Behavior Research Methods (2019) 51:2085-2093
https://doi.org/10.3758/s13428-019-01245-x

Ratcave: A 3D graphics python package for cognitive psychology

experiments

Nicholas A. Del Grosso - Anton Sirota’

Published online: 6 May 2019
© The Author(s) 2019

Abstract

®

Check for
updates

We present here a free, open source Python 3D graphics library called Ratcave that extends existing Python psychology stimulus
software by allowing scientists to load, display, and transform 3D stimuli created in 3D modeling software. This library makes 3D
programming intuitive to new users by providing 3D graphics engine concepts (Mesh, Scene, Light, and Camera classes) that can
be manipulated using an interface similar to existing 2D stimulus libraries. In addition, the use of modern OpenGL constructs by
Ratcave helps scientists create fast, hardware-accelerated dynamic stimuli using the same intuitive high-level, lightweight
interface. Because Ratcave supplements, rather than replaces, existing Python stimulus libraries, scientists can continue to use
their preferred libraries by simply adding Ratcave graphics to their existing experiments. We hope this tool will be useful both as a
stimulus library and as an example of how tightly-focused libraries can add quality to the existing scientific open-source software

ecosystem.

Keywords 3D graphics - Python - Stimulus software - Vision - 3D

Cognitive psychology and neuroscience experiments use soft-
ware that presents stimuli to a subject, detects subject responses,
and logs events for future analysis, all with high temporal accu-
racy. An ever-expanding list of other features included in this
software are compatibility with third-party hardware devices
(e.g. button boxes, amplifiers, eye tracking systems), support
for custom experimental designs, and online analysis for adap-
tive stimulus sequences; these tools are available both as self-
enclosed software solutions (e.g. Neurobs Presentation,
BCI12000, SuperLab, E-Prime) and open-source libraries (e.g.
Psychtoolbox by Brainard, 1997; PsychoPy by Peirce, 2007;
VisionEgg by Straw, 2008; Expyriment by Krause &
Lindemann, 2013; for a review of psychophysics libraries, see
Kétter, 2009). However, these popular libraries are missing 3D
graphics support, needed for a wide range visual psychophysics

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13428-019-01245-x) contains supplementary
material, which is available to authorized users.

>4 Anton Sirota
sirota@biologie.uni-muenchen.de

Bemnstein Centre for Computational Neuroscience, Graduate School
of Systemic Neurosciences, Faculty of Medicine,
Ludwig-Maximillians-Universitit Miinchen, GroBhaderner Strafe 2,
82152 Planegg, Germany

experiments, such as 3D mental rotation or object recognition,
virtual reality in spatial navigation research, to name a few.
While 3D graphics libraries do exist in Python (e.g. Panda3D,
PyOgre, Vizard) and other languages (e.g. Unity3D, Unreal
Engine), the stimuli, logging, and hardware support of all of
these libraries are designed to work with the windows and event
loops they supply, making it difficult to integrate 3D graphics
functionality into different psychophysics libraries without
(sometimes-extensive) modification (e.g. to mix PsychoPy’s
DotStim and Expyriment’s video support). In practice, this
means that each software suite is relatively self-contained; re-
searchers who require 3D stimuli, for example, have to, thereby,
resort to use or develop different experiment control software
when employing 3D visual stimuli (essentially, building inter-
face to 3D game engines), losing out on the rich features that
exist in the psychophysics software ecosystem developed for the
2D graphics. Extension libraries help reduce these feature-
tradeoff decisions; for example, OpenSesame, a Python-
powered GUI (Math6t & Theeuwes, 2012), uses PsychoPy,
Expyriment, and PyGame as “backends” to its experiment-
building graphical interface, thereby supporting all researchers
who rely on those libraries. A similar extension approach could
be used for 3D stimuli-not to compete with the existing 3D
frameworks on a feature-by-feature basis, but to simply add
simple-to-use 3D stimulus presentation and manipulation sup-
port to the feature list of existing 2D stimulus libraries in Python.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01245-x&domain=pdf
https://doi.org/10.3758/s13428-019-01245-x
mailto:sirota@biologie.uni-muenchen.de

2086

Behav Res (2019) 51:2085-2093

import ratcave as rc

model _filename = rc.resources.obj_primitives

TRAQ

cube = rc. WavefrontReader(model_filename).get mesh('Cube')

