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Non-additive Ring and Module Theory, III. 
Morita Equivalences 

Dedicated to the memory of Andor Kertesz 

By B. PAREIGIS (München) 

This paper is a continuation of [19], [20]. References are quoted there. 
As in ring theory one may ask the question when two categories A<& and B # 

for monoids A and B are equivalent. Now in ring theory we know from the additivity 
of the equivalences and that the natural bijections 

H o m ß ( ^ ( M ) , N ) 2* U o m A ( M , 9 ( N ) ) and U o m A { ^ ( N \ M ) ~ Hom ß(AT, & ( M ) ) 

are isomorphisms of abelian groups. So in the general case we only want to con-
sider equivalences such that there are isomorphisms B [ ^ ( M ) , N ] ^ A [ M 9 &(N)] 
and A [ & ( N ) 9 M ] ^ B [ N 9 J*(M)]. In view of theorem 4.3. this is equivalent to study-
ing equivalences such that and 0 are ^f-functors. The last condition can be studied 
even in monoidal, non-closed categories. 

We call $ and B # ^ - e q u i v a l e n t i f there are inverse equivalences fF'.jfß^ßl 
and <S:B<g-+A<g such that & and <& are ^-functors. 

Without loss of generality we shall only consider equivalences and ^ to-
gether with isomorphisms Q i ^ t f ^ I d and XF: g & ^ I d such that ^ *F = and 
*F<g = <g<P. Then $ and *F and their inverses are already adjointness morphisms. 

5.1. Theorem. L e t <ß be a n a r b i t r a r y m o n o i d a l c a t e g o r y . L e t a n d 
y'-ßß^A^ o e Averse - e q u i v a l e n c e s . Then t h e r e a r e o b j e c t s P£.A€B

 a n d Q€B%A 
such t h a t 

a) t h e r e a r e n a t u r a l i s o m o r p h i s m s 

&(M)^Q®AMs,A[P,M] i n A<€9 

9 ( N ) ~ P®BN^ B [ Q , M ] i n B% 

a n d P B - c o f l a t a n d Q A - c o f l a t . 
b) t h e r e a r e i s o m o r p h i s m s of A — A - r e s p . B — B - b i o b j e c t s 

A =* P®BQ a n d B^Q®AP 
such t h a t t h e d i a g r a m s 

P<S*(Q<S>P) = (P<&Q)®P * A®P 
\ \ 

P®B * P 

12D 
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a n d 

Q 

B [ Q , B ] ^ P i n A < g B , 

A [ P , A ] ~ Q i n jßAi 

d) t h e r e a r e i s o m o r p h i s m s 

B [ Q , Q] ^ A i n A%>A a n d as m o n o i d s , 

Ä [ P , P] ^ B i n B^B a n d as m o n o i d s . 

PROOF. By the symmetry of the Situation we only have to prove one half of 
the assertions. 

There is an isomorphism F ' ( M ) ^ Q < g > A M natural in M by Theorem 4.2 
since fF is a ^-functor and clearly preserves difference cokernels as an equivalence. 
By the same theorem we have & ( N ) ^ B [ Q , N] natural in N , since ^ is adjoint 
to !F. This proves a). 

We have an isomorphism A^&&r(A)^P®B(Q®AA)^P®BQ in Further-
more we have a commutative diagram 

hence A^P®BQ as A — ,4-biobjects. 
The adjunction morphism XF\ ^ t F ^ I d induces the evaluation morphism 
P®BA[P,M]^M with V{p®f) = { p ) f . By definition of the isomorphism 

A^P®ßQ we get a commutative diagram 

Hence i f the isomorphism P < g > B Q ^ A is described by p®Bq^pq and the 
morphism Q ® A M ^ A [ P , M] is given by 

Now i f M ^ A ^ B then we get (p)<p (q®Amb) = ( p q ) ( m b ) = ( ( p q ) m ) b — ( ( / ? ) c p (q®Amj)b = 
r=(p)((P(a®Am)b)> hence Q®AM and A [ P , M] are isomorphic as B—Z?-biobjects. 

