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A Non-Commutative Non-Cocommutative
Hopf Algebra in "Nature”

BopoO PAREIGIS

Mathematisches Institut der Universitdt Minchen, Munich, Germany
Communicated by A. Frohlich
Received August 5, 1980

We show that there is a uniquely defined Hopf algebra H, such that H-
Comod, the category of H-comodules, and K-Comp, the category of K-
complexes, are isomorphic as monoidal categories, where the isomorphism is
compatible with the obvious underlying functors, i.e.,

H-Comod =~ K-Comp

N

K-Mod

commutes. The Hopf algebra H is defined as follows:

H=K{x,y,y""Y/(xy + yx, x*) (non-commuting variables)
Ax)=x® 1 +y '®x, s(x) = xy, e(x) =0,

A(y)=y®y s() =y~  ey)=1
H is a non-commutative, non-cocommutative Hopf algebra with antipode of
order 4.

Let K be a commutative ring with unit. All algebras and coalgebras are
defined over K and are (co-)associative with (co-)unit.

For an algebra 4 it is well known that the underlying functor Z: 4-Mod —
K-Mod determines the algebra 4 up to isomorphism. In fact 4 =~ End(%).

There is no such obvious description of a coalgebra C by the underlying
functor Z': C-Comod — K-Mod. Abstractly this follows from a remark in |4,
Corollary 6.4]; in fact C is uniquely described up to isomorphism by Z.

356
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We need stronger results than those above. So we shall use the notation
and results of [2-4].

Let @ be a symmetric monoidal category (e.g., K-Mod with the usual
tensor product over K or its dual).

We shall consider two monoids, B and C, and want to study the categories
2% and %, when they carry themselves the structure of monoidal
categories. It will turn out that this induces bimonoid structures on B, resp.
C. Furthermore we study functors #: ;% — % which are compatible with
the underlying functors from %, resp. %, to € and preserve the monoidal
structure. It will be shown that they induce bimonoid morphisms from C to
B.

For the first propositions we need only a monoidal category %, not
necessarily symmetric.

Denote the underlying functor from ;% to ¢ by Z and the one from %
to # by 7". Observe that ,%, . and & carry in a natural way the
structure of %’-categories and Z and 7~ are @-functors. In [4, Corollary 6.4]
we showed already how to obtain B from Z: ;¢ —» & as B® =~ [#, % |. Now
we want to study functors #: ;% - %.

PROPOSITION 1. Let (#,¢&): ;&€ = % be a €-functor and ¢: 7" F =%
be a natural ¥ -isomorphism. Then there exists a unique %-functor
Z: 3 € > & such that 778 =% as F-functors and ¢: F =% is a &-
isomorphism.

Proof. Let & F(M® X)=~F (M) ® X be given with 5. Let (M, v,,) be
in ,%. Define a C-structure on M by

ViCOM=CR%M,v,) —22"s CR7 7 (M,vy)

LD 7 F (M, vy) = Z (M, vy) = M.
It is easy to show that M becomes a C-object. So we define &: ;% — & by
Z(M,v,,) = (M,v,,). For f€ ,# we define £(f) :=f which turns out to be
in #. ¥ clearly is a functor. Furthermore the morphisms ¢(M,v,):
7 F(M,vy)— % (M, v,) are C-morphisms by the definition of v;,; hence ¢

defines a natural isomorphism ¢: F =~ ¢

Using the hypothesis that ¢: 7 F ~# is a &-isomorphism, it is easy to
show that the induced ¢:.# = % becomes again a % -isomorphism, i.e., that

FMX)2FM)® X
|- |-

FM®R®X)=FM)®X

commutes for M€ ,%, XE%. Finally we have 7Y =% with
id: *(M® X)=7%(M)® X as structure morphism.
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If 7’9" =% and ¢: F ="' is also a #-isomorphism, then one easily
shows & = &’; hence & is unique.