Fig. 1 (Top): Some of the 3D Mesh primitives supplied with Ratcave. (Bottom): Importing Ratcave into the Python environment and creating a cube

stimulus from the Ratcave’s supplied primitive meshes

In this paper, we present an open-source, cross-platform
Python library called Ratcave that adds 3D stimulus sup-
port to all OpenGL-based 2D Python stimulus libraries,
including VisionEgg, Psychopy, Pyglet, and PyGame. We
review the core features of Ratcave (https://github.com/
ratcave/ratcave) and highlight key connections of its
interface to underlying graphics programming strategies
(a thorough manual, complete with API guide and
tutorials for first-time users can be found at https://
ratcave.readthedocs.org). This library, which derives its
name from our high-speed RatcaveVR experimental setup
(Del Grosso, Graboski, Chen, Hernandez, & Sirota, 2017),
is designed to increase accessibility of 3D graphics pro-
gramming to the existing ecosystem of psychology soft-
ware for Python.

Software description
Built-in primitives and graphics resources
In order to make 3D programming accessible, Ratcave comes

with a collection of resources, including basic 3D object prim-
itives (Fig. 1) and a wide range of 3D lighting effects (Fig. 2,

*

Supplementary Video 1). This way, a user can get started
quickly, writing customized code only when needed.

Creating Meshes, a term used for any 3D object in
Ratcave, is done either by supplying the vertex coordinates
as an array or by importing from a 3d-formatted file (for
example, the popular Wavefront file format, for which
Ratcave provides a parser). All objects in a Ratcave
Scene (Meshes, Lights, and Cameras) can be repositioned,
rotated, and scaled using an intuitive object-oriented inter-
face (Fig. 3).

Rendering 3D Meshes in Ratcave

Once a Mesh is loaded and positioned, it can be drawn
in any active OpenGL window (e.g. a Psychopy win-
dow, Pyglet window, Vision Egg window, etc) by bind-
ing it to a Shader program using Python’s with keyword
and calling its draw() method. Ratcave provides a de-
fault shader that performs many industry-standard 3D
transformation and lighting steps (including diffuse and
specular lighting, and shadow-mapping, Fig. 2),
allowing users to create and use arbitrary 3D stimuli
in syntactically the same way as they would use 2D
stimuli (Fig. 4).

e

Fig. 2 Examples of some simple 3D lighting effects available in Ratcave: diffuse and “glossy” specular reflections, ambient lighting, and shadows

@ Springer

https://github.com/ratcave/ratcave
https://github.com/ratcave/ratcave
https://ratcave.readthedocs.org
https://ratcave.readthedocs.org

Behav Res (2019) 51:2085-2093

2087

cube.position.x =5
cube.rotation.xyz = 90, 0, 180
cube.scale.y = 0.5

Fig. 3 Code example: positioning, rotating, and scaling a Ratcave Mesh by assigning new values to their correspondingly-named attributes

Manipulating perspective in 3D scenes: Ratcave’s
camera class

Unlike in 2D graphics, where the screen’s pixels provide a
natural coordinate space for positioning objects, a 3D
scene is composed of 3D objects (“Meshes”) viewed from
a given perspective (the “Camera”) which is projected
down onto the 2D surface of the display. Positioning ob-
jects on-screen is further made intuitive by Ratcave’s
Camera class, which functions similarly to virtual cameras
in 3D modeling software. Besides being positioned and
rotated to face an object, properties of the Camera’s in-
trinsic projection model (e.g. field of view, aspect ratio,
and frustrum cutoff thresholds, orthographic vs perspec-
tive projection) can be manipulated as well. To draw a
Mesh from the perspective of the camera, it is bound by
the user using a similar method as with the shader: using
Python’s with keyword statement (Fig. 5).

Working with groups of Meshes: scenes and scene
graphs

Once all meshes are all loaded, they can be collected
together in any Python iterator object and passed to a

win = psychopy.visual. Window()
text = psychopy.visual. TextStim(win,
“ABC”)
while True:

win.clear()

text.draw()

win.flip()

Scene, which is drawn using a draw() method. Scenes
contain Mesh, Camera, and Light objects, which are ap-
plied automatically within the draw() call. Scenes can
share objects between each other, making them useful,
lightweight containers for different experimental condi-
tions (Fig. 6).

Complex relationships of object positions can be specified
via Ratcave’s simplified scene graph functionality by parent-
ing objects to each other, allowing the experimenter to move
sets of objects in a single call to the top-most parent. For
example, a much-simplified solar system model could be ar-
ranged as follows (Fig. 7).

