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Abstract
The consequences of regularizing the Sawyer–Eliassen equation to calculate the

stream function for the axisymmetric secondary circulation of a tropical cyclone

are explored. Regularization is an ad hoc procedure in which the coefficients of the

equation are suitably modified to replace negative values of the discriminant by small

positive values, thereby ensuring that the equation is globally elliptic. The conse-

quences of the procedure may be understood in terms of the analogue behaviour of a

stretched membrane subject to a particular force distribution. Several regularization

procedures are assessed by comparing the azimuthally averaged radial flow from

a three-dimensional numerical simulation of a tropical cyclone with that from an

axisymmetric balance calculation of the Sawyer–Eliassen equation, forced by dia-

batic and frictional terms diagnosed from the simulation. The comparison shows that

the largest challenge for regularization occurs in regions of inertial instability, espe-

cially when the diagnosed forcing overlaps with such regions. In the example shown,

the diagnosed balanced flow is sensitive to the particular regularization procedure

and none of the procedures examined give a flow that is structurally and quantita-

tively close to that obtained from the numerical solution in and near the region of

regularization. The flow in regions of large vertical shear that are common in the

lower part of the boundary layer is less sensitive to the regularization procedure,

even though such regions are ones in which there is (frictional) forcing. Neverthe-

less, there are comparatively large differences between the low-level inflow in the

azimuthally averaged numerical solution and the axisymmetric balance solution.

These differences can be attributed to the intrinsic lack of balance in the boundary

layer. This finding, together with the issues associated with regularization, is further

confirmation that balance dynamics is unable to adequately capture the flow in the

boundary layer, contrary to recent claims.

K E Y W O R D S
hurricanes, tropical cyclones, typhoons

1 INTRODUCTION

A scale analysis of the equations of motion for an axisym-

metric rapidly rotating tropical cyclone-like vortex shows

that, to a first approximation, over much of the troposphere,

the tangential wind field and temperature field are in gra-

dient wind balance and hydrostatic balance, that is thermal

wind balance (Willoughby, 1979). Regions where thermal
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wind balance does not hold include the frictional boundary

layer and the upper tropospheric outflow layer. Assuming

that thermal wind balance holds everywhere enables one to

derive an equation for the stream function of the overturn-

ing circulation driven by diabatic heating and near-surface

friction, processes that, in the absence of such a circulation,

would drive the vortex away from thermal wind balance.

This stream-function equation is generally referred to as the

Sawyer–Eliassen (henceforth SE-) equation and has a variety

of forms. For example, Sundqvist (1970a) derived a form of

the equation in pressure coordinates, Shapiro and Willoughby

(1982) used log-pressure as vertical coordinate, while Smith

et al. (2005) derived a very general form in radius–height

coordinates. A rather simple form can be derived by making

the Boussinesq approximation (e.g. Montgomery and Smith,

2017) and a mathematically elegant form is obtained by using

potential radius, R, instead of physical radius r (e.g. Schubert

and Hack, 1982; Schubert and Alworth, 1987). The potential

radius is defined by
1

2
𝑓𝑅2 = 𝑟𝑣 + 1

2
𝑓𝑟2, where v the tangen-

tial velocity and f is the Coriolis parameter. Since R2 = 2 M/f ,

where M is the absolute angular momentum, R-surfaces are

surfaces of constant M.

The SE-equation is a key equation in the formulation of a

prognostic axisymmetric balance theory for tropical cyclone

evolution (Sundqvist, 1970a; 1970b; Schubert and Alworth,

1987; Möller and Smith, 1994; Smith et al., 2018; Smith and

Wang, 2018) and it has formed a basis for many diagnostic

studies of tropical cyclone structure. In the latter studies, the

SE-equation is solved diagnostically for the secondary circu-

lation in the presence of a prescribed forcing mechanism (or

mechanisms), possibly with an examination of the instanta-

neous tangential wind tendency accompanying the calculated

overturning circulation (e.g. Smith, 1981; Schubert and Hack,

1982; Shapiro and Willoughby, 1982; Hack and Schubert,

1986; Rozoff et al., 2008; Bui et al., 2009; Pendergrass and

Willoughby, 2009; Wang and Wang, 2013; Abarca and Mont-

gomery, 2014; Smith et al., 2014; Ohno and Satoh, 2015;

