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Summary. Thc aim of this study was to dcterminc the 
optimal surviva l time for labelling those neurons that 
monosynaptically terminate on cXlraocular motooeu­
rons, i.c. tbc prcmotor neurons, after an injcction of 
tetanus toxin fragment C, aretrograde Iranssynaplic 
tracer substance, into the cye musclc of the rabbit. Con­
centrated fragment C was injected intc the inferior rectus 
cr inferior oblique muscle aod delecled imrounocyto­
chemically in the brain after survival times of 8 h, 17 h, 
2 d, 3 d, 4 d, 5 d , 6 d, 8 d and 12 d. lmmunorcaetivity 
was eonfined to granules within motoneuronal and pre­
motor neuronal eell bodies, but beeamc assoeia tcd with 
punctate profiles outlining the somata with longer sur­
vival times. The strongest and most eonsistent labelling 
of premotor cell bodies was seen after 4 days survival 
time. The transsynaptie labelling pattern was shown to 
vary for individual premotor palhways. 

Abbreviations: III ocuJomotor nudeus, IV trochlea! nudeus, Vmes 
mesencephalic trigeminal nudeus, Vmt motor trigeminal nudeus, 
VI abduccns nudeus, VIacc accessory abducens nudeus, VII faeial 
nuclcus, BC brachium eonjunctivuffi, co cochlear nuc\cus, CR TCS­
tiform body, d dentate nuc\eus, DAß diamino-benzidine-tetrahy­
drochloride, HRP horseradish peroxidase, iC interstitital nudeus of 
Cajal, iv inferior vestibular nudeus, Ignd latcral geniculate nudeus 
dorsalis, Ign". lateral geniculate nucleus ventralis, Iv lateral vcs­
tibular nudeus, mgn medial geniculate nudeus, MLF medial lon­
gitudinal fasciculus, mvp medial vestibular nudeus pars par­
vocel1ularis, mv., medial vestibular nuc\eus pars magnoccllularis ( = 
vcntral part of thc Iv), N III oculomotor nerve, NV trigeminal nerve, 
NVll faeial nerve, NVIII vestibular nerve, PC posterior com­
missurc, pg periaquaeduclal geey, ppH nudeus praepositus hypo­
glossi, riM LF rostral interstitial nudeus ofthe medial longitudinal 
fasciculus, m red nuc1e us, sc superior colliculus, sn substantia nigra, 
so superior olive, 5V s.uperior vestibular nuc1eus, sv< superior ves­
libular nuc1cus contralateral, SV; superior vestibular nucleus ip-
5ilateral, TR tractus retroflexus, Y Y -group, 7.i 7.0na incerta 
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Introduction 

After injtx:tion into a musc1e, tetanus toxin has bcen 
shown to move retrograde lranssynaptieally into presyn­
aptic terminals or the moloneurons (Schwab and 
Thoenen 1976 ; Priee et a1. 1977 ; for review: Mellanby 
and Grecn 1981; Wellhörner 1982). Some rragments of 
tetanus toxin, such as BIIb (Bizzini et al. 1977), or C 
(Helting and Zwisler 1977), have the same transport 
properties as the intact toxin, but are themselves not 
toxie. These ean be used to label those neurons that 
monosynaplically tcnninatc onto motoneurons, called 
premotor neurons, without toxic side-effects in studies 
involving 10ng survival limes. Tbe main advantage of 
using a transsynaptic tracer sueh as tetanus toxin rrag­
ments ralher than using simple retrograde tracers such as 
horseradish peroxidase (H RP) to loeale premotor neu­
rons is that fragment C ean be injtx:ted into a muscle, 
ralher than centrally in the motor nucleus, wh ieh is less 
speeific. One disadvantage is that the interpretation of 
the pattern of retrograde labelling in tbe motoneurons 
and premotor neurons is difficuh, since the loeation or 
label changes rapidly with survival time (Evinger and 
Erichscn 1986; Fishman and Carrigan 1987). 