Integrating multiple rotation coordinate systems

Unlike 2D objects, there are multiple ways to format rotations
in three-dimensional space, three of which are: euler rotations,
rotation matrices, and quaternions. Euler rotations, sequential
2D rotations about three axes stored as XYZ coordinates, have
the advantage of being intuitive to use and to set; a rotation
about the X axis can be written as an angle in the X rotation
coordinate. However, they also come with disadvantages; for
example, they must be applied in the same order every time to
achieve the same ending rotation (so mixing 3D modeling

win = psychopy.visual. Window()
reader = ratcave. WavefrontReader(‘cube.obj’)
cube = reader.get_mesh('Cube’)
while True:

win.clear()

with ratcave.default_shader:

cube.draw()
win.flip()

win = pyglet.window.Window()
text = pyglet.text.Label(‘ABC’)
(@win.event
def on_draw():

text.draw()

pyglet.app.run()

Fig. 4: Demonstrating the flexibility and generality of Ratcave by
drawing a cube in two different libraries: Psychopy (top) and Pyglet
(bottom). On the left side is the code for drawing a 2D text stimulus for
that library, with the right side showing the addition of a Ratcave cube

win = pyglet.window.Window()
reader = ratcave. WavefrontReader(‘cube.obj’)
cube = reader.get_mesh('Cube’)
@win.event
def on_draw():
with ratcave.default_shader:
cube.draw()

pyglet.app.run()

stimulus. Although the syntax of each library differs from each other in
how they create a window and begin a draw loop, the Ratcave drawing
code is the same and inserts cleanly into the existing code structure for
each experiment

@ Springer

2088

Behav Res (2019) 51:2085-2093

camera = rc.Camera()

camera.position.xyz = 1, 2, 3 # Move the camera

camera.projection.fov_y =70 # Expand the vertical field of view to 70 degrees

camera.projection.aspect = 1.2 # Stretch the view to a 5/4 aspect ratio

with camera:
cube.draw()

Fig. 5: Positioning a Ratcave Camera is done using the same interface as
with Mesh objects, and applying it to a draw operation which is done with
the same interface as Shader objects. Changing the Camera’s intrinsic

programs and 3D rendering programs in different order can
result in unequivalent rotations), and they are vulnerable to a
phenomenon known “gimbal lock”, a situation in which cer-
tain rotations can make a given axis useless. Rotation matri-
ces, 3x3 square matrices that describe Euler rotations that
apply rotation transformations with a single dot product, al-
ways apply the rotations in the same order as bound by the
rules of linear algebra. However, building rotation matrices by
hand is cumbersome at best. Quaternions, a single rotation
about an arbitrary 3-element vector, stored as WXYZ or
XYZW coordinates, have the advantage of being compact,
non-sequential and invulnerable to gimbal lock; however, they
can be unintuitive in practice. OpenGL also requires a fourth
variant, a model matrix, that has a 4x4 matrix format, whose
sequential application is order sensitive. Finally, different
users may prefer setting their rotations as degrees or radians.

To allow full flexibility between different rotation coordi-
nate systems, Ratcave allows all Physical object (Meshes,
Cameras, and Lights) rotations to be set using any rotation
coordinate system, as well as providing conversion methods
between them: for example, to_quaternion(), to_euler(), and
to_matrix(), with options in each for setting rotation sequence
and radian or degree units. This feature is, naturally, optional;
by default, all rotations are specified as Euler coordinates as
degrees.

Updating the data pipeline to the graphics card:
uniforms, shaders, and vertex arrays

Ratcave uses modern OpenGL constructs from the ground
up, rendering by passing data to graphics card-compiled

projection properties (e.g. field of view, aspect ratio, frustrum section,
orthographic vs perspective projection) is done through its projection
attributes

“shader” programs, rather than sending individual com-
mands to the OpenGL state machine from Python itself.
While this creates a two-language situation (Python pro-
grams on the CPU and shader programs in the GLSL lan-
guage on the graphics card) that may initially seem com-
plex, it represents a scalable solution that allows scientists
to take advantage of each language’s strengths. In addition,
this approach helps with creating performant 3D graphics
applications in slower dynamic languages like Python,
where high numbers of C library calls (common in legacy
OpenGL 3D applications) can create a significant perfor-
mance bottleneck; in fact, this library is used by our lab’s
virtual reality system to render full 3D scenes through a
multi-pass rendering pipeline at 360 fps (data not shown).
Three different types of data are passed to the graphics
card, with each one wrapped by Ratcave with a Pythonic
interface: Vertex Arrays, Uniforms, and Textures.

