
Bachelor Thesis
Department of Statistics

Ludwig-Maximilians-Universität München

Wavelet Representations for
functional data

Sven Martin Lorenz

Supervisor:
Dr. Fabian Scheipl

Date: 19. December 2019

Eidesstattliche Erklärung
Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbständig verfasst und dabei
keine anderen als die angegebenen Hilfsmittel benutzt habe. Sämtliche Stellen der Arbeit, die im
Wortlaut oder dem Sinn nach Publikationen oder Vorträgen anderer Autoren entnommen sind,
habe ich als solche kenntlich gemacht. Die Arbeit wurde bisher weder gesamt noch in Teilen einer
anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Sven Martin Lorenz Ort, Datum

1

Abstract

We introduce the function tfb_wavelet() for the tidyfun-package in R1. It uses Debauchies
extremal phase wavelets to fit wavelets for functional data. Because we implement the function
into an existing framework, which bases many of its functions on matrices, we also use wavelet
matrices to estimate our coefficients and not the DWT. Further, we use these matrices to combat
the boundary issues wavelets have by introducing a trend column. Additionally we solve the
limitations of wavelets that they need an equispaced and dyadic sequence as their inputs by
interpolating our input support to such an equispaced and dyadic sequence, next estimating
the wavelet matrix and then linearly interpolating the matrix back to the original support. We
conclude that it delivers similar results to tfb_spline and that some work can be done to
optimise tfb_wavelet in regards to performance and finding correct default inputs.

1R Core Team (2019)

2

Contents
1 Introduction 4

1.1 Functional Data . 4
1.2 Wavelets . 4

1.2.1 Haar wavelets . 4
1.2.2 Debauchies extremal phase wavelets . 8
1.2.3 Inverse Transform . 9
1.2.4 Advantages of wavelets in our context . 9
1.2.5 Wavelet matrix creation . 10
1.2.6 Wavelet Regression . 15

2 Implemented Function 16
2.1 Documentation . 16
2.2 Theory . 16

2.2.1 Why matrix representation of wavelets? . 16
2.2.2 Non wavelet conforming supports . 17
2.2.3 Symmetry constraints . 18

2.3 Implementation . 19
2.3.1 Dataset . 19
2.3.2 Different Parameters . 19
2.3.3 Comparison to tfb_spline() . 26
2.3.4 Constraints . 27

3 Conclusion 30

4 Appendix 31

References 31

3

1 Introduction

In this work, we are trying to describe our approach and the outcome of implementing wavelets for

functional data into the tidyfun package in R. A lot of our implementation is based on the methods

in Wand and Ormerod (2011), wherein they are not using the normal discrete wavelet transform or

pyramid algorithm, but are using wavelets in a semiparametric regression more akin to the rest of

statistical literature. This means that we use wavelet matrices to compute our coefficients. We also

use several adaptions for dealing with real world data, described in section 2.2.

1.1 Functional Data

We need two definitions from (Ferraty and Vieu 2006):

1. Definition: A random variable X is called functional variable (f.v.) if it takes values in an

infinite dimensional space (or functional space). An observation x of X is called a functional data.

2. Definition: A functional dataset x1, ..., xn is the observation of n functional variables

X1, ..., Xn identically distributed as X.

Note that these definitions theoretically work for infinite dimensional space, but we are only

using 2d data. So we have value and support pairs like this (yi, xi) with i = 1, ..., N , which build

one observation x.

Another note the support does not need to be the same for each observation, we will call this

case irregular functional data.

1.2 Wavelets

1.2.1 Haar wavelets

Since we are only using Debauchies extremal phase wavelets, we will only be describing them.

Specifically we will explain Haar wavelets, the simplest of the Debauchies extremal phase wavelets.

We also explain wavelets in the context of the discrete wavelet transform (DWT), a tree like structure

to compute the coefficients. The explanation and the example is based on (Nason 2006, 15ff).

The DWT is only defined for an input sequence of dyadic (2J , J ∈ N) length and equal spacing.

