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Non-additive Ring and Module Theory, III.
Morita Equivalences

Dedicated to the memory of Andor Kertész
By B. PAREIGIS (Miinchen)

This paper is a continuation of [19], [20]. References are quoted there.

As in ring theory one may ask the question when two categories ,€ and %
for monoids 4 and B are equivalent. Now in ring theory we know from the additivity
of the equivalences &: ,€—z4 and ¥: ¢ — ,% that the natural bijections

Homp(#(M), N) = Hom,(M, ¥(N)) and Hom,(%(N), M) = Homg(N, F(M))

are isomorphisms of abelian groups. So in the general case we only want to con-
sider equivalences such that there are isomorphisms g% (M), N]== ,[M, % (N)]
and L[9(N), M]=gN, #(M)]. In view of theorem 4.3. this is equivalent to study-
ing equivalences such that & and ¢ are ¥-functors. The last condition can be studied
even in monoidal, non-closed categories.

We call ,€ and ;€ %-equivalent if there are inverse equivalences %:,4— %
and %:;4—~,%4 such that & and ¥ are %-functors.

Without loss of generality we shall only consider equivalences & and ¢ to-
gether with isomorphisms @: ¥%=>=1Id and ¥: 9% =Id such that ¥ =®% and
Y4=%®. Then & and ¥ and their inverses are already adjointness morphisms.

5.1. Theorem. Let € be an arbitrary monoidal category. Let F: 6% and
G . 6~ € be inverse €-equivalences. Then there are objects P€ €y and Q€€ 4
such that

a) there are natural isomorphisms

F(M)= Q@M= J[P,M] in 4,
G(N) = PRy N = 5[0, M] in 4%,

and P B-coflat and Q A-coflat.
b) there are isomorphisms of A— A-resp. B— B-biobjects

A =P®RsQ and B=Q®,P
such that the diagrams

PR(Q®P) = (POQ)®P — AQP
{ {
P®B P

12D
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and
0R(PRO) = (0RP)RQ — BRQO
¥ v
o4 0
commute,

C) there are isomorphisms
Q. Bl=P in ,%s,
A[Ps A] = Q in B(gA’

d) there are isomorphisms

5[0,0l=A4 in ,%, and as monoids,
AP, Pl=~ B in g%z and as monoids.

PrOOF. By the symmetry of the situation we only have to prove one half of
the assertions.

There is an isomorphism F(M)=Q®,M natural in M by Theorem 4.2
since & is a ¥-functor and clearly preserves difference cokernels as an equivalence.
By the same theorem we have %(N)=[Q, N] natural in N, since ¢ is adjoint
to & This proves a).

We have an isomorphism A4>=%%(A)=PQ(Q®,A4)=PR®yQ in ,%. Further-
more we have a commutative diagram

A®A = PRp(QR4(4® 4)) = PRy(Q® A)
! }

{
A P®R(Q®4A4) = PR30

hence A~P®z;Q as 4— A-biobjects.

The adjunction morphism ¥:%%=Id induces the evaluation morphism
Y. PQpP, M]=M with ¥ (p®f)={p)f. By definition of the isomorphism
A=P®zQ we get a commutative diagram

Pe,Qe,M) = (Pg,0)8,M =< As, M

N -

PQ.BA[P) MJ — M

IR

Hence if the isomorphism P®zQ=A4 is described by p®zq—pq and the
morphism Q®,M— [P, M] is given by
g®sm — ¢(q®4m), we get (pg)m = (p)p(q®,m).

Now if M€ (&5 then we get (p) ¢ (4 ®,mb)=(pq) (mb)=((pg)m)b=((p) ¢ (g @.m)) b=
=(p)(¢(g®,m)b), hence QQ,M and [P, M] are isomorphic as B— B-biobjects.
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In particular we get [P, A]=Q as B—A-biobjects and [P, P]=Q®,P=B as
B— B-biobjects.
To prove the monoid isomorphisms we first observe that

PR(QQ®P) = (PRQ)®P — A®P and

' '
P®B P

0®(P®Q) = (Q®P)®Q — BR®Q
I '
o0®4 0

commute. This follows from %$=0®,, 9=P®; and from the fact that
OF . FYF~F and FYVY.FYF~F resp. Y0:%%%~% and VYY:95%-~9
are equal. So we get