Vertex arrays Meshes in 3D applications are composed of
arrays of vertex coordinates, with each defining the endpoint
of an edge or the boundary of a face on that Mesh. This data
could be passed to the graphics card from Python point-by-
point upon drawing (OpenGL’s ‘Immediate Mode’, used by
many Python 2D graphics libraries), but this process can be
made more efficient by sending the data as a single array using
OpenGL’s VAO (Vertex Array Object) functionality and stor-
ing it on the graphics card itself. Sets of arrays (most com-
monly, a Mesh’s vertex, normal, and texture coordinate ar-
rays) can be associated together via OpenGL’s VBO (Vertex
Buffer Object), and then all that is needed is a single draw call
when the actual rendering is performed. Since the data is

cube_scene = rc.Scene(meshes=[torus, cube], camera=cam)
monkey_scene = rc.Scene(meshes=[torus, monkey], camera=cam)

with rc.default shader:
cube_scene.draw()

Fig. 6: Collecting Meshes in a scene. Because scene objects hold Meshes, cameras, and lights, every Mesh they contain can be drawn in a single

Scene.draw() call

@ Springer

Behav Res (2019) 51:2085-2093

2089

sun, venus, earth, moon = obj_reader.get meshes([‘Sun’, “Venus’, ‘Earth’, ‘Moon’])

sun.add_children([venus, earth])
moon.add parent(earth)

sun.rotation.y += 5 # Rotate everything about the sun’s axis.

with rc.default_shader:
for mesh in sun:

mesh.draw()

Fig. 7: Building a scene graph. Meshes can be arranged in a tree-like
parent/child collection using their add_children() and add_parent()
methods, which sets their position and rotation to be relative to the parent.

already present on the graphics card, the operation is much
more efficient. Ratcave pipes vertex array data using VAOs
and VBOs on Meshes and uses pointers to associate NumPy
arrays to the graphics card array data. The result is that users
can pass NumPy arrays to Meshes and even edit them like
normal NumPy arrays, while Ratcave updates the data on
the graphics card as needed (Fig. 8). Using this approach, over
30,000 vertices can be streamed in real-time to the graphics
card and rendered onscreen at 60 Hz, a performance level
surpassing the needs of most behavioral research studies
(Supplementary Video 2).

Uniform data Any data that can be associated with drawing a
Mesh, whether its position, color, or even custom properties
that are stimulus-specific can be received by the graphics
shader as so-called “Uniform” data, meaning that it has the
same value across all vertices of the Mesh. Uniform data can
be single values, arrays, or even matrices. Most Ratcave

This tree can also be traversed by iterating over the top-most parent can
then iterated over in a for loop

objects have a dictionary-like uniforms attribute that automat-
ically links, transforms, and sends its set of uniform data
whenever the object is bound (whether by calling its bind()
method or using Python’s with keyword) or drawn using a
draw() method. Ratcave builds and maintains many uniforms
automatically, including the matrices associated with position-
ing, viewing, and projecting objects on-screen (the Model
matrix, which describes an object’s position; the View matrix,
which describes the camera’s position; and the Projection ma-
trices, which describes the camera’s lens characteristics) and
adds some extra uniforms for coloring and lighting a mesh
(Fig. 9).

Besides enabling full customizability of all stimuli, using
uniforms helps increase performance of OpenGL rendering
pipelines in Python. Legacy OpenGL typically requires five
library calls to position an object on-screen, even if the mesh’s
position is unchanged from the last rendered frame. As the
number of objects to be rendered increases, the computational

mesh = obj_reader.get mesh(”Monkey”, dynamic=True)

verts = mesh.vertices # an Nx3 array.

with rc.default_shader:
while True:
mesh.vertices = sphere_warp(verts)
mesh.draw()

Fig. 8: Warping a Mesh in real-time . If the Mesh is dynamic (meaning its
data can be updated between frames), their Nx3 vertex array data can be
accessed and manipulated like any NumPy array, and Ratcave will handle

all graphics card buffering for the user. In this example sequence, a mesh
is interpolated between its original coordinates (a Monkey primitive) and
a sphere. For a video example, please see Supplementary Video 2