It essentially tries to analyse a given sequence y by evaluating the sequence at different levels by

4

adding and subtracting neighboured yi. For the first level, we have following formulas:

dk = y2k − y2k−1 with k = 1, ..., 2J−1 (1)

ck = y2k + y2k−1 with k = 1, ..., 2J−1 (2)

As you can see the dk are the subtraction coefficients and the ck are the addition coefficients.

Both dk and ck are also only half as long as the original sequence.

We continue this computation by replacing the yi with the ck for level = 2 and adding an

additional subscript of difference J − level to our coefficients. So for the second level we get:

dJ−2,k = cJ−1,2k − cJ−1,2k−1 with k = 1, ..., 2J−2 (3)

cJ−2,k = cJ−1,k + cJ−1,k with k = 1, ..., 2J−2 (4)

These coefficients can be computed till J − level = 0, resulting in c0,1 =
n∑

i=1
yi. In the next step,

we introduce a so-called filter, which is different for every wavelet. This is needed because the energy

of y is smaller than that of d (Nason 2006, 20f), with the definition of energy being: ‖y‖2 = Σn
i=1y

2
i .

For Haar wavelets, this filter is relatively simple: α = 1√
2 . We multiply this α to every coefficient at

every level like this:

dj,k = α(cj+1,2k − cj+1,2k−1) with j = J − level (5)

cj,k = α(cj+1,2k + cj+1,2k−1) with j = J − level (6)

Since we add the Multiplication with α at every level, we can rewrite our formulas (example for

second level).

dJ−2,1 = α(cJ−1,2 − cJ−1,1) = α(α(y4 + y3)− α(y2 + y1)) = α2(y4 + y3 − y2 − y1) (7)

We can also graphically view this process as a tree. We use the sequence (1, 1, 7, 9, 2, 8, 8, 6),

so J = 3:

5

Figure 1: DWT example with (1, 1, 7, 9, 2, 8, 8, 6). Pink is y, green is c and blue is d. Dotted lines
mean its subtractions and drawn through lines are addition.

The matrix notation for this process is as follows: d = Zy, but d includes as its first entry c0,1

and the rest is d ordered from lowest to highest level.

6

For the above sequence, this matrix would look like this:

Z =



1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1√
2 − 1√

2 0 0 0 0 0 0

0 0 1√
2 − 1√

2 0 0 0 0

0 0 0 0 1√
2 − 1√

2 0 0

0 0 0 0 0 0 1√
2 − 1√

2
1
2

1
2 −1

2 −1
2 0 0 0 0

0 0 0 0 1
2

1
2 −1

2 −1
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2
− 1

2
3
2
− 1

2
3
2
− 1

2
3
2
− 1

2
3
2


The first row computes c0,1, rows 2-5 compute dJ−1,k rows 6 and 7 dJ−2,k and the last dJ−3,k. This

can be obviously continued for longer sequences. Z is also orthogonal.

More interesting to us is ZT , since with d = Zy we compute a perfect fit, we need to get our d

differently, more on that in 1.2.6. If we transpose Z every row can be thought of as an observation,

which in the context of wavelets means a point of the input sequence. The columns then can be

thought of as weights for different levels.

Lastly, we draw the common form of the Haar wavelet without the scaling of α:

Figure 2: Haar wavelet filter

7

For a given wavelet coefficient, we know the yi that factor into that computation. If we scale

the support of yi to [0, 1] and overlay these onto this curve, we can know the value (without α)

which we need to scale them with. This seems banal for Haar wavelets, but can be valuable for

more complicated Debauchies extremal phase wavelets.

1.2.2 Debauchies extremal phase wavelets

As we mentioned the Haar wavelet from the previous chapter is a special case of the Debauchies

extremal phase wavelet. Specifically the Haar wavelet has one vanishing moment. Meanwhile

Debauchies extremal phase wavelets can have up to ten vanishing moments. This means that the

filter and addition- and subtraction-structure will be a lot more complicated and with that the

wavelet matrix. We show this with the example of three vanishing moments2:

The filter:

(0.33267055, 0.80689151, 0.45987750, -0.13501102, -0.08544127, 0.03522629)

The corresponding matrix:

Z =



1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

1
2

3
2

0.807 −0.333 0 0 0.035 0.085 −0.135 −0.460

−0.135 −0.460 0.807 −0.333 0 0 0.035 0.085

0.035 0.085 −0.135 −0.460 0.807 −0.333 0 0

0 0 0.035 0.085 −0.135 −0.460 0.807 −0.333

0.080 0.737 0.344 −0.329 −0.231 −0.046 −0.194 −0.362

−0.231 −0.046 −0.194 −0.362 0.080 0.737 0.344 −0.329

−0.381 −0.023 0.220 0.553 0.381 0.023 −0.220 −0.553


And the filter drawn:

2Nason (2006)

8

Figure 3: Filter for Debauchies Extremal Phase wavelets with three vanishing moments

The general formulas for these wavelets are in the appendix (4).

1.2.3 Inverse Transform

After having a set of parameters d and c, the inverse transform gets y back. Since this gets more

and more complicated the higher the vanishing moments and in section 1.2.5 we use Haar wavelets

as an example, only the inverse transform for Haar wavelets are shown:

cj,2k = 2−1/2(cj−1,k − dj−1,k)

cj,2k−1 = 2−1/2(cj−1,k + dj−1,k) (8)

The general formula for this is in the appendix(4).

1.2.4 Advantages of wavelets in our context

Wavelets have several advantages. First, one can derive the structure of a sequence by looking at

the values of d. dj,k gets larger if there is a large discrepancy between neighboured points. From

this we only need to look at d to know the oscillations of our sequence.

Second, these oscillations are a locale phenomenon in our d, since dj,k are only influenced by a

9

subset of points. So even by one oscillation on a low level, only the dj,k down the line are impacted.

Thirdly, we have relatively sparse coefficient vectors as we only evaluate to a certain level (more

on that in the next chapter) and we also use lasso regression, which pushes coefficients to zero if so

wished.

We can also analyse our function on different scales. Meaning that changing the level to which

we evaluate results in getting different estimated functions. This can be useful to extract either big

changes in our data or very tiny changes and can be adjusted relatively easily3.

1.2.5 Wavelet matrix creation

The normal way to compute the wavelet matrix is wavethresh::GenW(), that computes the whole

wavelet matrix, but this is very inefficient for our case, because we only want the matrix up to a

certain level. Therefore, for large n computing the matrix like that takes a lot of time and then

takes up a lot of space. We use the alternative function ZDaub() which only computes up to the

tenth level and thus is a lot faster4.

Input : x: support with dyadic length and equal spacing

level: level to which to evaluate

filter_number: filter number or vanishing moments

resolution: a dyadic integer

Output: wavelet matrix evaluated to level for filter_number

for i = 1, ..., 2level do

1. Create wavelet with yi = 0 ∀i = 1, ..., resolution, so all d and c are zero

2. Set di−1,1 = 1

3. Calculate Inverse Transform yinv

4. Scale yinv with
√
resolution to get (yinv

i , xinv
i) with xinv

i ∈ [1, resolution]

5. Scale xi to [1, resolution], then use linear interpolation to get the correct values

end
Algorithm 1: Fast Algorithm for creating a wavelet matrix

We use the Haar wavelets as an example again. Set d1,1 = 1 and resolution = 8. The resolution
3Nason (2006)
4Wand and Ormerod (2011)

10

should definitely be higher in a user setting, but would make things way more complicated for our

example. Since we have d1,1 = 1 we get a second level column.

The 1. Step:

Figure 4: DWT with everything set to zero

11

The 2. Step: Now, we set d1,1 = 1:

Figure 5: Set one d to one.

12

The 3. Step is computing the inverse with formula 8.

c2,1 = 2−1/2(c1,1 + d1,1) = 2−1/2(0 + 1) = 2−1/2

c2,2 = 2−1/2(c1,1 − d1,1) = 2−1/2(0− 1) = −2−1/2

y1 = c3,1 = 2−1/2(c2,1 + d2,1) = 2−1/2(2−1/2 + 0) = 1/2

y2 = c3,2 = 2−1/2(c2,1 + d2,1) = 2−1/2(2−1/2 + 0) = 1/2

y3 = c3,3 = 2−1/2(c2,2 + d2,1) = 2−1/2(−2−1/2 + 0) = −1/2

y4 = c3,4 = 2−1/2(c2,2 + d2,1) = 2−1/2(−2−1/2 + 0) = −1/2

Figure 6: Compute the inverse transform

13

The 4. Step is scaling it with
√
resolution and plotting the second level Haar wavelet. Note that

we do not include scaling with α in this!