Pe(@®p)e(@"®p") = (g)(P'q")p” = p(g'P)(q"P").
Since the isomorphism ,[P, P]=B is given by
AP, Pl -2 Q®,P=B
or ¢(q¢’'®p’)—q’p’, the composition ¢ (¢’®p")¢(q”®p”) is mapped to the product

@ p)(q"p"). If ¢ (¢’®p’) is the identity then p(q’p)=p for all p. But [P, P]~B
is an isomorphism hence ¢'p’=1€B.

5.2. Corollary: The morphisms
P(X)X 4P, A](Y) 3 (p, f) —{p)f€A(X®Y)
AP, ANX)XP(Y) 5 (f, p) — fPE AP, PI(XQY)

with (p"y(fp):=(p")f)p induce isomorphisms
PRpu P, Al= A and [P, A]JQP = P, P].

and

The analogous assertions hold for Q and B.

PrROOF. The first isomorphism, the evaluation morphism, was discussed in
the proof of 5.1. The second isomorphism is just given by

AP, Al® P 222 0@, P —2— P, P].

We have seen that each #-equivalence is induced by some object P¢€ €5 with
the properties of Corollary 5.2. The converse will proved after a more detailed
study of the properties exhibited in Corollary 5.2.

An object P¢ % will be called finite, if ,[P, A] and B:= [P, P] exist, if P is
B-coflat and [P, A] is A-coflat and if the morphism [P, A]®Q,P - 4P, P] induced
by [P, AIX)X P(Y)3(f, p)—/p€ [P, PIX®Y) with (pp=({p)f)p is an
isomorphism. P will be called faithfully projective if it is finite and if the morphism
P®g J[P, A]-A induced by the evaluation is also an isomorphism.

12¢
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5.3. Theorem. Let A, B be monoids in €, P€ ;€5 B-coflat and Q€ 36, A-coflat.
Given morphisms f: PQgQ—~A in ,€,and g: QQ, P~ B in g€ g such that the diagrams

PRp(Q®4P) = (PRsQ)R4P AQ P
P®pg 1
P@;B P
0®4(PR5Q) = (QQ,4P)®0 B®gQ
0®,f
t
o0®.4 0

commute. Assume that there is p,Qpq,€ PQgQ(I) such that pyqy:=f(po®sqo)=
=1€A(I). Then f is an isomorphism. Assume that in addition there is
@1 ®4P1€0®4P(I) such that q,p;:=g(q,®4p))=1€B(). Then PQp: s€—~,%
and QR&,: ,E—~5€ are inverse €-equivalences. In particular P€ € and Q€€ are
Sfaithfully projective.

Proof. Define f":A—-PRzQ by [f'(a)=ap,Rsq,- Then ff'(a)=ap,q,=a
and 7 f(p®gq) = (P9)Po®s90 = P(qP) ®sq0 = PB5(9P0)90 = P®8q(Pog0) = P®sq-
Hence f is an isomorphism.

Furthermore the functors P®;0®,=A®, and Q®AP®B_B®B are both
isomorphic to the identity-functors on ,% resp. z€, hence they are inverse equiv-
alences. Furthermore P®; and Q®, are ¥-functors by Theorem 4.2.

5.4. Theorem. Let P¢,% be faithfully projective. Then AP, —]:, 6~ ,p,p1€
exists and is a €-equivalence.

Proof. By definition ,[P, A] and [P, P]=B exist. Furthermore P¢€ , %g,
Q:=4[P, A]€g%, and the hypotheses of Theorem 5.3. are satisfied by the very
definition of Q®,P—~B and PRzQ—+>A. So Q®,: ,F % is a ¥-equivalence.
By Theorem 5.1. we get O®, =P, -]

Let us now apply our theorems to the case where the tensor-product in € is
the (direct) product (example ¢) of § 1). Furthermore assume that each canonical
epimorphism MXN-MX N induces a surjective map MXN(I)-~MX N(I).
This is for example the case if [ is projective in the category ¥. We say that M X N~
—~MX 4N is rationally surjective. Assume that ,%4 and g% are %-equivalent by
PRy—: s+, and Q®,: ,F—5%. Then we have surjective maps f:P(I)X
XQN=PXQ()~AI) and g:Q()XP(I)=QXP(I)~B(I) such that (pg)p’=
=p(gp’) and (gp)q’=q(pq’) if f(p,q)=pq and g(q,p)=qp. Let p;cP(I),
7:€0(), i=0,1 be chosen such that p,q,=1€A(), q,p,=1€B(I).