@ Springer

2090

Behav Res (2019) 51:2085-2093

torus.uniforms['diffuse'] =1, 0, 0
monkey.uniforms['diffuse'] =0, 0, 1

scene = rc.Scene(meshes=[torus, monkey])

with rc.default shader:
scene.draw/()

Fig. 9: Creating and updating uniform values is done via the uniforms
dictionary. In this example, updating the ‘diffuse’ property sends a 3-
element vector to the shader upon drawing. If the shader program has a

cost scales linearly. Utilizing shaders, on the other hand,
requires only a single library call, which sends a single
matrix (a “Model” matrix) to the shader. Ratcave makes
calculating these matrices straightforward by automatically
updating the model matrix whenever a stimulus’ position,
rotation, or scale attributes are modified. It also saves these
transformations intelligently, “lazily” updating the matrix
(via an Observer software design pattern) only when need-
ed, using the optimized Numpy array library. Sending the
matrix to the shader is done when the “draw()” method is
called. Similar steps are done for the Camera’s view matrix
and projection matrix (Fig. 10).

Texture data Ratcave also supports mapping image data to
3D meshes using a technique called “UV mapping”, named
after the coordinate system used for specifying the rows and
columns of an image (“u” and “v”). With this method, each
Mesh’s vertex is associated with an image and its 2D coor-
dinate (called a “texture” and a “texture coordinate”, re-
spectively), and the image’s pixels are interpolated between
the vertices, effectively stretching the 2D image across the
Mesh’s surface.

The following three steps are needed to display this
data using OpenGL: the texture data must be formatted
and passed to the graphics card as an OpenGL Texture, it

Legacy OpenGL:
glPushMatrix()

Modern OpenGL:

glScale(1, 1, 1) [-1, 1,0, 8],
glRotate(90, 0, 0) [0,0,1,-2],
glTranslate(7, 8, -2) [0,0,0, 1]]

glPopMatrix()

model matrix=[[1, 1,0, 7],

glUniformMatrix4fv(model matrix)

‘diffuse’ variable declared, it will then use the supplied value. Ratcave’s
default shader uses ‘diffuse’ to set the diffuse lighting color

must be bound, and it must have an associated uniform
name in order to link a given texture with a given render-
ing step in the shader. All of these steps are performed by
Ratcave’s Texture objects, taking the OpenGL ID from an
image loaded using another image processing library
(making it compatible with a wide variety of image pro-
cessing software), or loading it from an image file using
Pyglet’s image module. If it is appended to a Mesh’s tex-
tures list attribute, it is automatically bound and its uni-
forms sent upon the Mesh’s draw() method call. Any
number of textures of any OpenGL type (e.g. color vs
depth textures, 2D vs 3D Textures, 2D vs Spherical vs
3D texture coordinates) can be appended to a Mesh,
allowing any image algorithm to be implemented on the
graphics card online, during stimulus rendering (Fig. 11,
Supplementary Video 3).

Writeable textures: building deferred rendering
pipelines

OpenGL’s Framebuffer objects allow users to create virtual
windows that redirect a rendered image to a texture saved
in memory on the graphics card instead of the display. This
creates opportunities to build “deferred” rendering pipe-
lines, in which several different image processing

Ratcave
cube.position.xyz =7, 8, -2
cube.rotation.x = 90
cube.scale.xyz = 1

Done during cube.draw()
cube.uniforms.send()

Fig. 10: Comparison of Model Matrix computation and sending to OpenGL between legacy OpenGL, modern shader-based OpenGL, and Ratcave’s

interface to modern OpenGL

@ Springer

Behav Res (2019) 51:2085-2093

2091

tex = rc.Texture.from_image('oak.png')
monkey.textures.append(tex)

with rc.default_shader:
monkey.draw/()

tex = rc. Texture.from_image('oak.png')

with rc.default_shader, tex:
monkey.draw()

Fig. 11: Images can be read in as OpenGL textures. To bind them, they
can be either appended to Meshes in order to automatically activate them
when the mesh is drawn (top-left), or activated explicitly with the with

algorithms are run and saved for a final step that combines
the previous images into more complex and dynamic im-
ages (Fig. 12).