PROPOSITION 2. Under the hypotheses of Proposition 1 there is a unique
monoid morphism g:C—B such that F(M,v,)=(M,C QM-
B ® M -*» M), :

Proof. For (B,u) € ,% let £(B, 4) = (B, vy) with vp: C® B — B. Define
g:C—>B by g(c)=vi(c® lz)=c- 1, with 1, € B(I). Since ¥ is a #-
functor and v,;: B® M — M is a morphism in %, the following commute:

CRFB)OM=CREB®M) —2Y, c® ZM)
ll’;@M l”é@u ll‘;,
FB)Y®M = FBAM) — , F(M)
hence
CRry
CRBOM—2,coM
B®M M
or

c-(b-my=(c-b) m.
Thus g(1¢) =1, 1= 1, and
gle-c)=(c-c)-Iy=c-(c"-1p)=c-(ly- (" - 1))
=(c-1p) - (c"- 15)=¢g(c) - g(c"),
c-m=c-(ly-m)=(c-1,) - m=g(c)  m.

Hence g: C - B is a monoid morphism which induces ¢. If g': C— B is
another monoid morphism with ¢-m=g’(c) - m, then g'(c)=g'(c) - 1, =
c- ly,=g(c); hence g=g'.

ProrOSITION 3. Let f:B— B induce the functor F:,% — ,% (with
W F =%). If there is a ¥-isomorphism ¢: # = Id, then f: B — B is an inner
automorphism.

Proof. Since ¢ is a #-morphism, we get

o(B)GOM

FBOM)=BM—"",BoM

1 F oy l‘).’if lv;\,

o(M)

FM = M — M
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commutes, hence @(M)(m)=o(M) v, (1, ® m)=v,(p(B) @ M)(1,® m) =
@(B)(1,) - m. Clearly ¢~' is also a #-morphism; hence ¢~ '(M)(m)=
¢~ '(B)(15) - m. Replace m=¢(B)(1,) to get ¢~ '(B)(1,)- 9(B)(15)=
0 '(B)o(B)(15) =0 '0(B)(1)=1, and symmetrically  @(B)(1,)-
o '(B)(1z)=1,. Now @(M):M—>M is a B-morphism, the second M
carrying a given B-structure, the first M carrying the f-induced B-structure.
Hence

o(M)(f(b) - m)=b - p(M)(m).

For M =B, m=1,, we get p(B)(f (b)) =b- ¢(B)(15) or ¢(B)(15) -/ (b)=
b-o(B)(1y). Since @(B)(1z) is invertible, we get f(b)=
0 '(B)(15) - b - 0(B)(1p).

PROPOSITION 4. Let F:,% - % and &: . % — ;€ be a €-equivalence
with a natural €-isomorphism ¢: 7 # ~% . Then F is €-isomorphic to a
% -functor .F: 3 — % which is induced by an isomorphism f: C - B.

Proof. First we observe that ¢ induces a @-isomorphism Z¥% =~
7 7% = 7°Id=7"; hence the situation is symmetric in # and . Replace
.# by.#' and ¥ by ¥’ according to Propositions 1 and 2. Then clearly "'
and ¢’ are induced by f:C— B, resp. g:B—-C, and are inverse %-
equivalences, #-isomorphic to #, resp. . Thus ¥'F' and F'Y' are
induced by fg,resp.gf. Since there are @ -isomorphismsof these functors with
the corresponding identity functors, fg and gf are isomorphisms of monoids
and so are f and g.

2

From now on we shall assume that € is a symmetric monoidal category.
To motivate the following considerations, let us assume that B is a bimonoid
in #. i.e., a monoid and a comonoid, such that comultiplication and counit
are monoid-morphisms. Then the category ,% carries the structure of a
monoidal category, the tensor product being defined as tensor product in #
with B-structure on M ® N for M, N € ,% defined by

BOMRN—2MN ,BRQBRM® N

BN ry®ry

_ PN  B@M®B®N M® N.

It is easy to check that this again defines a B-object. Furthermore / € % is a
B-object by ep: B®I=~B—1. Thus ,% becomes a monoidal category,
where we denote the tensor product by &), the neutral object by f, and the
induced natural transformations by d, 1, /.
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The underlying functor Z: ;€ — € has the following properties

(1) ?/(M@N) =ZM)® Z(N) for all M, N € ,%,
Z(f@e)=%(f)®@%(g) for all g€ ,%;
@ zd)=1
Q) 2@ =a 2(0)=4 2p)=p;
@) ZMRX)=7ZM)® X forall ME &, XEZ,
Z(fOh)=Z(f)®h for all fE€E , &, hEF,
) MIXNON®Y)=Z=MIN)®X®Y as B-objects func-
torially in X, YE %, M, N € ;%. The isomorphism is M ® y® Y.
A monoidal category (2, ®, I, d, 4, ) which is a @-category will be
called a ¥-monoidal category if there are natural isomorphisms

L MR®X)®N=MPIN)® X,
EMONRN=MIN)®X forM,NEZ, XEF,

such that —® N: Z -2 and M ® —: 2 — 2 together with &, and &, are €-
functors, and &, £ and p are #-morphisms in all variables. Furthermore, all
morphisms in this definition are assumed to be coherent.

