as percentage of the chemotactic effect of CXCL12 (E, F: n = 3).
G Jurkat T cells were allowed to migrate in the presence of CXCL12 at increasing concentrations alone and with 0.1 nM Gal-1 or 100 nM Gal-1 (n = 3).
H Jurkat T cells did not migrate in the sole presence of 1 nM to 1 lM Gal-3, Gal-3 CRD (both n = 5), or Gal-1 (n = 4).
I The viability of Jurkat T cells was assessed after incubation with 1 lM CXCL12 alone and in the presence of Gal-3, Gal-3 CRD, and Gal-1 (n = 2).
J, K (J) THP-1 cells and (K) neutrophils migrated in the presence of 10 nM CXCL12 alone and with 10 nM Gal-3, Gal-3 CRD, and Gal-1 (J, K: n = 3).
L Human eosinophils migrated in the presence of 10 nM CCL26 alone and with 10 nM Gal-3, Gal-3 CRD, and Gal-1 (n = 3).
M CD4+ T cells migrated in the presence of 1 nM CCL17 alone and with equimolar concentrations of Gal-3, Gal-3 CRD, and Gal-1 (n = 4).

Data information: Cell migration is shown as absolute cell counts. Data represent the mean � SD from the indicated number of independent experiments each
performed in three technical replicates, and these were statistically analyzed by using (A–C, F–G, J) a single sample t-test or (D, I, J–M) by an unpaired t-test against the
effect of the chemokine alone or as indicated (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001).
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CXCL12-induced migration of monocytic THP-1 cells and neutro-

phils (Fig 3J and K), whereas Gal-1 caused only subtle effects.

Supporting the idea of a functional impact from chemokine-Gal-3

interactions, we found that Gal-3 and Gal-3 CRD (both of which

interact with CCL26) also inhibit CCL26-mediated migration of

human eosinophils (Fig 3L). On the other hand, these galectins have

no effect on CCL17-mediated migration of CD4+ T cells (Fig 3M),

consistent with our observation that Gal-3 and Gal-3 CRD do not

interact with CCL17 (Figs 1E, and EV1E and F, and EV2C).

Under physiological conditions, co-injection of Gal-3 and CXCL12

into mice completely abrogated CXCL12-induced intraperitoneal (IP)

recruitment of neutrophils (Fig 4A) and classical monocytes

(Fig 4B) after 4 h. To find out whether genetic deletion of Gal-3 had

an enhancing effect on IP recruitment of classical monocytes post-

injection of thioglycolate (TG) broth into the peritoneum, responses

in WT and KO mice were analyzed 18 h after stimulation with TG.

As Fig 4C documents, (i) TG induces cell recruitment into the peri-

toneum, (ii) its extent is partially reduced by the CXCR4 antagonist

to signal involvement of CXCR4-independent mechanisms, and (iii)

Gal-3 absence increases recruitment, pointing to involvement of

other chemokines as targets or of CXCR4-independent CXCL12

blocking. TG increased the amount of CXCL12 in the peritoneal

lavage (Fig 4D) and reduced CXCR4 expression on classical mono-

cytes (Fig 4E). The TG response was partly dependent on the pres-

ence of CXCR4, because pre-injection of the CXCR4 antagonist

AMD3465 attenuated the effect (Fig 4C). Therefore, we surmise that

these effects are attributable to the absence of CXCL12/Gal-3 inter-

actions in these Gal-3�/� mice.

In addition, we performed antibody-based proximity ligation

(PLA, Duolink�), demonstrating that CXCL12 and Gal-3 are in close

proximity on cells recruited to the peritoneum after TG injection,

and thus allowing for functional interactions under inflammatory

conditions (Fig EV4A and B). To further substantiate the formation

of CXCL12/Gal-3 heterodimers in vivo, we stained Gal-3 and

CXCL12 simultaneously in frozen sections of lymph nodes from WT

and CXCL12�/� mice (Fig EV4C and D). Here, we found partial co-

localization of Gal-3 and CXCL12 that was primarily detectable at

the lymph node capsule where CXCL12-expressing lymphatic

endothelial cells come into close proximity with subcapsular sinus

macrophages (SSM). Further evidence for close contacts between

CXCL12 and Gal-3 in situ was obtained by antibody-based PLA

staining of lymph nodes extracted from WT and CXCL12�/� mice

(Fig EV4E), indicating the potential for CXCL12 and Gal-3 to directly

interact under physiological conditions.

To further make the case for this new type of pairing between

inflammatory mediators, we found that the weaker interacting Gal-3

mutants E185A and N222A and Gal-3 CRD mutants E185A and

N222A did not inhibit CXCL12-mediated chemotaxis up to 100 nM

(Fig 5A and B). Similarly, CXCL12-mediated Jurkat cell migration

was not inhibited by other weaker binding Gal-3 and Gal-3 CRD

mutants, namely R168A, H217A, and Q220K (Fig 5C and D). In

contrast, Gal-3 CRD mutant N160A, Gal-3 mutant Q220E, and Gal-3

CRD mutant Q220E (Fig EV3A) that did bind CXCL12 comparable to

WT (Appendix Figs S7B, S8B, and Fig EV3A) did have an inhibitory

effect (Fig 5C and D).

