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Abstract

Ventralization, a major patterning process in the developing vertebrate neural tube

(central nervous system, CNS), depends on Sonic hedgehog (SHH) as a main signaling

morphogen. We studied the CNS of late larval and young adult zebrafish in a trans-

genic shh-GFP line revealing increased neuroanatomical detail due to the progressed

differentiation state compared to earlier stages. Some major findings emerge from

the present study. (a) shh –GFP is still expressed along the adult zebrafish CNS neu-

raxis in most locations seen in larvae. (b) We newly identify a ventroposterior shh pal-

lidal domain representing the basal telencephalic signaling center important for basal

ganglia development known in other vertebrates (i.e., the anterior entopeduncular

area—basal medial ganglionic eminence of mammals). (c) We further show late-

emerging shh-GFP positive radial glia cells in the medial zone of the dorsal telenceph-

alon (i.e., the teleostan pallial amygdala). (d) Immunostains for tyrosine hydroxylase

demonstrate that there is selective colocalization in adult dopamine cells with shh-

GFP in the posterior tuberculum, including in projection cells to striatum, which rep-

resents a striking parallel to amniote mesodiencephalic dopamine cell origin from shh

expressing floor plate cells. (e) There is no colocalization of shh and islet1 as shown

by respective shh-GFP and islet1-GFP lines. (f) The only radially far migrated shh-GFP

cells are located in the preglomerular area. (g) There are no adult cerebellar and tectal

shh-GFP cells confirming their exclusive role during early development as previously

reported by our laboratory.
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1 | INTRODUCTION

Ventralization versus dorsalization represent major interdigitating pat-

terning processes in the developing vertebrate neural tube (central ner-

vous system, CNS). Hereby, morphogens are issued dorsally (roof plate)

and ventrally (in two steps, first from notochord and prechordal meso-

derm, later from floor plate and ventral forebrain cells; see section 4) in

order to interact on neural cells of alar and basal plates with the result

of a graded neurocellular fate along the dorsoventral CNS axis (Balaskas

et al., 2012; Briscoe, 2009; Briscoe & Novitch, 2008; Briscoe & Small,

2015; Dessaud, McMahon, & Briscoe, 2008; Grossmann, Giraudin,

Britz, Zhang, & Goulding, 2010; Martí & Bovolenta, 2002). Sonic hedge-

hog (SHH) is the main ventral signaling molecule (morphogen). We

already summarized the hedgehog signaling pathway and the roles of

three different zebrafish hedgehog genes, and also analyzed the larval

expression of the sonic hedgehog gene (shh) using an established trans-

genic shh-GFP line (see section 2) in two recent previous papers

(Baeuml, Biechl, & Wullimann, 2019; Biechl, Dorigo, Köster, Grothe, &

Wullimann, 2016). These and other zebrafish brain expression studies

(Ekker et al., 1995; Ertzer et al., 2007; Hagemann & Scholpp, 2012;

Hauptmann & Gerster, 2000; Hauptmann, Söll, & Gerster, 2002;

Holzschuh, Hauptmann, & Driever, 2003; Krauss, Concordet, & Ingham,

1993; Strähle, Blader, & Ingham, 1996; Wilson & Rubenstein, 2000)

remain in line with general knowledge in vertebrates (see section 4).

However, there are two unresolved problems regarding sonic

hedgehog expression in the zebrafish brain. One is the lack of a telen-

cephalic (subpallial) shh expression domain comparable to what is

described in amniotes as the anterior entopeduncular area (AEP) and

medial ganglionic eminence (MGE; see section 4). These amniote tel-

encephalic shh domains are crucial for correct ventral telencephalic

gene expression (e.g., Dlx, Ascl1, Nkx2.1, Islet1, Lhx6/7) and, thus, for

correct basal ganglia development as well as for repressing dorsal

(i.e., pallial) gene expression ventrally (see section 4). A second issue is

the developmental role of SHH in the generation of basal diencephalic

dopamine cells. In mammals, midbrain substantia nigra/ventral teg-

mental dopamine cells are known to derive from sonic hedgehog

expressing floor plate cells (Joksimovic et al., 2009; Blaess et al.,

2011; Hayes, Zhang, Albert, Zervas, & Ahn, 2011; see section 4). Since

teleosts lack midbrain dopamine cells and only possess basal dience-

phalic dopamine cells (posterior tuberculum)—which also contribute to

the SN/VT in mammals (see section 4)—that nevertheless project to

the fish basal ganglia (review Wullimann, 2014), we wanted to verify

whether these zebrafish diencephalic ascending dopamine cells are

produced by shh expressing cells.

Thus, we looked at early adult (3-month-old) transgenic shh-GFP

zebrafish and described in neuroanatomical detail all GFP-positive

CNS structures. Because the advanced differentiation state of the

adult brain allows for a far more detailed identification of shh-GFP

structures compared to larvae, we anticipated that the data will shed

light onto both the recognition of a true pallidal shh domain as well as

on the origin of dopaminergic posterior tubercular projection neurons

to the teleostean striatum (see section 4.4.) from shh expressing cells

from which part of the preglomerular area is also revealed to derive.

2 | MATERIALS AND METHODS

2.1 | Transgenic zebrafish strains

The transgenic line Tg(2.4shha-ABC-GFP)sb15 was originally published

as Tg(2.2shh:gfpABC#15) by Shkumatava, Fischer, Müller, Strähle, and

Neumann (2004). The injected construct includes the sonic hedgehog

promoter (SalI/XhoI fragment) upstream of gfp as well as intronic

sequences for required enhancer regions (Müller et al., 1999). The line

will be referred to in the following as shh-GFP line. Our lab has used it

previously to study the larval expression of shh-GFP (Biechl et al.,

2016). Here, we raised zebrafish shh-GFP specimens into larval stages

and up to 3 months (early adults). Fish were maintained according to

standard protocols (Westerfield, 2007).

The shh-GFP transgenic zebrafish line used here has previously

been characterized to faithfully represent shh expression (Biechl et al.,

2016; Shkumatava et al., 2004) in zebrafish retina and brain/spinal

cord and the transgenic expression patterns are furthermore well in

line with known shh expression patterns in other vertebrate species

(reviewed in Biechl et al., 2016 and Baeuml et al., 2019).

The transgenic islet1-GFP line Tg(isl1:GFP) was originally generated

by Higashijima, Hotta, and Okamoto (2000) by fusing gfp sequences

with islet-1 promoter sequences (ICP) to produce the core plasmid and

adding enhancer elements (CM) for the construct that proved sufficient

for specific neural expression. This line will be referred to here as islet1-

GFP line. Details for the generation of these specimens, as well as the

origin of brain sections depicted in this contribution, are given in a pre-

vious paper reporting on islet1-GFP expression (Baeuml et al., 2019).

All procedures involving live zebrafish were carried out according

to EU guidelines and German legislation (EU Directive 2010_63,

license number AZ 325.1.53/56.1-TU-BS). Transgenic animals used in

this study were killed with an overdose of tricaine methanesulfonate

(MS-222) and fixed in paraformaldehyde (4% PFA in Sörensen's phos-

phate buffer, PB) at 4�C overnight. The raising and fixation of trans-

genic animals were performed in Prof. Reinhard Köster's lab

(Technical University Braunschweig, Germany) and kindly subse-

quently provided to us. Therefore, the present study only involved

fixed animal tissue and needed no further approval.

2.2 | Cutting procedure

Following cryoprotection in sucrose solution (30% sucrose solution at

4�C overnight), the brains (heads) of adult shh-GFP zebrafish were

embedded in TissueTek (tissue freezing medium, A. Hartenstein

GmbH) and cryosectioned (Leica, CM 3050S) at 30 μm in the trans-

verse or sagittal plane before thaw mounted onto Superfrost Plus

glass slides (Thermo) and coverslipped after immunoprocedures. In

total, 18 zebrafish specimens were used in this study, that is, one

specimen each of 3–8 days postfertilization (dpf) larvae, four 13 dpf

larvae, and eight 3-month-old specimens. Additionally, various 2, 3,

4, and 5 dpf shh-GFP specimens were available from a previous study

(Biechl et al., 2016).
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2.3 | Immunohistochemical processing

Immunohistochemical incubations were done in a humid chamber. After

washing off TissueTek in cryosections with phosphate-buffered saline

(PBS) the sections were blocked with blocking buffer (2% normal goat

serum, 2% bovine serum albumin, 0.2% Tween20, 0.2% TritonX-100 in

PBS) for 1 hr at RT before exposure to a primary antibody against GFP

diluted in blocking buffer at 4�C for 1–3 days (dilutions see Table 1).

After washing in PBT (PBS + 0.1% Tween 20), the sections were incu-

bated with the secondary antibody (see Table 1) diluted in blocking

buffer solution overnight at 4�C. Subsequently, a second primary anti-

body against tyrosine hydroxylase (TH; see Table 1) was applied after

intermittent washing in PBT and blocking (see above for details),

followed by the application of the appropriate secondary antibody (see

Table 1) diluted in blocking buffer overnight, after intermittent washing

in PBT and blocking (see above). Finally, sections were washed in PBT

and counterstained with DAPI (40-6-diamidino-2-phenylindole; Carl

Roth, 1:1000) and washed in PBS. Slides were then mounted with

Vectashield (Vectorlabs) or ProLong Diamond (Invitrogen/Thermo

Fisher) and coverslipped. Previously, various controls and Western blot

analysis for the antibody against TH have been performed (Yamamoto,

Ruuskanen, Wullimann, & Vernier, 2010, 2011).

Furthermore, there were no neuroanatomical differences

between the intrinsic GFP signal with the one enhanced through the

use of the anti-GFP antibody.

2.4 | Photography

Cryostat sections of adult zebrafish heads were photographed using a

light/fluorescence microscope (Nikon Eclipse 80i; Nikon Instruments

Inc.) with a Nikon Digital Sight DSU1 Photomicrographic Camera

(Nikon Instruments Inc.) and NIS-Elements F4.60.00 software. The

microscope was equipped with Nikon Plan UW 0.06 (2×), Plan Fluor

DIC L/N1, ∞/0.17, WD 16.0 (10×/0.30)) and Plan Fluor DIC M/N2,

∞/0.17, WD 2.1 (20×/0.50) objectives.

All images were eventually slightly adapted for brightness and

contrast with Corel PHOTO-PAINT 9.0 and mounted into figures with

Corel DRAW 9.0 (Corel Corporation, Ottawa, Canada).

2.5 | Analysis of data

Most sections were photographed in three appropriate fluorescent

spectral channels for the presence of the nuclear stain DAPI, shh-GFP

or islet1-GFP, and TH. In cases where the GFP and TH label was in

the same area, the ImageJ tool of synchronizing all windows was used

to analyze cellular colocalization of shh-GFP with TH on a neuroana-

tomical background yielded by the DAPI pictures. Since the three

microphotographs were identical in each case except for the fluores-

cence visualized, we could assign in detail to a cell nucleus seen in

DAPI stain the associated cytoplasmic green GFP and red transmitter-

related enzyme stain on a cell to cell basis.