Obviously the category 5% for any bimonoid B is a ¥-monoidal category
in a natural way. In particular, % itself is #-monoidal. Here we use the
symmetry of &.

Let 2 and & be #-monoidal categories. A monoidal functor #: 2 - &
with 6: F(MEN)=FM)®FN), ¢ Fd)=1I, which is also a #-
functor with & FM P X)=xF(M)® X, will be called a #-monoidal
Sunctor, if

FMEO (N® X)) =27 (M) B F(N® X)—L9E, 7 (M) (F(N) ® X)

g {r

FMAN®X) L FMOIN®X & (FMBFN)@X

FMRX)®ON)-SH FMRX)BF(N) L&2W_(F(M)® X)® F (N)

) J'llv

FMON®X) L FMON)®X 2X_(F(M)B.FN)®X

commute. In particular all morphisms in this definition are assumed to be
coherent.

A %-monoidal natural transformation ¢: # — ¥ will just be a monoidal
and a #-transformation.
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Again it is clear that Z: ;% — & for any bimonoid B is a %-monoidal
functor. If /2 C - B is a morphism of bimonoids, then the induced functor
F % > % is a ¥-monoidal functor, as can be easily checked, with { = id,
o=id, {=id.

Now we want to invert our considerations and obtain from #-monoidal
structures certain bimonoid structures.

PROPOSITION 5. Let B be a monoid. Assume that ;& has the structure
of a #-monoidal category (;%, ®, I, &, 4, p, ®, B, o, &, &) and that
#:,%—% is a €-monoidal functor (Z, 9, {, &), where (,%, ®, B, 0) is the
ordinary €-structure on ;% and (%, &) is the ordinary %-structure on 7 .
Then there exists a unique €-monoidal structure (%, &, I a 7 p, ®, B, a,
&, &) on 4% such that (Id, 6, ¢, &): (,%,®) - (%, ®) and (7, id, id, id):
s & =€ are ¥-monoidal functors.

When we have proved Proposition 5 we can reduce arbitrary %-monoidal
structures on ,% and #Z to isomorphic #-monoidal structures on ,% and Z
with (7, id, id, id) being the #-monoidal functor, and this can be done in
only one way.

Proof. We first show that the isomorphism 6:Z (M ®N)=Z(M)®
#Z (N) induces a unique B-structure on M ® N for M, N € ;%, natural in
both variables, such that & M ® N=M ® N is a natural isomorphism of
functors ® and ® from ,% X ,& — ,%. Define the B-structure by the
commutative diagram

BRM®N) —2, M®N

= e

BR# (MR N) L, 7(M R N)

where we use Z (M) =M and Z(N) = N. This defines clearly a B-structure
on M® N; it is natural in M and N in ;% and J becomes the desired
isomorphism. Clearly y,,,, is the only morphism making é a natural
isomorphism of functors to ,%. Similarly I carries a B-structure uniquely
such that {: =1 is an isomorphism in ,Z.

Since d, 4, § are natural isomorphisms in ,% and by the commutativity of
the coherence diagrams for monoidal functors Z, a, A and p will also be
natural transformations in %, (3%, ®, I, a, A, p) is again a monoidal
category. ;% is also a & -category with

BMRIXRY)=Z=MRX)®Y) =a,
(o MPI=M):=p.
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The natural isomorphisms

G MIX)IN=ZMON)®X) :=aM®@y)a™!,
GMAIWN®X)Z=MAON)®X) =a

make ,% a ¥-monoidal éategory.
Consider the functor Id: ;& — ;%, the first copy of ,% carrying the -
monoidal structure &), the second copy with the new tensor product ®. Then

MPIN=MRN

is a natural isomorphism by definition. {:f=~1I is a B-isomorphism.
Furthermore (&: M ® X = M ® X) = id makes Id a #-functor. It is now easy
to check that Id is a #-monoidal functor, since (%, 9, {, &) was.