Heng and Wang, 2016; Heng et al., 2017). In some of these

diagnostic studies, the axisymmetric vortex structure and the

forcing functions (e.g. diabatic heating rate, frictional forc-

ing) are obtained by a suitable azimuthal average of numerical

model output (Bui et al., 2009; Wang and Wang, 2013; Abarca

and Montgomery, 2014; Smith et al., 2014; Ohno and Satoh,

2015; Heng and Wang, 2016; Heng et al., 2017).

The solution of the SE-equation requires that the equation

be globally elliptic, a condition that is usually satisfied by

the choice of the vortex in idealized diagnostic studies,

but is frequently not satisfied when the axisymmetric vor-

tex structure is determined as an azimuthal average from

the numerical model output of a tropical cyclone simula-

tion. Even in prognostic balance theories that start from a

state in which the SE-equation is globally elliptic, localized

regions ultimately develop in which the ellipticity is violated

(Smith et al., 2018; Smith and Wang, 2018). When this hap-

pens, the solution can be carried forwards in time only by

adjusting the coefficients in the SE-equation in the unstable

regions to keep the equation elliptic globally. Nevertheless,

regularization does not suppress the development of insta-

bilities and the extended solutions ultimately break down,

thereby limiting the time over which the balance model can

be integrated.

In essence, regularization is an ad hoc procedure and var-

ious methods have been used. One method was devised by

Möller and Shapiro (2002) in a case-study of Hurricane Opal
(1995) and modifications thereof were used by Bui et al.
(2009), Smith et al. (2014; 2018) and Smith and Wang (2018).

An alternative method was suggested by Wirth and Dunker-

ton (2006), who effectively flattened out the M-surfaces in

regions where the flow becomes inertially unstable, that is,

where 𝜕M/𝜕r < 0. Despite the fact that the flattening out

was accomplished using a scheme that globally conserves

angular momentum, it makes the SE-equation parabolic in

these regions, but not elliptic as required by the code they

used to solve the equation.1 Some of the authors refer-

enced above have not checked whether their SE-equation is

globally elliptic (e.g. Sundqvist, 1970a; 1970b; Ohno and

Satoh, 2015), raising questions about the convergence of their

solutions.

The purpose of the present article is to develop a frame-

work for exploring and understanding some of the local

and global consequences of regularization and to investigate

improved ways to carry out the regularization. In doing so, we

highlight some fundamental limitations of regularization.

2 THE SAWYER–ELIASSEN
EQUATION

The most general form of the SE-equation in cylindrical

coordinates (r,z) may be written as

𝜕

𝜕𝑟

[
− 𝑔

𝜕𝜒

𝜕𝑧

1

𝜌𝑟

𝜕𝜓

𝜕𝑟
− 𝜕

𝜕𝑧
(𝜒𝐶) 1

𝜌𝑟

𝜕𝜓

𝜕𝑧

]

+ 𝜕

𝜕𝑧

[
(𝜒𝜉(𝜁 + 𝑓 ) + 𝐶

𝜕𝜒

𝜕𝑟
) 1

𝜌𝑟

𝜕𝜓

𝜕𝑧
− 𝜕

𝜕𝑧
(𝜒𝐶) 1

𝜌𝑟

𝜕𝜓

𝜕𝑟

]