Non-toxie tetanus toxin fragments have been shown 
10 label neuronal eell bodies retrograde transsynaptically 
in the oculomotor (Büttner-Ennever cl al. 198 1; Evinger 
and Eriehsen 1986) and sympathetie system (Manning et 
al. 1987; eabot el al. 1987), but up to now there has been 
no study of the pattern of labeUing in premolor neurons 
and its ehanges with time. Sinee monosynaptic connec­
tions in the oculomotor system rrom prcmotor areas to 
motoneurons have been fully dcseribed (Graybiel and 



Hartwieg 1974; Steiger and Büttner-Ennever 1979; for 
review: Evinger 1988; Büuner-Ennever and Büttner 
1988; Highstcin and McCrea 1988), we ha ve chosen it as 
a suitable system in which to investigate the time course 
of transsynaptic transport of tetanus toxin fragment C. 

Thc aim of this study is to investigate the pattern of 
labelling in motoneurons and premotor neurons after an 
extraocular eye muscle injection with fragment C, and to 
determine the optimal survival time for the retrograde 
transsynaptie labelbng ofpremotor neurons in the oculo­
molor system. We chose to inject the inferior rectus or 
inferior oblique eye muscle of the rabbit whieh move the 
eyes in the vertieal plane. The results of this work also 
provide data on the localization of premotor neurons 
controlling vertical eye movements in the rabbit. 

Methods 

Five pigmented (Chinchilla) and seven albino (New Zealand) rab· 
bits were used in this study. Prior to injcclion the fragment C (Cal­
biochem) was eonccntrated by ultr'a.filtra.tion in a microconccntra­
tor (Amicon; 30000 molecular weighl eutot1) to at most 15% as 
limited by thc 34° angle of the fixed-angle rotor of the ccntrifuge. 
The final concentration of the fragment C solution was ca1culated 
from the cnd-volumc. For eye muscle exposure thc rabbits were 
anaesthetilCd with Ketamin (35 mg/kg) and Rompun (5 mgJkg) 
intramuscularly. The eyc musclcs WCrt exposed by retcacting thc 
eye1ids, coUapsing the cyc ball, and making a conjunetivaJ ineision. 
All animals ceceived an injection of 15 111 concentrated fragment C 
into the right inferior rectus or inferior oblique eye musclc. To 
prevent intraorbital spread of fragment C, the muscle to bc injcctcd 
was enelosed by a small piece of plastie film prior 10 injoclion: in 
some cases the injectioD hole made by the syringe in thc muselc was 
locally eaulerizcd as an additional precautioD. After survival times 
of8 h, 17 h, 2 d, 3 d, 4d, 5 d, 6 d, 8 d and 12 d the rabbits were 
deeply anaesthetizcd and transcardially perfused with saline (37° C) 
followed by 4% para formaldehyde in 0.1 M phosphate bufTer 
(pH 7.4). Thc bra.ins wcre removcd from the skull_ poslfixed for 
another 5 h at 4° C and then storcd either in 0.1 M phosphate buffer 
for Vibralome sections or in 30% sucrose al 4° C for fr07.cn scctions. 
The brainstem was tral1sversely cut at 35-40 I-Im. The free-Hoating 
scetions wert immunocytochemieaJly treate<! according 10 the 
avidin-biotin peroxidase method (Hsu Cl al. 1981) using a mono­
elonal antibody (now avaiLable from Boehringer Mannhcim) that 
had bcen raiscd against fragment C (Evinger and Erichsen 1986) al 
a dilution of I : 3000. The avidin-biolin peroxidase complex was 
visualized by a 15 min ineubation in 0.05% diamino-ocm;idine­
tetrahydrochloride (DAB) and 0.01" H1ü l . Aller mounting and 
drying the scctions were osmified in a 0.05% osmium tetroxide 
solution for 20 seconds before dehydration. A modifioo DAB-rcae­
tion in the presencc of 0.6% Ni l-> in acetale buffer (pH 6.0) (Han­
oock 1984) was proved 10 intensify tbc immunocytoehemical slain­
ing signifieantly and it was used in some eascs for the visualization 
of the weak transsynaptic label. A scries of every fifth scction was 
counterstained with 1 % Cresyl violet. The tissue was cxamincd and 
photographed under brightfield with a light mieroscopc. Labclled 
cells were plotted onto camera lucida drawiDg5 by using a drawing 
tube thaI was eonneeted to the microseope. Tbc nuelcar boundaries 
were drawn from Nissl-Slained sections and the nomenelature for 
the vestibular nuelei was taken from Epcma el al. (1988). 