Now consider Z:,% —%, where ,% carries the new %-monoidal
structure ®. Then (: ZM @ N)=Z(M)® #(N)) :=id, ((:Z()=1):=id
and (& Z MR X)=%Z(M)® X := id form a ¥-monoidal functor.

The fact that § = id for the new #-monoidal structure requires that the
new tensor product be ® with a suitable B-structure. This B-structure is
unique by the requirement that (Id, J, {, &) be a @-monoidal functor, in
particular that 6 be a B-isomorphism. Similarly the requirement
(&:Z({I)=1I)=id implies I with a unique B-structure as the only possible
neutral object in ,%. a,1,p are imposed by the fact that (Z,id, id) be
monoidal. The & -structure on ;% was to be retained anyway. Finally, ¢,
and &; on ;& and % have to be the same morphisms.

PROPOSITION 6. Let B be a monoid. Let (%, ®, I, a, 4, p, ®, B, g, &, ,
&r) be a €-monoidal category such that (Z, id, id, id): ;¢ > % is a -
monoidal functor. Then there is a unique bimonoid structure on B which
induces the %-monoidal structures on ,% and % as described in the
beginning of this section.

Proof. Observe that by Proposition 5 (Z, id, id, id) implies that the
tensor product on ,% has to be ® with a suitable B-structure and that a, 4,
p, B, 0, & and & coincide in ;% and %. Henceforth we shall omit these
structure maps and say ,% is %-monoidal with Z: ;% —» & % -monoidal.

Now define

e:=B=BRI-SI) or eb)=b-1,=b-1,
4:=B=BR (@)L ,B® (B® B)—>> BR® B)),
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or

Ab)=b-(1®1)=:b,, ®b,  forallb € B(X).
LEMMA 7. The B-structure yyoy on M ® N is given by

B®(M® N)—2e¥eY , (BRB)® (M®N)
~BOM)® (BR®N)—&% ,M®N

or
b-(m®n)=b,, - m®bg, -n

Proof. The diagram

BRB®M L, B M

15 C7Y] l‘/.w

BOM —2™, M

commutes; hence y,, is a B-morphism where B ® M carries the B-structure
just on the left factor via u: B® B— B. y, is a B-morphism, too; hence
Yy ® 7y is @ B-morphism and the following commutes in &:

B®B®B)®MON)=BR®(BAIM)®BR®N)——BQ (M N)
l?aa)a@(M@V) l HBEM) RDBEN lk\:@v

B®B)®M®N) = BOIM)®QBON) —— MOION

where the horizontal arrows are B ® (¥, ® Yn)s T€SP. Ppr ® Yu-

Elementwise we get.a-(b-m®c-n)=(@-(b®c))- (m®n) for all
a€ BX), beB(Y), ceC(Z), meMU), neN¥V), where b®c)-
mn)=b-m®c-nNowb - m@n)=b-(1 m1-n)=0-(1®
1)) - (m®@n) = (b, ® b)) - (Mm@ n)=>by, - m® by - n

LEMMA 8. 4:B - B® B is a monoid homomorphism.

Proof. d(a-b)=(a-b),®@ -b),y=@-b) - 1®1)=a-(b- (1
®D)=a-(b, - 1®by -1)=a- (b, ®by)=a, by ® ay, - by,
= A(a) - 4(b).

ANH)=1-(1®)=1®1.
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LEMMA 9. ¢:4 - [ is a monoid homomorphism.

Proof. el@a-by=(@-b)-l=a-(b-1)=a -ed)=a- (1. eb)="*
(@ - 1) - e(b) = ¢e(a) - e(b), where (*) holds, since any multiplication with
x € I(X) can be pulled by any morphism in &.

e(ly)=1,-1=1

LeEmMMA 10. A4 is coassociative.

Proof. We use the fact that a is a B-morphism; hence

(1 ® 4)4(b) = a(by) ® (bayi ® b))
=albyy - 1®bn - (1®1))
=alb- (1®(1®1))
=b-a(l®(1®1))
=b-(1®H®1)
= () ® b1y2) ® b))
=(4®1)4().

LEmMMA 11. (B, 4,¢) is a comonoid.

