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Abstract
Uncertainties in climate model ensembles are still relatively large. Besides scenario and model response uncertainty, natural 
variability is another important source of uncertainty. To study regional natural variability on timescales of several decades 
and more, observations are often too sparse and short. Regional Climate Models (RCMs) can be used to overcome this 
lack of useful data at high spatial resolutions. In this study, we compare a new 50-member single RCM large ensemble 
(CRCM5-LE) with an ensemble of 22 EURO-CORDEX models for seasonal temperature and precipitation at 0.11° grid 
size over Europe—all driven by the RCP 8.5 scenario. This setup allows us to quantify the contribution of natural/model-
internal variability on the total uncertainty of a multi-model ensemble. The variability of climate change signals within the 
two ensembles is compared for three future periods (2020–2049, 2040–069 and 2070–2099). Results show that the single 
model spread is usually smaller than the multi-model spread for temperature. Similar variabilities can mostly be found in 
the near future (and to a lesser extent in the mid future) during winter and spring, especially for northern and central parts 
of Europe. The contribution of internal variability is generally higher for precipitation. In the near future almost all seasons 
and regions show similar variabilities. In the mid and far future only fall, summer and spring still show similar variabilites. 
There is a significant decrease of the contribution of internal variability over time for both variables. However, even in the 
far future for most regions and seasons 25–75% of the overall variability can be explained by internal variability.

Keywords Regional climate models · Natural variability · EURO-CORDEX · Uncertainty · Large ensemble · Climate 
change signals

1  Introduction: uncertainties in climate 
projections

So far, decades of research and development have gone into 
a better understanding of atmospheric processes and their 
interactions with other components of the climate system 
like land surface, oceans and ice. Yet, there are still large 

uncertainties about the future development of the climatic 
conditions, particularly at the regional scale. For well-
planned adaptation measures, which can include the use of 
impact models driven by (regional) climate models, decision 
makers demand more precise projections of how the future 
might look like. Climate scientists have a hard time explain-
ing why their models still cannot show a clearer picture of 
likely future changes, narrowing down the model spread 
of ensemble projections (Hawkins and Sutton 2009, 2011; 
Deser et al. 2012a).

In general, the overall uncertainty of such climate projec-
tions can be separated into three parts: (1) scenario uncer-
tainty, corresponding to the different emission scenarios that 
can be used as external forcing to the climate models, (2) 
model response uncertainty, corresponding to the response 
of the different models, developed by different institutions 
around the globe and (3) natural variability, inherent to the 
chaotic nature of the climate system (Hawkins and Sutton 
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2009). Scenario uncertainty is difficult to reduce, since this 
includes future knowledge about greenhouse gas and aerosol 
emissions and advances in technology (or a best guess of it), 
but might potentially become less in the future (Moss et al. 
2010). Model uncertainty might be reduced by advances in 
the knowledge of natural processes, and the capabilities of 
models in representing those. For instance, the increase in 
spatial resolution of regional climate models (RCMs) from 
0.44° to 0.11° was shown to have a significant effect on 
the model performance, often referred to as “added value” 
(Torma et al. 2015; Fantini et al. 2016; Prein et al. 2016). On 
the one hand, increasing computational capabilities avail-
able to modeling groups and further advances in describing 
processes more accurately has the potential to narrow down 
uncertainties, but adding more complexity to models may on 
the other hand also lead to higher uncertainties in the pro-
jections (Knutti and Sedláček 2013). Constraining models 
by observations can also reduce the uncertainty of future 
projections in some cases (Borodina et al. 2017; Lorenz et al. 
2018). The third part of uncertainty in climate projections 
is natural variability. Natural variability can be associated 
with interactions between the internal components of the cli-
mate system, which can lead to inter-annual, decadal or even 
multi-decadal variability like ENSO, NAO, etc. (Solomon 
et al. 2010; Zheng et al. 2018).

Observational data of the earth’s climate usually cover 
only several decades, and are thus not long enough to cap-
ture this mid- to long-term variability (Hawkins et al. 2016). 
Brisson et al. (2015) for example, used a weather genera-
tor to quantify uncertainties in estimating climatic condi-
tions from a 30-year period as recommended by the World 
Meteorological Organization (WMO), and showed that these 
uncertainties can well exceed 15% for extreme precipitation. 
This lack of data makes it very difficult or nearly impossible 
to use observations for the quantification of natural variabil-
ity on longer time scales.