A®A ^ P®B(Q®A(A®A)) ^ P®B(Q®A) 

A ^ P®B(Q®AA) P®BQ 

q®Am (p(q®Am), we get ( p q ) m = (p)q>(q®Am). 
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In particular we get A [ P , A ] ^ Q as B—,4-biobjects and A [ P , P ] ^ Q ® A P ^ B as 
B—i?-biobjects. 

To prove the monoid isomorphisms we first observe that 

P®(Q®P) = (P®Q)®P - A®P and 
I \ 

P®B - P 

Q®(P®Q) ~ (Q®P)®Q - B®Q 

Q®A > Q 

commute. This follows from ^ ^ Q ® A , < g ^ P ® B and from the fact that 
# J j r : J z : W - J z r and ^ r ^ ^ - J ^ r e s p . ^ < P \ <8 and U * ^ : ^ ^ - ^ 
are equal. So we get 

<P><K<7WM?W) = <j>q'Wq")p" = P W P ' W P " ) -

Since the isomorphism A | 7 \ is given by 

A [ P , P] — Q®AP = B 

or cp(q'®p')^-+q''p\ the composition cp(q''®p')(p(q"®p") is mapped to the product 
( l ' p ' ) ( f p " ) ' I*> ( ? ' ® / 0 is the identity then p ( q ' p ' ) = p for all p . But ^[P, P ] - + B 
is an isomorphism hence q ' p ' — X ^ B . 

5.2. Corollary: 77ze morphisms 

P ( X ) X A [ P , A ] ( Y ) 3 (p , / ) - (p)f£A(X®Y) 
a n d 

A [ P , A ] ( X ) X P ( Y ) 3 (/, p ) ~fp£A[P, P](X®Y) 

w i t h ( p ) ( f p ) ' = ( ( p / ) f ) p i n d u c e isomorphisms 

P®BA[P, A ] ^ A and A [ P , A]®AP ^ A [ P , P ] , 

The analogous assertions h o l d f o r Q a n d B . 
PROOF. The first isomorphism, the evaluation morphism, was discussed in 

the proof of 5.1. The second isomorphism is just given by 

ÄP, A}®AP SSJU Q®AP - J L - A [ P , P ] . 

We have seen that each ^-equivalence is induced by some object P ^ A ^ B with 
the properties of Corollary 5.2. The converse will proved after a more detailed 
study of the properties exhibited in Corollary 5.2. 

A n object P £ A % will be called finite, i f A [ P , A] and B : = A [ P 9 P] exist, if P is 
2?-coflat and A [ P , A ] is /4-coflat and i f the morphism A [ P , A ] ® A P - + A [ P , P] induced 
by A [ P I A } ( X ) X P ( Y m f p ) * f p t A [ P 9 P ] ( X ® Y ) with { p ' ) f p = { { p ' ) f ) p is an 
isomorphism. P will be called f a i t h f u l l y p r o j e c t i v e i f it is finite and i f the morphism 
P ® B A [ P , A ] - + A induced by the evaluation is also an isomorphism. 

12* 
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5.3. Theorem. Let A , B be monoids i n (ß9 P ^ A ^ B B - c o f l a t a n d Q^ß€A A - c o f l a t . 
Given morphisms f : P < g ) B Q - + A i n A%>A a n d g : Q < g > A P - + B i n B^B such t h a t the d i a g r a m s 

f®Ap 
P ® B ( Q ® A P ) = ( P ® B Q ) ® A P — Ä®ÄP 

P®BB P 

Q ® A ( P ® B Q ) = ( Q ® A P ) ® B Q ^ ' B ® B Q 

Q ® A A Q 

commute. Assume t h a t there is P O ^ B ^ O ^ P ^ B Q ^ ) s u c n t n a t P o a o : = f ( P o < ^ B ( l o ) = 

= l£A(I). Then f is an i s o m o r p h i s m . Assume t h a t i n a d d i t i o n there is 
qi®APi£Q®AP(I) such t h a t q1p1:=g(q1®ÄpJ = l£B(I). Then P ® B : B < # - + A V 
a n d Q ® A : Jß-^ß^ a r e inverse -equivalences. I n p a r t i c u l a r P ^ A ^ a n d Q ^ B ^ a r e 

f a i t h f u l l y p r o j e c t i v e . 