The observation that variants of Gal-3 at 1 lM inhibited chemo-

taxis independent of CXCL12, whereas Gal-3 CRD and its mutants

E185A and N222A did not completely block cell migration (Fig 5A

and B), may be explained by considering that the variants of full-

length Gal-3 induce cell aggregation at 1 lM, an effect that was

blocked by lactose (Fig 5E). We also performed transmigration

assays with lactose (as well as with the disaccharide cellobiose that

does not bind galectins) and with cells pre-treated with 1-deoxy-

mannojirimycin hydrochloride (DMJ) that reduces the level of

galectin-binding ligands on the cell surface by a shift to high-

mannose-type N-glycans. As expected, the effect of Gal-3 and Gal-1
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Figure 4. Peritoneal recruitment of leukocytes by CXCL12 in the presence of Gal-3.

A, B The peritoneal recruitment of (A) CD45+/CD115�/Ly6G+ neutrophils and (B) CD45+/CD115+/Ly6Chi classical monocytes in C57BL/6J mice was assessed 4 h after
intraperitoneal (IP) injection of 500 nM CXCL12 alone (black) and in the presence of 50 nM Gal-3 (dark green; A, B: n = 7 mice).

C The peritoneal recruitment of classical monocytes after IP injection of PBS (n = 6) or TG in C57BL/6J WT (dark green, n = 10 mice) and Gal-3�/� (black, n = 5 mice)
mice was assessed after 18 h. Where indicated, the mice received an IP injection of CXCR4 antagonist AMD 3465 12 h prior to the experiment.

D The concentration of CXCL12 concentration was determined by ELISA on the peritoneal lavage normalized with levels from the mesenterium (n = 4 mice).
E CXCR4 expression levels on Ly6Chi monocytes of the blood and the peritoneal lavage after 18 h of TG stimulation were determined by flow cytometry and indicated

as mean fluorescence intensity (MFI) (n = 4 mice).

Data information: Cell migration to the peritoneum is shown as cells/ml lavage. Data represent the mean � SD from the indicated number of mice and were statistically
analyzed by using the unpaired t-test, as indicated (*P ≤ 0.05, **P ≤ 0.01).
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at 1 lM was markedly reduced by the presence of lactose and DMJ

(Fig 5F and G), whereas the effect of Gal-3 CRD was unaffected

(Fig 5H). Because DMJ alone did not affect CXCL12-induced chemo-

taxis (Appendix Fig S9A), we assume that abrogation of chemotaxis

at 1 lM galectin concentration was caused by cell aggregation due

to galectin oligomerization and cell–cell cross-linking.

Lactose and DMJ have no effect on CXCL12-mediated chemotaxis

with Gal-1 (Appendix Fig S9B). However, they do reverse the
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Figure 5. Inhibition of CXCL12-induced leukocyte migration by Gal-3 mutants and the role of galectin/glycan interactions in vitro.

A, B Jurkat T cells migrated in the presence of 10 nM CXCL12 with increasing concentrations of E185A (orange, n = 4) and N222A (red, n = 5) mutants of (A) Gal-3 and
(B) Gal-3 CRD.

C, D Jurkat T cells migrated in the presence of 10 nM CXCL12 with 10 nM (C) Gal-3 and (D) Gal-3 CRD mutants as indicated (C, D: n = 3).
E Aggregation of Jurkat T cells in the presence of 1 nM to 1 lM Gal-3 and Gal-1 alone and with 70 mM lactose, and Gal-3 CRD, was determined by flow cytometry

(n = 4).
F–J Jurkat T cells migrated with 10 nM CXCL12 alone and in the presence of (F) 1 lM Gal-3, (G) Gal-1, (H) Gal-3 CRD, and (I) 0.1 nM Gal-3 and (J) Gal-3 CRD in the

presence of 70 mM lactose or cellobiose or after treatment of cells with 150 lM DMJ.

Data information: Cell migration is shown as absolute cell counts. Data represent the mean � SD from the indicated number of independent experiments each
performed in three technical replicates, and these were statistically analyzed by using (A, B, E) a single sample t-test or (C, D, F–J) by an unpaired t-test against the effect
of the chemokine alone or as indicated (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001).
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inhibitory effect of WT Gal-3 on CXCL12-mediated chemotaxis

(Fig 5I). The reason they also do not have an effect with Gal-3 CRD

(Fig 5J) is likely due to the presence of the NT in WT Gal-3, which

complicates interpretation due to additional and unknown effects at

the cell surface. In solution, the Gal-3 NT interacts transiently with

the CRD F-face [34], a site of interaction that partially overlaps with

the CXCL12 binding site on the lectin. Based on increased line

broadening with WT Gal-3 in the presence of lactose, we know that

lactose enhances NT binding to the CRD F-face, which results in

attenuated CXCL12 binding to the lectin. Because DMJ treatment

attenuates binding of galectins to glycans on the cell surface, it may

be that some of them are necessary for optimal CXCL12/Gal-3

heterodimer formation and ensuing effects on the cell surface.

Furthermore, we found that the small molecule CXCR4 agonist

(NUCC-390) induces CXCL12-independent chemotaxis [41] that is

unaffected by the presence of Gal-3 or Gal-3 CRD (Appendix Fig

S9C).

For insight into the mechanism of Gal-3-mediated inhibition of

CXCL12 function, we investigated effects of the galectin on CXCR4-

mediated Gi signaling and b-arrestin 2 recruitment to CXCR4, a

process that is relevant to chemotaxis [42].

Inhibition of CXCL12-induced CXCR4 signaling by Gal-3 CRD

HEK 293 cells were transfected with CXCR4 and a luciferase-derived

intracellular cAMP sensor. As expected, CXCL12 alone reduced

cAMP levels reflecting Gi signaling, and Gal-3 CRD inhibited the

effect from the chemokine over time (Fig 6A) and in a concentra-

tion-dependent manner (Fig 6B). In addition, we transfected HEK

293 cells with Renilla sp. luciferase II (RlucII)-conjugated CXCR4

and eYFP–b-arrestin 2 constructs to assess b-arrestin recruitment to

the receptor by bioluminescence resonance energy transfer (BRET).