= 𝑔
𝜕

𝜕𝑟
(𝜒2�̇�) + 𝜕

𝜕𝑧
(𝐶𝜒2�̇�) + 𝜕

𝜕𝑧
(𝜒𝜉�̇� ), (1)

where r is the radius, z is the height, 𝜌 is the density, 𝜓 is

the stream function for the secondary circulation, 𝜒 = 1/𝜃 is

the inverse of potential temperature 𝜃, C = v2/r + fv is the

1The solution code is described in the appendix of Wirth (1995), who states

that “The resulting finite-difference equation is solved with the help of a

multigrid algorithm (routine D03EDF) from the NAG Fortran library,

which readily returns the desired solution so long as the equation is elliptic

everywhere in the domain”.
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sum of centrifugal and Coriolis forces per unit mass, f is

the Coriolis parameter (assumed constant), v is the tangential

velocity component, 𝜉 = f + 2v/r is twice the absolute angular

velocity, g is the acceleration due to gravity, 𝜁 = (1/r)𝜕(rv)/𝜕r
is the vertical component of relative vorticity, �̇� = d𝜃/dt is the

material derivative of the diabatic heating rate and �̇� is the

tangential momentum sink associated with the near-surface

frictional stress. The derivation of this equation is sketched in

sect. 2.2 of Bui et al. (2009).

The left side of Equation 1 may be written in the form

𝐴
𝜕2𝜓

𝜕𝑟2
+ 2𝐵

𝜕2𝜓

𝜕𝑟𝜕𝑧
+ 𝐶 𝜕

2𝜓

𝜕𝑧2
… , (2)

where 𝐴 = 𝛾𝑁2, 𝐵 = 𝛾𝐵, 𝐶 = 𝛾𝐼2
g , 𝛾 = 𝜒 /(𝜌r), N2 is the

static stability, 𝐼2
g is the generalized inertial stability, and B

is the baroclinicity. The last three quantities are given by the

expressions:

𝑁2 = − 𝑔
𝜒

𝜕𝜒

𝜕𝑧
, 𝐼2

g = 𝐼2 + 𝐶

𝜒

𝜕𝜒

𝜕𝑟
, 𝐵 = − 1

𝜒

𝜕

𝜕𝑧
(𝐶𝜒), (3)

where I2 = 𝜉(𝜁 + f ) is the inertial stability squared.

When 𝜓 has been determined, the radial and vertical

velocity components, u and v, may be obtained using the

formulae: u =−[1/(𝜌r)](𝜕𝜓 /𝜕z) and w = [1/(𝜌r)](𝜕𝜓 /𝜕r),

respectively, which ensure that the continuity equation is

satisfied.

The discriminant of the SE-equation, Δ, is given by

Δ = 4𝛾2[𝑁2𝐼2
g − 𝐵2] = 4(𝐴𝐶 − 𝐵

2
). (4)

The equation is locally elliptic if Δ> 0, locally hyperbolic

if Δ< 0 and locally parabolic if Δ = 0. It can be shown that

Δ is proportional to the potential vorticity, PV: that is,

𝜉𝑃𝑉 = 1

𝜌𝑔𝜒3
Δ. (5)

so that regions where the SE-equation is hyperbolic corre-

spond with regions of negative PV , equivalent to the flow

being symmetrically unstable. Regions whereΔ< 0 are where

the flow is inertially unstable (𝐼2
g < 0), statically unstable

(N2 < 0) or where the baroclinicity, a measure of the vertical

shear, is sufficiently large (𝐵
2
> 𝐴𝐶).

In general, for tropical-cyclone-scale vortices, the coef-

ficients of the highest derivatives in the SE-equation are

functions of r and z, and numerical methods are called for to

obtain solutions. Moreover, the complex nature of the coef-

ficients makes it difficult to determine the consequences of

any regularization method. For that reason, it is helpful to

step back and investigate an analogous problem with a simpler

partial differential equation.

F I G U R E 1 Cartoon showing the displacement of a stretched

square membrane due to a point force (top left) or a point force dipole

(bottom right) at the centre [Colour figure can be viewed at

wileyonlinelibrary.com].