Figure 7: The resulting second level column plotted

Out of brevity we exclude the 5. Step.

We can do this for several low level j to get more wavelet matrix columns and with that we can

fill our wavelet matrix. This plot also shows us why we need a high resolution, since we would get

the wrong values if our scaled support would be between two and three. A higher resolution makes

this less likely.

The last parameter not yet mentioned is level. Note that this level parameter is different to the

one in the DWT, as it counts (in the context of the tree) from bottom to top (j = level) and the

DWT from top to bottom (j = J − level. The parameter controls how big our matrix will be and

which level should be included. Normal wavelet matrices are Z ∈ Rnxn, but the highest levels are

normally not necessary to get a good estimate and it takes a lot of time to compute more than

up to ten levels. Ten levels are already bigger than it seems, because 210 = 1024 columns will be

computed. Included will be every level from j = 0 to j = level.

14

1.2.6 Wavelet Regression

Instead of using the fast discrete wavelet transform, we are defining our wavelet fitting as a regression

problem. For that, we get this common form:

y = β0 +
K∑

i=1
dizi + εi (9)

with β0 as intercept. di are the wavelet coefficients, but not computed through the DWT, but

rather through some regression method. zi(x) are the rows of the wavelet matrix. εi are the error

terms.

1.2.6.1 Least squares regression

We now, for simplicity, add an intercept column to our wavelet matrix and correspondingly add

β0 to our d. We can then write our formula from before in matrix notation:

y = Zd+ ε (10)

To fit we first compute the QR decomposition (“9. The Qr Decomposition,” n.d.) and then use

the Newton-Raphson method to get our coefficients (Gil, Segura, and Temme 2007).

This is the quick and possibly dirty approach in our function. Since we do not use the DWT

and lasso regression with cross-validation is relatively time expensive, least squares regression fills

that niche. It performs relatively well, but does not produce any zeroes in the coefficient vector, so

every level is factored in no matter how irrelevant.

1.2.6.2 Lasso regression

We have the same base formula as before, but we now use a different estimation process:

d̂Lasso = argmin
d

1
2

n∑
i=1

(yi − d0 −
level∑
j=1

xi,jdj)2 + λ
level∑
j=1
|dj | (11)

The best λ is estimated through cross-validation5, while every model is fitted via penalized

maximum likelihood6.
5Hastie, Tibshirani, and Friedman (2001)
6Friedman, Hastie, and Tibshirani (2009)

15

2 Implemented Function

2.1 Documentation

The new function tfb_wavelet() which converts functional data in different formats to a tfb-object

including but not limited to the wavelet matrix and the fitted coefficients for every curve. Important

parameters are wavelet matrix controlling parameters level and filter_number. penalized=TRUE

means we use lasso regression otherwise we use least squares regression. ... controls the parameters

for the lasso regression in glmnet::cv.glmnet and glmnet::glmnet. For more information use

?tfb_wavelet in R.

2.2 Theory

We are using several adjustments to deal with real world data and to circumvent the restrictions

wavelets have. These adjustments are also made in part to more fluently incorporate tfb_wavelet()

into existing code of the tidyfun package.

2.2.1 Why matrix representation of wavelets?

The tidyfun package relies heavily on the tf_evaluate(x, arg) function for its tfb-class. The

function evaluates a tfb-objects at certain points defined by arg. For that it uses the design matrix

and the coefficients saved in the tfb-object and linearly interpolates the design matrix if necessary.

So right from the get-go we needed to compute the wavelet matrix, otherwise we would need to

reimplement tf_evaluate(), which would have been very inefficient.

The second reason is simplicity for our target user base. Least squares and lasso regression

are well known for statisticians and the glmnet package is widely used, so for most statisticians

the only new things are using the level and filter_number parameters. This goes hand in hand

with tidyfun’s goal “to provide accessible and well-documented software that makes functional data

analysis in R easy”7.