CXCL12 caused recruitment of b-arrestin 2 that was prevented by

Gal-3 CRD (Fig 6C). Unexpectedly, the effect of Gal-3 CRD was not

accompanied by reduced internalization of CXCR4 (Fig 6D), which

is mediated by b-arrestin recruitment [42]. However, it has been

reported that chemokine receptors may signal in a biased fashion,

with b-arrestin recruitment and internalization being uncoupled

[42–44].

To confirm that Gal-3 CRD exerts its effect on CXCL12 via

CXCR4, we performed cell-binding experiments with CXCL12 and

Gal-3 using Jurkat T cells. First, we incubated the cells with

CXCL12 and Gal-3, and demonstrated co-localization of the two

proteins by an antibody-based PLA (Fig 6E). Next, we incubated

the cells with fluorescently labeled Gal-3 CRD and unlabeled

CXCL12 in the presence of AMD 3100, a competitive CXCR4 antag-

onist, and recorded fluorescence intensity by flow cytometry [45].

We found that the signal from the galectin in the presence of the

chemokine was inhibited by AMD 3100 (Fig 6F). Furthermore,

when we blocked direct binding of Gal-3 CRD to the cell surface

with lactose, we observed an increase in the Gal-3 CRD signal

upon addition of CXCL12. Once again, this effect was inhibited by

AMD 3100 (Fig 6G). In contrast, unlabeled Gal-3 CRD did not

displace fluorescently labeled CXCL12 from the cell surface

(Fig 6H). Taken together, these findings suggest that Gal-3 CRD

interacts with CXCL12, either having an indirect effect on CXCR4

via CXCL12 or directly binding to CXCL12 and CXCR4. Since

glycan binding to the Gal-3 CRD is not required for the inhibition

of chemotaxis (Fig 5H and J), the involvement of an additional

Gal-3 co-receptor is unlikely.

To test these hypotheses, we performed MD simulations of the

CXCL12/Gal-3 CRD heterodimer interacting with CXCR4. Since the

structure of CXCL12 bound to CXCR4 has so far not been deter-

mined, we superimposed complex 6 of the heterodimer (Fig 2E and

F, Appendix Fig S6A) onto the structure of vMIP-II when associated

with CXCR4 and removed the docked vMIP-II from the complex.

The obtained model was then subjected to energy minimization in

the course of a MD run over a period of 50 ns with coordinates and

orientation from another monomer of CXCR4 (Fig EV5). The

obtained structure illustrates that CXCL12’s ligand property is not

impaired by the Gal-3 CRD; that is, binding of the CXCL12/Gal-3

CRD heterodimer to CXCR4 is sterically possible. It may even be

favored by direct interactions between Gal-3 CRD and CXCR4. This

model obtained by MD simulation clearly warrants further investi-

gation. Nonetheless, the experimental and computational lines of

evidence converge to exclude galectin-dependent blocking of

chemokine–receptor interaction for reducing CXCL12 activity as

probed.

Discussion

Chemokines and galectins regulate leukocyte recruitment and can

be simultaneously upregulated under inflammatory conditions. In

fact, in osteoarthritis, chemokines belong to a set of proteins that

are upregulated in a NF-jB-dependent manner by Gal-3 [46]. Build-

ing on our discovery that CXC and CC chemokines form heterodi-

mers with functional significance, we established a map of the

chemokine interactome that illustrates numerous interactions [15].

Moreover, we recently reported on galectin/galectin heterodimer

formation [33]. Due to the functional and structural similarities

between chemokines and galectins, we hypothesized that members

of both these effector molecule families may themselves interact to

form chemokine/galectin heterodimers with functional conse-

quences.

In the present study, we validated this hypothesis by demonstrat-

ing that Gal-1 and Gal-3 specifically interact with several chemoki-

nes in solid-phase immunoassays and SPR. When comparing the

function of interacting and non-interacting chemokines, it is worth-

while to note that some chemokines primarily involved in later

stages of inflammation, such as CCL22, CCL24, CCL26, and CXCL12,

interact with the galectins, whereas chemokines, such as CCL2,

CCL17, or CXCL8, that have been implicated in the initiation of

inflammation [11,47–49] do not bind. Therefore, we propose a new

concept that chemokine/galectin heterodimers may play a role in

later stages of inflammatory processes or chronic inflammation.

Focusing on Gal-3 and CXCL12 that are both often found to be

co-expressed and involved in inflammatory processes, we

performed HSQC studies that revealed formation of a CXCL12/Gal-3

heterodimer in which Gal-3 binds to CXCL12 via the F-face of its

CRD. The opposing glycan-binding S-face and the NT of Gal-3 are

not part of the primary interaction domain. NMR analysis of the

contact site between CXCL12 and Gal-1 or full-length Gal-3 was

impeded by either intramolecular conformational changes or

homodimerization. Viewed from the chemokine perspective, the

interaction site includes the first b-strand (residues 17–27) and the

ª 2020 The Authors EMBO reports e47852 | 2020 9 of 17

Veit Eckardt et al EMBO reports



A B C

D

0.01

0.02

0.03

0.04

m
ea

n 
ne

t B
R

E
T 

ra
tio

10-4 10-3 10-2 10-1 100 101

Gal-3 CRD [nM]

R
LU

 (n
or

m
 to

 b
as

el
in

e)