A possible solution to deal with the lack of sufficiently 
long observational time series to assess long-term climate 
variability can be the use of climate models. The underly-
ing assumption has to be of course that the climate models 
are capable of simulating the climate system, including its 
natural variability (represented by the internal variability 
of the models). Aalbers et al. (2018) showed for example 
that the interannual variability of an EC-EARTH-RACMO 
initial conditions large ensemble of 16 members is similar 
to the one of E-OBS. So, if we accept the concept of a cli-
mate model as a surrogate of the natural climate system, 
we can use the model to generate a huge amount of data 
to create plausible parallel modifications of current and 
future climate. Therefore, the ClimEx project (http://www.
clime x-proje ct.org) provides 50 members of the Canadian 
global earth system model CanESM2 (Fyfe et al. 2017), 
dynamically downscaled by the Canadian regional climate 

model version 5 (CRCM5) over large parts of Europe and 
northeastern North America, running from 1955 to 2099. 
This leads to 50 parallel realizations of climate, just altered 
by very small differences in the initial conditions in the 
CanESM2 members, which makes all 50 members equally 
likely realizations of the same long-term climatic condi-
tions. This unprecedented dataset, hereafter referred to as the 
ClimEx CRCM5 large ensemble (CRCM5-LE) is described 
in Leduc et al. (2019).

This ensemble can be used to better understand and quan-
tify the uncertainties of ensemble approaches in regional 
climate change studies. In those studies usually an ensemble 
of different combinations of global climate models (GCMs) 
and regional climate models (RCMs) is used to cover the 
range of possible outcomes (Jacob et al. 2014; Vautard et al. 
2014; Roudier et al. 2016; Smiatek et al. 2016; Rajczak and 
Schär 2017). Often, the derived uncertainties from these 
multi-model ensembles are relatively large, since usually 
all three components of uncertainty are incorporated: Dif-
ferent scenarios driving different GCM/RCM combinations 
and inherent natural variability. For regional studies using 
RCMs, another dimension is added, as the model uncer-
tainty is now composed of the GCM and RCM response. 
Further constraint for assessing scenario uncertainty and 
model response uncertainty is that the “matrix” of all possi-
ble combinations of scenario, GCM and RCM is sparse and 
not balanced according to these three dimensions. Analysis 
is always restricted by the available simulations (often on 
an opportunity basis), thus making systematic comparisons 
on the influence of these factors difficult. Additionally, not 
all models are fully independent from each other, why the 
often claimed and applied model democracy (one model one 
vote) is increasingly challenged by some authors (Pennell 
and Reichler 2010; Leduc et al. 2016a; Knutti et al. 2017). 
In addition to the fact that multiple members are rarely avail-
able to assess internal variability, all these factors together 
induce large problems in distinguishing the three sources of 
uncertainty in climate projections in existing multi-model 
ensembles like EURO-CORDEX.

Therefore, several studies have produced and analyzed 
single model large ensembles with small alterations in initial 
conditions to address the uncertainty resulting from internal 
variability. On the GCM scale: The 40-member CCSM-LE 
(Deser et al. 2012a, b, 2014) and the 30-member CESM-LE 
(Kay et al. 2015). Another set of experiments with 90–100 
members was conducted by a group of Japanese authors 
with a 60 km resolution global atmospheric model and a 
20 km resolution regional model for a Japanese domain 
(Mizuta et al. 2017). The Netherlands Meteorological Insti-
tute (KNMI) performed an RCM experiment with 16 EC-
EARTH members, downscaled by the Dutch regional model 
RACMO2 to a resolution of 0.11° for Western Europe. Aal-
bers et al. (2018) give an overview of this ensemble and 

http://www.climex-project.org
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investigate several aspects of natural variability for mean and 
extreme precipitation. A set of 21 members of the CESM 
was downscaled by the regional model COSMO-CLM at a 
resolution of 0.44° for Europe (Fischer et al. 2013). All these 
studies showed that a single model large ensemble setup 
can be very valuable to better quantify natural variability in 
climate projections. However, only very few comprehensive 
comparisons with multi-model ensembles have been con-
ducted, and so far only with GCMs (Deser et al. 2012b; Kay 
et al. 2015; Leduc et al. 2016b).

In this study, we use the ClimEx CRCM5-LE to compare 
the inter-member spread due to natural variability in a sin-
gle model large ensemble with the multi-model variability 
(which implicitly includes the effect of natural variability) 
of a corresponding EURO-CORDEX ensemble. This results 
in the following research questions:

1. Which part of the multi-model spread (model uncer-
tainty and internal variability combined) of a 0.11° 
EURO-CORDEX ensemble can be attributed to internal 
variability?

2. What are the implications of this attribution for analyses 
of climate change signals from multi-model ensembles?

This study will first investigate the composition of the 
CORDEX ensemble in terms of GCM (member)/RCM com-
binations. This analysis is supposed to evaluate the ability 
of this ensemble of opportunity to represent the different 
sources of uncertainty of a multi-model ensemble in a sat-
isfying manner for the following comparison: The signals 
of the CRCM5-LE are compared to the signals of the COR-
DEX ensemble to quantify the spread of each ensemble on 
a grid point and regional scale. Thus, the uncertainty of 
signals originating from model-internal variability (natural 
variability uncertainty) is compared against that originating 
from a multi-model ensemble (model response uncertainty 

and internal variability combined). After a discussion of 
the results, the implications for the analysis of multi-model 
ensembles are briefly discussed.