Next there were several problems with the preferred wavelet package wavethresh that implements

the DWT. The level parameter for ZDaub() was clashing with a similar but not equal parameter in

threshold.wd(levels). This parameter also needs to either be handpicked through experience or
7Scheipl and Goldsmith (2019)

16

cross-validated. This cross-validation is also not implemented in wavethresh, making this package

rather incovenient.

The last point has to do with the next chapter where we solve several problems, which would

not have been possible without the wavelet matrix.

2.2.2 Non wavelet conforming supports

Wavelets as we know only handle data that is of dyadic length and equal spacing, because real life

data almost never conforms to this standard one needs to clean up their supports. Therefore, we

would need to incorporate a bunch of different cases, which makes code complicated. A different

solution includes our wavelet matrix and is relativly easy to implement.

The problems we are solving:

1. The supports between the curves are different.

2. The support is not of length 2J and regularly spaced as required by wavelets.

The same algorithm solves both of these:

Input : A functional dataset

Output: A wavelet matrix

begin

1. Get all unique xvalues of input dataset

2. Linearly interpolate between min(x) and max(x) so that n = 2J , get xinterp

3. Estimate wavelet matrix with xinterp and algorithm 1

4. Linearly interpolate between columns of wavelet matrix back to the original xvalues

end
Algorithm 2: Wavelet correction

The wavelet matrix, if we remember section 1.2, has the points as observations in the rows.

Since we need points on a different support set, we need to interpolate between these observations.

Therefore, we take each column and transform them onto the original grid.

17

2.2.3 Symmetry constraints

Figure 8: Boundary artifacts from wavelets

Wavelets have symmetry constraints as shown by figure 8, the end points always try to be on the

same height. This is normally solved by extending the sequence with some method on each side.

Since we do not use such extension methods, we need a different solution.

What we came up with was introducing a trend variable. So Zcomplete = (1 support Zwavelet).

With that we can compute the wavelet fit from figure 8 again:

18

Figure 9: Boundary artifacts from wavelets remedied through trend column

And thus we see that the artefacts at the end have almost completely disappeared.

2.3 Implementation

In this section we will go over some examples for tfb_wavelet().

2.3.1 Dataset

Our dataset describes activity data from a study of congestive heart failure. And since using all the

observations is a little bit confusing, we aggregate for the gender column. So in the end we have

two curves for which we are going to fit different wavelets. One for Female and one for Male.

2.3.2 Different Parameters

First let us use the least squares fit, evaluated to the second level and the Haar wavelet:

19

wavelet <- tfb_wavelet(activity$mean_act,

level = 2,

filter_number = 1, #Haar wavelet

penalized = FALSE)

Figure 10: tfb_wavelet() for a level two Haar wavelet

The fitted curves have the typical Haar wavelet form, which is a stepwise function. Since we use

a trend these stepwise functions also have a slope.

We can also get more steps by making Z bigger:

20

wavelet <- tfb_wavelet(activity$mean_act,

level = 5,

filter_number = 1,

penalized = FALSE)

Figure 11: tfb_wavelet() for a level five Haar wavelet

On the other end of the spectrum of smoothness we set both level and filter_number to ten

and watch our fit get squiggly.

21

wavelet <- tfb_wavelet(activity$mean_act,

level = 10,

filter_number = 10,

penalized = FALSE)

Figure 12: tfb_wavelet() with maximum squigglyness

We overfit our data by a lot. Therefore, this is not too useful here.

These were all least squares fits. So what about Lasso regression. Here we use cv.glmnet from

the glmnet package. Since cv.glmnet also interfaces glmnet we have a bunch of parameters to

choose from. Let us try Lasso regression for the Haar wavelet and level = 2.

22

activity_wavelet <- tfb_wavelet(activity$mean_act,

level = 2,

filter_number = 1,

penalized = TRUE # Lasso

)

Figure 13: tfb_wavelet() for a level two Haar wavelet with lasso

Apparently the trend coefficients did not make the cut.

activity_wavelet[[1]][2] # = 0, for Males

activity_wavelet[[2]][2] # = 0, for Females

Indeed the second parameter, which is the trend parameter, is zero for both women and men.