3 | RESULTS

The shh-GFP is generally still expressed in early adult zebrafish brains in

most locations along the neuraxis as seen in larval zebrafish brains of

4/5 days postfertilization (dpf; see Baeuml et al., 2019; Biechl et al.,

2016). These shh domains include classical floor plate cells defining the

ventral midline of the neuraxis from spinal cord into the posterior dien-

cephalon. However, the forebrain shows more complex shh-GFP

expression patterns involving basal and alar plates. We will describe all

shh-GFP expression domains from anterior to posterior levels, along

with nuclear DAPI stains and, when necessary, with tyrosine hydroxy-

lase (TH) immunostains. We use for identification of brain structures

basically the Neuroanatomy of the Zebrafish Brain atlas (Wullimann,

Rupp, & Reichert, 1996). In a recent study (Baeuml et al., 2019), we

have detailed and justified some modifications from this atlas in the

identification of the paraventricular organ, the intermediate hypotha-

lamic nucleus and the posterior tuberal nucleus also applied here.

3.1 | Analysis of shh-GFP and tyrosine hydroxylase
in transverse plane

3.1.1 | Telencephalon and preoptic region

Similar to the larval brain (4–8 dpf), there are no shh-GFP cell bodies

in the adult subpallium and in the parenchyma of all adult pallial divi-

sions. Different from the larval brain, however, radial glia cells (white

arrows in Figure 1) in the adult medial zone of the dorsal telencepha-

lon (Dm) stain for shh-GFP from precommissural (Figure 1a1–a2) via

commissural (Figure 1b1–b2) to postcommissural levels (Figure 1c1–

c2). These cells are identifiable by their soma location within the

everted pallial ventricular surface and their long fibers extending

towards the pial periphery (Figure 1d,d0). These fibers converge

peripherally in the area identified as dorsal entopeduncular nucleus

(ENd) and the ventral part of the posterior zone of the dorsal

TABLE 1 Antibodies

Antibody against Host Company Dilution

Green fluorescent protein (GFP) Chicken Aves Labs # GFP-1020 1:500

Second Donkey (Anti-chicken-FITC) Dianova (Mol. Probes) #A11039 703-095155 1:100

Tyrosine hydroxylase (TH) Mouse, monoclonal Millipore (AbCys), #MAB318 1:100

Second Donkey (Anti-mouse-Cy3) Dianova, #715-166-151 1:400
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telencephalon (Dp; Figure 1d) suggesting that this convergence area is

a pial surface and not a ventricular surface in contrast to that of the

medial (Dm), central (Dc) and lateral (Dl) zones of the dorsal telen-

cephalon. The latter zone (Dl) shows no shh-GFP radial glia cells, but

many other markers demonstrate the nature of its ventricular surface

(see section 4).

In the postcommissural telencephalon, a strong shh-GFP expression

domain is present in the most ventroposterior basal pallidal part of the

subpallium (BP; Figure 1c,e). This area has not been identified as a sepa-

rate entity before, including the Neuroanatomy of the Zebrafish Brain adult

atlas (where it lies in the area between the anterior parvocellular preoptic

nucleus, PPa, and the postcommissural nucleus of the ventral

F IGURE 1 Legend on next page.
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telencephalon, Vp; page 40, cross-section 107 in Wullimann et al., 1996).

The spot of shh-GFP cells seen at the base of the supracommissural

nucleus of the ventral telencephalon (Vs) is the most anterior extension

of BP (arrowhead in Figure 1b2). We propose that this basal subpallial

expression domain represents the zebrafish homolog of the mammalian

pallidal shh expressing domain (Mueller & Wullimann, 2009; Mueller,

Wullimann, & Guo, 2008). The shh-GFP cell somata in BP mostly do not

lie directly at the ventricular lining and do not exhibit long fibers towards

the pial periphery. Thus, they likely are not radial glia cells.

A fair number of shh-GFP cells is seen in the anterior parvocellular

preoptic nucleus (PPa; Figure 1b–c) and a few cells show up in the

suprachiasmatic nucleus, but none are present in the posterior

parvocellular preoptic and magnocellular preoptic nuclei (SC, PPp, PM;

Figures 2a,b and 3i,j). Furthermore, neither subpallial nor preoptic

dopamine cell somata ever colocalize with shh-GFP (Figure 1a–c).

3.1.2 | Diencephalon

Transverse hind- and midbrain sections are leveled with respect to the

caudorostral body axis and thus run horizontally through the forebrain

because of the ventral bending of the neural tube's front end. As

suggested previously (Herget, Wolf, Wullimann, & Ryu, 2014; their figure

1), it is reasonable to identify in such forebrain sections dorsal as poste-

rior and ventral as anterior to avoid confusion with body axes. Thus,

forebrain sections may show from “dorsal” (i.e., posterior) to “ventral”

(i.e., anterior) at the same time parts of the (most posterior) prosomere

1 (pretectum; P1), prosomere 2 (thalamus, previously dorsal thalamus;

P2), and prosomere 3 (prethalamus, previously ventral thalamus; P3) as

well as the (most anterior) hypothalamus (Figures 2–4). It has to be noted

that these prosomeres include alar as well as basal plate components

(see below). This clarification of neural tube axes is critical in the present

investigation that focuses on a ventrally expressed marker (shh) in order

to keep attention to the true ventral versus dorsal side of the forebrain.

Numerous shh-GFP cell bodies are seen in the zona limitans

intrathalamica (ZLI; Figures 2c–e and 3k) and in cells in the pre-

thalamus, the alar plate of prosomere 3 (Figures 2a,b and 3j). This

somewhat unexpected alar plate shh-GFP expression is paralleled by

islet1-GFP expression (see section 4). The thalamus (Th) and

periventricular pretectum (Pr; alar plate of prosomeres 2 and 1, respec-

tively) contain no shh-GFP cell bodies. However, the periventricular

pretectum exhibits shh-GFP positivity in terminal visual projection

fibers (pretectal terminal field) originating in shh-GFP retinal ganglion

cells (prtf; Figures 2c–e, 3k, and 4b) and similar thalamic retinal termi-

nal fields are seen lateral to the (anterior) thalamus and prethalamus

(thtf; Figures 2a,b and 3j).

Regarding diencephalic basal plate divisions, shh-GFP cell bodies

clearly are present in both the parvocellular and magnocellular (pear-

shaped) cells of the periventricular nucleus of the posterior tuberculum

(TPp-p, TPp-m) as well as in the paraventricular organ (PVO; Figures 2c–

e and 4a,b). The shh-GFP label in the periventricular posterior tuberculum

is characterized by relatively far migrated cells of the TPp-m and periph-

erally leading labeled fibers. These fibers lead toward the preglomerular

area where far migrated shh-GFP positive cell bodies are present

(Figures 2e, 4b, and 5). Furthermore, shh-GFP cells are present in the

dorsal and ventral periventricular hypothalamic zones (Hd, Hv; Fig-

ures 2d–f and 3k,l). In contrast, the adult caudal periventricular hypotha-

lamic zone remains free of shh-GFP (Figures 3l, 4c, and 6a). However, in

juvenile stages, Hc does express shh-GFP (see next section).

The shh-GFP cell bodies continue to be present in the basal plate

domain of prosomere 1, which is the area of the nucleus of the medial

longitudinal fascicle (Nmlf; Figures 2f and 6a). Most of these cells do not

yet exhibit fibers typical for floor plate cells seen more posteriorly with

the exception of some strongly stained midline cells (arrowhead in

Figure 6) directly at the ventral midline ventricle. These shh-GFP cells

have ventrally directed fibers as seen more posteriorly in the mid- and

hindbrain and may be interpreted as most anterior floor plate cells. How-

ever, the remaining cells in the area of the Nmlf lie more distant to the

ventricular lining and appear to lack such fibers. More “ventrally” (actually

anteriorly because of the above mentioned neural tube bending) shh-

GFP cells are seen in the TPp-m and the Hd (note inset in Figure 6a2).

3.1.3 | Colocalization of adult dopamine cells with
shh-GFP

Because dopamine cells are present in the posterior tubercular nuclei

mentioned above (TPp-p,TPp-m,PVO) and the posterior tuberal

F IGURE 1 Expression of shh-GFP and tyrosine hydroxylase in the adult zebrafish telencephalon. (a1–a3) Transverse section at
precommissural telencephalic level shown in nuclear DAPI stain (a1), shh-GFP (a2) and tyrosine hydroxylase (TH; a3) immunostains. Note shh-GFP
stained pallial radial glia cells (white arrows) in medial zone of dorsal telencephalon (Dm). (b1–b3) Transverse section at commissural telencephalic
level shown in the same three stains. Note in addition to pallial radial glia cells (white arrows) some cells in the supracommissural nucleus of the
ventral telencephalon (Vs; arrowhead) and more cells in the anterior parvocellular preoptic nucleus (PPa). (c1–c3) transverse section at
postcommissural telencephalic level shown in same three stains. Note in addition to pallial radial glia cells also the distinct and compact shh-GFP
stain in most posterior basal subpallium area (interpreted as basal pallidum [BP; enclosed by dashed line], previously unnamed in zebrafish, see

text). Note that none of the shh-GFP cells are stained for TH at telencephalic levels (a3–c3). (d) Enlarged view of pallial radial glia cells (different
specimen) and their fibers (enclosed by white arrows) which converge towards a ventrolateral pial surface where endfeet are formed. (d0) enlarged
region of ventrolateral endfeet formed by pallial radial glia fibers originating in Dm. (e1–e2) Enlarged view of the location (e1) and shh-GFP
immunostain (e2) in the BP (different specimen). See text for details. Abbreviations: ac, anterior commissure; BP, basal pallidum; Dc, Dm, Dl, Dp,
central, medial, lateral, posterior zone of dorsal telencephalon; EF, endfeet; End/ENv, dorsal/ventral entopeduncular nucleus; PPa, anterior
parvocellular preoptic nucleus; SD, subpallial dopaminergic cells; TelV, telencephalic ventricle; Vd/Vp/Vs/Vv, dorsal/postcommissural/
supracommissural/ventral nucleus of ventral telencephalon [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 Expression of shh-GFP in the adult zebrafish diencephalon. Six transverse sections showing habenular/prethalamic (a), anterior
thalamic (b), posterior thalamic (c), posterior tubercular/ paraventricular organ (d), posterior tuberal nuclear (PTN; e), and intermediate
hypothalamic nuclear levels (f). The ventricle spot of the zona limitans intrathalamica is indicated with an asterisk. See text for details.
Abbreviations: ATN, anterior tuberal nucleus; DIL, diffuse nucleus of lobus inferior; DiV, diencephalic ventricle; Dm, medial zone of dorsal
telencephalon; E, epiphysis; fr, fasciculus retroflexus; Ha, habenula; Hd/Hv, dorsal/ventral zone of periventricular hypothalamus; IN, intermediate
hypothalamic nucleus; Nmlf, nucleus of the medial longitudinal fascicle; ot, optic tract; pc, posterior commissure; PG preglomerular complex;
PGa/PGl/PGm, anterior/lateral/medial nucleus of PG; PM magnocellular preoptic nucleus; PPp, posterior parvocellular preoptic nucleus; PPr,
periventricular pretectum; prtf, pretectal retinal terminal field; PTh, prethalamus; PTN, posterior tuberal nucleus; PVO, paraventricular organ; SC,
suprachiasmatic nucleus; TeO, optic tectum; thtf, thalamic retinal terminal field; TLa, torus lateralis; TLo, torus longitudinalis; TPp, periventricular
posterior tuberculum; ZLI, zona limitans intrathalamica [Color figure can be viewed at wileyonlinelibrary.com]
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nucleus (PTN), an immunostain against tyrosine hydroxylase was

applied to the same sections (Figure 4a3,b3,c3) and double-label with

shh-GFP was indeed seen in three of four dopaminergic posterior

tubercular systems (i.e., TPp-p,TPp-m,PVO; yellow arrows in

Figure 4a,b; Table 2), but not in the adult PTN (Figure 4c). However,

the juvenile PTN does stain for both shh-GFP and TH (see

section 3.4). With the possible exception of the caudal zone of the

periventricular hypothalamus, no other dopamine cells in the zebrafish

brain show such double-label (i.e., in pretectum, prethalamus, or

preoptic region). This is a stunning parallelism to the documented mid-

brain floor plate (i.e., shh expressing cells) origin of substantia nigra/

ventral tegmental area in mammals and suggests that also dience-

phalic dopamine cells (including the striatal projecting cells) do origi-

nate from shh expressing cells (see section 4).