PROOF. Define f ' : A - + P ® B Q by f ' ( a ) = a p 0 ( g ) B q 0 . Then f f ' ( a ) = a p Q q 0 = a 
and f'f(p®Bq) = ( p q ) p 0 ® B < l o = P(m)<8>B<Jo = />®B(0PO)?O = P®B<](PO<IO) = P®B<1-
Hence / is an isomorphism. 

Furthermore the functors P ® B Q ® A = A®A and Q ® A P ® B — B ® B are both 
isomorphic to the identity-functors on /ß resp. B

cß9 hence they are inverse equiv­
alences. Furthermore P<g>B and Q ® A are ^-functors by Theorem 4.2. 

5.4. Theorem. Let P ^ A ^ be f a i t h f u l l y p r o j e c t i v e . Then A [ P 9 - ] : A V - + A J > t J > { € 
exists a n d is a ^-equivalence. 

PROOF. By definition A [ P , A ] and A [ P , P] = B exist. Furthermore P Z ^ ß , 
Q:=A[P9A]£B

(£A and the hypotheses of Theorem 5.3. are satisfied by the very 
definition of Q ® A P - + B and P < g > B Q ^ A . So Q<8>A: j^-^ßß is a ^-equivalence. 
By Theorem 5.1. we get Q®A^A[P9 - ] . 

Let us now apply our theorems to the case where the tensor-product in is 
the (direct) product (example c) of § 1). Furthermore assume that each canonical 
epimorphism M X N ^ M X A N induces a surjective map M X N ( I ) - + M X A N ( I ) . 
This is for example the case i f I i s projective in the category cß. We say that M X N - * -
- + M X A N is r a t i o n a l l y s u r j e c t i v e . Assume that A<ß and ß ^ are ^-equivalent by 
P ^ ß — ' - B ^ ^ A ^ a n c * Q ® A ' A ^ ^ B ^ ' Then we have surjective maps f : P ( I ) X 
X Q ( I ) ^ P X Q ( I ) ^ A ( I ) and g : Q ( I ) X P ( I ) ^ Q X P ( I ) ^ B ( I ) suchthat ( p q ) p ' = 
= P ( q p ' ) and ( q p ) q / = q ( p q / ) i f f ( p , q ) = p q and g ( q , p ) = q p . Let p £ P ( I \ 
<7i€ß(/), *=0, 1 be chosen such that p 0 q 0 = l £A(I)9 1 

Let us now assume that each element in A (I) which has a left inverse has also 
a right inverse. We wish to show A ^ B as monoids. First we show p1q1=l£A. 
By definition we have ( p 0 q±) { p x q0) = p 0 fapjqo =p0q0=l£A (/), hence ( p x q0) ( p 0 qx) = l. 
Furthermore we have P o q x P ^ P o - This implies /?i#i=l * P i q i = ( P i q o P o q i ) P i q i = 
= P i ^ ( P Q a i P i ) a i = P i a Q P o a i = ^ ^ A i J ) ' Now define morphisms P { X ) ^ p ^ p q x ^ A ( X ) 
and A { X ) ^ a ^ a p X ^ P . They are obviously mutually inverse morphisms in A

<€. 
Hence B ~ A [ P , P ] ~ A [ A 9 A ] ~ A . 

As a special case we get 
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5.5. Corollary: I n t h e c a t e g o r y of sets £f w i t h t h e p r o d u c t as m o n o i d a l c a t e g o r y 
l e t A be a g r o u p or a c o m m u t a t i v e m o n o i d o r finite. T h e n A S f a n d B S f a r e e q u i v a l e n t 
iff A ~ B . 

PROOF. In Sf the morphism-sets form an inner hom-functor, so by Theorem 
4.3. each equivalence A£f^B£f is an ^-equivalence. Furthermore {0} is projective 
in Sf. If A is a group or commutative or finite then each element which has a left 
inverse in A (I) has also a right inverse. So all conditions of the previous discussion 
are satisfied. Hence A ^ B . The converse is trivial. 