Proof. Since A and p a B-morphisms, we get

b=b-1l,=b-A(1®1)=A0b - (1® 1))
=A(bu) 1 ®bg, - 15)=A(e(by) ® b(y)
=&(by)) by = (e® 1) 4(b),

b=b-ly=>b-p(1,@1)=p(b-(1,®1))
=pbu - 1,®bg) - 1)=pby, @ (b))
=bg) - e(by) =(1®¢)4(b).

Thus we have proved that B is a bimonoid in € and that the ¥-monoidal
structure on ;% is induced by the bimonoid structure of B, i.e.,

b-(m®n)=b,, - m®b,, -n,
bEBX), m®n€&€ (M® N)(Y),
b-x=¢(b)x, b€ B(X), x€IY). )

(1)

Now 4 is unique with (1), just take m ®@ n := 1, ® l,. The uniqueness of ¢
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for a comonoid is shown in the same way as the uniqueness of the unit n =1
ina monoid: I'’=1'.-1=1.

Thus far we have reduced any given #-monoidal structures on ,% and #
(with standard @ -structure) in a unique way to #%-monoidal structures
induced by a bimonoid structure on B. Now we want to do the same
reduction for a #-monoidal functor F:,% — % with a #-monoidal
isomorphism ¢: ZF = 7.

PrOPOSITION 12. Let (,%,®) and (-%,®) be ¥-monoidal categories
and (#,6,,8,,&,): 3€ € and (7, 6,-,(,,&,): <& =€ be €-monoidal
Sunctors. Let (F,8,,07,¢7): y& > F be a %-monoidal functor. Let
(37.®) and (-%,R®) be the €-monoidal categories with their structures
induced by the bimonoid structures on B and C. Then there is a unique & -
monoidal functor (¥',d', (', &) which makes the diagram

(%, Q) —— (%, ®)

J(ld.af/.g/.;f/) l(ld,87‘.£7’.§7')

(% ®)—"— (%, ®)

commutative.

Proof. Since (Id,6,,(,,&,) is invertible as a #-monoidal functor, #' is
to be the composition of %-monoidal functors; hence F'=
(F.6,0,0,8, 0,018,881

COROLLARY 13. Under the hypotheses of Proposition 12 let 9: 7" F =%
be a #-monoidal isomorphism. Then ¢: 7" F' = Z is also ¥-monoidal.

Proof. The first isomorphism is meant to be
0:(707587587) 0 (F2 05 8 = @, (64 L S
the second is
o (7,id, id, id) o (¥F,6,0 77 (0,'), {; {7 (). &, 427 (E21)
= (Z,id, id, id).

Since we do not change the % -structure, we only have to check that ¢
respects the change of monoidal structures:

7 FMEN) L 7 (F (M) F(N) L 7 F(M)® 7 .F(N)
#(M® N) Su S ZM)Q@Z(N)

481:70/2-5
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commutes; hence

7 F M@ N) -2, 7 F (MG N) 2225, 7.5 (M) ® 7. F (N)

YMON) —2L ., ¥MON) 4, wM)ZWN)

commutes, where we omit the application of the underlying functors Z, 7 .
Furthermore

77 () —Z 7

lw l"'

7@ —— I

commutes; hence

7 7)) —LL 7 F () Z7()

P’ l f"

vy —2 ., wd)

commutes. We have now reduced the general #-monoidal situation

2%

F 7
N S
4

with ¢: 7" F =% to the special situation, where ,% and % carry &-
monoidal structures induced by bimonoids B and C. Now we want to change
.# to an isomorphic #-monoidal functor & as in Proposition 1.

PROPOSITION 14. Under the hypotheses of Corollary 13 the functor &
induced in Proposition 1 is a @ -monoidal functor (%,id,id,id):
%, ®)- (%, ®) and 9p: F =% and 7°S = % are ¥-monoidal transfor-
mations.
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Proof. By Proposition 1 we know already that & is a @ -functor with
¢, =(d:TM®X)=Y(M)® X). Furthermore the diagram