Results 

Motoneurons 

After an injection of fragment C into the inferior oblique 
or inferior rectus muscle tbe motoneuron pools of these 

muscles in the ipsilateral oeulomotor nucleus (J ll) were 
strongly labelIed. Additional retrograde label was found 
in the motoneurons of the medial rectus musc1e in the 
ipsilateral III, in the ipsilateral abducens nucleus (VI) 
and aecessory abduccns nucleus (Vlacc) eontaining 
motoneurons of the lateral reetus and thc retraetor bulbi 
muscles, and in the motoneuron subgroup of the faeial 
nucleus (V I I) that supplies the orbicularis oculi muscle 
of the injeeted side (Fig. 3). The spread of fragment C 
proved very hard to avoid as judged from the motoneu­
ronal labclling. 

Tbe labelling pattern of all the motoneurons ehanged 
rapidly with survival time: after 8 h single motoneurons 
were distinctly labelled. The DAB-reaetion produet was 
located in the cytoplasm - associated with granules -
while the nudeus was free of staining (Figs. la and 2a) . 
Thc amount of filling within the cell bodies and proximal 
dendrites inercascd over tbe next JO h, at wb ich time a 
diffuse label was observed in the surrounding neuropil, 
tbat could not be correlated with neuronal elements using 
light microscopy (Pigs. Ib and 2b). In preparations with 
survival times longer than 2 days tbc fragment C immu­
noreactivity was no longer restricted to neuronal somata, 
butin addition was seen associatcd with punetate profiles 
outlining the cel! bodies and dendrites of the motoneu­
rons (Figs. Ic-f and 2c, d). At this stage the staining of 
the oculomotor nudeus lOok on a rcticulated ap­
pearance, whieh did not change even with the longest 
survival time in our study, 12 days, except that the inten­
sity decreased slowly witb time. Motoneurons containiog 
no immunoreaetive granules eould be fouod within the 
oculomotor nucleus after survival times longer tha n 
4 days (large arrows in Pigs. 2c and d). 

Premotor neurons 

After at least 2 days survival time a weak immunoreactiv· 
ity was fouod in several additional areas that are known 
to send monosynaptic alTerents to the motoneurons of 
vertical eye muscles: the contralateral y-group, the 
superior vestibular nuclei (sv) of both sides, the lateral 
bo rder region of the parvocellular medial vestibular nu­
deus (mvp) and the magnoceHular part of the medial 
vestibular nudeus (mv",) mainly contralateral, the ip­
silateral interstitial nucleus or Cajal (iC), and the rostral 
interstitial nucleus of the medial longitudinal fasciculus 
(riMLF) in tbc rostral mesencephalon. In addition trans­
synaptie label was found within thc contralateral VI 
presumably associated with internuclear neurons. Figure 
3 illustrates the loeation of alllabelIed premotor neurons 
after 4 days survival time fo llowing an inferior reClus 
muscle injection with fragment C. 

1t was striking that tbe staining pattern diffcred wide­
ly between premotor regions. For instance the most im­
pressive transsynaptic labelling was always seen in tbe 
y-group, while tbc iC contained ooly very few weakly 
stained cells. For the detailed description of the t rans­
synaptic labelling pattern 3 prcmotor structurcs have 
been chosen as examples: 1. tbe ipsi lateral sv, 2. tbc 
eontra1atera1 sv, 3. thc ipsilateral riMLF. 
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Fig. la- f. Photographs of transverse sections through thc ocuJo· 
motor nuclcus \0 show thc pattern of labeHing of the motoneurons 
and neuropil after survival times of a 8 h, b 11 h, C 2 days, d 4 days, 
e 6 days, f 12 days. a Distinctly labelle<! motoocurons afe visible 

Ln tbe sv 01' both sidcs retrograde lranssynaptically 
labelIed neurons \'lIerc fi rst faund after 2 days. While 
immunoreactive neurons contralateral to the injected 
sidc were located within the dorsal part of thc sv, the 
labelJed cells ipsilaleral were distri buted throughout thc 
central parts of thc nucleus. After 2 and 3 days thc 
labelled neurons in thc sv of balh sides showed a similar 
but weak staining pattern, which rescmbled the pattern 