The central part of the Morita Theorems 

For this section we will always assume that # is a Symmetrie monoidal category. 
Let us consider ^-funetors " K i ^ ^ j f g such that there are P , Q ^ B ^ A w i t h 
^-isomorphisms $/^P®A, ir^Q®A. 

Define a new ^-funetor °U®Y for Y^fß by <%®Y(M):=W(M®Y)^ 
^ P ® A ( M ® Y ) . Because of the symmetry of V we have Ol® Y ( M ) ^ ( P ® Y)®AM 
hence $1 ®Y indeed is a ^-funetor. 

Define [< ,̂ iT](F):=#-Mor (°H® Y, V ) as the set of ^-morphisms from 
<%®Y t o r. For h : Z - + Y in <g define [ % TT](A): [ « , r T J i ( Y ) ^ [ % r \ ( Z ) by 
[<%,r](h)((p)(M):=(W(M®Z) * ( M » * ) . Then [ « , 1T] is 
a contravariant funetor from # to the category of sets. 

6.1. Theorem. T h e r e is a n a t u r a l i s o m o r p h i s m of f u n e t o r s f r o m <ß t o t h e c a t e g o r y 
of sets: 

[ % r)(Y)s<BVAP®Y,Q). 

I f B [ P , Q ] A exists then [*, r ] ( Y ) ^ B [ P , Q ] A ( Y ) . 

PROOF. Let f€B<gA(P® Y, Q ) . Then define r ~ \ ( Y ) by 

cp(M) := (W(M®Y) s ( P ® Y ) ® A M F % A M • Ö ^ A f as 1^(A/)). 

For g t / ^ i M , N ) we get a commutative diagram 

%(M®Y) ^ (P(g)y)(8)AM — - — - Ö<8uM ^ y ( M ) 

I 
(P®Y)®Ag Q®Ag n g ) 

W(N®Y) = ( P ® y ) ® ^ ^ / < 8 > i i " . Q®AN = ^ N ) 

hence <p is a natural transformation from °U®Y to Furthermore the following 
diagram commutes: 

U m X ) * Y ) Z ( P * Y ) 9 A ( M * X ) Q<»A(M<»X)Zf(M<,X) 

\\\ Iii III III 

WMQYteXZ((Pe>Y)®AM)®X ( ^ i X ( Q s i M ) * X ^ j / ( M ) 0 X 
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Hence <p is a ^-morphism. This defines a map 

X:BVA(P®Y,Q)-[%r](Y). 

Conversely let (p£[<%, r~](Y) and define f^B^A(P®Y, Q) by / : = 
{P®Y^P®AA®Y^{A®Y)-^^-r(Ä)^Q®AA^Q). Clearly f^B^(P<g>Y, Q). 
To show that fdB^A{P®Y,Q) consider the following commutative diagram 

?*A(A<9Y)®A *((P*Y)0aA)QA2U(A*Y)®A ^(A)<8ty(A)<»Ag(Q*AA)«A 

n wi \w m » m 
P*Y)»A =(P»Y)»A(A<»A)£ U((AeA)®Y) ^

(A
^y(A»A)za»A(A*A)*Q«A 

U ( / i A * Y ) U f r 

?<*Y & (P®r)0AA = U(A<9Y). yCA) £ Q®AA £ Q 

where the morphism from ( P ® Y)®A to Q®A along the upper side of the diagram 
is just f®A and the morphism from P ® F to Q along the lower side is / . Hence 
/ is a right /1-morphism. So we have a map 

Now 

and 

n:[% r](Y)^BVA(P®Y9Q). 

n i ( f ) = (P®Y^= 1?{A®Y) 

( P ® 7 - (P®Y)®AA f®AA 

r ( A ) = Q) = 

> Q®AA =Q)=f 

z n ( ( p ) ( M ) = ( # ( A / ® r ) s ( p ® y ) ® , 4 M * ( < P ) ^ M _ . Ö ^ . M ~ T^(A/)) = 