Stimulation Forskolin

= CXCL12

= 10 nM CXCL12
+ 10 nM Gal-3 CRD

= No stimulus

100

80

60

40

20

0
0 20 40 60

Time [min]

M
FI

 A
P

C
 (%

ba
se

lin
e)

0.4

0.6

0.8

1.0

 R
LU

 (n
or

m
 to

 b
as

el
in

e)

10-4 10-3 10-2 10-1 100 101

Gal-3 CRD [nM]

0.2

0 0

AMD +

Gal-3 CRDA

CXCL12
+ ++
+ +

0

500

1000

1500

2000

M
FI

 A
LE

X
A

 5
55

 

Lactose + + + +

*

AMD +

Gal-3 CRDA

CXCL12
+ ++
+ +

Lactose

+

+

6000

5500

2000
1500
1000
500

ns
ns

M
FI

 A
LE

X
A

 5
55

 

*

E

F G

M
FI

 F
IT

C

Gal-3 CRD [nM]

+ CXCL12F 100 nM

0

500

1000

wo
CXCL12F

CXCL12F
alone

H

ns

0
100 101 102 103

8

6

4

2

1

0 20 40 60 80
Time [min]

= CXCL12

= CXCL12
+ Gal-3 CRD

10

= 10 nM Gal-3 CRD

5000

= CXCL12

= 10 nM CXCL12 + Gal-3 CRD

= No stimulus

= Gal-3 CRD

* * **
* *

ns

ns
ns ns

ns ns
ns

ns
ns

ns
ns

ns ns

ns

= CXCL12

= 10 nM CXCL12 + Gal-3 CRD

= No stimulus

= Gal-3 CRD

ns ns ns ns ns ns

*
* * *

ns

ns

anti-CXCL12 + anti-Gal-3
          

wo 1° antibodies
          

mouse isotype + anti-Gal-3
          

anti-CXCL12 + rabbit isotype
          

wo CXCL12 + Gal-3
          

ns ns
ns ns

ns

Figure 6. Inhibition of CXCL12-induced CXCR4 signaling by Gal-3 CRD.

A HEK cells transfected with a luminescent cAMP sensor were incubated with 10 nM CXCL12 alone and in the presence of 10 nM Gal-3 CRD followed by stimulation
with forskolin, an activator of adenylate cyclase. Results are shown as luminescence relative to baseline (RLU, example of n = 3).

B The effect of 10 nM Gal-3 CRD upon stimulation with 10 nM CXCL12 prior to forskolin stimulation was tested. Control experiments were performed as indicated
(n = 3, four technical replicates).

C HEK cells transfected with a RlucII-conjugated CXCR4 and an eYFP–b-arrestin 2 construct were stimulated with 10 nM CXCL12 alone and in the presence of 10 nM
Gal-3 CRD. Control experiments were performed as indicated. Results are given as the net BRET ratio (i.e., ratio of emissions at 535/485 nm minus the ratio of mock
cells, n = 5, three technical replicates).

D Internalization of CXCR4 with 10 nM CXCL12 alone and in the presence of 10 nM Gal-3 CRD was assessed by incubation with an APC-conjugated anti-CXCR4
antibody (baseline signal = 100%, n = 8, two technical replicates).

E 100 nM CXCL12 and Gal-3 were added to Jurkat T cells, and their co-localization was assessed on the cell surface by PLA. Control experiments were performed as
indicated (representative example of n = 3). White scale bar: 10 lm.

F, G Jurkat T cells were incubated with 100 nM of Gal-3 CRD Alexa Fluor 555 alone, with 10 lM AMD 3100, with 100 nM CXCL12, or with CXCL12 and AMD 3100.
Experiments were performed (F) without and (G) in the presence of 70 mM lactose (F, G: n = 3, two technical replicates).

H Jurkat T cells were incubated with 100 nM CXCL12 FITC alone and with increasing concentrations of Gal-3 CRD as indicated (n = 4, two technical replicates).

Data information: Data represent the mean � SD of the indicated number of independent experiments and were statistically analyzed by (F, G) unpaired t-test or (B–D,
H) single sample t-test against the effect of the chemokine alone or as indicated (*P ≤ 0.05, **P ≤ 0.01).
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C-terminal a-helix (residues 59–68), as well as the second b-strand
and 40s loop. Of note, these residues comprise the CXCL12 homo-

dimer interface in the first b-strand and the C-terminal a-helix [50].

Although acidic conditions shift the monomer–dimer equilibrium

toward monomer, Gal-3 may interfere with CXCL12 homodimeriza-

tion and thus affect CXCR4 signaling under more physiological

conditions [38,51,52]. Of particular note, the CXCL12/Gal-3 inter-

face contains the GAG-binding motif of CXCL12, which primarily

involves the first b-strand and 40s residues. Implying physiological

significance, this region is reported as being required for chemokine

presentation by endothelial cell GAGs [52,53]. Leading to an anti-

chemokine effect, Gal-3 may specifically block this binding, a

scenario that may impact on chemokine activity, as an antibody

does [54]. The finding that heparin prevents CXCL12 from binding

to Gal-3 CRD points into this direction so that interactions of

CXCL12 with cognate GAGs and Gal-3 CRD are mutually exclusive.

Studying the effect of Gal-3 on CXCL12 activity in a GAG-deficient

cell line will be an approach to contribute to answer the arising

question on the role of GAGs in situ for reducing CXCL12 activity by

the galectin.

Here, we have provided initial support for our hypothesis that

heterodimer formation affects chemokine function by performing

transmigration assays and using a murine model of peritonitis.