2  Data

Two different ensembles of RCP 8.5 driven models in daily 
and 0.11° resolution are used in this study:

(A) 22 models from EURO-CORDEX.
(B) 50 members of the ClimEx CRCM5-LE.

All available datasets that share the common EURO-
CORDEX 0.11° grid in the EURO-CORDEX and ReKliES-
De datasets at the Earth System Grid Federation (ESGF) are 
pooled together and only refered to as ‘CORDEX’ in the 
following. This means that the two MPI-REMO2009 runs, 
the ALARO run and the ALADIN53 run are not considered 
because of their different grid specifications. The UHOH 
data cannot be used for the signal calculation since no histor-
ical data are stored for this run [see Supplementary Material 
(SM) Table S1 for all excluded runs]. During the analysis of 
the data, the model IPSL-WRF showed very high increases 
(quadrupling) in summer precipitation, especially for coastal 
parts of France and the Mediterranean and is therefore 
excluded from the CORDEX ensemble. Excluding a model 
in a variability study for its extreme results is of course cru-
cial. However, other studies also excluded the IPSL-WRF 
model from their analysis (Kotlarski et al. 2014; Smiatek 
et al. 2016; Rajczak and Schär 2017), supporting this deci-
sion. Differences introduced by including the IPSL-WRF 
model into the analysis are shown in Fig. S1, Supplemen-
tary Material. The 22 resulting CORDEX models are listed 
in Table 1 as a combination of RCMs and driving GCMs. 
These models are used to analyze the composition of the 

Table 1  Matrix of GCM 
(-member) and RCM used in the 
CORDEX ensemble

a The EC-EARTH_r1_RACMO22E simulation is used for the composition analysis of the CORDEX 
ensemble but not for comparison with the CRCM5-LE

Member CCLM4-8-17 HIRHAM5 RACMO22E RCA4 REMO2015 SUM

CanESM2 r1i1p1 1 1 2
CNRM-CM5 r1i1p1 1 1 1 3
EC-EARTH r1i1p1 1a 1

r3i1p1 1 1
r12i1p1 1 1 1 1 4

CM5A-MR r1i1p1 1 1
MIROC5 r1i1p1 1 1 2
HadGEM2-ES r1i1p1 1 1 1 1 1 5
MPI-ESM-LR r1i1p1 1 1 2
NorESM1-M r1i1p1 1 1
SUM 6 3 3 5 5 22
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ensemble. Two members of EC-EARTH have been down-
scaled with RACMO22E (r1 and r12), but we only use r12 
for the inter-comparison with the CRCM-LE for balancing 
reasons. Keeping both would double count this GCM-RCM 
pair (as the two EC-EARTH members are expected to be 
much more similar to each other than compared with other 
driving models), which would likely shrink the total vari-
ance of CORDEX (although probably by a small amount).

The second dataset is a 50-member ensemble of the 
Canadian earth system model CanESM2 (Fyfe et al. 2017), 
downscaled by the Canadian regional model CRCM5 (Ver-
sion 3.3.3.1, Martynov et al. 2013; Šeparović et al. 2013) 
for two domains: Northeastern North America (not part of 
this study) and Europe. The 50 members originate from five 
families of simulations, each starting at different 50 year 
intervals of a preindustrial run with a stationary climate 
and run from 1850 to 1950. They are then seperated into 
ten members each by small atmospheric perturbations 
and run from 1950 to 2099. This 50 member CanESM2-
LE was then dynamically downscaled within the ClimEx 
project with CRCM5 over a domain covering Europe 
(EU11d2) with a horizontal grid-size mesh of 0.11° on a 

rotated latitude–longitude grid, corresponding to a 12-km 
resolution, using 5-min time steps, which fits the common 
EURO-CORDEX grid specifications. Further information 
on the settings of the whole experiment, as well as a detailed 
description and analysis of the dataset (also for the Ameri-
can domain) can be found in Leduc et al. (2019). The stored 
variables and the terms of use can be found in the respec-
tive documentation on the project homepage (http://www.
clime x-proje ct.org). The ClimEx 12-km grid equals the one 
used in EURO-CORDEX simulations, although the ClimEx 
domain is slightly smaller, still covering most of Europe 
(Fig. 1).

3  Methods

The subregions used for analysis are taken from the PRU-
DENCE project (Christensen and Christensen 2007) and 
were already used in several other studies in the context of 
European climate model analysis (Lenderink 2010; Lorenz 
and Jacob 2010; Kotlarski et al. 2014). The subregions cover 
almost all the ClimEx domain despite the Mediterranean 

Fig. 1  The EURO-CORDEX 
and ClimEx domains with the 
subregions for analysis

http://www.climex-project.org
http://www.climex-project.org
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parts of Morocco, Algeria and Tunisia, the Aegean Sea and 
small parts of Eastern Europe. Note that the Scandinavian 
subregion here is smaller than in other studies, since the 
ClimEx domain does not cover the northern parts of Scan-
dinavia. An additional analysis domain is a combination of 
all subregions (‘TOT’). For the whole study, only land grid 
points are considered.