= ( « ( A f ® r ) ^ ( / 4 ® 7 ) ® I 4 M r(A)®AM ~ - T ( M ) ) = cp(M) 

since is a ^-morphism. Hence we have [%iir](Y)^B

cßA(P®Yi Q ) . 
It remains to show that this isomorphism is a natural transformation. Let 

h \ Z - + Y be in <g. Then 

B<$A(P®Z, Q) 
HZ) 

1% r](X) 

*1(Z) 
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commutes since for ' A ( P ( g ) Y , Q) we have 

183 

U(M<S>Z) £ ( P $ Z ) < 8 > A M 

U ( M * > k ) 

commutative and thus 

([•, r ] ( h ) o Z ( Y ) ) ( f ) ( M ) = 

= («(A/®Z) ^ ( M 0 / I ) - ®(M®Y) ~ (P®Y)®AM £2±?L+ Q®AM =* r ( M ) ) = 

= (<#(M®Z) s ( P ® Z ) ® ^ M - — * ß ® u M s f(M)) = 

= ( I (Z)o B ^(P®Ä, 0)(/)(M). 
For this theorem we have two applications. Before we discuss them, we have 

to introduce the notion of the center of a monoid. 
It is clear that A

cß(A9 A ) ^ A ( I ) as monoids in the category of sets. The iso­
morphism is given by 

A V ( A , A ) 5 f ~ f ( l ) = M A ( I ) 

A ( I ) ^ a — ( A ( X ) 3 b — ba£A(X))eA<g(A9 A ) . 

Now those elements a£A(I) which commute with all b ^ A ( X ) for all X induce 
in A

C€(A9 A ) precisely the A — ̂ -morphisms AßA(A9 Ä)9 which then is a commutative 
monoid. So a possible definition of the center of A could be A

C 6 A \ A 9 Ä). But this 
is only a set, not an object in (€. A possible generalization to an object in # is 
A [ A 9 A ] A if this exists. If it does not exist we know at least the funetor represented 
by this object. So we define the c e n t e r of A as a funetor from # to Sf\ the category 
of sets, by Cent (A)(X):=A<gA(A®X9 A ) . If A [ A 9 A ] A exists we have Cent ( A ) ( X ) s z 
= A [ A 9 A ] A ( X ) . 

As in § 3 Cent (A) can only be defined in a Symmetrie monoidal category in 
contrast to A V A ( A 9 Ä). In § 2 we showed that and c€^cel hence # ( / , / )~ 
^{€1(J9 I ) is a commutative monoid [18, Theorem 1] for (possibly nonsymmetric) 
monoidal categories. 

Let A be a monoid in a Symmetrie monoidal category Let A ! d : A

X 8 - + A

( # 
denote the identity funetor. Then A I d is clearly a ^-funetor and AId^A®A as 
^-funetors. 
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6.2. Theorem. Cent ( A ) ^ [ J d , A I d \ . 

P R O O F . Cent ( A ) ( X ) = A < $ A ( A ® X 9 A ) ^ [ A I d 9 A I d ] ( X ) . 
The isomorphism of Theorem 6.2. is only an isomorphism of objects in (€. 

But there is an additional structure, a multiplication on these functors. If they 
were representable the representing objects in # would be monoids. The multi-
plicative structure on A [ A 9 A ] A as it has been studied in § 3 is reflected in 
A<ßA(A®X9 A ) by the commutative diagram 

A [ A 9 A ] A ( X ) X A [ A 9 A ] A ( Y ) - A [ A 9 A]A(X®Y) 
II* II? 

Ä (A ® X 9 A ) X Ä ( A ® Y 9 A ) - + AVA (A ® X® Y9 Ä) 

where the lower map is given by 

( / , g ) - ( ^ W ^ A ® Y A ) . 

The unit is described by 

A®I^ A ) £ A < # A ( A ® X 9 A ) . 

[ A I d 9 A I d ] carries a multiplaciticve structure via 

[ A I d , A I d ] ( X ) X [ A I d , A I d ] ( Y ) [ A I d , AId]{X®Y) 

by T(<p, ip) = (AId®X®Y *®r • A I d ® Y A I d ) 

and there is a unit 

I ( X ) 5 f ~ ( A I d ® X - ^ * AId®I~ AId)e[AId9 A I d ] ( X ) . 