Whereas Gal-3 inhibited CXCL12-induced chemotaxis, Gal-1 (that

exhibited markedly reduced affinity in SPR), the non-interacting

chemokine CCL17 and the interaction-deficient mutants Gal-3

R168A, Gal-3 E185A, Gal-3 H217A, Gal-3 Q220K, and Gal-3 N222A

had a reduced effect, if any. At this moment, it is puzzling that the

effective concentrations of Gal-3 seem unexpectedly low and let it

appear that a substantial portion of CXCL12 may not be active.

Concerning the first point, should the chemokine be arranged in

clusters at high density (presenting multivalency to the lectin), then

a gradient of fractional affinity constants could arise with very high

affinity for the first step, as documented for Gal-3 CRD association

with a nonavalent glycoprotein [55]. Galectins bind to the multiva-

lent glycoprotein asialofetuin with enhanced affinities and a gradi-

ent of decreasing binding constants [55]. With respect to low

effective chemokine concentrations, although not yet mechanisti-

cally fully understood, it appears reasonable to postulate the follow-

ing: that competition between galectins and GAGs (these glycan

chains are discussed as direct or indirect factors for affecting chemo-

kine availability [56]) for the chemokine may have a tangible bear-

ing on CXCL12 activity, as also noted above.

On the cellular level, we showed that Gal-3 CRD affects CXCR4

signaling without interfering with receptor internalization. These

results, together with the computational modeling of the ternary

complex, suggest that the CXCL12/Gal-3 heterodimer binds CXCR4

rather than preventing the chemokine from interacting with its

receptor. The possibility that CXCL12, when associated with the

Gal-3 CRD, “may not be as potent as CXCL12 (alone) in triggering

intracellular signals” (as suggested by a reviewer) can establish a

mechanism toward galectin-mediated reduction of chemokine activ-

ity.

The biological functions of extracellular Gal-3 that have so far

been described mostly depend on the glycan-binding capacity of its

CRD and the formation of aggregates (lattice) with counterreceptors

involving the CRD and possibly its NT [57,58]. To give an example

from immune regulation, Gal-3 impedes diffusion of the

glycosylated cytokine interferon-c by cross-linking the cytokine with

components of the extracellular matrix in a glycan-dependent

manner [59]. Thus, Gal-3 can inhibit chemokine effects through

both direct and indirect mechanisms. Moreover, Gal-3 induces

neutrophil expression of CXCL8 in a glycan-dependent manner.

Cleavage of its NT by neutrophil elastase renders the resulting Gal-3

CRD non-functional [60]. Our study has broadened this functional

profile by demonstrating that regions of extracellular Gal-3 that are

not involved in carbohydrate binding may in fact modulate

inflammation. Our observations suggest that the Gal-3 CRD may

have an anti-inflammatory role that could be exploited therapeuti-

cally. These findings do not exclude S-face-dependent effects of the

galectin CRD in a physiological setting. Whether both sites operate

simultaneously should prompt further studies. Since homodimeric

Gal-3 variants have recently become available [61], this protein and

also Gal-1/3 heterodimers offer perspectives on how to resolve this

issue and may inspire biomedical efforts.

Since it was shown that CXCL12 and Gal-3 are simultaneously

upregulated under chronic inflammatory conditions, proinflamma-

tory Gal-3 may specifically block excessive or persistent inflamma-

tion by interfering with CXCL12 activity. Proteolytic Gal-3

truncation to its CRD by matrix metalloproteinases may be a control

mechanism that attenuates or resolves inflammation. This assump-

tion inspires the idea that a multimeric Gal-3 CRD construct (with

active CRD or a mutant) may efficiently block CXCL12 activity

in situ, while Gal-1 oligomerization appears to increase aspects of

its biomedical activity [62,63]. The interaction of a lectin with a

non-glycan counterreceptor, together with such engineering, can

thus have a biomedical potential [64]. As a promising target,

endothelial cell-derived CXCL12 drives atherosclerosis which under-

lies coronary heart disease [65,66]. Considering our discovery that

Gal-3 is a potential antagonist of CXCL12, the present evidence for

chemokine/galectin heterodimerization will prompt further investi-

gation into the inter-family interactome and its pathophysiological

relevance. Since Gal-3 fulfills criteria of an alarmin (or damage-asso-

ciated molecular pattern) and a mediator of autophagy [67,68], the

detection of CXCL12 binding will also warrant to explore its capacity

to engage in pairing in respective processes.

Materials and Methods

Galectins, chemokines, and asialofetuin

Galectins
Gal-1 and Gal-3 were produced using Escherichia coli BL21(DE3)

pLysS cells and the pGEMEX-1 expression vector (Promega). Cells

were cultured at 37°C until an optical density600 value of 0.6–0.8

was reached; then, protein production was induced by 100 lM of

IPTG (isopropyl-b-D-thiogalactoside) and cultivation continued at

37°C (Gal-1) or 22°C (Gal-3) for 16 h. Proteins were purified from

extracts by affinity chromatography on lactosylated Sepharose 4B as

crucial step, and lactose was removed by gel filtration [69]. Isotopic

labeling of full-length Gal-3 (residues 1–250) for NMR-spectrosco-

pical analysis was done by using [15N]NH4Cl as medium additive

for production at 30°C for 16 h in the presence of 100 lM IPTG

[34]. The Gal-3 CRD (residues 108–250) was generated by on-bead

collagenase treatment (1 mg/10 mg of protein) for 16 h at 4°C [70].
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One-site Gal-3 mutants (N160A, E185A, and N222A) were obtained

by mutagenesis of the pGEMEX-1-Gal-3 and pGEX-6P-2-Gal-3

vectors using the QuikChange Mutagenesis Kit (Agilent Technolo-

gies, Waldbronn, Germany). All proteins were routinely checked for

purity by one- and two-dimensional gel electrophoresis under dena-

turing conditions and for activity by solid-phase/cell-binding assays.