Deferred rendering is an important technique for CAVE-
style virtual reality systems, which project a 360-degree ren-
dering of the virtual environment onto projection screens sur-
rounding the subject (Del Grosso et al., 2017). This is done in
two steps: first, the full virtual environment is saved to six
textures, each representing a different viewpoint of the scene
from the perspective of the subject. Then, these textures are
drawn onto meshes representing the screen from the perspec-
tive of the video projector and rendered onscreen. When all of
these renders are counted up, a total of seven rendering passes
(six renders-to-texture and one render-to-screen) are per-
formed. Deferred rendering is also useful for rendering
shadows, where the scene is first rendered to texture from
the perspective of a light source in order to calculate where

stars = obj_reader.get mesh(‘Grid3D”)
stars.drawmode = rc.POINTS

monkey = obj_reader.get mesh(‘Monkey’)

fbo = rc. FBO(texture=rc. Texture())
with rc.default_shader:
with fbo:
stars.rotation.z += 10.
stars.draw()
with fbo.texture:
monkey.draw()

Fig. 12: An example of two-pass rendering using Framebuffer objects.
First, the stars Mesh is drawn and the resulting image saved to a
Framebuffer-attached texture. This texture then becomes the texture

statement before drawing (bottom-left). Each approach has advantages
for different experimental paradigms

the shadow should appear from the camera’s perspective for
the final render-to-screen pass. Any multi-pass rendering al-
gorithm can be done in Ratcave by simply binding an FBO
object and then drawing a scene (Fig. 2).

OpenGL shader programs

Besides enabling full customization of graphics rendering,
OpenGL’s programmable pipeline speeds up graphics appli-
cations by allowing users to off-load calculations to the
graphics card through “shader” programs written in a C-like
language called GLSL. Each program is made up of two
smaller programs: one that is run for each mesh vertex (the
“Vertex Shader”, Fig. 13), which is most commonly used for
positioning something onscreen, and one that is run for each
pixel of the display (the “Fragment Shader”, Fig. 14,

bound to the monkey Mesh, producing an unusual effect: a rotating star
field mapped on a monkey head

@ Springer

2092

Behav Res (2019) 51:2085-2093

layout(location = 0) in vec4 vertex;

uniform mat4 projection_matrix, view_matrix, model matrix

void main(){

gl Position = projection_matrix * view matrix * model matrix * vertex;

}

Fig. 13: A GLSL Vertex Shader. This program takes the vertex data (the first array in a Ratcave mesh, specified as location 0) and the various matrices
(received as uniforms), and calculates the onscreen position by calculating their dot product, outputting the onscreen position

Supplementary Video 3), which is most commonly used for
setting the color and lighting properties of the image.

Ratcave Shader objects compile these programs when
needed and run them when bound, as seen in previous exam-
ples (Fig. 15). Because shader programs can be mixed and
matched, and because they run on all hardware, platforms,
and graphics engines, these short programs are useful formats
for a wide variety of visual stimuli.

Discussion

Ratcave is useful for Python-using scientists who want
both 3D graphics support in their existing experiment
scripts and a quick introduction to computer graphics in
OpenGL, smoothing the learning curve toward using more
advanced, feature-complete 3D graphics software. Because
Ratcave provides access to the more-advanced OpenGL
rendering methods (e.g. framebuffers and custom shaders),
researchers can also use Ratcave to rapidly prototype com-
plex visual stimuli. These GLSL shader programs run di-
rectly on the graphics card (e.g. the Gabor patch stimulus
in Fig. 14, often used for vision studies), making them
cross-compatible between Python programmers using

in vec2 pos;

out vec4 final color;

uniform vec2 mean,

uniform float width, std, theta;

void main() {
float level = sin(pos.x / width + theta) / 2.;

level *= exp(-.5*pow(pos.x-mean.x, 2)/pow(std, 2));
level *= exp(-.5*pow(pos.y-mean.y, 2)/pow(std, 2));

final color = vec3(level + .5);

}

Fig. 14: A GLSL Fragment Shader. This program is run for every pixel
where a mesh is present. It takes uniform data (“width”, “mean”, etc) and
outputs the RGB (“final_color”). This program calculates a gabor patch

@ Springer

Ratcave, Matlab programmers using Psychtoolbox, and
3D graphics engine users (e.g. Unity3D, Unreal Engine 4,
and Panda3D), a property that has interesting potential for
future stimulus libraries.

Future development of Ratcave will include support for
more 3D-object file formats, stereoscopic stimuli, animations,
logging-event hooks, and more powerful scene graph func-
tionality. Ratcave’s design also cleanly separates 3D object
manipulation and GPU interaction, making it possible to ex-
tend support to other low-level graphics libraries (e.g. WebGL
or Vulkan) through an adapter programming design pattern,
should future psychology stimulus software in Python use
these graphics libraries themselves.