6d f 12d 

after 8 hours sUfvival time. b-d There is a gradually incrcase in 
labcUing of the neuropi! with survivaltimes up to 4 duys. e, f The 
slaining intcnsity ofmotoneurons und neuropil decreascs. Calibra­
tion = 500l!m 

of direct labclling of motoneurons after an 8 h time 
period (Fig. 4a and b compare with Fig. 2a). The cells 
contained immunoreactivc granules within thcir somata 
aod pro,umal dendrites. This type of staining pattern did 
not change in tbe conlralateraJ sv with longer survival 
limes. After 4 and 5 days their somata were still distinctly 
labelIed, aod ooly few immunoreactive puncta were 
fouod in the surrounding neuropil (Fig. 4d and g). A dif-
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Fig. 2a--d. High power magnification of the rnoloncuronallabelling 
in the Ql;:u1omotor ßucleus with fragment C after different survival 
limes. Il Survival time of 8 h, thc DAB-reaction producI is asso­
ciatcd with granules wi thin thc cytoplasm, whi1c the nucleus is free. 
b Surviva! time of 17 h, a diffuse label is present in the ncuropil. 
c Survival time of 4 days, thc fragment C immunoreaclivity is 00 

longer reslricted 10 somata (Iarge arrows), but associatcd with 
punetatc profiles (small arrows) oUllining the cell bodics aod den­
dritcs. d Survival time of 6 days, "empty" motoncurons ([arge 
arrows) are associated with labelIed puncta (small arrows). Calibra­
lion =30)J.m 
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}'ig. 3. Drawings taken from transverse scctions of a rabbi! brain­
stern 10 show thc distribution of labelIed motor aod prcmotor 
neurons after an injcclion of fragment C into thc right inferior 
rectus muscle; 4 days survival time. Thc distribution or small dots 
indicatcs thc punclate labdling ofprcsynaptic terminals. Fordarity, 
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thc puncta around labcllcd cell bodies (c.g. Fig. 4e) are omitted. Each 
retrograde Lranssynaptically labclled premolor neuron is rcprc­
scnted by a large dot. ConScculivc section numbers are 200 firn 
apart 
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I'ig. 4a- i. High power magnificalion of labcUcd premotor neurons 
in the superior vestibular nudeus contraJateral (sv.) a, d, g; in tbe 
sv ipsilateral (sv) b, c, h j rostral interstitial nudeus ofthc medial 
longitudinal fasciculus (riMLF) c, r, i , 10 show thc changes of the 
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pattern of labeHing after survival limes of 2 days in a--ci 4 days in 
d-f ; 5 days in g--i. Thc strongest overall Iranssynaptic cclilabclling 
is see!! after 4 days. Note the difference in thc palIern of labclling 
in SVI and sv. after 4 and 5 days survival time. CalibratioD = 30 Ilffi 



fercnltimc course of the staining pattern was seen in the 
ipsilateral sv. The eell somata becamc more weakly 
stained, and after 4 and 5 days they were only faintly 
visible, whereas numerous immunoreaetive puneta in the 
surrounding neuropil gave thc nudeus a reticulated ap· 
pearanee (Fig. 4e and h). Evell after 12 days a few im­
munorcaclive pune la were observed in the ipsilateral sv, 
whi le in the contralateral sv no immuoorcaetivity was de­
tccted after more lhan 6 days. 

Retrograde transsynaptically labclled cells were 
fouod in thc riMLF exelusively ipsila teral to the injected 
side. The immunoreaetivilY was wcak and confined to 
numerous graoules v.'ithin the somata and proximal den­
dritcs after 2 days (arrows in Fig. 4c), but after 3 and 4 
days immunoreactivity was stronger and already asso­
ciated with labellcd punctatc profiles oUlliniog the eell 
bodies (Fig. 41). One day later (5 days) the labcllcd 
riMLF neurons could ooly be identified by the immuno­
reactivc puneta ouUining thc somata ofthe "empty" cclls 
(Fig. 4i). This was dearly seen by foeussing through the 
depth of the section, but is nOl obvious from the photo­
graph (compare to motooeuronal labeJling in 2c, d). 
After 12 days very few labelied puneta cou ld be detected. 