3.1.4 | Mesencephalon, rhombencephalon, and
spinal cord

Posterior to the Nmlf, shh-GFP cell bodies are restricted to mesence-

phalic, rhombencephalic, and spinal floor plate cells situated in the

ventral midline of the ventricular lining (Figure 6b–g). These cell bod-

ies typically extend long fibers ventrally into the neural parenchyma

which reach with their endfeet (EF) the ventral pial brain or spinal cord

surface. The midbrain floor plate cell fibers are seen to bypass the

oculomotor nerve on their passage towards the ventral pia

(Figure 6b). The interpeduncular nucleus is invaded and surrounded

by such fibers (Figure 6c). Noradrenergic cells of the locus coeruleus

colocalize with shh-GFP (yellow arrows, Figure 6d), but other hind-

brain catecholaminergic cells, such as the area postrema (Figure 6f)

do not.

3.2 | Analysis of possible colocalization of shh-GFP
and islet1-GFP

In the mid- and hindbrain, the shh-GFP cell bodies are restricted to

floor plate cells and, thus, are never colocalized with islet1-GFP which

is always localized in identifiable migrated brain nuclei, best studied

for cholinergic motor neurons (see discussion in Baeuml et al., 2019).

Because forebrain shh-GFP expression is more complex and includes

many cell bodies beyond floor plate cells (sometimes peripherally

migrated ones) we analyzed corresponding section levels of both shh-

GFP (present study) and islet1-GFP (see also Baeuml et al., 2019) fish

brains for the presence of possible co-localization of the two markers

(Figure 3) in more detail. Generally, in brain structures positive for

shh-GFP, these cell bodies are located directly at the ventricle with

many more unstained cells peripheral to them (note dashed lines

peripheral to shh-GFP cells in Figures 3g,h,k,l). In contrast, islet1-GFP

cell bodies lie more peripheral leaving many unstained cells towards

the ventricle in each area (note dashed lines towards ventricle respec-

tive to islet1-GFP cells in Figures 3a,b,e,f). Since we use two separate

transgenic lines for this comparison, a double-label analysis is not

directly possible in the same section. However, the distribution of the

two transgenically expressed GFP markers is that mutually exclusive

spatially as to make a colocalization extremely unlikely in the ventral

telencephalon (Vs), preoptic region (PPa, SC), and dorsal and ventral

zones of the periventricular hypothalamus (Hv, Hd). The more periph-

erally migrated magnocellular part of the periventricular posterior

tubercular nucleus (TPp-m) and the paraventricular organ (PVO) are

completely free of islet1-GFP cells (Baeuml, Biechl, & Wullimann,

2019). Although the (alar) prethalamic shh-GFP cells intermix with

islet1-GFP cells, they are different cells because the former are never

TH positive (this study) whereas islet1-cells are TH positive (Baeuml

et al., 2019; see section 4). To decide about the very few islet1-GFP

cells possibly positive for shh-GFP in the area of the Nmlf, a double

transgenic line (shh-GFP and islet1-GFP) would be necessary. How-

ever, TH cells in the parvocellular part of the periventricular posterior

tubercular nucleus (TPp-p) were found both to be shh-GFP positive

(this study) and islet1-GFP positive. Thus, the TPp-p is the only

nucleus with clear colocalization of both GFP markers.

3.3 | Analysis of shh-GFP and tyrosine hydroxylase
in sagittal plane

In order to provide additional means of verification and didactically

improved visualization of data reported above, we also prepared sagit-

tal sections of shh-GFP transgenic brains immunostained against tyro-

sine hydroxylase.

An overview of a shh-GFP zebrafish brain (Figure 7a1)—when

compared to its DAPI stained alter ego (Figure 7a2)—illustrates the

complete absence of shh-GFP cell bodies in all parts of the cerebellum

(valvula, corpus and lobus caudalis cerebelli) as well as in the primary

sensory lateral line area (cerebellar crest and underlying MON) and

chemosensory (facial and vagal) lobes and, furthermore, such negativ-

ity is noted in the diffuse nucleus of the inferior lobe, the caudal per-

iventricular hypothalamus and corpus mamillare (Figure 7c2). In

contrast, the shh-GFP positive line of midline floor plate cells in the

entire hindbrain up to midbrain and into Nmlf is nicely visualized in

sagittal view, including the ventrally directed fibers of these cells

(Figure 7a1,b1,d). More anteriorly the zona limitans intrathalamica

(ZLI) forms a shh-GFP positive spear-shaped transverse barrier

between thalamus and prethalamus (Figure 7a1,b1) extending into the

alar plate. A more focused higher-power sagittal analysis of the dien-

cephalon shows the ZLI and its relationship to surrounding structures

at various parasagittal levels (Figure 8a2–d2). Anterior to the ZLI,

again basally located shh-GFP cells in the basal plate diencephalon

(posterior tuberculum) and hypothalamus, as well as in the alar plate

preoptic region and basal subpallium follow (PPa, BP; Figures 7a1,a2

and 8a2–d2). Turning to the posterior tuberculum, the striking large

cells of the periventricular posterior tuberculum (TPp-m) are visualized

to be double-labeled for TH and shh-GFP (yellow arrows; Fig-

ures 7b1–b3 and 8b–d). The higher-power diencephalic pictures also

show that other diencephalic dopamine cell groups, such as the per-

iventricular pretectum (Pr) and the prethalamic/zona incerta) cells
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(PTh; Wullimann & Rink, 2001) or the preoptic nuclei (PPa, PPp, and

SC) and the posterior tuberal nucleus (PTN) as well as the caudal per-

iventricular hypothalamic zone (Hc) are remote from shh-GFP cells

(Figure 8). Double-label of shh-GFP and TH in the parvocellular divi-

sion of the periventricular tubercular nucleus (TPp-p) and in the

paraventricular organ (PVO) are hard to visualize in the sagittal plane,

but sufficiently documented above in transverse sections (compare

Figure 4).

Overall, this sagittal analysis delivered a highly consistent and cor-

roborating picture but also showed that certain details are veiled

F IGURE 3 Legend on next page.
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(double-labeled in TPp-p and PVO) whereas other facts are better

visualized in sagittal sections (longitudinal distribution of floor plate

cells and relationship of ZLI to thalamus and prethalamus). Also, cer-

tain most laterally placed shh-GFP cell groups were better to be

grasped in transverse sections (preglomerular area, locus coeruleus,

dorsal zone of periventricular hypothalamus; see above).

3.4 | Colocalization of late larval dopamine cells
with shh-GFP

Because of the broad shh-GFP expression in early larval zebrafish

brains (Baeuml et al., 2019; Biechl et al., 2016) in the posterior

tuberculum and hypothalamus, we wanted to check later larvae with a

progressed brain differentiation state for the presence of shh-GFP

and TH. We focused particularly on the fourth posterior tubercular

division (i.e., the posterior tuberal nucleus;PTN) and the caudal divi-

sion of the periventricular hypothalamus (Hc) both showing a clear

absence of shh-GFP but the presence of TH in the present study in

adult brain sections. Also, this larval investigation allows for checking

on a possible early emergence of the subpallial shh-GFP positive pal-

lidal domain (BP).

At 13 dpf, the zebrafish diencephalon is already differentiated

into its major divisions visualized in DAPI stains (Figure 9a1–e1),

namely, the pretectum (Pr), thalamus (Th), prethalamus (PTh), preoptic

region (Po), the area of the nucleus of the medial longitudinal fascicle

(N), the posterior tuberculum (PT), the preglomerular region (PG),

and the rostral (adult: ventral), intermediate (adult: dorsal) and

caudal periventricular hypothalamus (Hr,Hi,Hc). The shh-GFP stain

(Figure 9a2–e2) corroborates these divisions, for example, the posi-

tion of the ZLI between thalamus and prethalamus and the broad shh-

GFP expression in the basal plate of the midbrain tegmentum leading

into N and PT and more anteriorly into Hr, Hi, and Hc. Furthermore,

all larval zebrafish diencephalic dopamine groups visualized by TH

(previously described by Rink and Wullimann (2002) are clearly visible

at this stage, starting with the pretectal and preoptic groups leading

to the parvocellular (adult: TPp-p; larval 1) and magnocellular divisions

(adult TPp-m; larval 2,4) of the periventricular posterior tuberculum,

and to the paraventricular organ (PVO, larval 3), the posterior tuberal

nucleus (PTN, larval 6) and the caudal zone of the periventricular

hypothalamus (Hc, larval 7; Figure 9a3–e3). Upon closer inspection of

the latter two (Figure 9c–e), clear colocalization of shh-GFP and TH is

seen in single large cells (yellow arrows in Figure 9) in the PTN (and,

as in the adult, in the TPp-m), whereas most cells in the Hc appear sin-

gle labeled for either shh-GFP or TH (white arrows in Figure 9).

We do not see at this stage a subpallial shh-GFP positive pallidal

population (BP) as in the adult brain, and, thus, the preoptic cells

(Figure 9a2) are the most anterior shh-GFP positive cells.

4 | DISCUSSION

4.1 | General issues: Expectations meet surprises

A comparison of early adult zebrafish brain shh-GFP expression (see

Results and Figure 10a) with early larval expression (Baeuml et al.,

2019; Biechl et al., 2016) reveals that, generally, expression domains

are retained into the adult stage, starting posteriorly with longitudi-

nally arranged series of floor plate cells in spinal cord, hindbrain, mid-

brain, and, most anteriorly, in the area of the nucleus of the medial

longitudinal fascicle (Nmlf), that is, the basal plate division of the most

posterior diencephalic prosomere (P1) representing the most posterior

forebrain. The only additional shh-GFP cells in the hindbrain are a few

noradrenergic locus coeruleus cells. Some shh-GFP cells in the Nmlf

are the most anterior floor plate cells unmistakably characterized by

long radial fibers that extend from their cell bodies at the midline ven-

tricular floor toward the pial periphery where they form endfeet.