23

Next we do leave-one-out cross-validation (LOOCV) by setting nfolds = 1440:

wavelet <- tfb_wavelet(activity$mean_act,

level = 3,

filter_number = 5,

penalized = TRUE, # Lasso

nfolds = 1440)

Figure 14: tfb_wavelet() for a level=3 filter_number=5 with lasso with leave-one-out cross-validation

Lastly we examine the output of tfb_wavelet() a bit closer. The output is a list with the

coefficients as vectors. Everything else is written in the attributes of the object. The attributes:

24

name description

domain The domain for the support

basis_args Wavelet matrix coefficients

basis_label Short text for print()

basis Function to interpolate wavelet matrix

basis_matrix Wavelet matrix

resolution Tolerance parameter for the support

arg Unique support values

25

2.3.3 Comparison to tfb_spline()

For simplicity we aggregate the whole dataset now and compute both a spline and a wavelet. Both

matrices used to fit are the same size.

wavelet <- tfb_wavelet(activity_sum$mean_act, level = 3)

spline <- tfb_spline(activity_sum$mean_act, k = 9)

Figure 15: Comparison between tfb_spline() and tfb_wavelet()

We can see that the fits are pretty similiar. Let us compare the time it takes to fit both these

curves:

26

name min median mem_alloc

wavelet 26.5ms 27.9ms 15.23MB

spline 12.9ms 14.6ms 1.51MB

However, this does not give tfb_wavelet full credit, since we need to QR decompose our wavelet

matrix for least squares we have an overhead and for one curve that is noticeable. So let us try it

on all the curves of the original dataset.

name min median mem_alloc

wavelet 268ms 269ms 197MB

spline 847ms 847ms 257MB

Here tfb_wavelet is a bit faster than tfb_spline for these 329 curves.

2.3.4 Constraints

The time from the benchmarks is relatively small, but how does tfb_wavelet() scale? Generally,

the biggest influence on time and memory allocation is the level parameter since it controls the size

of the wavelet matrix. Also the penalized parameter is an increase in time and space, depending

on how big level is.

For a dataset of 100 curves with either a length of 256 or 32768, we get the following time and

memory allocation:

name level lasso min median mem_alloc

wavelet_256 2 FALSE 21.04ms 24.11ms 12.37MB

wavelet_32768 2 FALSE 3.96s 3.96s 877.56MB

wavelet_32768 6 FALSE 3.33s 3.33s 2.93GB

spline_32768 2 FALSE 5.91s 5.91s 2.63GB

wavelet_256 2 TRUE 6.76s 6.76s 407MB

wavelet_32768 2 TRUE 35.82s 35.82s 39.76GB

wavelet_32768 6 TRUE 2.44m 2.44m 79.67GB

Therefore, for large datasets either trying to have a low level and/or no lasso regression is a

27

must for a quick computation.

Next, we encountered a problem with extreme outliers. In this case the domain for all but one

data point is x ∈ [0, 1] and the last is point at xn = 1.5. It turns out this only gives us reasonable

estimates of our data if level > 2. This might differ between such datasets, but a general rule of

thumb is that you need a higher-level parameter for datasets that are sparse at some point in their

domain.

wavelet_2 <- tfb_wavelet(woo_out, level = 2)

wavelet_3 <- tfb_wavelet(woo_out, level = 3)

plot(tfd(woo_out))

lines(wavelet_2, col = 3)

lines(wavelet_3, col = 4)

legend("bottom", legend = c("level = 2", "level = 3"), col = 3:4, lty = "solid")

28

Figure 16: Plot to show the difference between levels two and three with an outlier

The last notable issue is the explosion of our wavelet matrix if our functional data is irregular.