We ncvcr found any cvidencc for double transsynap­
lic tran sport ; that is 00 labclled cells wcre found in those 
regions that are known to send monosynaptie projections 
onto premotor neurons, e.g. OInnipause cells in the nu­
deus raphe interposilus in [he para median pontine reti· 
cula r formation , or cells in the deep layers of the su perior 
colJiculus, bOlh of which are known to project to the 
riMLF (for review: Büttner·Enncver and Büttner 1988). 

Only after 3-5 days survival time were all prcmotor 
populations labelled following a n eye muscle injection 
with fragmen t C. We found the strongest and most eon· 
sisten t labelling of cell bocHes in all premotor areas with 
4 days survival time. These findi ngs were eritically depen· 
dent upon the injection of highly eoncentrated fragment 
C, i.e. 15%. Lower conccnlralions (approx. 10%) were 
used in scveral cases and werc found to be less suitable 
for this study. These eases required longer survival times 
(5-6 days) to see any transsynaptie label at an. There was 
also no survival time at which al1 premotor neuronal ccll 
bodies were labelIed at the same timc: while some regions 
eontained dear cell body labelling, only punetatc label­
ling was seen in olbers. lt is im portant to emphasize that 
for this reason only those eases that receive an eye muscle 
injectio n of the same bateh of fragment C concentrate 
ean be qualitatively eompared to eaeh other as in Fig. 4. 

Discussion 

The precautions that were usually adequate to prevenl 
leakage into the orbit after HRP or wbeatgenn aggluti· 
nin (WGA) injections into an eye muscle (Büttner­
Ennever and Akert, 1981), were oot effective in tbese 
experiments v.'itb fragment C, Uptake by neigbbouring 
eye musc\es always occurred, aod resulted in additional 
labeJling of eorresponding motoneurons in IlI , VI and 
VII (Courville 1966; Gray et al. 198 1; Satoda cl al. 1987; 
Evinger 1988). This probably reftects a more efficient 
uptake system for the tetanus toxin fragment eompared 

to other macromolecules used as neuroaoatomical 
tracers (Wan el al. 1982 ; Trojanowski el al. 1982). 11 did 
not interfere with the results ofthis slUdy because: I) thc 
premotor connections of VII (Takada et al. 1984) and 
Vlacc (for review: Evinger 1988) were not labclled, 2) the 
premotor neurons of the medial reetus motoneurons 
were labelIed (i.e. internuc\ear neurons in thc contra lat­
eral VI, Highstein and Baker 1978; Labandeira·Garicia 
et al. 1989b), but did not involve thc 3 premotor regions 
(sv ipsilateral, sv contralateral, riM LF) tha i we chose to 
study in detail (Evinger 1988). 

The present study eonfirms the observation of other 
iovestigators (Stöckel et al. 1975; Fishman and Carrigan 
1987) that tetanus toxin fragments undergo very fas t 
intraaxona l retrograde transport, si nce ocular motoneu­
rons were directly labelIed within 8 h: demonstrating a 
minimum transport rateofS mm/h fo r fragment C. This is 
in agreement with thc rate of transport of tetanus toxin 
ca1culated at 5-10 mm/h (Habcrmann 1978; Carrol cl al. 
1978) and 7-7.5 mm/h (Stöekel el al. 1975) in the moto­
neurons of rodents. 

Tbe immunoreaetivc granules we observed in the 
light microscope inside tbe cytoplasm of tbe motoncu­
rons at 8 h to about 4 days and of premotor neurons 
probably represent the membrane eompartments con­
laining tbe tracer that wcre described in cJectron miero· 
scopie studies (Sehwab and Thoenen 1978; Schwab et al. 
1979; Cabot et al. 1987). Tbe rapid change of the label­
ling pattern over the first 2 days indieates that aflcr 
reaebing thc motoneuronal somata there is only a short 
time period of tracer accumulation within Ihe cell bodies 
and dendri les, before additional transsynaptie transfer 
into presynaptie terminals starts. This transfer is in· 
dicated by tbe appearancc of punetate profiles, and is 
alrcady seen 2 days a fter thc cye muscle injeclion . 
Previous studies have shown that tetanus toxin injcctcd 
into the spinal cord aceumulated within synaplie termi­
nals (Price el al. 1977 ; Price and G riffin 1981), where thc 
spccific receptor is loeated (van Heyningen 1974), rather 
than within eell bodies. Schwab and Thoenen (1976) 
showed for the first time that after a muscle injection 
tetanus toxin accurnulates not only within corresponding 
cell bodies, but also in presynaptic tenninals. In thcir 
elcctron mieroscopie studies the aUlbors did not observe 
any sign ifieant labelover the ccll membrane or in tbe 
cxtraceIJular space (Schwab and Thoenen 1977 ; 1978; 
Sehwab et al. 1979). 