3 THE MEMBRANE ANALOGY

One of the simplest physical problems for understanding

the behaviour of elliptic second-order partial differential

equations is the equilibrium displacement of a stretched mem-

brane subject to a distribution of forces normal to the mem-

brane. Two examples, those of a point force and point force

dipole are sketched in Figure 1.

In a rectangular coordinate system (x,y), the membrane

displacement Z(x,y) satisfies the Poisson equation:

𝜕2𝑍

𝜕𝑥2
+ 𝜕2𝑍

𝜕𝑦2
= −𝐹 (𝑥, 𝑦), (6)

where F(x, y) is the imposed force. Here, positive F corre-

sponds to an upward force acting on the membrane. In the

case of a square domain (0≤ x≤ 1, 0≤ y≤ 1) with zero dis-

placement along the boundary and a point force at the centre

[𝐹 (𝑥, 𝑦) = 𝛿(𝑥 − 1

2
)𝛿(𝑦 − 1

2
)], one can use one's intuition to

see that the solution for the membrane displacement has to be

a maximum at the point of forcing with closed contours that

are near-circular in the vicinity of the forcing and approach a

square with smoothed corners near the boundaries. This intu-

ition is confirmed by the numerical solution for a concentrated

forcing2 shown in Figure 2a. This and other solutions that fol-

low are obtained using the same over-relaxation procedure

described by Bui et al. (2009).

For a membrane with the property that it deforms more

easily in the x-direction than in the y-direction, the membrane

displacement satisfies an equation of the type

𝜕2𝑍

𝜕𝑥2
+ 𝜇2 𝜕

2𝑍

𝜕𝑦2
= −𝐹 (𝑥, 𝑦), (7)

where 𝜇 is a constant smaller than unity. In the case where

𝜇 = 0.1, the solution with the forcing function in Figure 2a is

2The forcing is given by the analytic formula F(x,y) = 105exp[−𝜎2], where

𝜎 = 1

200

√
𝑥2 + 𝑦2.

http://wileyonlinelibrary.com


WANG AND SMITH 3769

(a) (b)

F I G U R E 2 Numerical solution of (a) Equation 6 and (b) Equation 7 with 𝜇 = 0.1 for the membrane displacement, Z (x,y) (red contours and

shading) subject to a concentrated force F (x,y) at the centre (blue thick contour with the value 104). Red contours from 0 to 4 in steps of 0.5, from 4

to 20 in steps of 4 and from 20 to 160 in steps of 20. Shading as shown in the colour bar [Colour figure can be viewed at wileyonlinelibrary.com].

shown in Figure 2b. In this case, the maximum displacement

amplitude has increased and the membrane displacement has

become confined in the y-direction, barely feeling the bound-

aries in that direction. Note that a transformation of the

y-coordinate in Equation 7 to Y = y/𝜇 would lead to the same

equation as Equation 6, but with Y replacing y and in (x,Y)

space the solution would be similar to that in Figure 2a, but

the domain would be larger in the Y-direction. It follows that

the solution of Equation 7 is simply a stretched version of

Equation 6 in the y-direction if 𝜇 > 1 and a shrunken version

of Equation 6 if 𝜇 < 1.

These solutions may be used to understand the conse-

quences of regularization, which would be equivalent to solv-

ing Equation 6 over much of the domain, but solving Equation

7 over a limited region with some small value of 𝜇. We shall

refer to this region as the” region of regularization” and take

it to be a square that includes or excludes the small region of

forcing shown in Figure 2a.

Figure 3a shows the solution when the region of regular-

ization is confined to the dot-dashed square shown. In that

region the displacement contours are flattened as in Figure 2b,

but as the boundaries are approached the solution is similar to

that in Figure 2a. Nevertheless, as in Figure 2b, the amplitude

of the maximum displacement is larger than in Figure 2a. The

effect of flattening of the displacement contours is seen in the

difference field shown in Figure 3b.