Chemokines
For the array of the solid-phase immunoassay, chemokines were

purchased from PeproTech (Rocky Hill, NJ, USA). WT human

CXCL12a was bacterially expressed using a codon-optimized cDNA

(Genscript, Piscataway, NJ, USA) as a thioredoxin-His-tagged fusion

protein from the pET-32(+) vector with an enterokinase cleavage

site at the N-terminus. The plasmid was transformed into E. coli

BL21(DE3) cells and grown at 37°C in either Luria–Bertani or 15N-

enriched Spectra 9 medium (Cambridge Isotope Laboratories, MA,

USA). CXCL12a was purified from inclusion bodies. After separation

using a HisTrap HP column (GE Healthcare, Chicago, IL, USA), the

sample was dialyzed against 50 mM Tris (tris(hydroxymethyl)

aminomethane) buffer (pH 8), filtered, and loaded on a Heparin HP

column. The bound protein was eluted in 50 mM Tris/2 M NaCl

(pH 8) and further dialyzed against 50 mM Tris/2 mM cysteine (pH

8) before cleavage using Enterokinase (Novagen, Merck, Darmstadt,

Germany). The cleaved protein was purified using a Mono S 5/50

GL column (GE Healthcare). The fractions containing the protein

were pooled, dialyzed against 1% acetic acid, lyophilized, and

stored at �20°C until further use. The correct mass of CXCL12a was

confirmed by mass spectrometry.

Conjugation of proteins with biotin and fluorescent labels
Fluorescent and biotinylated proteins were prepared with the

succinimidyl ester of Alexa Fluor 555 and the N-hydroxysuccinimide

ester derivatives of FITC and biotin (all from Thermo Fisher Scien-

tific, Waltham, MA, USA) according to the manufacturer’s protocol.

The conjugate was separated from the reagent using Sephadex G25

in PD-10 Desalting Columns (GE Healthcare). Preservation of activ-

ity was checked by cell signaling, hemagglutination, and binding

assays using (neo)glycoproteins as matrix.

Asialofetuin
Desialylation of fetuin from fetal calf serum (Sigma-Aldrich, Tauf-

kirchen, Germany) was performed by hydrolysis in 0.05 N sulfuric

acid at 80°C for 1 h, and the product (ASF) was purified by fast

protein liquid chromatography on a Superdex 75 column (GE

Healthcare).

Cells, cell culture, and cell transfection

Jurkat T cells (clone E6-1, ATCC) and human monocytic THP-1 cells

(no. ACC-16, DSMZ) were cultured as recommended by the

supplier.

Human CD4+ T cells
PBMCs were separated from whole blood by density gradient

centrifugation. CD4+ T cells were isolated from PBMCs with the

Dynabeads Untouched Human CD4+ T Cells Kit, stimulated with

the Dynabeads Human T-Activator CD3/CD28 Kit (both from Invit-

rogen, Thermo Fisher Scientific) for 3 days, and expanded in the

presence of the Dynabeads with 30 U/ml human IL-2 for another

3 days.

Human eosinophils
Whole-blood components were separated by density gradient

centrifugation. The erythrocyte pellet was lysed, and eosinophils

were isolated with the Eosinophil Isolation Kit in an unlabeled

manner (Miltenyi, Bergisch Gladbach, Germany).

Human neutrophils
Neutrophils were separated from whole blood by density gradient

centrifugation.

HEK 293 cell transfection for Gi signaling
The sequence of the luciferase-cAMP binding site fusion protein

from the pGloSensor-20F vector (Promega) was amplified and

ligated into a bicistronic pIRESneo vector (Clontech, Mountain

View, CA, USA) to obtain the reporter gene plasmid. The pcDNA5/

FRT/TO vector (Invitrogen) was used to express the CXCR4 receptor

constructs (cDNA Resource Center, Bloomsburg University, Blooms-

burg, PA, USA) [71]. Flp-In T-REx 293 cells (HEK 293, Invitrogen)

were first stably transfected with the reporter plasmid using the Flp-

In system (Invitrogen) and EcoTransfect (OZ Biosciences, Marseille,

France). Stable clones were selected with 1 mg/ml geneticin. A suit-

able clone was then chosen as host cell line for stable overexpres-

sion of the CXCR4 construct using the Flp-In system with 250 lg/ml

hygromycin B for selection.

HEK 293 cell transfection for b-arrestin 2 recruitment
HEK 293 cell monolayers at 90% confluency on a 24-well plate were

transiently transfected with 0.05 lg/well CXCR4-RlucII construct

(Promega) and 0.2 lg/well eYFP–b-arrestin 2 construct or mock

plasmid with 1 ll EcoTransfect. After 24 h, the cells were trans-

ferred to a black 96-well plate.

Solid-phase immunoassays

100 ng samples of human chemokines or galectins were blotted

onto a nitrocellulose membrane, and incubated with 200 nM

biotinylated galectins or 120 nM CXCL12 overnight, signals devel-

oped with SA-HRP for 1 h, and added enhanced chemiluminescence

substrate (Thermo Fisher Scientific). Densitometric analysis of digi-

tal records was performed using the program ImageJ.