Using the isomorphism of Theorem 6.1. it is easy to see that they are compatible 
with the multiplication and the unit map. Hence the isomorphism of Theorem 6.2. 
is a „monoid isomorphism". 

6.3. Corollary: Let A<ß a n d jß be <€-equivalent. Then Cent (4) Cent ( B ) as 
f u n c t o r s f r o m to £f. If both f u n c t o r s a r e representable then the W o r e p r e s e n t i n g 
objects a r e i s o m o r p h i c as commutative monoids i n 

A [ A 9 A ] A - B [ B 9 B ] B . 

P R O O F . We show [ A I d 9 A I d ] ^ [ B I d 9 B I d ] . Let & \ ß # the given ^-equivalence. 
First we show 

[ A I d 9 A I d ] ( X ) ~ [ ^ 9 & ] ( Y ) 9 

or 
#-Mor (AId® Y9 A I d ) 9 £ V - M o T { P ® Y9 9 ) . 

Let (p : A I d ® Y - + A I d be a natural transformation. Define ^ocp: <F® Y - + 2 F by 
^ o c p ( M ) : &{M® 7 ) - ^ ( A f ) as & r o c p ( M ) = ^ ( c p ( M ) ) . Since & is an equivalence 
it is clear that cp^^ocp is a bijection between the sets of natural transformations. 
Now we show that cp is a ^-morphism iff Ĵ ocp is a ^-morphism. cp is a ^-morphism 
iff the diagrams 
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III IG 
M®Y®X VW®* » M®X 

commute. #o<p is a ^-morphism iff the outer diagrams of 

II? Iii 

commute where the lower part commutes in any case since & is a ^-funetor. But 
the upper part commutes iff the previous diagram commutes. Hence 

% - M o r ( A I d < S ) Y , A I d ) ^ < g - M o v ( 3 ? 

Now we show [ B I d , B I d ] ( Y ) ^ [ ^ , & ] ( Y ) or 

* - M o r ( B W ® y , B / d ) ~ V - M o r ^ ® } ^ ) . 

It is clear that the correspondence between cp: BId®Y-+ B I d and c p ^ o \ &®Y^fF 
with 

( ( p o ^ ) ( M ) : = (&(M®Y) s &(M)®Y • #"(A/)) 

induces an isomorphism between the sets of natural transformation, since SF is 
an equivalence. Furthermore cp is a ^-morphism iff the diagrams 

in ii 
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commute. On the other hand c p o ^ is a ^-morphism iff the outer diagrams 

III 

commute. The first and third part commute by definition. In the middle part take 
into account that SF is a ^-funetor. Then it commutes iff the previous diagram 
for <p commutes. Hence [ B I d , B I d ] ( Y ) ^ , 3 F ] ( Y ) ^ [ A I d 9 J d ] ( Y ) . 

The reader can easily verify that these isomorphisms are natural isomorphisms 
in Y. Furthermore they preserve the multiplication" given by composition of 
morphisms just before Corollary 6.3. They also preserve the „unit" . Hence 

A [ A , A ] Ä - B [ B , B ] B 

as monoids (if they exist) or 

Cent 04) ^ Cent(P) 

with the multiplicative structure. 
6.4. Corollary: L e t be the u n d e r l y i n g f u n e t o r . Then [ < % 9 < % ] ( Y ) ^ 

^ A o p ( Y ) n a t u r a l i n Y^ß a n d c o m p a t i b l e w i t h the m u l t i p l i c a t i o n on b o t h sides. 

PROOF. By Theorem 6.1. and the fact <%?*A®Ä we have <&](Y)2z 
^A{A® Y, A ) ^ A o p ( Y ) as left multiplications and these isomorphisms are 
natural in Y and compatible with the multiplication. 

So we have seen that just from the knowledge of the underlying funetor % 
we may regain the monoid A up to an isomorphism. 

(Received November 2 0 , 1 9 7 5 . ) 
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