When the region of regularization is situated away from

and to the left of the forcing (Figure 3c), the maxi-

mum displacement is still larger than in Figure 2a, and in

fact, the displacement is larger everywhere with the maxi-

mum difference located inside the region of regularization

(Figure 3d). When the region of regularization is to the

right of the forcing, one may expect a similar pattern of

displacement, but with the enhanced values to the right

instead of the left of the forcing.

When the region of regularization is situated away from

and below the forcing (Figure 3e), the maximum displace-

ment is smaller than in Figure 2a and the displacement

contours are again flattened out inside the region of regular-

ization. The effect in this location is to reduce the amplitude

of the displacement everywhere (Figure 3f), the maximum

difference between the control case being on the border of

the domain of regularization closest to the location of forc-

ing. When the region of regularization is above the forcing,

one may expect a similar pattern of displacement, but mirror

imaged in the x-axis.

When the region of regularization is located on the diago-

nal to the right of and above the forcing (Figure 4a), the flat-

tening of the contours there leads to a dipole pattern of devi-

ation displacement from the control calculation (Figure 4b)

with a negative deviation in the upper portion of the regular-

ization region and a positive deviation in the lower half, the

maximum being located on the lower boundary of that region.

4 A MORE REALISTIC
CONFIGURATION VIS-Á-VIS THE
ATMOSPHERE

In the atmosphere, diabatic heating appears in the

SE-equation as a dipole of forcing oriented principally in the

radial direction. Moreover, a domain that has a large aspect

ratio (length to depth) and is open at its lateral boundary

is more appropriate in the atmospheric context. Assum-

ing a two-dimensional flow configuration in rectangular

coordinates (x,z), the SE-equation for a resting atmosphere

would have the form

𝜕2𝜓

𝜕𝑥2
+ 𝜇2 𝜕

2𝜓

𝜕𝑧2
= −𝐹 (𝑥, 𝑧), (8)

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 3 (a–f) Numerical solution of Equation 7 for the membrane displacement, Z (x,y) (left panels, red contours and shading) subject to a

concentrated upward force F (x,y) at the centre (blue thick contour with the value 104). In each case, 𝜇 = 0.1 inside the dot-dashed square and

𝜇 = 1.0 outside this square. The right panels show the difference in displacement, dZ (x,y) (contours and shading) between the particular solution

and that shown in Figure 2a. Contour intervals for (a,c,e): red contours from 0 to 4 in steps of 0.5 and from 4 to 20 in steps of 4. For (b,d,f): from −1

to 1 in steps of 0.5, from −10 to 10 in steps of 1. Shading as shown in the colour bar [Colour figure can be viewed at wileyonlinelibrary.com].

where again −F represents the structure of the forcing terms

in Equation 1. This equation has the same form as Equation 7.

The dipole forcing corresponding to that produced by

an idealized line of diabatic heating from deep convection

would look something like that in Figure 5a, the dipole being

related primarily to the radial gradient of the heating (see

Equation 1). The forcing is located relatively close to the

z-axis which is chosen to be a closed boundary (𝜓 = 0)

analogous in rectangular geometry to the axis of rotation of an

axisymmetric vortex in cylindrical coordinates. The solution

for the stream function induced by this forcing for3 𝜇 = 0.1

is shown in Figure 5b, assuming that the right boundary of

the domain is open and that 𝜕𝜓 /𝜕x = 0 along it. The upper

and lower boundaries are taken to be closed with 𝜓 = 0 there.

The pattern of “lateral velocity”, u =−𝜕𝜓 /𝜕z, corresponding

with the stream function is shown in Figure 5c. As expected,

and in analogy to the situation in axisymmetric geometry

3In the atmosphere in middle latitudes, a more typical value for 𝜇 would be

10−4.

http://wileyonlinelibrary.com
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(a) (b)

F I G U R E 4 (a,b) Caption as in Figure 3, but with the region with 𝜇 = 0.1 moved along the diagonal to the right of and above the forcing

[Colour figure can be viewed at wileyonlinelibrary.com].