Cross-linking protein interaction analysis

Galectins were incubated with 1 mM BS3 or BS(PEG)5 cross-linkers

(both from Thermo Fisher Scientific) in 20 mM HEPES (pH 8.3) at

room temperature. After 10 min, CXCL12 was added and the

mixture further incubated for 1 h. The reaction was then stopped by

addition of 1 M Tris (pH 8). Samples were analyzed by SDS–PAGE

followed by silver staining according to the manufacturer’s instruc-

tions (Alphalyse, Odense, Denmark).

Surface plasmon resonance measurements

SPR experiments were performed on a Biacore X100 system (GE

Healthcare).
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Binding experiments
Biotinylated Gal-3 and Gal-1 were immobilized on SA sensor chips

at densities specified in the figure legends (Fig EV1E and G). Gal-3

CRD was immobilized using thiol-coupling chemistry on a NeutrA-

vidin (Thermo Fisher Scientific)-modified C1 sensor chip at the

specified density (Fig EV1F). 100 nM chemokines dissolved in

HEPES-buffered saline with EDTA and surfactant P20 (HBS-EP+)

were perfused at a flow rate of 30 ll/min for 3 min. The response

in resonance units (RU) was recorded 20 s after the end of the injec-

tion.

Kinetics experiments
Biotinylated (Gal-1 and Gal-3) and biotin-free (Gal-3, Gal-3 CRD,

and mutants) galectins and biotinylated asialofetuin were immobi-

lized on NeutrAvidin or using thiol- or amine-coupling chemistry

(Thermo Fisher Scientific) on C1 or SA sensor chips at surface densi-

ties specified in the figure legends (Figs 1F–H and EV2A–F, and

Appendix Figs S1A–C and S8A–L). CXCL12 and Gal-3 in HBS-EP+

were perfused for 1 min followed by a dissociation phase of 3 and

2 min for the chips with conjugated galectins and the chip present-

ing the glycoprotein ASF, respectively.

Nuclear magnetic resonance spectroscopy

NMR samples were prepared in 3-mm NMR tubes. Typically,

chemokine and galectin samples were buffer-exchanged and

concentrated into 20 mM sodium acetate buffer, pH 4.5, and

4.5 mM lactose through five ultracentrifugation steps over Amicon

Ultra-4 3-kDa filter devices (Merck, Darmstadt, Germany).

Mixtures of CXCL12 and Gal-3 CRD, Gal-3, or Gal-1 at defined

molar ratios were prepared from these stock solutions, and 5% (v/

v) D2O was added for field locking, together with a trace of DSS

as an internal chemical shift standard. 1H–15N HSQC experiments

with a flip-back pulse and decoupling in the presence of scalar

interactions, and nuclear Overhauser effect were recorded at 37°C

on Bruker Avance III HD 700- and 850-MHz spectrometers

equipped with cryogenically cooled triple resonance inverse

probes. Spectra were processed and analyzed using Bruker

TopSpin 3.2 and Sparky 3.114 software (T. D. Goddard, D. G.

Kneller, SPARKY 3, the University of California, San Francisco,

CA, USA). Resonance assignments of CXCL12 and Gal-3 CRD were

performed by 2D NOESY and 3D-edited NOESY spectra. Chemical

shift differences (Dd) induced upon binding were calculated as

follows: [(D1H)2]1/2 + [(0.25D15N)2]1/2 (in 1H ppm). DIntensity was

calculated as follows: 1 � Inti/Int0, where Inti is the resonance

intensity of resonances of CXCL12 or Gal-3 CRD in the presence of

the other component, respectively, and Int0 is the intensity of

CXCL12 or Gal-3 CRD resonances in its absence. The same experi-

mental procedure was used for Gal-1 and Gal-3 proteins, as well

as for Gal-3 mutants.

Molecular dynamics simulations

The CXCL12/Gal-3 CRD heterodimer was subjected to MD simula-

tions for 50 ns as described except applying Amber 14SB force field

with TIP3P water models using Amber16 [72]. MD simulations were

performed for 50 ns. Snapshots between 40 and 50 ns were

extracted for binding free energy calculation using the MM/GBSA

approach, and the BFE values were approximated from enthalpy

values as described [72]. Default parameters were applied for BFE

calculation, except using the generalized Born model 8 to compute

the free energy of solvation. Ternary complex modeling between

CXCL12, Gal-3 CRD, and CXCR4 was performed as described above.

PDB access codes are as follows: CXCL12 homodimer (4UAI), Gal-3

CRD (1A3K), vMIP-II bound to CXCR4 (4RWS), and CXCR4 homo-

dimer (3ODU).

Chemotaxis

Transwell migration
Chemotaxis assays were performed in triplicate with the number of

independent experiments as stated in each respective figure legend.

Chemokines and galectins in 230 ll of RPMI 1640/0.5% BSA were

pipetted into the bottom well of a Transwell-96 permeable support

(Corning, NY, USA) with 3.0 lm pore size for human granulocytes

and 5.0 lm for all other cell types. 105 cells in 70 ll were pipetted

on top of the filter and allowed to migrate for 2 h for primary cells

and 4 h for Jurkat and THP-1 cells. 20 ll of a 0.05 M EDTA solution

was added to the bottom well, and the plates were incubated for

another 15 min. The number of cells at the bottom of a well was

measured by flow cytometry of the cell suspension for 30 s at

medium speed (FACSCanto II, BD Biosciences, Franklin Lakes, NJ,

USA).

Cell aggregation

Jurkat T cells were incubated with the indicated concentrations of

galectins for 4 h and subsequently analyzed by flow cytometry

(FACSCANTO II). The forward scatter area (FSC-A) was plotted

against the forward scatter width (FSC-W) to discriminate between

singlets (low FSC-A, low FSC-W) and doublets/multiplets (high

FSC-A, high FSC-W).