The data of the 22 CORDEX models is first cut to the 
ClimEx domain. Since the CORDEX and CRCM5-LE data 
share the same 0.11° grid, no interpolation is needed to com-
pare the two datasets. Annual and seasonal means of tem-
perature and precipitation sums are calculated at every grid 
point on an annual basis from 1980 to 2099. The analysis 
of the data comprises grid point analysis as well as spatially 
averaged results (arithmetic mean) for the subregions (TOT 
as an area weighted mean of: BI, SC, FR, ME, EA, IP, AL, 
MD). For the spatially averaged results, the temperature/pre-
cipitation values are aggregated before signals are computed. 
The change signals are calculated using a 30-year reference 
period (REF: 1980–2009) as a baseline for three future peri-
ods: The near future (FUT1: 2020–2049), the mid future 
(FUT2: 2040–2069) and the far future (FUT3: 2070–2099).

Seasonal means (temperature) and sums (precipitation) 
are calculated in each grid point for every year and mem-
ber, followed by calculation of the temporal means for each 
30-year period (REF, FUT1-3). This allows calculating the 
standard deviation of signals for both ensembles and every 
grid point. The variabilities are compared using the ratio of 
standard deviations:

For this comparison the EC-EARTH_r1_RACMO22E 
run is not part of the CORDEX ensemble (see chapter 2). 
Additionally a two-sample F-Test is applied at the signifi-
cance level of 5%. When the Null Hypothesis of this test 
cannot be rejected, we assume that the two distributions have 
similar variances. The test also accounts for the different 
sample sizes of the two ensembles (50 and 21). To see how 
similarities in spatial patterns change over time between the 
two ensembles, a simple pattern correlation is calculated for 
moving window 30-year periods.

4  Results

4.1  Composition of the CORDEX ensemble

The CORDEX ensemble in this study consists of 22 dif-
ferent combinations of GCM, GCM member and RCM, 
with eight GCMs and five RCMs in total. Not all com-
binations of these have been realized, leaving about half 
of the GCM (-member)/RCM matrix blank (Table  1). 
The composition is quite heterogeneous, with a slight 

SDR = �(CRCM5 − LE) ∕�(CORDEX).

dominance of EC-EARTH and HadGEM2-ES for the 
GCMs and CCLM4-8-17 and REMO2015 for the RCMs. 
The EC-EARTH is the only model with different down-
scaled members, and fortunately there is even a pair of 
two members downscaled with the same RCM (RAC-
MO22E). Additionally, there are two simulations using 
the first member of the CanESM2 ensemble, downscaled 
with CCLM4-8-17 and REMO2015, giving us insight in 
the role of CRCM5’s contribution to the signals of the 
CanESM2-CRCM5-LE. Yet overall, the sampling is rela-
tively random, which makes systematic analysis on the 
influence of GCM (-member) and RCM on the variability 
extremely difficult. Nevertheless, it seems valuable to take 
a look at the variabilities inside the CORDEX ensemble to 
better assess the capacity of the ensemble for the variance 
comparison with the CRCM5-LE.

To get an overview of the influence of the components 
(GCM/RCM) of each simulation, the climate change sig-
nals of temperature and precipitation for the far future 
FUT3 (2070–2099) are displayed in scatterplots for win-
ter (DJF, Fig. 2) and summer (JJA, Fig. 3) for the TOT 
domain. A general clustering of the simulations sharing 
the same GCM can be observed, although there are large 
differences between the GCM cluster extents.

In winter, the differences between RCM simulations, 
driven by the same global model, range from 0.1 K in 
CanESM2 to 0.9 K in MIROC5 for temperature and from 
3.6% points [pp] in MIROC5 to 5.1 pp in CanESM2 for 
precipitation (Fig. 2). These ranges are usually similar to 
the CRCM5-LE extent. The EC-EARTH members r1 and 
r3 are close again, as well as the two RACMO22E simula-
tions (r1 and r12). The two CanESM2 simulations fit quite 
well into the CRCM5-LE, although being at the colder end 
of the cloud.

In summer, the spread of temperature signals of the same 
GCM downscaled by different RCMs range from 0.2 K in 
CNRM-CM5 to 1.5 K in HadGEM2-ES, while the spread 
for precipitation signals ranges from 4.5 pp in CNRM-CM5 
to 36 pp in CanESM2 (Fig. 3). These GCM ranges are larger 
than in winter, due to the higher importance of large scale 
circulations, and these are mainly driven by the GCM. The 
RCM CCLM4-8-17 shows the strongest decreases in precipi-
tation regardless the driving GCM—except CNRM-CM5, 
which generally seems to have a larger influence on the 
RCM output than other GCMs. The two CanESM2 simula-
tions show large differences and span a larger range, both 
in temperature and precipitation, than the CRCM5-LE. The 
combination of the rather warm and dry CanESM2 with 
the also rather dry CCLM4-8-17 (usually the driest RCM, 
driven by the same GCM) results in an extreme decrease 
of precipitation, accompanied by a strong warming signal. 
The EC-EARTH is the only GCM with different members 
(1*r1, 1*r3, 4*r12), giving insight into the variability of 