However, the amniote floor plate itself appears to extend further

anteriorly into the mammillary (caudal) hypothalamus as indicated by

longitudinally expressed marker genes, such as the LIM homeobox

F IGURE 3 Analysis of colocalization of shh-GFP and islet1-GFP in the adult zebrafish brain. Transverse sections of an islet1-GFP brain are
shown in two left columns (a–f) and of a shh-GFP brain in two right columns (g–l), both for GFP positivity and additionally shown in nuclear DAPI
stain. The islet1-GFP data stem from our previous study (Baeuml et al., 2019). (a/g) supracommissural nucleus of ventral telencephalon (Vs). (b/h)
anterior parvocellular preoptic nucleus (PPa). (c/i) suprachiasmatic nucleus (SC). (d/j) prethalamus (ventral thalamus; PTh). (e/k) periventricular
nucleus of posterior tuberculum (TPp) and ventral zone of periventricular hypothalamus (Hv). (f/l) dorsal zone of periventricular hypothalamus
(Hd). Generally, shh-GFP cells are located more ventricularly than islet1-GFP cells, as evidenced by dashed lines in Vs, PPa, Hv, and Hd where shh-
GFP cells are always within the lining and islet1-GFP cells are on the outside (i.e., the latter are more distant from the ventricle than the former).
For location of shh-GFP cells in TPp see Figure 4. While such ventricularly located shh-GFP cells are also seen in the prethalamus (tier 1 in d), both
shh-GFP and islet1-GFP cells exist in tier 2 (or ventromedial thalamus; see section 4). In SC, the medial islet1-cells cells are far apart from the
lateral shh-GFP signal. Inset in (i1) shows enlargement of shh-GFP cells in SC. Inset in (j1) shows enlargement of retinal terminal field lateral to the
thalamus. See text for details. Abbreviations: ac, anterior commissure; DAO, dorsal accessory optic nucleus; DIL, diffuse nucleus of inferior lobe;

DiV, diencephalic ventricle; fr, fasciculus retroflexus; Hc/Hd/Hv, caudal/dorsal/ventral zone of periventricular hypothalamus; mfb, medial
forebrain bundle; pc, posterior commissure; PG, preglomerular complex; Pit, pituitary; PM, magnocellular preoptic nucleus; PPa/PPp, anterior/
posterior parvocellular preoptic nucleus; PPr, periventricular pretectum; prtf, pretectal retinal terminal field; PTh, prethalamus; PTN, posterior
tuberal nucleus; PVO, paraventricular organ; SC, suprachiasmatic nucleus; TeO, optic tectum; Th, thalamus; thtf, thalamic retinal terminal field;
TLa, torus lateralis; TPp, periventricular nucleus of posterior tuberculum; Vs, supracommissural nucleus of ventral telencephalon; ZLI, zona
limitans intrathalamica; 1, ventricular layer of PTh; 2, ventromedial thalamic layer of PTh; 3, ventrolateral thalamic layer of PTh [Color figure can
be viewed at wileyonlinelibrary.com]
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gene Lmx1b and the forkhead gene Fox1a (Martínez, Puelles, Puelles &

Echevarria, 2012; Puelles & Martínez, 2013; Puelles, Martínez-de-la-

Torre, Bardet, & Rubenstein, 2012) and this might well be so in all ver-

tebrates, including zebrafish.

Anterior to the Nmlf, adult shh-GFP cells continue to be present

in zebrafish brain basal plate regions of thalamic and prethalamic

prosomeres 2 and 3 (i.e., posterior tuberculum), as well as in the more

anteriorly lying basal plate hypothalamus (dorsal and ventral zones of

periventricular hypothalamus; Hd, Hv), and in the (alar plate) preoptic

region. As in all vertebrates, the zebrafish zona limitans intrathalamica

(ZLI) is visible as a transverse veil of cells forming a division between

(dorsal) thalamus and prethalamus (ventral thalamus). The position of

F IGURE 4 Legend on next page.
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the ZLI is best seen in sagittal view in Figures 7b1 and 8a2–d2. Also

the (alar) prethalamus contains shh-GFP cells (see section 4.3).

Transverse adult serial sections reveal that most zebrafish fore-

brain shh-GFP cell bodies lie close to the ventricle, yet they lack the

typical cytological nature of floor plate cells seen more posteriorly.

Only in a few forebrain regions are shh-GFP cell bodies observed in

more migrated locations. This is expected for the zebrafish ZLI which

forms a barrier between prosomeres 2 and 3 and, thus, its migrated

cells are present in the diencephalic adult gray matter in this location

(best seen in transverse view in Figure 2c2,d2). However, migrated

shh-GFP cell bodies are also present in the area of the posterior

tuberculum and, to a lesser degree, in the area of the nucleus of the

medial longitudinal fascicle (Nmlf) as well as within the (alar plate) pre-

thalamus. We will focus below on ventricularly located adult forebrain

shh-GFP cells, and also consider peripherally migrated shh-GFP cells.

All adult shh-GFP positive regions just mentioned are present in larval

shh-GFP zebrafish brains in a less differentiated state as will also be

discussed below (see sections 4.2–4.4).

However, we will start by discussing three more surprising find-

ings of shh expression in the young adult zebrafish brain. First, all TH

positive (i.e., dopamine) cells of the posterior tuberculum and many

noncatecholaminergic preglomerular complex cells arise from dience-

phalic shh-GFP cells (see section 4.2). Second, a shh-GFP positive

basal pallidal population is identified in the zebrafish brain which

almost certainly corresponds to the ventral telencephalic shh signaling

center known in amniotes to guide telencephalic dorsoventral devel-

opment (sections 4.3.1–4.3.3). Third, a population of shh-GFP positive

radial glia cells is newly detected in the adult zebrafish telencephalon

(see section 4.3.4).

4.2 | Analysis of tyrosine hydroxylase and shh-GFP
suggests that posterior tubercular dopamine cells and
preglomerular cells arise from shh-GFP cells

It is widely accepted that a continuum of dopamine (i.e., tyrosine

hydroxylase expressing) cells extends in embryonic amniote brains

from the midbrain floor into basal diencephalic territories up to P3

(Puelles & Verney, 1998; Vitalis, Cases, Engelkamp, Verney, & Price,

2000; Smeets & González, 2000; Björklund & Dunnett, 2007; Smidt &

Burbach, 2007; Smits, Burbach, & Smidt, 2006; Smits, von Oerthel,

Hoekstra, Burbach, & Smidt, 2013; review in Wullimann, 2014). These

mesodiencephalic dopamine cells will form the adult substantia nigra

pars compacta (SN) and the ventral and lateral tegmental area

(VTA/LTA) classically interpreted to be solely mesencephalic

(Nieuwenhuys, 1985). Embryonically, these dopamine cells are

described to arise mostly from midbrain floor plate (Verney, 1999).

Moreover, HNF3ß, a floor plate marker induced by notochordal SHH

(Echelard et al., 1993) is also seen in dopamine neurons of SN/VTA

and, importantly, of basal diencephalon, as HNF3ß coincides with TH

expression there and the same is seen in adults (Thuret, Bhatt,

O'Leary, & Simon, 2004). Furthermore, it has been demonstrated that

mesodiencephalic SN/VTA dopamine cells arise from the ventralmost

neuroepithelium positive only for shh (and not for Nkx2.2, a more dor-

sally longitudinally expressed marker gene; Puelles et al., 2004).

Finally, fate studies completed the picture by clearly showing that all

divisions of the mesodiencephalic midbrain dopamine cells arise

directly from shh expressing cells (Blaess et al., 2011; Hayes et al.,

2011; Joksimovic et al., 2009).

Our findings in transgenic shh-GFP zebrafish brains reveal a strik-

ing parallel to this midbrain floor plate and ventral diencephalic shh

cell origin of SN/VTA dopamine cells in amniotes. Teleosts lack mid-

brain dopamine cells, but exhibit such cells in the ventral diencephalon

(posterior tuberculum; reviewed in Smeets & Reiner, 1994a, 1994b;

Smeets & González, 2000; Wullimann, 2014). These ventral dience-

phalic dopamine cells include projection cells to the teleostean stria-

tum (Mueller et al., 2008; Rink & Wullimann, 2001). Our shh-GFP data

show that among all dopamine neurons in the adult zebrafish brain,

exclusively those in the posterior tuberculum are shh-GFP positive

(compare Figure 4 and Table 2). This is the case for the parvocellular

(TPp-p) and magnocellular (TPp-m; i.e., the striatal projection neurons)

nuclei of the periventricular posterior tuberculum and for the para-

ventricular organ (PVO), strongly suggesting that these dopaminergic

posterior tubercular cells are direct derivatives of ventral diencephalic

shh cells. Furthermore, the fourth posterior tubercular dopaminergic

nucleus, the posterior tuberal nucleus (PTN), does also coexpress on

the cellular level shh-GFP and TH at larval stages (although it loses

shh-GFP in the adult brain). Other zebrafish dopamine cells in pre-

thalamus, pretectum, preoptic region, telencephalon, and likely also

hypothalamic ones (but see below), do not show such a colocalization.

F IGURE 4 Expression of shh-GFP and tyrosine hydroxylase in the adult zebrafish posterior tuberculum. Two consecutive and one more
posterior transverse section are shown each for nuclear DAPI stain (a1,b1,c1), shh-GFP (a2,b2,c2) and tyrosine hydroxylase (TH; a3,b3,c3)
immunostains. Enlargements demonstrate neurons double-labeled for shh-GFP and TH in the parvocellular and magnocellular parts of the
periventricular posterior tubercular nucleus (yellow arrows; TPp-p, TPp-m; a20 ,a30), as well as in the TPp-m and the paraventricular nucleus (PVO;
yellow arrows; b200 ,b30), but such double-label is absent in the posterior tuberal nucleus (PTN) and the caudal periventricular hypothalamic zone

(Hc; c1–c3). (b20) Enlargement of shh-GFP signal in retinal projection field lateral to the periventricular pretectal nucleus. See text for details.
Abbreviations: ATN, anterior tuberal nucleus; CM, corpus mamillare; CP, central posterior thalamic nucleus; DIL, diffuse nucleus of lobus inferior;
DiV, diencephalic ventricle; DP, dorsal posterior thalamic nucleus; fr, fasciculus retroflexus; Hc/Hd/Hv, caudal/dorsal/ventral zone of
periventricular hypothalamus; pc, posterior commissure; PG, preglomerular complex; PPr, periventricular pretectum; PTN, posterior tuberal
nucleus; PVO, paraventricular organ; TeO, optic tectum; TeV, tectal ventricle; TLa, torus lateralis; TLo, torus longitudinalis; TPp, periventricular
nucleus of posterior tuberculum; TPp-p, parvocellular part of TPp; TPp-m, magnocellular (pear-shaped) cell part of TPp [Color figure can be
viewed at wileyonlinelibrary.com]
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Thus, this coexpression of shh-GFP and TH in posterior tubercular

nuclei is a striking developmental parallel to the amniote

mesodiencephalic dopamine cells of SN/VTA and supports homology

of the teleostean posterior tubercular striatal projecting neurons with

the diencephalic portion of the amniote SN/VTA.

The finding that these posterior tubercular dopamine cells may

derive directly from shh expressing cells is further consistent with the

recently reported islet1-GFP patterns in the adult zebrafish brain

(Baeuml et al., 2019). While islet1 is expressed in TPp-p, it is

completely absent in TPp-m, PVO and PTN despite a strong larval shh

F IGURE 5 Legend on next page.
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expression there, making it unlikely that dopamine cells there are

induced there via islet1 expression. However, in TPp-p, dopamine cells

do colocalize with islet1-GFP (Baeuml et al., 2019) and with shh-GFP

(this study) and, thus, these shh expressing cells might transform into

dopamine cells which express islet1.