Let us now assume that each element in 4 (/) which has a left inverse has also
a right inverse. We wish to show A=B as monoids. First we show p,q,=1€A4.
By definition we have (poqy) (P190) =Po(q1P1)90=P0 o= 1€ A (1), hence (p19) (Poqr) =1
Furthermore we have poq,p,=p,. This implies p;q;=1-p;q:=(p190Po9) P11 =
=p190(P091P1) G1=P190P091=1€ A(I). Now define morphisms P(X)>p—pq,€A4(X)
and A(X)>a~»ap,€P. They are obviously mutually inverse morphisms in ,%.
Hence B= [P, P]=,[A4, Al=A.

As a special case we get
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5.5. Corollary: In the category of sets & with the product as monoidal category
let A be a group or a commutative monoid or finite. Then & and p& are equivalent
iff A=B.

PRrROOF. In & the morphism-sets form an inner hom-functor, so by Theorem
4.3. each equivalence &=, is an ¥-equivalence. Furthermore {#} is projective
in & If A is a group or commutative or finite then each element which has a left
inverse in 4 (1) has also a right inverse. So all conditions of the previous discussion
are satisfied. Hence A=B. The converse is trivial.

The central part of the Morita Theorems

For this section we will always assume that € is a symmetric monoidal category.
Let us consider ¥-functors %, ¥ :,4—z% such that there are P, Q€;¥, with
@-isomorphisms #=PQ,, ¥V =0, .

Define a new %-functor #Q®Y for YE¥ by UQYM)=UMRY)=
>P®R,(M®Y). Because of the symmetry of ¥ we have #QY(M)=(PRY)Q,M
hence #® Y indeed is a %-functor.

Define [%, V](Y):=%¢-Mor (#®Y,¥’) as the set of %-morphisms from
URY to ¥ For h: Z—~Y in € define [%, ¥V 1(h):[%,V]IY)~[%,V1(Z) by
@, V1(h) (@) (M):=((MRZ) XM2N . 4y (MQY)2¥. ¥°(M)). Then [#,¥] is
a contravariant functor from % to the category of sets.

6.1. Theorem. There is a natural isomorphism of functors from € to the category
of sets:

If §[P, Q4 exists then [U,V1(Y)=g[P, Q1 (Y).
PrROOF. Let f€34,(P®Y, Q). Then define p€[%, ¥](Y) by

fOM

(M) = (UMQY) = (PRY)QuM

For g€ ,4(M, N) we get a commutative diagram

QM = ¥(M)).

AMRY) = (PRY),M 122M . 00,M =~ ¥ (M)

4(g®Y) 1(P® Y)® 49 0®,9 v (g)
¥ FOLN ¥
AUN®Y) = (PRY)®,N Q®4N = ¥(N)

hence ¢ is a natural transformation from % ®Y to ¥ Furthermore the following
diagram commutes:

UMoX)aY)= (ar)a MeX) 12X o (mex) = yittax)

R i I n
Utevjexs Povie,mex (4% g0 vjox = yfinex
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Hence ¢ is a ¥-morphism. This defines a map
2:p84(P®Y, Q) —~ [U, VI(Y).