(e.g. Shapiro and Willoughby, 1982), the stream function

shows two cells of circulation with ascent along the axis of

the forcing and within the forcing region itself, and descent

elsewhere. Beyond the forcing there is inflow in the lower tro-

posphere and outflow in the upper troposphere and this inflow

and outflow pattern extends to the right boundary. Decreas-

ing the value of 𝜇 would increase the lateral scale of the

outer circulation cell, leading to a larger flow through the

right boundary and less recirculation within the domain (not

shown).

Figure 5d shows the analogous solution when the coef-

ficient 𝜇 in Equation 8 is reduced to a constant value 0.01

in the rectangle in the “upper troposphere” shown. This con-

figuration is analogous to the procedure of regularizing the

SE-equation in regions in the upper troposphere where the

flow becomes inertially unstable, equivalent in Equation 8 to

𝜇2 becoming locally negative. As described in Möller and

Shapiro (2002), regularization involves effectively setting 𝜇2

equal to some small positive value in such a region. From the

understanding gained in section 3, we know that regulariza-

tion in the rectangular region shown in Figure 5d will have the

effect of flattening out the streamlines in the rectangle. More-

over, the effect is global, but diminishes in magnitude with

increasing distance from the region of regularization. As can

be seen in the figure, this is precisely what happens.

Figure 5e shows the lateral velocity component,

u =−𝜕𝜓 /𝜕z, derived from the stream function shown in

Figure 5d.4 The effect of “regularization” is to destroy the

symmetry of the inflow and outflow regions beyond the

forcing, leading to stronger outflow in the upper troposphere,

albeit concentrated in a shallower layer than the inflow. The

difference between the pattern of inflow and outflow between

the regularized solution in Figure 5e and the unregularized

solution in Figure 5c is shown in Figure 5f. Significantly,

4Since the focus of this section is in changes of pattern, we have refrained

from ascribing actual units to quantities in Equation 8.

the outflow is strengthened throughout much of the upper

troposphere, not only in the region of regularization, with the

maximum increase near the lower boundary of the region of

regularization. Elsewhere, the radial flow is decreased, that is

the inflow has increased, but the maximum decrease occurs

a little below the region of regularization.

Figure 5g–j show similar fields to those in Figure 5d,e,

but where the region of regularization is moved radially out-

wards (g,h) or inwards (i,j). When the region of regularization

is moved outwards, the radial flow is able to rise higher before

the flattening occurs (compare (g) with (d)), but when the

region is moved inwards with the inner boundary at the axis of

forcing, the flattening occurs almost immediately as the flow

exits the updraught produced by the forcing (compare (i) with

(d)), The consequences for the radial flow are shown in (h,j),

respectively. In the former case, the outflow layer extends

over a deeper layer than in (e), but the outflow is weaker,

whereas, in the latter case, the radial flow is more confined in

the vertical, but much stronger than in (e).

As will be discussed in section 6, the structural changes

brought about by regularization shown in Figures 5 provide

an understanding of possible consequences of regularization

in solving the SE-equation itself.

5 METHODS OF
REGULARIZATION

As discussed in section 1, the main purpose of regularization

in solving the SE-equation is to remove any regions of sym-

metric instability (Δ< 0). This removal can be achieved by

replacing the corresponding negative coefficients (N2 or 𝐼2
g )

with small positive values and/or by suitably decreasing the

coefficient B. Alternatively, the removal can be achieved by

sufficiently increasing the magnitude of the inertial stability,

static stability, or both (a procedure adopted by Möller and

Shapiro (2002)).

http://wileyonlinelibrary.com


3772 WANG AND SMITH

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

F I G U R E 5 (a) Idealized dipole forcing distribution – F (x, z) used to solve Equation 8 with 𝜇 = 0.1 for the stream function 𝜓 (x, z) (contours

and shading) shown in (b). (c) Lateral velocity component, u = −𝜕𝜓 /𝜕z obtained from 𝜓 (x, z) in (b). (d) The solution for 𝜓 (x, z) when the value of