7 EM®N) 4 7(EM)®F(N) —4 7EM)R 7 F(N)

lor ) Lo @ (-
7 F M@ N) Lo 775 (M) ® F/(N)) —4s 75 (M) ® 7”7 (N)
Il ) (-
7 (M ® N) i » Z(M)®Z(N)

commutes at (3) because ¢: 7" F' =7 is ¥-monoidal, and clearly at (2)
and at (1) because the outer diagram commutes. So the only possible § for &
is id:¥M@N)->F(M)® F(N) and it makes ¢: F'=F% a monoidal
transformation. & together with id: ¥ (M ® N)—» & (M) ® £ (N) clearly is
monoidal because in both categories ,% and % we have the same
morphisms a, A, p and because ¢ and J are identities. The isomorphism
¢ & (I) =TI will also be the identity because

7e(q) —24—~1

]

7 F () =25 T

-

CAUNEEES
commutes. Thus we have that & is a monoidal #-functor with structure
morphisms (4, ¢, &) = (id, id, id). Furthermore ¢: ¥’ =~ % is a monoidal #-
transformation. ¥ is @-monoidal since in both categories ;% and % the
morphisms &, are just a and ¢ =a(M ®7y)a~'. Finally the identity
7% =7 is also ¥-monoidal because all structure morphisms are identities.

THEOREM 15. Let B and C be monoids in €. Let the &-categories &
and € carry the structure of %-monoidal categories such that the
underlying € -functors Z: € - € and 7": ;¢ - € are €-monoidal. Let
F 1 y€ > € be a ¥-monoidal functor and ¢: 7" F =% be a €-monoidal
natural isomorphism. Then there are unique bimonoid structures on B and C
and a unique bimonoid morphism g:C— B such that the induced &-
monoidal structures on %€, resp. o€, are isomorphic to the original ones by
the identity functor and the induced €-monoidal functor &: ;% - & is &-
monoidally isomorphic to F via ¢.
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Proof. By Propositions 1 and 2 there is a unique monoid morphism
g: C— B such that the induced #-functor ¥: ;% — ¥ satisfies 7% =%
and ¢: F = ¥ a ¥-isomorphism. By Propositions 5 and 6 the #-monoidal
structure of %, resp. %, is isomorphic to a #-monoidal structure induced
by a unique bimonoid structure on B, resp. C, via the identity functor and by
Corollary 13 the given functor #: ;¢ — % and isomorphism ¢: 7 F > #
are #-monoidal in a unique way also with respect to the bimonoid-induced
% -monoidal structures on %, resp. .%. By Proposition 14 the &-functor
Z: % - ¥ induced by the monoid morphism g: ;€ — % is ¥--monoidal:
(%, id, id, id) and ¢: & =~ & is also #-monoidal. Also 7°¥ = Z is already a
% -monoidal equality.

So the only thing to prove is that g is a bimonoid morphism. Now
0:SMON)->Z(M)® Z(N) is not only the identity but also a #-
morphism and so is {: £(I) - I. Hence we get

045 8(c) - m@n)=5(g(c) - m@n)=6(c- m®n)
=c-dm®@n)=4.c)-(m®@n)
=(g®g)4.(c) - 6(m®n)

and
U(ep 8(c)) =L(g(e) - 1)) =Ll 1))=c- (1)
=e¢.(c) - {(1)).
Observe 6 =id and {=id and set m@n=1,® 1, to get
4p8(c)=4,8(c) 1, @ 1;=(g®g)4.(c) - 1, ® I
=(g®g)4.(c),
£p 8(c) = €(c).

COROLLARY 16. Under the hypotheses of Theorem 14 let F be a ¥-
monoidal equivalence. Then g: C - B is a bimonoid isomorphism.

Proof. This is simply a consequence of Proposition 4.

3

Let K be a commutative ring and let ¥ = K-Mod be the monoidal
category of K-modules with the usual tensor product over K. Consider the
category K-Comp of complexes of K-modules

A=( »A,—2s 4, > ), =0
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and complexes homomorphisms (10— Z)=(f;:4,»B,|i€L,0,f; =
f;'+ I(lfi)‘

K-Comp is a ¥-category where

ATRXi=(- - A4,®X X

S®X = (/i ®X)

The isomorphism f: 7 @ X ® V)= (X ®X)® Y is induced by a:4;,®
XR®Y)=2A4,®X)®Y and o: T ® K= by p:4,® K= A,. Clearly all
these definitions are functorial in all variables and coherent (in the sense of
1] or 5]

K-Comp is also monoidal with the usual tensor product of complexes
(take tensor products separately of all components and then make the double
complex into a single complex by adding diagonally with the usual sign
shift). To be more precise

A ®X - --0),

1@ 2= ® WOE)— O W@B)--),

j+k=i J+k=i
where
k=i

with ¢:4;-4;,, and 9;: B,— B, ,. This is wellknown to be natural in
both variables and associativity 7 ® (£ ® ¥) = (¥ ® £) ® € induced by
a can easily be checked. The neutral element in K-Comp is

H=(>0-K-0-")

with K at position zero. The isomorphisms X ® Z" =N =7 ® A are
induced by A and p and thus coherent with a. K-Comp is even #-monoidal
with structure morphisms.