Apoptosis

Cell viability was determined by fluorescence-activated cell scan-

ning with the FITC Annexin V Apoptosis Detection Kit with 7-AAD

(7-amino-actinomycin D) (BioLegend, San Diego, CA, USA).

Mice

All animal experimental procedures were designed and conducted

in agreement with the German Animal Welfare Legislation, and

were reviewed and approved by local authorities (Regierung von

Oberbayern, Munich, Germany). All mice were housed in IVC units

and maintained on a 12-h dark/12-h light cycle. C57BL/6J mice

were from Janvier (Le Genest-Saint-Isle, France), and tamoxifen-

inducible general Cre-deleter C57BL/6-Gt(ROSA)26Sortm9(Cre/ESR1)Arte

(CreERT2) mice were from Taconic (TaconicArtemis GmbH,

Cologne, Germany) and crossed with CXCL12
flox/flox

mice (on the

Apoe�/� background), which were generated as described [15].

CXCL12�/� and WT mice were littermate offsprings from

CreERT2+, CXCL12flox/flox, or CreERT2+CXC12wt/wt mice after

application of tamoxifen. Mice deficient for Lgals3 (coding for Gal-

3) were from EUCOMM (C57BL/6N-Lgals3tm1a(EUCOMM)Wtsi/H,

Strain ID EM:06800) [73].
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Murine model of peritonitis
500 nM CXCL12 alone, or in combination with 50 nM Gal-3, in PBS

was injected into the peritoneal cavity of C57BL/6J mice (Janvier).

To ensure efficacy in this physiological system, the chemokine/

galectin molar ratio (10:1) was used. Mice were euthanized after

4 h. HBSS/0.3 mM EDTA/0.06% BSA was first injected into the

peritoneal cavity, and then collected.

Peritonitis was induced by IP injection of 0.5 ml of 4% sterile

thioglycolate broth. C57BL/6J mice were pre-treated IP with 125 lg
of the CXCR4 antagonist AMD3465 (Tocris Bioscience, Bristol, UK)

12 h earlier. The peritoneal lavage was obtained after 18 h.

Cells were stained with a mixture of fluorescent antibodies and

analyzed by flow cytometry. Only single cells (FSC-H/FSC-Wlow)

were gated. B cells (B220+) and macrophages (F4/80+) were

excluded, and classical monocytes (CD115+/Ly6Chi) and neutro-

phils (CD115�/Ly6G+) were gated from CD45+ (Appendix Fig

S10A). Percentages of leukocyte subsets of untreated and TG-treated

mice are indicated (Appendix Fig S10B–H). All antibodies were

obtained from eBioscience (Thermo Fisher Scientific).

Proximity ligation assay

Lymph nodes for frozen sections were explanted from C57BL/6

mice. 106 Jurkat T cells were incubated with CXCL12 and Gal-3

at 4°C for 1 h, fixed, and mounted onto poly-L-lysine (Sigma-

Aldrich)-coated slides. On all samples, sites for non-specific

protein binding were blocked and the cells or sections were incu-

bated with 5 lg/ml of a polyclonal goat anti-mouse CXCL12 (Bio-

Rad Laboratories, Hercules, CA, USA) and 2.5 lg/ml of a rabbit

anti-human Gal-3 (affinity-purified IgG) antibody at 4°C overnight.

Samples were incubated with secondary antibodies conjugated to

complementary oligonucleotides that were ligated and amplified

according to the manufacturer’s instructions (all reagents from

the Duolink In Situ Red Goat/Rabbit Kit; Sigma-Aldrich).

Photomicrographs were taken using a confocal microscope (SP8;

Leica, Wetzlar, Germany; magnification × 100, numerical aperture

1.4, oil immersion) and processed with LAS X (Leica) and

Huygens software.

CXCR4 signaling

Gi signaling
HEK 293 cells expressing the GloSensor (Promega, Madison, WI,

USA) and CXCR4 were cultured in a black 96-well plate (Perkin

Elmer, Waltham, MA, USA) for 2–3 days until the cells were conflu-

ent. Cells were then incubated with a HBSS/20 mM HEPES/2.5%

Luciferin-EF (Promega) solution for 2 h. Luminescence was deter-

mined using a plate reader (infinite F2000PRO; Tecan, Männedorf,

Switzerland) until steady state was achieved. Forskolin (1 lM) was

added 28 min after the stimulus, and the luminescence was

recorded.

b-Arrestin 2 recruitment
HEK 293 cells expressing eYFP-b-arrestin 2 and CXCR4 Renilla sp.

luciferase II (RlucII) were cultured to confluence in a black 96-well

plate with 0.5 lg/ml tetracycline used to induce expression. Total

fluorescence was determined at 535 nm. Coelenterazine (15 lM)

was added, and total luminescence was detected at 485 nm. The

stimulus was added, and the BRET ratio (emissions at 535 nm/

485 nm) was determined.

Internalization of CXCR4
105 Jurkat T cells were incubated with CXCL12 and Gal-3 CRD at

37°C, fixed in 4% PFA, and stained with a monoclonal (12G5) APC-

conjugated anti-human CXCR4 antibody (BD Biosciences).

Galectin and CXCL12 binding to T cells

105 Jurkat T cells were incubated as stated in the figure legend

(Fig 6F–H) for 1 h. Where indicated, cells were pre-incubated with

AMD 3100 (Sigma-Aldrich) for 15 min, and experiments were

performed in the presence of the compound. Fluorescence signals

were recorded by flow cytometry.

Expanded View for this article is available online.
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