While dopamine cells are seen in the adult posterior tuberal nucleus

(PTN) and caudal zone of periventricular hypothalamus (Hc), shh-GFP is

absent there. However, as mentioned above already, larvae (Figure 9

(13dpf)) additionally show double-label of shh-GFP and TH in PTN.

Although most cells in Hc were only single-labeled for either shh-GFP or

TH (Figure 9) we cannot exclude double-label. Moreover, dopamine cells

are not visualized by conventional antibodies in the intermediate nucleus

of the periventricular zone of the dorsal periventricular hypothalamus

and the anterior part of the caudal zone of the periventricular hypothala-

mus (Yamamoto et al., 2010, 2011). Therefore, an origin from shh

expressing cells may be common for all divisions of zebrafish posterior

tubercular and hypothalamic dopamine cells. Possibly, the exposure of

shh-GFP fish to cyclopamine—which interferes with SHH function—

would be a way to check on resulting absence of islet1-GFP cells and

selective absence of certain dopamine groups (i.e., posterior tuberculum,

but not prethalamus or pretectum).

Finally, beyond these posterior tubercular dopamine groups, a

second population of differentiated zebrafish brain neurons that

expresses shh-GFP can clearly be identified in the preglomerular com-

plex (Figure 5). This large migrated diencephalic area is specific for tel-

eosts and involved in processing ascending sensory information

(reviews: Wullimann, 1998, Wullimann & Mueller, 2004; Wullimann &

Grothe, 2013). It contains neither monoaminergic nor cholinergic cell

bodies (review: Mueller & Wullimann, 2016) but contains few

GABAergic and arguably many more glutamatergic cells (Mueller,

Wullimann, & Guo, 2008; Mueller & Wullimann, 2016). The

preglomerular shh-GFP cells are mostly located in the more anterior

division of the PG and seem to have migrated out along radial fibers

from the periventricular posterior tuberculum. Thus, the posterior

tubercular dopamine cells together with these preglomerular neurons

represent two clear cases in the zebrafish forebrain for which a direct

origin from shh expressing cells is suggestive. In the adult zebrafish

hypothalamus, we only see shh-GFP cells within the periventricular

zones close to the ventricle and none in migrated areas. However,

considerable numbers of mammalian hypothalamic (preoptic, tuberal,

and mammillary) nuclei have been shown in elegant mouse brain fate

studies to arise from Shh-expressing cells (Alvarez-Bolado, Paul, &

Blaess, 2012).

4.3 | Newly identified adult shh-GFP cells in
zebrafish basal pallidal region (BP) and in pallial radial
glia cells (Dm; pallial amygdala)

In tetrapods, as particularly well studied in amniotes, a basal telence-

phalic (pallidal) sonic hedgehog (shh) expressing center is known to be

instrumental for correct basal ganglia development and telencephalic

dorsoventral patterning in general (for citations see section 4.3.2 and

4.3.3). However, shh expression in the larval zebrafish telencephalon

remains elusive in the literature. A fine spot of shh expression in the

embryonic zebrafish telencephalon has sometimes been claimed

(e.g., by Krauss et al., 1993, at 26 hr; their figure 2F; or Ertzer et al.,

2007, at 42 hr; their figure 6A). However, Holzschuh et al. (2003),

Ekker et al. (1995), and Strähle et al. (1996) all did not note a telence-

phalic shh expressing population, and it remained unclear in

Hagemann and Scholpp (2012). Major reviews on the subject of a pal-

lidal shh signaling center (e.g., Wilson & Rubenstein, 2000) only speak

about amniotes. Thus, in the previous literature, there is no clear indi-

cation of a shh expression domain in the zebrafish ventral telencepha-

lon. Therefore, we re-examined this issue in the established shh-GFP

zebrafish line during larval stages between 2 and 13 days and in adult

(3-month-old) brains. We definitely see no shh-GFP cell bodies in the

telencephalon up to 13 dpf larvae. The most anterior shh-GFP cells of

the larval zebrafish are located in the preoptic region, in line with in

situ hybridization studies cited above.

However, in the early adult zebrafish brain, two additional telence-

phalic groups of shh-GFP cells are newly seen. The first is a most poste-

rior basal subpallial (pallidal) population (BP) which somewhat extends

into basal telencephalic ventral nuclei (supracommissural and post-

commissural nuclei of the ventral telencephalon; Vs, Vp). The second

population is represented by shh-GFP positive radial glial cells at the ven-

tricular lining of the medial zone of the dorsal telencephalon (Dm, pallial

amygdala; Portavella, Vargas, Torres, & Salas, 2002; Portavella, Torres, &

Salas, 2004; Wullimann & Mueller, 2004; Lal et al., 2018).

4.3.1 | Basal pallidal shh-GFP population

We detect in early adult zebrafish brains in the intermediate area

between the anterior parvocellular preoptic nucleus (PPa) and the

ventral telencephalic (subpallial) supracommissural (Vs)/posterior

(Vp) nuclei an area which contains a distinct population of shh-GFP

labeled cell bodies (BP; Figure 1). This area has remained

F IGURE 5 Expression of shh-GFP in the preglomerular complex. Three transverse sections (levels shown in schema at bottom) from anterior
(a) to caudal (c) preglomerular complex levels. Note that fibers (white arrows in b2) originating in shh-GFP positive periventricular cells of the
posterior tuberculum (TP) extend towards the preglomerular complex (PG) and that numerous shh-GFP cell bodies in far peripherally migrated

positions are contained in the PG as detailed in enlargements (a20–c20). Note that in these enlargements, the shh-GFP positive fibers in upper left
corner are retinal fibers terminating in the optic tectum. See text for details. Abbreviations: fr, fasciculus retroflexus; Hd/Hv, dorsal/ventral zone
of periventricular hypothalamus; LLN, lateral line nerves; mfb, medial forebrain bundle; Olf, olfactory; PG, preglomerular complex; PGa, anterior
nucleus of PG; PGl, lateral nucleus of PG; PPr, periventricular pretectum; prtf, pretectal retinal terminal field; PVO, paraventricular organ; SP,
superficial pretectum; TeO, tectum opticum; Th, thalamus; TH, tuberal hypothalamus; TLa, lateral torus; TPp, periventricular nucleus of posterior
tuberculum; ZLI, zona limitans intrathalamica; I, olfactory nerve; II, optic nerve; IV, trochlear nerve; VII, facial nerve; IX, glossopharyngeal nerve; X,
vagal nerve [Color figure can be viewed at wileyonlinelibrary.com]
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neuroanatomically uncharted in the Neuroanatomy of the Zebrafish

Brain (see Wullimann et al., 1996; p. 40, cross-section 107). The

shh-GFP cells continue somewhat into the basal posterior (Vp) and

supracommissural (Vs) nuclei of the ventral telencephalon and

maybe slightly even into the ventral part of the dorsal nucleus

which represents the differentiated pallidum (Vdv; Mueller et al.,

2008; Mueller & Wullimann, 2009). In any case, this shh-GFP popu-

lation is a basal telencephalic domain located in the ventroposterior

subpallium, that is, basal pallidum (BP). This is the first time that the

telencephalic shh signaling center in the basal pallidum common to

F IGURE 6 Legend on next page.
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all tetrapods has unequivocally been visualized in the zebrafish

brain.

4.3.2 | The comparative and developmental
significance of the basal pallidal shh domain

Expression studies of longitudinally expressed genes are fundamental

for the understanding of the vertebrate neural tube ventralization pro-

cess (Figure 10b,c). In a seminal paper, Shimamura, Hartigan, Martínez,

Puelles, and Rubenstein (1995) conceptually summarized and

extended information on amniote Shh and related expression studies

(Echelard et al., 1993; Ericson, Muhr, Jessel, & Edlund, 1995; Ericson,

Muhr, Placzek, et al., 1995; Lazzaro, Price, de Felice, & di Lauro, 1991;

Martí, Takada, Bumcrot, Sakaki, & McMahon, 1995; Placzek, Jessell, &

Dodd, 1993; Placzek, Tessier-Lavigne, Yamada, Jessell, & Dodd, 1990;

Price et al., 1992; Roelink et al., 1994; Van Straaten, Hekking, Wiertz-

Hoessels, Thors, & Drukker, 1988; Yamada, Pfaff, Edlund, & Jessell,

1993) and described Shh expression in floor plate of spinal cord and

hindbrain and its lateral expansion into the basal plate of the midbrain.

F IGURE 6 Floor plate shh-GFP and tyrosine hydroxylase expression in adult zebrafish brain. Transverse sections run from posterior diencephalon
(a: Prosomere 1, nucleus of the medial longitudinal fascicle; Nmlf) through midbrain (b: Oculomotor nerve nucleus; NIII; the corresponding nerve III is
surrounded with dashed line) and hindbrain (c: Level of interpeduncular nucleus; NIn; d: Level of locus coeruleus; LC; e: Posterior hindbrain; f: Level of
area postrema: AP) down to spinal levels (g). Note that fibers of the shh-GFP floor plate cells extend towards the pial periphery where they form
endfeet (EF). In order to allow for identification of the magnocellular periventricular posterior tubercular nucleus, its tyrosine hydroxylase positive cells

are shown in inset in (a2). Note that some noradrenergic locus coeruleus cells colocalize with shh-GFP label (yellow arrows), but not other hindbrain
catecholaminergic cells (see text for details). Abbreviations: AP, area postrema; CC, central canal; CM, corpus mamillare; DH, dorsal horn; EF, radial glia
endfeet; FP, floor plate; fv, funiculus ventralis; Hc/Hd, caudal/dorsal zone of periventricular hypothalamus; LC, locus coeruleus; llf, lateral longitudinal
fascicle; MA, Mauthner axon; mlf, medial longitudinal fascicle; NInd/NInv, dorsal/ventral interpeduncular nucleus; Nlmf, nucleus of the medial
longitudinal fascicle; NLV, nucleus lateralis valvulae; PG, preglomerular complex; PTN, posterior tuberal nucleus; RhV, rhombencephalic ventricle; SGN,
secondary gustatory nucleus; T, midbrain tegmentum; TPp-m, magnocellular (pear-shaped) cell part of TPp; Va, valvula cerebelli; VH, ventral horn; III,
oculomotor nerve; IIIm, oculomotor nerve nucleus [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Adult zebrafish brain nuclei with shh-GFP with/without tyrosine hydroxylase (TH). [Color table can be viewed at wileyonlinelibrary.com]

Structure shh-GFP TH Colocalization shh-GFP/TH

Medial zone of dorsal telencephalon (Dm) (radial glia) (+) − N.A.

Basal supracommissural nucleus of ventral telencephalon

(Vs) (midline)

(+) − N.A.

Caudal subpallium (midline) + − N.A.

Anterior parvocellular preoptic nucleus (PPa) + + No

Posterior parvocellular preoptic nucleus (PPp) − + N.A.

Magnocellular preoptic nucleus (PM) − (+) N.A.

Suprachiasmatic nucleus (SC) + (+) No

Zona limitans intrathalamica + − N.A.

Ventral thalamus (VT,~Zona incerta) + + No

Small cells of periventricular posterior tubercular nucleus (TPp-p) +1 + Yes

Large cells of periventricular posterior tubercular nucleus (TPp-m) + + Yes

Paraventricular organ (PVO) + + Yes

Posterior tuberal nucleus (PTN)a +a +a Yes

Nucleus of medial longitudinal fascicle (Nmlf) +2 − N.A.