1968 F. von Trentini et al.

1 3

another multi-member ensemble. The two simulations of 
member r1 and r3 have colder and less dry signals than the 
r12 simulations, yet still at the edge of the r12 cluster. The 
two simulations using the same RCM and only different 
members of EC-EARTH (r1_RACMO22E and r12_RAC-
MO22E) are very close. The CRCM5-LE cluster is at the 
very warm and dry end of the CORDEX ensemble, but the 
MIROC5_CCLM4-8-17, HadGEM2-ES_CCLM4-8-17 and 
CanESM2_CCLM4-8-17 simulations show similar or even 
stronger signals.

The GCMs usually dominate the signal of the simula-
tions, but there are some cases where the RCM can sig-
nificantly impact the resulting signal. These findings for 
the TOT domain can be found in a similar manner in the 
subdomains as well, although differences occur of course. 
For example, the positive winter precipitation signals mostly 
originate from Northern European subregions like Scandi-
navia, whereas the Mediterranean shows mostly negative 
signals (Figs. S2 and S3, SM). On the other hand, the same 
contrasting signals (mostly positive in SC, mostly negative 
in MD) result in a more or less balanced signal spread in 
TOT for summer (Figs. S4 and S5, SM).

In general, this CORDEX ensemble consists of a number 
of GCMs and RCMs with a wide range of signals. Although 
it is not a perfectly composed multi-model ensemble (which 
would be necessary for a real structured framework), the 
analysis suggests the assumption that its composition rep-
resents a fair assumption of the sources of uncertainty in a 
multi-model ensemble. It is therefore suited for the com-
parison with the 50 member single model large ensemble.

4.2  Comparison of variability in signals 
of CRCM5‑LE and CORDEX

To better assess and quantify the fraction of internal varia-
bility in the CORDEX ensemble, we compare the standard 
deviations of the CRCM5-LE and the CORDEX ensem-
ble. The variability between EURO-CORDEX models is 
analyzed on the grid point level, while other publications 
usually only mark areas where models agree on the sign 
of change and significant changes, without quantifying the 
uncertainty of the respective ensemble (Jacob et al. 2014; 
Vautard et al. 2014; Rajczak and Schär 2017).
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Fig. 2  Scatterplot of the signals (2070–2099 minus 1980–2009) of 
temperature and precipitation for winter (DJF) in the combined (area 
weighted mean of all other subregions) domain TOT (land grid points 
only). The color of the marker denotes to the GCM and the symbol 

denotes to the RCM. The members r1 and r3 of EC-EARTH have a 
black frame to distinguish them from member r12 simulations. The 
grey points show the signals of the 50 CRCM5-LE members
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4.2.1  Temperature

Figures 4 and 5 show the standard deviation of signals of 
CRCM5-LE and CORDEX for all three future periods and 
the respective SDR values for winter and summer tempera-
ture over Europe (respective figures for SON and MAM: 
Figs. S6 and S7, SM). The CRCM5-LE variability shows a 
large scale gradient from lower values in the West to higher 
values in the (North-) East, which might be associated with 
increasing continental climate as seen in Köppen-Geiger 
climate classifications (Beck et al. 2018). In winter COR-
DEX shows a similar, yet not so clear gradient, whereas in 
summer higher values seem to be found in southern parts 
of Europe. In both seasons, the most obvious gradient in 
CORDEX appears in mountainous regions like the Alps, 
the Pyrenees and the Scandinavian Mountains. Additionally, 
the variability increases from FUT1 to FUT3, especially in 
winter. The CRCM5-LE in contrast shows rather small vari-
ability in these mountainous regions.

The SDR mainly lies well below 1 in both seasons for 
most of Europe. This result suggests that for temperature, 
only a small part of the variability in the CORDEX ensemble 
can be explained by internal variability. For most parts, the 
SDR is smaller in summer than in winter. This is a result of 
two opposing effects: On the one hand, the overall CRCM5-
LE variability is higher in winter; on the other hand, the 
CORDEX variability is smaller in winter. This mainly 

affects the British Islands, Scandinavia and other parts of 
Northern Europe, where SDR values can even exceed 1, 
especially in the early and mid-future. In these cases, the 
internal variability estimated from CRCM5-LE is larger 
than the CORDEX multi-model variability. While this result 
would be rather unexpected in a systematic framework, the 
current CORDEX imbalanced composition could lead to an 
underestimation of either (or both) RCM and GCM contri-
butions to the total ensemble spread. In this context, it is 
not clear whether CRCM5-LE over- or underestimates the 
average internal variability of the CORDEX models. It is 
also not clear to which extent the true internal variability 
of the CORDEX ensemble is fully sampled by the available 
simulations.