L @RX)®Z=(T®P)Q X,
GARZRX)=(TRF)®X

induced by those in K-Mod. Again coherence is clear from coherence in K-
Mod.
Now consider the functor 7”: K-Comp — K-Mod given by

7)) =® A4,
7(f) =@/
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It is a #-functor by the natural isomorphism
7@@N=-®UENE(O4)0X=7MOX
Furthermore, it is monoidal by the natural isomorphisms

7@09)-0( ® Wo8)= (G;JA,-) ®(®s)

J+k=i

7 (M) ® 7 (B),
7)) = (@ o) ®K® (@ 0) ~K.

Actually 7 is #-monoidal as can be easily checked.

Thus K-Comp is a #-monoidal category with ¥ = K-Mod and 77: K-
Comp — K-Mod is a #-monoidal functor.

Now we define a K-bialgebra B by

B =K(s, t,t~")/(s% st + ts),

where K(s,t,t™') denotes adjoining two variables s, ¢, which do not
commute with each other, but with all of K, and adjoining an inverse of .
We factor out the two-sided ideal generated by s? and st+ts. For the
diagonal we take

A =t®t, AE)=s®1+t'®s.
The augmentation is defined by

e(t)=1, e(s)=0.

LEMMA 17. B is a bialgebra.

Proof. B has obviously the K-basis {f'|i€ Z} U {f's|i EZ}. If 4 is to be
multiplicative, A4(t)=t® ' and A(f's)=ts® ¢+~ '®t's must hold.
Then 4 can be expanded by linearity and it is trivial to see that 4 is an
algebra morphism. 4 is associative because it is on ¢ and s. £(f) =1 and
€(t's)=0 defines again an algebra homomorphism and (B,4,¢) forms a
coalgebra. Thus B is a bialgebra.

Observe now that the category B-Comod of B-comodules for any
bialgebra B is €-monoidal for @ = K-Mod essentially in the same way as it
is #-monoidal for € = (K-mod)°? (,% in Section 2 was #-monoidal). Also
the underlying functor Z: B-Comod — K-Mod is #-monoidal.
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THEOREM 18. There is a %-monoidal equivalence #: B-Comod — K-
Comp and a €-monoidal isomorphism ¢: 7" F = Z.

COROLLARY 19. The bialgebra B is uniquely determined up to
isomorphism by Theorem 17.
Proof of Corollary 19 is a simple application of Corollary 16.

Proof of Theorem 18. Let M be a B-comodule with structure map A,,:
M — B ® M. With respect to the basis {¢', st'} we can write

h(m) =N @m + N ds @, 3)

i 1

Now apply (1®A)A=(4d® 1)1 to get
DE@Am)+ D s @ A(m})
=X IOm+Y st ®m,

+2 7' @s® mi;
hence by comparison of the coefficients
Am)=r'@m +*'s@mj,,, (4)
A(my) =t ® m). (5)
If we apply (e ® 1) A(m) =m to (3) we get

m=\ m,. 6)
Now define M;:={meM|A(m)=t'@m+1'*'s@m’'} and o: M, > M,,,
by d(m)=m' in A(m)=t'®@ m + t'*'s ® m'. Clearly M, is a K-module and 9
is linear. To see that m’ € M, ,, observe (4) and (5) which give A(m’') =
t'*'® m’'. Furthermore d9(m) =0 for m € M, again by (4) and (5). By (6)
we get M=3 M, Now if > m;=0 with m;EM,, then 0=A3_; m,) =
Sit'®@m;+t*'s® m, and hence m;=0.So M = @ M,.
Thus M € B-Comod defines a complex

é
oMM o

in K-Comp.
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If /2 M —> N is a comodule morphism then for m € M, we get
Mm)=(1@f)Am)=1t'@f(m) + t*'s®f(@m);

hence f(m)EN;, fi=fly:M;—> N; and ¢f(m)=,0(m), so [ defines a
complex homomorphism. Altogether we have thus obtained a functor .#: B-
Comod — K-Comp.