Ventral zone of periventricular hypothalamus (Hv) + − N.A.

Dorsal zone of periventricular hypothalamus (Hd) + − N.A.

Intermediate hypothalamic nucleus (IN) + −b N.A.

Posterior part of caudal zone of periventricular hypothalamus (Hc)a +a +a May be

Locus coeruleus (LC) + + Yes

Notes: (+) few cells. Red: Dopamine/noradrenaline systems with suggested direct origin from shh expressing cells (see text and Figure 4) with

1 representing only case for TH cells colocalized with islet1-GFP (see text). Blue: Potential shh- and islet1-GFP colocalization ruled out (see text and

Figure 4) with 2 being (unlikely) exception.
aobserved only in 13d zebrafish brains, where shh-GFP and TH are colocalized in PTN cells and maybe in posterior Hc.
bNote that these cells express TH2—not visualized with TH antibodies—and contain dopamine (Yamamoto, Ruuskanen, Wullimann, & Vernier, 2011) and

may thus potentially be double-labeled with shh-GFP.
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Anterior to the midbrain, a morphologically defined floor plate is no

longer seen, but Shh is still expressed in basal plate diencephalon (P1–

P3) through the hypothalamus up into the (alar) preoptic area. A verte-

brate typical deviation from this longitudinal course is seen at the

interface of thalamus (P2) and prethalamus (P3) where Shh extends in

transverse direction dorsally (Figure 10c). All along its neuraxial course

from spinal cord up to preoptic levels, the Shh expression domain is

closely accompanied dorsally by a thinner expression stripe of the

homeobox gene Nkx2.2 (Price et al., 1992; Qiu et al., 1998; Shim-

amura et al., 1995). The related Nkx2.1 gene is exclusively expressed

in the forebrain, largely overlapping with Shh from P3 into

hypothalamus and preoptic region (Figure 10c; Lazzaro et al., 1991;

Shimamura et al., 1995; Kimura et al., 1996; Qiu et al., 1998). Further-

more, ventral forebrain Islet1 expressing cells coexpress Nkx2.1

(Ericson, Muhr, Placzek, et al., 1995) in contrast to posterior islet1 cells

(where Nkx2.1 is not expressed). In lateral views, the basal telencepha-

lon appears to form an upper floor of Shh expression. However, trans-

verse views reveal that Shh has a continuous expression in the neural

wall from the preoptic area (POA) into the so-called anterior

entopeduncular area (AEP) which in turn continues dorsally into the

most basal division of the medial ganglionic eminence (Figure 10B2;

MGE, i.e., the future pallidum; Asbreuk et al., 2002; Bulfone et al.,

F IGURE 7 Sagittal analysis: Overview of shh-GFP and tyrosine hydroxylase expression in adult zebrafish brain. Parasagittal section shown for
shh-GFP immunostain (a1) and shown for nuclear DAPI stain (a2). Enlargements (frames a through d in a1) show telencephalon (a), posterior
tuberculum (b1–b3), hypothalamus (c1–c2) and hindbrain (d) in these two stains plus tyrosine hydroxylase (TH) immunostains when appropriate.
Note that all shh-GFP cells in pallium are radial glia cells at the wrinkled medial and dorsal surface of the medial zone of the dorsal telencephalon
(compare with transverse sections in Figure 1). Yellow arrows: Colocalization of shh-GFP and TH in magnocellular cells of periventricular posterior
tuberculum (TPp-m). See text for details. Abbreviations: ac, anterior commissure; BP, basal pallidum; CC, crista cerebellaris; CCe, corpus cerebelli;
CM, corpus mamillare; DIL, diffuse nucleus of lobus inferior; Dm, medial zone of dorsal telencephalon; EF, endfeet; FLo, facial lobe; FP, floor

plate; Hc/Hd/Hv, caudal/dorsal/ventral zone of periventricular hypothalamus; LCe, lobus caudalis cerebelli; MON, medial octavolateralis nucleus;
Nmlf, nucleus of the medial longitudinal fascicle; OB, olfactory bulb; pc, posterior commissure; PPa/p, anterior/posterior parvocellular preoptic
nucleus; PPr, periventricular pretectum; PT, posterior tuberculum; PTh, prethalamus; PTN, posterior tuberal nucleus; PVO, paraventricular
organ; T, midbrain tegmentum; Tel, telencephalon; TeO, optic tectum; TeV, tectal ventricle; Th, thalamus; TLo, torus longitudinalis; TPp-p,
parvocellular cell part of periventricular posterior tubercular nucleus; TPp-m, magnocellular (pear-shaped) cell part of periventricular posterior
tubercular nucleus; Va, valvula cerebelli; Vp/Vs, postcommissural/supracommissural nucleus of ventral telencephalon; ZLI, zona limitans
intrathalamica [Color figure can be viewed at wileyonlinelibrary.com]
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1993; Ghanem et al., 2007; Marín & Rubenstein, 2001; Marín, Ander-

son, & Rubenstein, 2000; Qiu, Shimamura, Sussel, Chen, &

Rubenstein, 1998; Sussel, Marín, Kimura, & Rubenstein, 1999). The

Nkx2.2 expression does not follow this telencephalic shh domain

dorsally. However, the telencephalic Nkx2.1 expression domain over-

laps with that of Shh and extends even further dorsally throughout

the entire MGE (Figure 10c; Puelles et al., 2000; Shimamura

et al., 1995).

F IGURE 8 Sagittal analysis: Focus on diencephalon of adult transgenic shh-GFP zebrafish. Four parasagittal sections of a shh-GFP transgenic
zebrafish brain through preoptic region, prethalamus/thalamus, pretectum, posterior tuberculum and hypothalamus showing nuclear DAPI stain
(a1–d1), shh-GFP (a2–d2) and tyrosine hydroxylase (TH; a3–d3) immunostains. Note the absence of overlap of shh-GFP and TH in preoptic
region, pretectum, prethalamus, and caudal/ventral zone of periventricular hypothalamus whereas in TPp-m cells these two markers colocalize
(yellow arrows). For colocalization in adult PVO and TPp-p, see Figure 4 and text. Abbreviations: ac, anterior commissure; CM, corpus mamillare;
EF, endfeet; Ha, habenula; Hc/Hd/Hv, caudal/dorsal/ventral zone of periventricular hypothalamus; LR, lateral recess (hypothalamus); mfb, medial
forebrain bundle; Nmlf, nucleus of the medial longitudinal fascicle; oc, optic chiasma; pc, posterior commissure; poc, postoptic commissure;
PPa/PPp, anterior/posterior parvocellular preoptic nucleus; PPr, periventricular pretectum; PR, posterior recess (hypothalamus); PT, posterior
tuberculum; PTh, prethalamus; PTN, posterior tuberal nucleus; PVO, paraventricular organ; SC, suprachiasmatic nucleus; T, midbrain tegmentum;
TeO, optic tectum; TeV, tectal ventricle; Th, thalamus; TPp-p, parvocellular cell part of periventricular posterior tubercular nucleus; TPp-m,
magnocellular (pear-shaped) cell part of periventricular posterior tubercular nucleus; ZLI, zona limitans intrathalamica [Color figure can be viewed
at wileyonlinelibrary.com]
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The Nkx6.1 gene codes for another longitudinally expressed

homeobox transcription factor dorsal to the Shh domain (Figure 10c;

Qiu et al., 1998). From spinal cord, up to hindbrain the Nkx6.1 stripe

overlaps with that of Nkx2.2, but extends more dorsally than the lat-

ter. Many motoneurons coexpress Nkx6.1 and Islet1. In the midbrain

and in P1/P2, Nkx6.1 overlaps with Shh expression, but Nkx2.2

expression is now dorsal to it. A thin double-positive Nkx6.1 and

Nkx2.2 stripe extends from P3 into the hypothalamus, here dorsal to

both shh and Nxk2.1 domains (Qiu et al., 1998). Expression of Nkx6.2

is similar to Nkx6.1 in hindbrain and midbrain, but absent in spinal cord

F IGURE 9 Legend on next page.
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and in P3 through hypothalamus (Qiu et al., 1998). However, Nkx6.2

is again expressed in the most dorsal MGE (Fogarty et al., 2007).

The subpallial telencephalon includes the MGE (the future pallidum)

and dorsal to it the lateral ganglionic eminence (LGE, the future striatum)

and both are molecularly characterized by expression of homeodomain-

containing genes such as various Dlx paralogs (i.e., Dlx1/2 and Dlx5/6;

Panganiban & Rubenstein, 2002), Gsh2 and Islet1 genes, as well as the

basic-Helix–Loop–Helix (bHLH) gene Ascl1 (mouse: Mash1), followed

more dorsally by expression of pallial genes, such as Pax6, Emx, or Tbr

genes, as well as the bHLH genes Ngn1/2 and Nrd (Figure 10B1,B2;

Casarosa, Fode, & Guillemot, 1999; Corbin, Gaiano, Machold,

Langston, & Fishell, 2000; Englund et al., 2005; Fode et al., 2000;

Horton, Meredith, Richardson, & Johnson, 1999; Ma, Sommer,

Cserjesi, & Anderson, 1997; Muzio et al., 2002; Osório, Mueller, Rét-

aux, Vernier, & Wullimann, 2010; Parras et al., 2002, 2004; Price

et al., 1992; Puelles et al., 2000; Schuurmans & Guillemot, 2002;

Sommer, Ma, & Anderson, 1996; Stoykova, Treichel, Hallonet, &

Gruss, 2000; Toresson & Campbell, 2001; Toresson, Potter, & Camp-

bell, 2000; Torii et al., 1999; Yun, Garel, Fischman, & Rubenstein,

2003). Islet 1 expressing Dlx2 positive cells are dynamically emerging

over time both in MGE and LGE (Toresson et al., 2000; Wang & Liu,

2001; Yu, Fotaki, Mason, & Price, 2009) with those of LGE develop-

ing into GABAergic striatal projection neurons and those of MGE

into cholinergic striatal interneurons (Flames et al., 2007; Marín

et al., 2000; Olsson, Björklund, & Campbell, 1998; Pilz et al., 2013;

Stenman, Toresson, & Campbell, 2003).

Dlx 1/2 and Dlx5/6 genes have indispensable overlapping and

sequential roles in the differentiation of GABAergic cells in all subpallial

divisions (i.e., striatal LGE, pallidal MGE, and CGE, the caudal ganglionic

eminence, the future subpallial amygdala; Panganiban & Rubenstein,

2002; Wonders & Anderson, 2006). However, some genes, such as

Nkx2.1 (see above), Gsh1 (Corbin et al., 2000; Toresson & Campbell,

2001; Yun et al., 2003) and the LIM/homeodomain genes Lhx6 and Lhx7

as well as the homeobox gene Gbx1 are exclusively expressed in MGE

and septum, but not in LGE (Asbreuk et al., 2002; Grigoriou, Tucker,

Sharpe, & Pachnis, 1998; Marín et al., 2000; Stoykova et al., 2000).