A two-sample F-Test reveals the grid points with similar 
variances in both ensembles (Figs. 4 and 5, lowest rows). 
Empirical analysis shows that these are generally grid points 
with SDR values between 0.7 and 1.5 (similar to findings of 
Deser et al. 2012b). The share of grid points with similar 
variance decreases in both seasons for further future periods, 
with generally higher values in winter. Interesting to note is 
how the British Isles and parts of Norway fail the test for 
FUT1 because of the high variance in CRCM5-LE, showing 
similar variances for FUT2 and FUT3 with increasing COR-
DEX variability and relatively stable CRCM5-LE variability.
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Fig. 3  Same as Fig. 2, but for summer (JJA)
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4.2.2  Precipitation

The precipitation signals are calculated for each member 
individually in percent change, so the standard deviation 
over these members is also expressed in percent change. In 
winter, the general patterns of CRCM5-LE and CORDEX 

are quite similar with higher variability in southern parts of 
Europe (Fig. 6). Northern Africa shows the largest stand-
ard deviations of relative changes, because the absolute 
sums of precipitation are relatively small here. A remark-
able band of high variability stretches from the southeastern 
parts of Spain over coastal France to the Italian Alps in both 

Fig. 4  Rows 1–2: standard deviation of the winter temperature (tas-
DJF) signals of all models in each ensemble for the three future peri-
ods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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ensembles. The variability in CRCM5-LE on the Iberian 
Peninsula is higher than in CORDEX, leading to high SDR 
values in FUT1. Other high SDR values can be found in 
Northern Africa and some mainly coastal areas in FUT1 and 
FUT2, whereas in FUT3 most of Europe shows SDR values 
around 1 and below.

Some differences in the variability of signals can be 
observed in summer between the ensembles, despite a gen-
eral increasing West–East and North–South gradient. The 
variability in CORDEX is larger in all future periods and 
almost all of Europe (Fig. 7). Topography does not seem 
to be a significant factor in CORDEX, while CRCM5-LE 

Fig. 5  Rows 1–2: standard deviation of the summer temperature 
(tas-JJA) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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displays especially low variability in mountainous regions, 
as already seen for temperature in winter. This results in 
SDR values around 1 in FUT1, decreasing to values well 
below 0.5 for FUT3. For FUT1 in summer, the number of 
grid points with similar variability is comparable to the 
number found in the map for winter (Fig. 6), but decreases 

significantly until FUT3 in contrast to the winter season. The 
respective figures for SON and MAM can be found in the 
SM, Figs. S8 and S9.

The pattern correlations as function of the time hori-
zon between the standard deviation maps of both ensem-
bles show two different behaviors for temperature and 

Fig. 6  Rows 1–2: standard deviation of the winter precipitation 
(pr-DJF) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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precipitation (Fig. 8). Correlations are generally high for 
precipitation as well as for summer and fall temperatures. 
For all precipitation seasons, a decrease of correlation can 
be observed, which fulfills the expectation of a decreasing 
contribution of internal variability on the overall variability 
in the further future.

Temperature seasons show a remarkable behavior. The 
pattern correlation increases in all seasons during the first 
half of the twenty-first century, and remains more or less 
stable in tas-DJF and tas-MAM, while dropping signifi-
cantly for tas-JJA and tas-SON afterwards. The patterns 
of temperature thus do not seem to follow the expectation 

Fig. 7  Rows 1–2: standard deviation of the summer precipitation 
(pr-JJA) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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of decreasing correlation with time, and even increase for 
winter and spring. Further research is needed in this direc-
tion, especially if these results can be reproduced with other 
initial condition ensembles in the future.

To give an overview, Fig. 9 shows the regionally averaged 
SDR grid point values for all seasons and future periods for 
the subregions from Fig. 1. In general, the contribution of 
internal variability is much higher for precipitation than for 
temperature, and it decreases significantly the further the 
future period lies ahead. Annual and summer temperature/
precipitation and fall temperatures have significantly lower 
SDR values than the other seasons. The share of boxes with 
at least 2/3 of the grid points confirming the F-Test on equal 
variances is especially high for temperatures in FUT1 (12 
boxes) and precipitation in FUT1 (32) and FUT2 (15). Ratios 
above 1 mainly appear in FUT1 for spring temperatures and 
fall precipitation. The threshold of 2/3 is chosen on the basis 
of similar existing concepts like robustness of change as a 
function of the numbers of climate models agreeing in the 
sign of change (Jacob et al. 2014).

5  Discussion

5.1  Composition of the CORDEX ensemble

The composition of the 22-member CORDEX ensemble is 
defined by the available datasets that match the precondi-
tions described in the Data part of this study (chapter 2), 
leading to an ensemble of opportunity as a result. Although 
there have been efforts to fill the matrix of GCM-RCM-com-
binations, totally systematic analysis to separate contribu-
tions from GCMs and RCMs to the total ensemble spread 
is difficult—if not impossible—due to the sparsity of the 
matrix, the imbalance between GCM/RCM combinations, 
and the lack of several members for each combination to bet-
ter discriminate model uncertainty from internal variability 
(except for EC-EARTH, all GCMs only have one member). 
The uncertainty of the CORDEX ensemble signals is thus 
a combination of model response uncertainty and internal 
variability.