Since irregular datasets can potentially have unique support values for every curve, our wavelet

matrix can get quite large, because every row corresponds to a unique support value. We combat

this by raising the resolution parameter, which determines how much tolerance a support value

has for being unique. Example from ?tfd: If an evaluation of f(t) is available at t = 1 and a

function value is requested at t = 1.01, f(1) will be returned if resolution < 0.018.
8Scheipl and Goldsmith (2019)

29

3 Conclusion

tfb_wavelet works for most data situations and is relativly flexible in its use, as wavelets are

very good at estimating fluctuations in the data. Although, especially if lasso regression is used,

tfb_wavelet is a potentially slow function. We could improve this by introducing a global

parameter like in the tfb_spline function, which samples a percentage of the curves, computes the

fit on them and then averages the fits for all curves. This is not tested yet, but could, especially for

lasso regression, be a significant performance increase. Another performance increase could be to

make the wavelet matrix coarser, by leaving out some rows, for irregular functional data, since right

now a potentially big matrix is computed and outputted. In addition to that, the trend column

could be optional, also increasing the performance for a few data situations.

Further work can be done on the tf_derive function, because this function only works for

tfb_spline right now and not for tfb_wavelet.

The defaults for the wavelet matrix level = 2 and filter_number = 5 could be better opti-

mized, but more data needs to be tested to get a conclusion. Right now the defaults are set as to

optimize time, but maybe the fit could or should be prioritized.

The last point is that lasso regression right now is a bit of a black box, because the λ’s are not

included in the output, so this should probably be changed.

30

4 Appendix

gl is the filter for d. So for the Haar wavelet this means:

gl =



2−
1
2 l = 0,

−2−
1
2 l = 1,

0 otherwise.

(12)

hl is the filter for c. So for the Haar wavelet this means:

hl =



2−
1
2 l = 0,

2−
1
2 l = 1,

0 otherwise.

(13)

Common form for equation (5)((Nason 2006), p.21):

dk =
∞∑

l=−∞
gly2k−l (14)

Common form for equation (6) ((Nason 2006), p.23):

ck =
∞∑

l=−∞
hly2k−l (15)

Common form for equation (8) ((Nason 2006), p.55):

cj,n =
∑

k

hn−2kcj−1,k +
∑

k

gn−2kdj−1,k (16)

References

“9. The Qr Decomposition.” n.d. In LINPACK Users’ Guide, 9.1–9.27. https://doi.org/10.1137/1.

9781611971811.ch9.

Ferraty, Frédéric, and Philippe Vieu. 2006. Nonparametric Functional Data Analysis: Theory

and Practice. Springer-Verlag New York. https://doi.org/10.1007/0-387-36620-2.

31

https://doi.org/10.1137/1.9781611971811.ch9
https://doi.org/10.1137/1.9781611971811.ch9
https://doi.org/10.1007/0-387-36620-2

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2009. “Regularization Paths for

Generalized Linear Models via Coordinate Descent.”

Gil, Amparo, Javier Segura, and Nico Temme. 2007. Numerical Methods for Special Functions.

https://doi.org/10.1137/1.9780898717822.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical

Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.

Nason, G. P. 2006. Wavelet Methods in Statistics with R. https://doi.org/10.1007/

978-0-387-75961-6.

Scheipl, Fabian, and Jeff Goldsmith. 2019. Tidyfun: Tools for Tidy Functional Data. https:

//github.com/fabian-s/tidyfun.

Wand, M. P., and J. T. Ormerod. 2011. “Penalized Wavelets: Embedding Wavelets into

Semiparametric Regression.” Electron. J. Statist. 5: 1654–1717. https://doi.org/10.1214/11-EJS652.

32

https://doi.org/10.1137/1.9780898717822
https://doi.org/10.1007/978-0-387-75961-6
https://doi.org/10.1007/978-0-387-75961-6
https://github.com/fabian-s/tidyfun
https://github.com/fabian-s/tidyfun
https://doi.org/10.1214/11-EJS652

	Introduction
	Functional Data
	Wavelets
	Haar wavelets
	Debauchies extremal phase wavelets
	Inverse Transform
	Advantages of wavelets in our context
	Wavelet matrix creation
	Wavelet Regression

	Implemented Function
	Documentation
	Theory
	Why matrix representation of wavelets?
	Non wavelet conforming supports
	Symmetry constraints

	Implementation
	Dataset
	Different Parameters
	Comparison to tfb_spline()
	Constraints

	Conclusion
	Appendix
	References