Conversely let ¢@€[%, ¥ 1(Y) and define f€,8,(PRY,Q) by fi=

(POY=PRAQY=U(AQY) LY. ¥ (4)=0®,4=Q). Clearly f€;4(PQY, Q).
To show that f€;¢,(P®Y, Q) consider the following commutative diagram

Pa,(ABY) @ A2 ((PoY)®,A)@AS Ulle!)®A FHep YA @ A% (Qe,A)eA
n I n " " n
(PoY)eA=(PoY)e, (A®A)E U(Ash)oY) M Y TAGA)= A8, (A0A)Z QoA

Yooy (PeY)e puy | U(u, oY) "V(/KA) o,y | Vg
Por = (Porieh = Ukey)— 1A o yiay 2 Qeh= O

where the morphism from (P® Y)® A4 to Q® A4 along the upper side of the diagram
is just f@A4 and the morphism from PQY to Q along the lower side is f. Hence
f is a right A-morphism. So we have a map

IT:[%¥V)(Y) ~ s4(PRY, Q).
Now

Y(A) = Q) =
A=0)=f

= (PRY = (PRY)®,4 ~
and .
n(@)® M

SH(p)(M) = (U(M®Y) = (PRY)®,M
=(UMQY) = UARY )M o (De, M

- Q@M = ¥ (M)) =

- V(@M = V(M) = (M)

since ¢ is a ¥-morphism. Hence we have [%, ¥ ](Y)._ 64.(PRY, 0).
It remains to show that this isomorphism is a natural transformation. Let
h:Z—~Y bein €. Then

5 (PRY, Q) —2 (&, ¥)(Y)

B4 (PO, Q) [2, ¥v1(h)

544 (PRZ, Q) —2. [, ¥)(Z)
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commutes since for f€;4,(P®Y, Q) we have

R

UMeZ) (Po Z)®,M

UMe h) (Po h)o,M (f(Pe h)e,M

UMeY) & (Pe V)e,M feult ~ Qe M =M)

commutative and thus
([, ¥ 1(W)oZ(XV))(f)(M) =

W(M@h)_’ UMRY) = (PRY)®,M fOuM

(F(POR)®, M

=(#(Me2)

—~ Q@M = V(M) =

= (UMRZ) = (PRZ)®,M ~ Q@M = ¥V (M)) =
= (Z(Z)op8 (PR h, Q))(f)(M).

For this theorem we have two applications. Before we discuss them, we have
to introduce the notion of the center of a monoid.

It is clear that ,%(A4, A)=~A(I) as monoids in the category of sets. The iso-
morphism is given by

4%(A, A)3f — f(1) = freA(I)

A(D)3a — (A(X)3b — ba€ A(X))€ ,8(4, A).

Now those elements a€ 4(I) which commute with all b€ A4(X) for all X induce
in ,%4(A, A) precisely the A — A-morphisms ,% ,(A4, A), which then is a commutative
monoid. So a possible definition of the center of A could be ,%,(4, 4). But this
is only a set, not an object in 4. A possible generalization to an object in ¥ is
4[4, Al if this exists. If it does not exist we know at least the functor represented
by this object. So we define the center of A as a functor from € to &, the category
of sets, by Cent (4)(X):=,4,4(ARX, A). If ,[4, A, exists we have Cent (4)(X)=
= 4[4, A],(X).

As in § 3 Cent (4) can only be defined in a symmetric monoidal category in
contrast to 4,%,(4, A). In § 2 we showed that ;¥=% and ¥=%; hence ¥(I, )=
>~ ,%,;(I,I) is a commutative monoid [18, Theorem 1] for (possibly nonsymmetric)
monoidal categories.

Let 4 be a monoid in a symmetric monoidal category ¥. Let ,Id: ,6—~ %
denote the identity functor. Then ,Id is clearly a ¥-functor and Jd=A®, as
%-functors.
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6.2. Theorem. Cent (4)=[,Md, ,Id].

PrOOF. Cent (4)(X)=,8,(AQ X, A)=[,Md, ,1d]|(X).

The isomorphism of Theorem 6.2. is only an isomorphism of objects in ¥.
But there is an additional structure, a multiplication on these functors. If they
were representable the representing objects in ¥ would be monoids. The multi-
plicative structure on L[4, A], as it has been studied in §3 is reflected in
4% (AR X, A) by the commutative diagram

A4, AJa(X) X 4[4, A]4(Y) = 4[4, Al(X®Y)
4B4(ARX, A)|>|2<A(6A(A®Y, A) - A%A(IIZ®X®Y, A)
where the lower map is given by
(f, 8) — (AR XY L2 . 4QY 2~ 4).
The unit is described by
IX)3f — (AQX —22L . AQI = A)c %,(A®X, A).