For the underlying functors we have

7 F(M)=® M, =7(M);

7FN=@L=2())

hence 77 F =% .
For the & -structures we get

FMROX)=(+ »(MR®X), L M®X),,,~ )

(o o M,~®Xa—®va,+,®X—>~--)
—FM®X.

To see M;®@X=xM® X); consider M@ X<SMPX by MRX=
@ M;®X). Then M;@XSM®X); and @ M, ®X)=® M®X);
hence M;® X=(M® X); under this identification. The isomorphism
EFM®X)=FM)®X is functorial and satisfies the coherence
conditions. So & is a @-functor. Also the identity 7" % = Z is compatible
with the & -structure:

FFMRX) =7 (FM@X) =7 F(M)® X

is the identity; hence 7 . # and Z are equal as % -functors.
For the monoidal structures we get

FMON)=( >(MON),-H (M N);,,— ).

To study (M ® N), observe that every element in M ® N can be written as a
sum Y, m;® n, with m;€M;, n, € N,. Then A(_ m;@n,)=Y2(¢ - I* ®
m;® n, + Urtls @ mp ® a(n) + ¢Fstt @ a(m) ® n + st s ®
a(m;) ® a(ny)) = 2 1'® (Cikmi m; ® ny) + 3 s @ (Cjiweim ®
a(ny) + (=1)* a(m;) ® n,). Hence M ® N), = ®;_;,, (M; ® N,) and

3.w.;~..~ = @ (Mj® oy + (_l)k aj ® Ny,
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ie, 0:FMRPON)=F(M)®F(N). Furthermore (:#(K)=._%. Both
satisfy the coherence conditions, so .# is a monoidal functor. One also
checks easily that

7 FMRN) =7 (F(M)®.FN) =7 F(M)®7 .5 (N)

is the identity, so 7" # =Z as monoidal functors.

Finally .# is @-monoidal since all the morphisms for coherence are
naturally defined in K-mod and coherent there.

Now we construct an equivalence inverse for #. Let (7 € K-Comp. We
define Z((7) := @ A4;. To get the comodule structure on P A4;, define for
a, € A;

Ma):=t'®a;+t*'s®d(a;) EB® (@ A,.) .

This defines a B-comodule structure on ¥((¥) by easy computation. For a
complex homomorphism f define £(f) := @ f; and verify it is a comodule
homomorphism. So £: K-Comp - B-Comod is a functor. Then it is easy to
check ¥ # ~1Id and #% =1Id. It is tedious but straigthforward to check
that & again is %-monoidal and that the isomorphisms ¥ =~Id and
F% =Id are %-monoidal, thus # is a %-monoidal equivalence and
7 F =% as ¥-monoidal functors.

COROLLARY 20. The bialgebra B defined by Theorem 18 has an
antipode of order 4 (2 in characteristic 2).

Proof. The antipode S is given by S(¢) ="' and S(s) = st. Check that
this indeed defines an antipode if continued as an algebra antimorphism. We
have then S%(f) =t and S*(s) =¢"'S(s) = —s and S* =id.

We remark that there is an additional structure on both K-Comp and B-
Comod. Both categories are symmetric. This is surprising since one should
think that B must be commutative in this case. But the symmetry we shall
describe does not coincide with the symmetry in K-Mod by the underlying
functor.

The symmetry in K-Comp is given by M,®N;,=N,®M,,
m; @ n;—~ (—1)“n;® m;. In B-Comod the symmetry can be described in
this way. Define a linear map ¥: B®B—-K by t'® ¢+ (—1)” and
Y(I's® V)= PY({t's®ts) =P ®ts)=0. We shall not investigate its
meaning for B, but in a certain sense it is induced by the multiplication on Z
through Z D i+ ¢/ € B. Then the symmetry y: M ® N=N ® M is given by
ym@n)y=3 ¥(me ® ng,) - ng, ®mg,. This is a comodule map with
y?=id, functorial and coherent in B-Comod and the functor #:K-
Comp — B-Comod is compatible with the two symmetries.
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