Nkx2.1 and Lhx6 are essential for tangential migration of MGE cells into

LGE or cortex (Alifragis, Liapi, & Parnavelas, 2004; Marín et al., 2000;

Wonders & Anderson, 2006), whereas Lhx7 (synonymous to Lhx8; Zhao

et al., 2003) has an additional role in conferring the transmitter

phenotype to cholinergic-GABAergic striatal and basal forebrain neurons

(Asbreuk et al., 2002; Fragkouli et al., 2005; Fragkouli, Pachnis, & Sty-

lianopoulou, 2006; Manabe et al., 2005; Marín et al., 2000; Mori et al.,

2004; Wonders & Anderson, 2006). Dlx1/2 genes act upstream of these

MGE expressed genes, because—when mutant—the generation of all

cortical GABAergic interneurons is suppressed (Anderson, Eisenstat,

Shi, & Rubenstein, 1997; Nery, Corbin, & Fishell, 2003). While the MGE

is the predominant provider of tangentially migrating interneurons into

striatum (cholinergic) and cortex (GABAergic), the LGE and CGE also par-

take later in this tangential migration process. This follows from Nx2.1

mutants where most cortical interneurons are gone, but some persist

(Anderson, Marín, Horn, Jennings, & Rubenstein, 2001; Corbin, Nery, &

Fishell, 2001; Nery et al., 2003; Nery, Fishell, & Corbin, 2002; Tamamaki,

Fujimori, & Takauji, 1997; Wonders & Anderson, 2006). Regarding these

cortical interneurons, the MGE and CGE (Lhx6 cells) provide somato-

statin, parvalbumin or calbindin positive inhibitory interneurons which

are physiologically different, whereas the dLGE (which expresses Nkx6.2)

produces double calretinin/somatostatin positive ones (Butt et al., 2005;

Fogarty et al., 2007; Nery et al., 2002; Wonders & Anderson, 2006). The

CGE is heterogenous and also provides calretinin cells, originating from

its Nkx2.1/Lhx6 negative domain as these interneurons remain present in

Nkx2.1 mutants (Nery et al., 2002; Xu, Cobos, De La Cruz, Rubenstein, &

Anderson, 2004). The POA and AEP share much of pallidal-type gene

expression (Ascl1, Gsh1/2, Dlx1/2/5/6, Lhx6/7) (Asbreuk et al., 2002).

Two conclusions follow from these studies. First, the differential

ventrodorsal gene expression patterns along the neuraxis share similarities

into the telencephalon (e.g., Shh; nkx genes) suggesting ventrodorsal induc-

tion also there. Second, local differences in longitudinal gene expression

(e.g., Nkx2.1 vs. Nkx6.1) suggest that the mechanisms of induction of ven-

tral phenotypes along the anteroposterior axis differ (Balaskas et al., 2012;

Litingtung & Chiang, 2000; Placzek & Briscoe, 2005). We will focus on

data directly relevant to forebrain ventralization, in particular, the telen-

cephalon, for which we report new results in the zebrafish.

4.3.3 | What is the role of SHH in telencephalic
gene expression induction and repression?

The differential transcription factor expression described above for amni-

otes presents a distinctly nested anteroposterior and ventrodorsal

F IGURE 9 Expression of shh-GFP and tyrosine hydroxylase in the late larval/juvenile (13d) zebrafish brain. Transverse sections run from alar
diencephalon (a; pretectum/thalamus/prethalamus), through posterior tuberculum (b), into three levels of hypothalamus (c–e). Designations and
Arabic numbers are used as established for larval zebrafish brain by Rink and Wullimann (2002). White arrows in (b1) point to tectal ventricle.
Note that unlike in the adult zebrafish brain, the posterior tuberal nucleus (PTN) contains shh-GFP cells, which colocalize with tyrosine
hydroxylase (TH) and, maybe also the caudal zone of the periventricular hypothalamus (Hc, around posterior recess). In magnifications shown in
most right column, single cells double-labeled for TH and shh-GFP are indicated by yellow arrows and labeled only for TH by white arrows. See

text for details. Abbreviations: CCe, corpus cerebelli; EG, eminentia granularis; FP, floor plate; Hr/Hi/Hc, rostral/intermediate/caudal
hypothalamus; LC, locus coeruleus; N, area of the nucleus of the medial longitudinal fascicle; NIn, interpeduncular nucleus; oc, optic chiasma; PG,
preglomerular complex; Po, preoptic region; Pr, pretectum; PT, periventricular posterior tuberculum; PTh, prethalamus (0); PTN, posterior tuberal
nucleus (6); T, midbrain tegmentum; TeO, optic tectum; Th, (dorsal) thalamus; Va, valvula cerebelli; ZLI, zona limitans intrathalamica;
0, prethalamic dopamine cells (zona incerta); 2, 4, anterior and posterior magnocellular (pear-shaped) dopamine cells of periventricular posterior
tuberculum; 3, paraventricular organ dopamine cells; 6, posterior tuberal nucleus dopamine cells; 7, caudal hypothalamic dopamine cells [Color
figure can be viewed at wileyonlinelibrary.com]
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forebrain patterning. These patterns principally result from the combined

spatiotemporally dynamic activity of inductive signals (morphogens) from

various sources (signaling centers), followed by cross-regulatory interac-

tions of homeodomain and bHLH gene activity (Campbell, 2003; Marín &

Rubenstein, 2001; Schuurmans & Guillemot, 2002). The signaling centers

include in addition to the ventral notochord/prechordal mesoderm and

later ventral neural tube (SHH), also the anterior neural ridge (fibroblast

growth factor, FGF8), the dorsal neural tube midline/cortical hem (bone

morphogenetic protein 4-BMP4 and Wnt3a), the lateral mesoderm (reti-

noic acid, RA) and the transverse zona limitans intrathalamica (SHH) as

F IGURE 10 Legend on next page.
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well as more caudally the midbrain–hindbrain boundary (FGF8). The dor-

sal BMP and Wnt signals have a dorsalizing effect (Lupo et al., 2006;

Storm et al., 2006; but see BMP7 below) counteracted by ventralizing

SHH effect (see below). This activity results in ventral forebrain neurons

and, more caudally, in motor neurons both apparent by Islet1 expressing

cells laterally adjacent to the longitudinal Shh domain (Ericson, Muhr,

Jessel, et al., 1995; Ericson, Muhr, Placzek, et al., 1995). Except for the

telencephalon, Shh expression precedes that of Islet1 (Echelard et al.,

1993; Ericson, Muhr, Placzek, et al., 1995). Neural plate explants from

different anteroposterior levels exposed to a SHH source are induced to

coexpress different gene markers with Islet1 (Nkx2.1 only in forebrain,

including telencephalon; LIM1 in basal diencephalon; SC1 and Nkx6.1 in

midbrain, hindbrain, spinal cord; Roelink et al., 1994; Ericson, Muhr,

Placzek, et al., 1995; Qiu et al., 1998). Additionally, non-Islet1 positive

populations (such as serotonin and dopamine cells; Yamada, Placzek,

Tanaka, Dodd, & Jessell, 1991; Hynes, Poulsen, Tessier-Lavigne, &

Rosenthal, 1995) are induced by SHH in midbrain/hindbrain explants.

Also, Nkx2.2 is induced in neural tube explants by SHH (Qiu et al., 1998),

but not Nkx6.1 which is induced by additional signals from the notochord

(Qiu et al., 1998).

Although various studies show that Nkx2.1 expression is induced

in forebrain neural plate explants exposed to SHH (see above), the

pallidal shh domain is downstream of Nkx2.1 (Qiu et al., 1998; Shim-

amura & Rubenstein, 1997). This follows from studies on Nkx2.1

mutants, where Shh expression is absent in MGE and hypothalamus

(except for POA), but present from midbrain to spinal cord (Sussel

et al., 1999). Thus, initial pallidal Nkx2.1 expression is induced by

earlier SHH influence from prechordal mesoderm (Dale et al., 1997;

Shimamura & Rubenstein, 1997) together with FGF8 from the ante-

rior neural ridge (Storm et al., 2006; Wonders & Anderson, 2006). Fur-

thermore, in the forebrain, high concentrations of SHH induce BMP7

(from prechordal mesoderm) which in turn supresses Nkx6.1 and pro-

motes Nkx2.1 expression (Anderson, Lawrence, Stottmann, Bachiller, &

Klingensmith, 2002; Dale et al., 1997; Pera & Kessel, 1997; Qiu et al.,

1998). Also, different types of tangentially migrating MGE neurons

are dependent on differential SHH levels (Xu et al., 2010).

Beyond the early SHH influence on ventralization of the telen-

cephalon through Nkx2.1 (i.e., inducing MGE features), later various

Dlx and Islet1/2 gene expression is also induced in LGE (Kohtz, Baker,

Corte, & Fishell, 1998). For example, SHH induces different LGE cell

populations to express singly or combined Dlx and Mash1 as well as

Dlx and Islet1/2, with Islet1 always only in postmitotic cells (Kohtz

et al., 2001). In contrast, the expression of certain dorsal (pallial) genes

is prohibited by SHH in the subpallium. For example, Gsh2 expression

in LGE/MGE is SHH dependent and has a particularly strong role for

correct striatal development. In Gsh2 (but not in MGE-specific Gsh1)

mutants, typical striatal gene expression is absent (Mash/Dlx/Islet1)

and pallial genes (Pax6, Ngn1/2) expand ventrally into striatum (Corbin

et al., 2000; Toresson & Campbell, 2001; Toresson, Potter, & Camp-

bell, 2000; Yun et al., 2003). Furthermore, in Shh mutants, pallial Emx1

gene expression expands into the ventral (striatal) area (Chiang

et al., 1996).

In addition to this information in amniotes, a similar situation is

present in basal anamniote sarcopterygians (frogs, salamanders, and

F IGURE 10 Summary schemata show (a) sagittal view of adult zebrafish brain with shh-GFP positive structures indicated in color. See figure
for color code of zebrafish shh-GFP structures either singly labeled (green) or additionally double-labeled for tyrosine hydroxylase (TH; blue). Blue
square around PTN indicates that double-labeled TH cells are present in larvae only. (b) telencephalic gene expression in embryonic amniotes.
(b) Schematic sagittal section of a E12.5 mouse brain. (B1) corresponding anterior telencephalic transverse section. (B2) corresponding posterior
telencephalic transverse section. Red letters designate signaling centers issuing FGF8 (ANR, MHB) or MPB4 (Hem), green letters (and green dots)
indicate signaling centers issuing SHH. Additionally, retinoic acid (RA) acts from lateral mesoderm into the telencephalon (Lupo, Harris, & Lewis,
2006). Stippled lines in (b) indicate prosomeric or rhombomeric boundaries and semicolon line indicates anteroposterior CNS axis along alar-basal
boundary. Gray lines in (a) and (b) indicate levels of transverse sections shown in various figures. See text for details and citations for gene
expression. (c) Longitudinal ventral gene expression in embryonic amniotes. Schematic sagittal section of a E12.5 mouse brain on which three
major gene expression domains are summarized, Shh (green), Nkx2.1 (black dots), Nkx6.1 (cross-hatched; after Qiu, Shimamura, Sussel, Chen, &
Rubenstein, 1998; see text for details). Abbreviations: ac, anterior commissure; AEP, anterior entopeduncular area (SHH); AH, anterior
hypothalamus; ANR, anterior neural ridge (FGF8); ansc, ansular commissure; AP, area postrema; BP, basal pallidum; bP1, basal plate of prosomere
1; bP2, basal plate of prosomere 2; bP3, basal plate of prosomere 3; Cer, cerebellum; CC, crista cerebellaris; DIL, diffuse nucleus of inferior lobe;
DON, descending octaval nucleus; DP, dorsal pallium (Isocortex); DS, saccus dorsalis; EmT, eminentia thalami; FLo, facial (sensory) lobe; FP, floor
plate; Ha, habenula; Hc/Hd/Hv, caudal/dorsal/ventral zone of periventricular hypothalamus; IN, intermediate hypothalamic nucleus; InCo, inferior
colliculus; LC, locus coeruleus; LGE, lateral ganglionic eminence; MA, mammillary hypothalamus; MGE, medial ganglionic eminence; MHB,
midbrain–hindbrain boundary (FGF8); MO, medulla oblongata (rhombencephalon without cerebellum); MP, medial pallium (hippocampus); NC,
commissural nucleus of Cajal; NIn, nucleus interpeduncularis; NLV, nucleus lateralis valvulae; Nmlf, nucleus of the medial longitudinal fascicle; OB,
olfactory bulb; oc, optic chiasma; pc, posterior commissure; PEP, posterior entopeduncular area; PG, preglomerular complex; Pit, pituitary; PM,
magnocellular preoptic nucleus; POA, anterior preoptic area (SHH); POP, posterior preoptic area; poc, postoptic commissure; PPa/PPp, anterior/
posterior parvocellular preoptic nucleus; Pr, pretectum; PPr, periventricular pretectum; PTh, prethalamus (formerly ventral thalamus); PTN,