𝜇 is reduced to 0.01 in the rectangular region included by a dot-dash pattern; (e) the corresponding pattern of u = −𝜕𝜓 /𝜕z; (f) the difference in u, du,

between (d) and (b). (g,h) are similar to (e,f) when the region of 𝜇 = 0.01 is displaced to the right; (i,j) are similar to (e,f) when the region of 𝜇 = 0.1

is displaced to the left so that it partially overlaps with the region of forcing. Contour intervals for (a): from ±50 to ±400 in steps of 50. For (b,d,g,i):

from −18 to 18 in steps of 2; for (c,e,h,j): from −100 to 100 in steps of 10. For (f): from −5 to 25 in steps of 5. Shading as shown in the colour bar

[Colour figure can be viewed at wileyonlinelibrary.com].

Any such scheme is necessarily ad hoc and different

authors have used different methods in detail. For example,

Bui et al. (2009), Smith et al. (2018) and Smith and Wang

(2018) calculate the minimum value of 𝐼2
g in the region where

Δ< 0, say 𝐼2
g min

, then remove the negative values of 𝐼2
g by

adding ∣ 1.001 𝐼2
g min

∣. Further, at points where N2 < 0, which

typically do not coincide with those where 𝐼2
g < 0, N2 is set

equal to 10−8 s−2. Finally, ifΔ is still less than or equal to zero,

which, when ∣ 𝐼2
g ∣ is made small and positive is frequently the

case, 𝐵
2

is replaced with
1

2
𝐴𝐶 at the grid point in question.

Heng and Wang (2016) do essentially the same as Bui

et al. (2009), setting 𝜁a = 1 × 10−6 s−1 at points where 𝐼2
g < 0,

but they do not say what they do if Δ remains negative. In

contrast, Heng et al. (2017) set 𝜁a = 0.01f at points where

𝜁a < 0.01f and if there are remaining points where Δ< 0,

they progressively reduce the term 𝐵 by a factor 0.8 until

Δ> 0.

A different procedure is adopted by Möller and Shapiro

(2002). In regions where Δ< 0 they increased the value of

𝜁 (and thereby 𝜁a) so that, effectively,5 Δ has some small

positive threshold value. No other quantities appearing in the

5Actually, they use the potential vorticity rather than Δ, but these quantities

are proportional to one another.
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SE-equation coefficients are altered so that, in particular, the

new value of 𝜁 is not consistent with the local structure of

v. Of course, this is a property of the other schemes as well.

Apparently, in the vortex examined by Möller and Shapiro,

regions of negative Δ were due largely to the occurrence of

inertial stability, 𝐼2
g < 0.

The hope in all these studies has been that, whatever

procedure is used, regularization will lead to a useful bal-

anced solution, at least in regions remote from those where

regularization is needed, but there are some subtle differ-

ences between the procedures that have consequences for the

diagnosed structure of the balanced solution.

As noted above, the Möller and Shapiro procedure differs

from the others in that, at points where Δ< 0, 𝐼2
g is increased

in magnitude, even if the point with Δ< 0 is a consequence

of large vertical shear and not necessarily because the flow is

inertially unstable (𝐼2
g < 0). In contrast, in the other schemes,

points with inertial instability are removed first by setting 𝐼2
g

to be a small positive number, typically smaller in magnitude

than its original magnitude. The analysis in section 3 points

to a different local response to forcing depending on which

regularization procedure is adopted and therefore to a differ-

ent structure of the balanced solution in and near the region

where Δ< 0.

6 AN IDEALIZED
THREE-DIMENSIONAL NUMERICAL
SIMULATION OF A TROPICAL
CYCLONE

We apply now the insights gained above to assess the applica-

bility of balance theory in analysing the secondary circulation

of an idealized three-dimensional numerical simulation of

tropical cyclone evolution on an f -plane. The simulation is

similar to the one described by Kilroy et al. (2016), but uses

the CM1 model (Bryan and Fritsch, 2002) with a horizontal

grid spacing of 1 km and a vertical grid spacing of 100 m.