Overall, the spread of signals in CORDEX can mostly be 
explained by the different GCMs used for long-term projec-
tions, as already described by Kendon et al. (2010). Espe-
cially for larger GCM samples (EC-EARTH and HadGEM2-
ES), the GCM dominance can be observed more robustly. 
There have been attempts to separate out the noise com-
ponents in climate model ensemble signals. For example, 
Saffioti et al. (2017) showed that the removal of atmospheric 
circulation variability largely decreases the spread of trends 
in an initial condition ensemble as well as a multi-model 
ensemble of GCMs. Since there is no better multi-model 
ensemble available so far (in terms of sampling different 
models and members), the CORDEX ensemble can be 
seen as a first order approximation of the uncertainty in a 
multi-GCM/RCM ensemble. To better assess the uncertain-
ties between signals in RCMs and their driving GCMs over 
Europe further research is needed. For instance, considering 
several RCMs driven by the same GCM could help to better 
understand the uncertainty due to the choice of the RCM, 
while doing similarly over an RCM column (in Table 1) 
would allow to assess the RCM sensitivity to boundary 
conditions. Nevertheless, we tried to assess the contribution 
of internal variability to the CORDEX ensemble spread by 
comparing with CRCM5-LE, where the internal variability 
is sampled in a systematic manner.

5.2  Comparison of signals in CRCM5‑LE and CORDEX

The comparison of a single model large ensemble, com-
prised of 50 initial condition members of the CanESM2-
CRCM5 model chain (CRCM5-LE) with a multi-model 
ensemble of 21 different EURO-CORDEX models was 
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conducted to better quantify the contribution of natural vari-
ability in climate change signal uncertainty. In general, the 
CRCM5-LE ensemble shows stronger climate change signals 
for temperature than the CORDEX ensemble—especially for 
summer, where CRCM5-LE signals are very dry and warm. 
The negative precipitation signals in summer and fall are 
not due to a general dry bias of the CRCM5-LE data, since 
neither the CanESM2 nor the ERA-Interim driven CRCM5 

simulation showed significant dry biases for most parts of 
Europe from 1980 to 2012, especially not for the Mediter-
ranean, where the severe decreases are projected (Leduc 
et al. 2019). The CanESM2_CCLM4-8-17 simulation shows 
even drier signals for these seasons than the already rela-
tively dry CRCM5-LE, while the CanESM2_REMO2015 
simulation fits well into the CORDEX ensemble. The choice 
of RCM for downscaling CanESM2 thus seems to have a 

Fig. 9  SDR in all regions for annual and seasonal temperatures (a–c) 
and seasonal precipitation (d–f) in the three future periods. The white 
dots indicate no rejection of the Null Hypothesis (of equal variances) 

of the two-sample F-Test at a significance level of 5% in at least 67% 
of the grid points in this subregion
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significant influence on the summer precipitation signals. A 
similar range can also be found for the five HadGEM2-ES 
simulations.

5.3  Signal variability comparison

Grid-point based analysis showed that the CORDEX vari-
ability is usually much higher than the CRCM5-LE variabil-
ity for temperatures (Figs. 4 and 5). However, both ensem-
bles generally show an increase in variability of temperature 
towards more continental climates in the East, which sug-
gests that this gradient in CORDEX is at least partly due to 
internal variability. Only in the near future during winter 
larger parts of Europe show similar variabilities in both 
ensembles. For the British Isles and Norway, CRCM5-LE 
even shows higher variability in FUT1 than CORDEX. A 
significant difference between the two ensembles is that 
mountainous areas in CORDEX often show the highest 
standard deviations for temperature, while in CRCM5-LE 
they show rather low values. This is probably because of 
the different orographies and snow representations used in 
the different RCMs in CORDEX, since it is mostly visible 
during DJF and MAM, when the largest snow packs are 
present. For summer and winter precipitation the patterns 
of equal variances are way more scattered over all of Europe 
(Figs. 6 and 7). While in FUT3 for summer almost no grid 
points show similar variances, the internal variability can 
still reach a similar variance than the multi-model variance 
in large parts of Europe in winter precipitation.

The analysis of pattern correlations between signals of the 
two ensembles gave a two-folded result. While for precipita-
tion, the expectation of decreasing pattern correlations was 
met, the temporal dynamics for temperature did not show 
clear indications (Fig. 8). Further research may be needed 
to clarify the relationships between patterns in this context.