With the extension package described in this paper, psy-
chology researchers can add and manipulate 3D stimuli with
minimal code in a familiar programming environment.
Researchers can simply drop-in their 3D stimuli into experi-
ment scripts that support their input hardware and experimen-
tal design managers. Ratcave is easy to use, and the most-used
operations on 3D models (importing data from file, building a
mesh, manipulating its position, rotation, and scale, change its
lighting, and drawing to the screen) can be done with single
lines of code. As such, it makes for a good addition to the
existing Python psychology software ecosystem.

based on the screen position of a pixel (‘pos’) and the uniform parameters
given by the Ratcave program

Behav Res (2019) 51:2085-2093

2093

shader = rc.Shader.from_files(vert='position_objects.vert', frag='gabor.frag")
gabor = obj_reader.get mesh('Plane', position=(0, 0, -1))

gabor.uniforms['theta'] = 0.5
gabor.uniforms['mean'] = 0, 0

with shader:
gabor.draw()

Fig. 15: Loading custom shader files into a Ratcave Shader object and using it to draw a stimulus. Uniform values get sent to the shader when the draw()
method is called, thereby connecting shader program variables to Python variables

Author note This work was supported by the Deutsche
Forschungsgemeinschaft [grant numbers DFG RTG 2175, DFG Priority
Program 1392, DFG Priority Program 1665], the Bundesministerium fiir
Bildung und Forschung [grant number 01GQ0440], and the Munich
Cluster for Systems Neurology [grant number SyNergy EXC 1010].

We thank Andrey Sobolev and Dustin Fetterhoff for their insights in
testing and implementing the Ratcave library in their research, and for
their comments and suggestions during the writing of this manuscript. We
also thank Andrew Straw for organizing a graphics course using
Ratcave’s development, which proved invaluable for improving and re-
fining the codebase and documentation. We thank Mohammad Bashiri
and Aleksandra Teska for their programming contributions to Ratcave
software, including the additions of stereoscopic rendering and improving
the scene graph implementatio.

Compliance with ethical standards

Conflict of interest The authors state no conflicts of interest with the
findings presented in this work.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Brainard, D. H. (1997). The psychophysics toolbox, Spatial Vision, 10,
433-436

Del Grosso, N. A., Graboski, J. J., Chen, W., Hermandez, E. B., & Sirota,
A. (2017). Virtual reality system for freely-moving rodents. bioRxiv,
161232. https://doi.org/10.1101/161232

Kétter, R. (2009). A primer of visual stimulus presentation software.
Frontiers in Neuroscience, 3(2), 163—164. https://doi.org/10.3389/
neuro.01.021.2009

Krause, F., & Lindemann, O. (2013). Expyriment: A Python library for
cognitive and neuroscientific experiments. Behavior Research
Methods, (October). https://doi.org/10.3758/s13428-013-0390-6

Mathét, D., & Theeuwes, J. (2012). OpenSesame: An open-source,
graphical experiment builder for the social sciences. Behavior
Research Methods, 314-324. https://doi.org/10.3758/s13428-011-
0168-7

Peirce, J. W. (2007). PsychoPy-Psychophysics software in Python.
Journal of Neuroscience Methods, 162(1-2), 8-13. https://doi.org/
10.1016/j.jneumeth.2006.11.017

Straw, A. D. (2008). Vision Egg: An open-source library for realtime
visual stimulus generation. Frontiers in Neuroinformatics,
2(November), 1-10. https://doi.org/10.3389/neuro.11.004.2008

Publisher’'s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1101/161232
https://doi.org/10.3389/neuro.01.021.2009
https://doi.org/10.3389/neuro.01.021.2009
https://doi.org/10.3758/s13428-013-0390-6
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3389/neuro.11.004.2008

	Ratcave: A 3D graphics python package for cognitive psychology experiments
	Abstract
	Software description
	Built-in primitives and graphics resources
	Rendering 3D Meshes in Ratcave
	Manipulating perspective in 3D scenes: Ratcave’s camera class
	Working with groups of Meshes: scenes and scene graphs
	Integrating multiple rotation coordinate systems
	Updating the data pipeline to the graphics card: uniforms, shaders, and vertex arrays
	Writeable textures: building deferred rendering pipelines
	OpenGL shader programs

	Discussion
	References