posterior tuberal nucleus; PVO, paraventricular organ; RA, retinoic acid; RCH, retrochiasmatic hypothalamus; RL, rhombic lip; SC, suprachiasmatic
nucleus/spinal cord in b; Se, septum; SGN, secondary gustatory nucleus; SH, suprachiasmatic area; SPV, supraoptic/paraventricular area; SuCo,
superior colliculus; T, midbrain tegmentum; TeO, optic tectum; Th, thalamus (formerly dorsal thalamus); TLa, torus lateralis; TLo, torus
longitudinalis; TPp-p/m, parvocellular/magnocellular cell part of periventricular posterior tubercular nucleus; TU, tuberal hypothalamus; Va,
valvula cerebelli; VaLo, vagal (sensory) lobe; Vc/Vd/Vl/Vp/Vs/Vv, central/dorsal/lateral/ postcommissural/supracommissural/ ventral nucleus of
ventral telencephalon; Ve, telencephalic brain ventricle; ZLI, zona limitans intrathalamica (SHH); IIIm, oculomotor nerve nucleus [Color figure can
be viewed at wileyonlinelibrary.com]
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lungfishes) regarding forebrain expression patterns in general

(Domínguez, González, & Moreno, 2014; Domínguez, Morona,

González, & Moreno, 2013; González, Morona, Moreno, Bandín, &

López, 2014; Medina, Brox, Legaz, García-López, & Puelles, 2005;

Moreno & González, 2011), as well as for Shh (exhibiting a small basal

pallidal domain; Domínguez, González, & Moreno, 2010), Nkx2.1 (palli-

dum; González, López, & Marín, 2002; González, López, Sánchez-

Camacho, & Marín, 2002; Van den Akker, Brox, Puelles, Durston, &

Medina, 2008; Moreno et al., 2018), Lhx7 (pallidum; Moreno, Bachy,

Rétaux, & González, 2004)) and Islet1 (striatum/pallidum; Moreno,

Domínguez, Rétaux, & González, 2008; Moreno et al., 2018), as well

as regarding the process of tangential migration (Moreno, González, &

Rétaux, 2008).

The basic message from these studies is that SHH (from mesoder-

mal and ventral neural tube sources) has a pivotal role in ventralization

of the tetrapod/sarcopterygian forebrain including the telencephalon.

As mentioned above, an early pallidal shh domain is elusive in

zebrafish. However, in cavefish, a small pallidal shh domain has been

documented and confirmed by expression of characteristic pallidal

genes lhx6/7 (Menuet, Alunni, Joly, Jefferey, & Rétaux, 2007). Our

new finding of a zebrafish pallidal shh-GFP expression domain shows

that this domain is also present in zebrafish. Its late developmental

emergence, however, has prohibited a functional investigation (see

section 1).

In teleosts, general forebrain expression patterns also agree with

those in tetrapods, for example regarding pallial versus subpallial gene

expression (reviewed in Wullimann, 2009; Mueller & Wullimann,

2009, 2016), as well as regarding the process of tangential migration

(Mueller et al., 2008; Mueller, Vernier, & Wullimann, 2006). Two para-

logs of nkx2.1 (a/b) exist in zebrafish (Manoli & Driever, 2014; Rohr,

Barth, Varga, & Wilson, 2001), with nkx2.1b expressed in the embry-

onic/larval pallidum and nkx2.1a in hypothalamus. This is confirmed

by larval expression of both “pallidal” genes lhx6/lhx7 which are

expressed in a ventral subdivision of the dorsal nucleus of the

zebrafish ventral telencephalon (Mueller et al., 2008) and by

corresponding adult pallidal islet1 expression (Vdv; Baeuml et al.,

2019). As discussed in this previous paper, we interpret the adult

islet1 expression extending into Vdv as defining the zebrafish palli-

dum, as also applies to basal telencephalic nkx2.1b domain, both of

which are erroneously assigned to the ventral nucleus of the ventral

telencephalon by Ganz et al. (2012).

4.3.4 | Pallial shh-GFP radial glia cells in medial
zone of dorsal telencephalon (Dm)

In addition to the long-known basal longitudinal expression of shh in

the mesodermal notochord/prechordal plate and floor plate/ventral

forebrain (see above), evidence later arose in amniotes for previously

unknown early shh expression in dorsal (i.e., alar) CNS regions

(Dahmane et al., 2001; Dahmane & Ruiz i Altaba, 1999; Kriegstein &

Alvarez-Buylla, 2009; Ruiz i Altaba, Palma, & Dahmane, 2002) such as

the mammalian isocortex, the superior colliculus, and the cerebellum.

In the cerebellum, shh expressing Purkinje cells act in transit amplifica-

tion in the external granular layer. In the early mammalian isocortex,

shh expression was reported in radial glia cells (Wang, Hou, & Han,

2016) and other cortical cells in intermediate zone, subplate, and deep

cortical plate cells (Radonjic et al., 2016). Also, shh is more strongly

expressed in gyrencephalic species (primates) than lissencephalic

mammalian brains (rodents) in the developing cortical ventricular zone

and apparently plays a role in the multiplication of progenitors (outer

radial glia/intermediate progenitors; Han, 2016).

We demonstrated recently that shh expressing cells are also

found in the larval zebrafish optic tectum and cerebellum (Biechl et al.,

2016), but no such cells are seen in the larval pallial telencephalon.

However, here we show newly a shh-GFP expressing population in

the adult zebrafish pallial telencephalon, that is, pallial radial glia cells.

Various studies have shown that mitotic stem cells (radial glia) exist in

the adult zebrafish telencephalon along the subpallial and pallial ven-

tricular lining (e.g., Chapouton, Jagasia, & Bally-Cuif, 2007; Diotel

et al., 2015; Kaslin, Ganz, & Brand, 2007; Lillesaar, Stigloher, Tan-

nhäuser, Wullimann, & Bally-Cuif, 2009; Lindsey, Darabie, & Tropepe,

2012; März, Schmidt, Rastegar, & Strähle, 2010; Than-Trong & Bally-

Cuif, 2015). However, to the best of our knowledge, a role for shh has

not been shown in adult telencephalic stem cells. Recently, zebrafish

telencephalic stem cells were investigated with a transcriptomic

approach (Cosacak et al., 2019) and shown to be organized into

molecularly separable populations that are clearly closely correlated

with earlier established neuroanatomical divisions (Wullimann et al.,

1996). One of these stem cell populations is in the medial zone of the

pallial telencephalon (Dm; considered the pallial amygdala; Portavella

et al., 2002, 2004; Wullimann & Mueller, 2004; Lal et al., 2018) which

is characterized by marker genes pou3f1 and dmrta2 (Cosacak et al.,

2019). It appears that we show here with shh-GFP specifically this

population of molecularly defined radial glia cells within the medial

zone of the dorsal (pallial) telencephalon (Dm; Figure 1). Thus, while

there is no support for an early role for shh in the developing zebrafish

pallium in the literature, a later role for shh in the adult pallium is

suggested by our finding of shh-GFP positive radial glia cells in Dm

and their function will be interesting to be studied in the future in the

context of the known continuing proliferative activity in the zebrafish

pallium (see citations above).

4.4 | Analysis of shh-GFP in comparison to islet1-
GFP suggests that most forebrain shh cells remain at
the ventricle and are not integrated into parenchymal
tissue

The analysis of transverse zebrafish brain sections reveals that shh-

GFP positive cells are generally located close to the ventricular lining.

This is evident for the floor plate cells of spinal cord and hindbrain

which remain the only shh-GFP cells there also in the adult brain with

the exception of a few locus coeruleus cells. Floor plate cells are also

seen in the adult midbrain tegmentum (T; Figures 6 and 7), although in

larvae many more cells appear to be present there compared to the
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hindbrain (Figure 9; Biechl et al., 2016; Baeuml et al., 2019). A posi-

tion close to the ventricle is also seen for most shh-GFP cells in the

forebrain, starting with the most caudal ones in the basal plate of P1

which partly are clearly identifiable as floor plate cells (see above).

However, there are a number of more migrated shh-GFP cells seen

in this area of the nucleus of the medial longitudinal fascicle (Nmlf).

Such peripherally migrated shh-GFP positive cells become more

abundant at the level of the ZLI and anterior to it in the area of the

posterior tuberculum (Figure 2). Because dopamine cells in this area

form various well-known brain nuclei, we consider sections addi-

tionally stained for tyrosine hydroxylase (TH) in detail in section 4.2.

However, in the hypothalamus, shh-GFP cells remain again rather

close to the ventricle and this is also true for the telencephalon (see

above).

We have recently analyzed in detail the expression of islet1 using

a transgenic islet1-GFP line (Baeuml et al., 2019) and since islet1

expressing cells are generally considered to be influenced by

ventricularly located SHH secreting cells (see above), we looked at

comparable levels of islet1-GFP and shh-GFP transverse zebrafish

brain sections at 3 months and evaluated qualitatively their positions

with respect to the ventricle. Clearly, at telencephalic and preoptic

into hypothalamic levels, islet1-GFP cells are always located more

peripherally remote from the ventricle than shh-GFP cells (see

Figure 3, where dashed lines enclose more ventricularly located shh-

GFP cells in Figure 3g through Figure 3l and exclude more migrated

islet-GFP cells in Figure 3a through Figure 3f). Thus, the zebrafish

diencephalon is largely similar compared to the more posterior brain

with respect to the ventricular position of shh-GFP cells which do not

migrate into the brain parenchyma. This is in line with the working

hypothesis that shh cells act through this morphogen on nearby cells

to express islet1.

Also in the (alar) prethalamus, the most ventricularly located layer

1 is free of islet1-GFP, whereas many shh-GFP cells are present there.

In contrast, more peripheral prethalamic layers 2 and 3 contain both

GFP gene markers. However, because TH is colocalized only with

islet1-GFP (Baeuml et al., 2019), but never with shh-GFP (this study),

these are not the same cells. Thus, generally shh-GFP and islet1-GFP

label in adult zebrafish brain structures do not colocalize on the cellu-

lar level (for the only possible exception see section 3.2 and Table 2).
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