In general, the contribution of internal variability is much 
higher for precipitation signals than for temperature signals. 
Additionally, the influence of internal variability signifi-
cantly decreases for later future periods (Fig. 9). Neverthe-
less, in many regions the contribution lies between 0.25 and 
0.5 for seasonal temperature, and between 0.5 and 1.0 for 
seasonal precipitation. SDR values around or even above 
one, seem to be implausible on the first glance. Even if inter-
nal variability plays an important role in the uncertainty, the 
sum of model response uncertainty and internal variability 
in the CORDEX ensemble should generally be higher than 
the internal variability alone in CRCM5-LE. These values 
probably occur when the CORDEX ensemble cannot cap-
ture the whole range of internal variability because of the 
limited sampling in this ensemble. Or the internal variability 
of the CRCM5-LE is not representative for other models 
(GCM/RCM combinations). Further research is needed on 

the comparison of the representations of internal variability 
in different large ensembles.

Deser et al. (2012b) conducted a similar experiment with 
21 CMIP3 models and 40 CCSM3 members, building a ratio 
between the standard deviations of trends from 2005 to 2060 
globally. They also find ratios above 0.75 and 1.0 for large 
parts of Europe for annual temperature and precipitation—
the latter generally showing much higher ratios. The ratios 
found by Deser et al. (2012b) for Europe are usually higher 
than the ones calculated for the ensembles in this study. This 
might originate from the different models and methods. 
While we used dynamically downscaled regional models 
for Europe, they used GCMs. Additionally they quantified 
the precipitation trend variability in mm/day, while we used 
relative changes.

To evaluate the influence of spatial resolution on the 
regionalized SDR values, we conducted a small methodo-
logical experiment, which cannot directly clarify the dif-
fering results, but helps to identify possible sources better. 
For the values in Fig. 9, the SDR is calculated on a grid 
point scale and is averaged over the subregions afterwards 
(Method M1). Another method can be to average over the 
temperature/precipitation values as a first step and do the 
signal, variability and SDR computation with these spatially 
averaged values afterwards (Method M2). This is a possi-
ble way to “simulate” a coarser resolution of the underly-
ing data, like it would come from a very coarse GCM. The 
differences between the two methods are shown in Fig. 10. 
A comparison of the results on annual time scale (Deser 
et al. 2012b only show annual results) reveal no difference 
between the two methods for tas-Y, and show higher SDR 
values by M1 for pr-Y. Thus, a coarser resolution data set 
will not produce higher ratios in this experiment. This con-
tradicts the hypothesis that differences in the spatial resolu-
tion of the applied models could explain differing results. 
The differences between the two studies in terms of used 
models and applied methods make the identification of the 
reasons behind the differences even more difficult.

6  Conclusions

Natural variability (represented by the model-internal vari-
ability of a single model large ensemble) can play a major 
role in the variability magnitude of future climate projec-
tions, depending on the regarded variable, season, region 
and time horizon. These findings are of such importance, 
since climate modelers are often facing criticism for the 
large uncertainty of ensemble projections, with the criticism 
implying that the variety of model results is a consequence 
of the models’ inability to correctly represent climate pro-
cesses (model response uncertainty). If natural variability 
can explain a large part of the spread of models, then the 
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differences in climate signals from different models might 
not only be a result of insufficient or competing models, but 
might also be partly explained by natural variability. Follow-
ing the idea that natural variability is inherent to the chaotic 
nature of the climate system and therefore cannot be dimin-
ished, a certain part of uncertainty of climate projections 
will be irreducible, even if scenario definition will become 

more precise and models will improve (see also Deser et al. 
2012b).

The implications for the interpretation of multi-model 
ensembles in cases with similar variabilities (e.g. pre-
cipitation in DJF), might become clearer as a short mind 
game: First we need to accept the natural variability of the 
CRCM5-LE as a fair approximation to adopt it for other 
models. Then two things become apparent:

Fig. 10  Difference of regional SDR outcome between methods M1 and M2 (M1 minus M2); M1 results are shown in Fig. 9
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(A) We can add the CRCM5-LE variability as a “cloud” 
of internal variability (gray dots in e.g. Fig. 3) around 
each of the dots for the CORDEX models. This is blur-
ring the model response uncertainty dramatically in 
some cases. This means that only one realization, as in 
CORDEX usually available, does probably not depict 
the model response very well.

(B) On the other hand, if the CORDEX ensemble might 
even be totally (or to a large part) explained by natural 
variability, model response uncertainty may be inter-
preted as neglectable in these cases.

These conclusions are of course very much depending 
on the length of the time period, variable, season and region 
considered, and are not meant as universally valid for multi-
model ensembles like CORDEX.

As a short outlook, the existing regional single model 
ensembles (Fischer et al. 2013; Aalbers et al. 2018) still need 
to be analyzed in more depth, since they show large potential 
for a better understanding of climate change uncertainty. 
Additionally, the previous results should be verified by more 
single model ensembles, and the differences between these 
kinds of ensembles need to be specified, e.g. to see if their 
representations of natural variability are similar (see also 
Xie et al. 2015).
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