Thc olivary pretecta l nucleus sends monosynaptic 
projections onto the Ed illger-Westphal nueleus in the 
oculomotor eomplex but not onto motoneurons, and it 
remained unlabclIed in an our experiments, although il 
is labelIed in HRP-studies of the oculomolor nueleus 
(Graybiel and Hartwieg 1974; Steiger and Büttner­
Enoevet 1979). Such results, as weH as previous studies 
(Büttner-Ennever et a l. 1981; Evinger and Eriehsen 
1986), provide furtber cvidcncc for areal transsynaptic 
transfer o f tetanus toxin fragments into presynaptie ter­
minals ratber than a non-specifie leakage out ofthe cells 
by the fact that transsynaptic labelIed cell bodies were 
exelusively found in those areas that are known to specif­
icly target onto motoncurons. 



Tbe patterns of lranssynaptie labelling were de~ 
scribed o n the basis of three pathways with weil known 
properties: the sv contains two sets of premotor neurons 
that synapse on oculomotor neurons as part of the ves­
tibulo-ocular thrcc neuronal arc. The central part of the 
sv gives risc to an inhibitory projection that ascends via 
the ipsilateral MLF and terminates ipsilateral in the 
oculomotor and trochlear nucleus on vertical motoneu­
rons. Whcrcas dorsally located sv neurons send an excit­
atory projection via thc brachium eonjunetivum (BC) 
onto vertieal motoneurons of the conlralateraJ side (Va­
mamoto el al. 1978; for review: Büuner-Ennever 198 1; 
Highstcin and McCrea 1988). Tbe positive labelling of 
both sv neuronal populations in our experiments em­
phasizes for the first time the capability of tetanus toxin 
fragments to travel across inhibitory as weil as excitat­
ory synapses (see also Büttner-Ennever et al. 1981; Evin­
ger and Eriehsen 1986). 

The riMLF is involved in the generation of vertical 
saccadie eye movemcnts (Büttner et al. 1977) and has 
bcen shown to send direct projections to vertical moto­
neuron subgroups (Büttncr-Ennever and Büttner 1978; 
Graybiel 1977; Nakao and Shiraishi 1983, 1985) in cat 
and monkey. The present study confirms the rcccnt de­
scription of the homologue in the rabbit (Labandeira­
Garcia et al. 1989a), and it implies a purely ipsi lateral 
connection to the oculomotor nucleus in tbis species. 

The premotor neuronal label was weaker and occur­
red later than motoneuronallabelling. Tbecbanges in the 
pattern ofthe transsynaptic stain ing in premotor neurons 
resembled the changes in mOloneuronal labclling de­
scribed above: a short period of label accumulation with­
in the soma is followed bya longer lasting punctate label­
ling around tbe premotor neurons. It is therefore difficult 
to distinguish labelIed motoneurons from premotor 
neurons from the pallcrn of labclli ng alone. Other 
critcria such as thc labelling intensity, the survival time, 
and the concentration of thc injectcd fragment C (see 
below) must be taken into account as weiL 

Four days were chosen as the optimal survival time 
for labelling prcmotor neuro ns in the oculomotor system 
with fragment C, since this was the peak of tracer accu­
mu1ation within ccll bodies (Fig. 4). However th.is opti­
mal time for prcmotor labclling was found to depend on 
the high concentration of thc fragment C injecled. We 
had the impression that the usage of lower conccntra­
lions could to some extent be compensated for by longer 
survival times, enabling sufficicnt tracer accumulation in 
prcmotor cells, or nlther in their afferent terminals, for 
visualization (see Evinger and Erichsen 1986). A quan­
titative comparison of the binding and neuronal [rans~ 
port capabilities of tetan us toxin and its fragments 
showed that under physiological pH-conditions SO- 100 
times more of tbe fragments C or BII " must bc injcctcd 
into a museIe in order 10 obtain neuronaJ transport simi­
lar to that seen with the whole tetanus toxin (Weller cl 
• 1. 1986). 