[41d, 41d] carries a multiplaciticve structure via

[ald, J1d)(X)X[41d, (d)(Y) —~ [Jd, Jd)(X®Y)

by T(p,¥) = (LJd®XQY 22X Id®Y —*~ ,1d)
and there is a unit
IX0)3f — (A X 222 eI~ Jdec[]d, Jd)(X).

Using the isomorphism of Theorem 6.1. it is easy to see that they are compatible
with the multiplication and the unit map. Hence the isomorphism of Theorem 6.2.
is a ,,monoid isomorphism”.

6.3. Corollary: Let ,4 and g% be %¥-equivalent. Then Cent (4d)=Cent (B) as
Sfunctors from € to &. If both functors are representable then the two representing
objects are isomorphic as commutative monoids in €:

al4, Al = g[B, Blp.

ProoF. We show [, Id, ,Jd)=[pld, gId). Let &F: ;€% the given ¥-equivalence.

First we show
[41d, J1dI(X) = [F F](Y),

or

%-Mor (,I1d®Y, 41d)=%¢-Mor (¥QY, F).
Let ¢:,Jd®Y—~,Jd be a natural transformation. Define Fo¢p: FQY—~F by
Foo(M): FIMRQY)~F (M) as Foo(M)=F(¢(M)). Since & is an equivalence
it is clear that ¢ —%o¢ is a bijection between the sets of natural transformations.
Now we show that ¢ is a #-morphism iff Fog is a €-morphism. ¢ is a ¥-morphism
iff the diagrams
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MeXoV _L(MOX) | pox

n I
Movex LUNeX - MoX

commute. Fog is a ¥-morphism iff the outer diagrams of

r )

N I
F((MoY) ®@X) Flo (mex) HMoX)

I I
YmovIox Lo LNOX | ey

fMaxey) 2o MEX)  _  pimex)

commute where the lower part commutes in any case since % is a ¥-functor. But
the upper part commutes iff the previous diagram commutes. Hence

&—Mor (,Id®Y, (Id) = €—Mor (FQY,F).
Now we show [pld, gld)(Y)=[F, F1(Y) or

% —Mor (3ldQY, gld) = €—Mor (FQY, F).
It t1}s1 clear that the correspondence between ¢: jld®Y—~gld and pFo: FRQY~F
wi

@ (F(M))

(PoF)(M) = (F(MRY) = F(M)®Y F(M))

induces an isomorphism between the sets of natural transformation, since & is
an equivalence. Furthermore ¢ is a 4-morphism iff the diagrams

NeXeoY Yvex) MNe X
I Il
Novexy —TMeX_ NexX
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commute. On the other hand @o& is a ¥-morphism iff the outer diagrams

g XoY) boF M2 X) | FimgX)

N
Yy ey LEMX) | Fimax)

N
S‘V(M)”;Y@X PEMX _ £(Me X

N N
FMaY) @ X PoF (MeX . GiMe X

commute. The first and third part commute by definition. In the middle part take
into account that & is a ¢-functor. Then it commutes iff the previous diagram
for ¢ commutes. Hence [pld, zld](Y)=[%, #1(Y)=[,1d, Jd](Y).

The reader can easily verify that these isomorphisms are natural isomorphisms
in Y. Furthermore they preserve the , multiplication” given by composition of
morphisms just before Corollary 6.3. They also preserve the ,,unit”. Hence

. . A A[Aa A]A = B[B, B]B
as monoids (if they exist) or
Cent (4) = Cent(B)

with the multiplicative structure.

6.4. Corollary: Let %: ,€—~% be the underlying functor. Then [U, U)(Y)=
= A°°(Y) natural in Y€€ and compatible with the multiplication on both sides.

Proor. By Theorem 6.1. and the fact #=~A®, we have [%,%](Y)=
=%, (AQY, A)=A°(Y) as left multiplications and these isomorphisms are
natural in Y and compatible with the multiplication.

So we have seen that just from the knowledge of the underlying functor %
we may regain the monoid 4 up to an isomorphism.

( Received November 20, 1975.)
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