The punctate labelling in thc vicini ty ofimmunoreac-­
tive premotor neurons seen in the light microscope (see 
Fig. 4g and h), laken together with the knowlcdge from 
elcctron microscopic stud ies of the motoneuronal label-

ling, irnplies that fragment C has passcd a third synapse, 
although confirmation by ultrastructal analysis remains 
to be done. The failure to fi nd any labelling in regions 
that are known to send afferents to premotor neurons 
ean be attributed to the dilution effect causcd by thc 
increasing divergence of afferent systems. 

A comparison of the transsynaptic stai ning in 3 se­
lected premotor regions describcd in detail here, shows 
that the time course of the changes in the pattern of 
labelling is different for individual pathways. For exam­
pie we found that in thc ipsilateral sv the pauern of 
transsynaptic label changed quiekly from somatic to 
punctate, whereas in the contralateral sv the pattern 
remaincd almost exelusively confined to the cell bodies 
(compare Fig. 4g and h). Such variations must bc related 
to ccrtain individual propertics of the prcmotor path­
ways: Olle possibility is the strength oftbe synaptic inpul 
from a given premotor sourcc onto the motoneurons in 
the oculomotor nuelei that is reflectcd by the axonal 
termination pattern. For the horizontal oculomot or sys­
tem of cats it has been shown thaI the excitatory con· 
traJateral projecting vestibulo-ocular tibers bad a more 
widespread axonal arborization within the motonueleus 
with a large number of synaptic boutons, whereas the 
inhibitory ipsilateral projecting vestibulo-ocular fibers 
lend to tenninate within restricted areas with less bout­
ons (lshizuka el al. 1980; Ohgalci et al. 1988). On the 
other hand higher numbers of inhibitory tenninals were 
found to contact lower numbcrs ofmotoneurons indicat· 
ing a stronger convergence for the inhibitory vestibular 
input onto motoneurons than for the excitatory input 
(Ohgalci et al. 1988). The distance from prcmotor neu­
rons 10 motoneurons appeared not to be an importanl 
parameter, since both vestibular projections showi ng a 
different staining pattern are about tbe same Icngth, but 
they do d Hfcr in the location oftheir synaptic inputs o nto 
the oculomotor neurons. Electron microscopic degenera­
tion studies dcmonstrate that tbe excitatory contralateral 
vestibular input terminates on the distal dendritcs of 
exlraocular motoneurons, whereas thc inhibitio n of the 
ipsilateral vestibular pathway is mainly mediated by axo­
somatic synapses (Bak el al. 1976; Destombcs and Rou· 
viere 1981). Anotber possibility for variations in the 
transsynaptie staining patterns is thc firing rate ofcertain 
premotor neurons. The rate of retrograde transsynaptic 
transport of WGA has been shown to be enhanccd by 
electrical stimulation of afferent axons (Jankowska 
1985). A simi lar correlation between neuronal activity 
and the rate of transport has been described for tetanus 
toxin: the "muscle pump" hypothesis (ponomarev 1928) 
was tested by Wellhörner et al. (1973), wbo showed that 
the rate of ascent of 1251_tctanus toxin ioto the spinal 
cord was incrcascd by electrical stimulation of the nerve 
of the curarizcd musele. 

In conclusion we fou nd that the optimal transsynap­
tie labelling of premotor neurons in the ocuJomOlor sys­
tem with fragment C was seen after 4 days survival time . 
The faetors thaI were found to most influence the time 
course and pattern of labclling were: tbe concentration 
of the injected fragment C and the type ofpathway 10 bc 
studicd. The parameters that control its transport are not 



yct completely clcar and this makcs fragment C a Icss 
atlractivc tracer fo r thc strict definition of neural path­
ways. However its propcrties da make il a highly useful 
neuroana tomical tool for locating synaptically related 
slructures, whereby the nature of the connection must be 
investigated by atber methods. 
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