These data were kindly provided by Gerard Kilroy.

Figure 6a shows the azimuthally averaged and 3 h

time-averaged radial and tangential velocity components from

the foregoing simulation at 32 h. At this time the vortex was

undergoing a period of rapid intensification. The main fea-

tures of the simulation are similar to those described in many

previous studies (see Montgomery and Smith, 2017 and ref-

erences). There is a shallow layer of strong inflow near the

surface and one of strong outflow centred at about 12 km.

There is a shallow region of marked outflow just above the

boundary layer, where the inflow terminates and ascends into

the developing eyewall updraught. This updraught is indi-

cated by the contour of vertical velocity equal to 0.25 m⋅s−1.

There is a region of weaker inflow in the lower troposphere,

with a shallow layer of weak inflow just below the main out-

flow layer. The maximum tangential wind speed occurs at a

height 600 m and radius of 38 km, within the layer of strong

inflow.

The mean tangential wind field in Figure 6a is used to

obtain balanced density and potential temperature fields using

the method described by Smith (2006). In turn, these fields

are used to evaluate the coefficients on the left-hand side of

the SE-equation. The forcing terms on the right-hand side

of the SE-equation arising from diabatic heating and friction

are diagnosed also from the time- and azimuthally averaged

model output. The structure of the combined forcing is shown

in Figure 6b. The main region of positive forcing is near the

inner edge of the main region of ascent, the region within the

yellow contour in Figure 6a. At larger radii, mostly beyond

a radius of 28 km and inside a radius of about 90 km, there

are narrow strips of negative forcing, punctuated by even nar-

rower strips of positive forcing. There is a shallow region of

negative forcing below a height of about 1.5 km and inside a

radius of 50 km. This feature is associated with the inner-core

boundary layer.

Figure 6b shows also the regions where the discriminant

of the SE-equation, Δ, is negative. The main area of nega-

tive Δ is located in the mid- to upper troposphere between

radii of approximately 70 to 180 km, much of it overlapping

with the main outflow layer. This region, together with a much

smaller region near the outer boundary between about 9 and

10 km in height, is associated with the generalized inertial

stability, 𝐼2
g , being negative. A shallow finger of negative Δ

located just above 2 km height and extending to nearly 30 km

in radius is associated with static instability N2 < 0 and a shal-

low (less than 400 m deep) surface-based layer of negative Δ
is associated with large vertical shear where 𝐵

2
> 𝐴𝐶 . All

of these regions require regularization in order to solve the

SE-equation.

Because the region of static instability is so small, the flow

therein appears to be little influenced by the regularization.

For this reason we do not examine other methods to regular-

ize the SE-equation in such regions. More details about the

regularization of the equation in regions where 𝐵
2
> 𝐴𝐶 are

discussed in section 7.

6.1 Two regularization schemes
Figures 6c,d show the balanced radial flow obtained by

solving the SE-equation with the forcing terms shown in

Figure 6b using two regularization schemes. They show also

fields of the ratio 𝐼2
g /N2, which is the same as the ratio

𝐶∕𝐴 in Equation 2 and is analogous to the quantity 𝜇2 in

Equation 8. In the scheme in Figure 6c, which we refer to as

Scheme A, regions of negative 𝐼2
g (𝑟, 𝑧) are removed by adding

∣ 1.001𝐼2
g min

∣. In Figure 6d, a new procedure is adopted in

which negative values of 𝐼2
g (𝑟, 𝑧) are removed by adding the

local value ∣ 1.001𝐼2
g (𝑟, 𝑧) ∣. This procedure, which we refer

to as Scheme B, has the advantage of avoiding artificially
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 6 (a,b) Radius–height cross-sections of selected 3 h time-averaged and azimuthally averaged fields from the numerical model

simulation at 32 h: (a) tangential velocity component v (red thick contours and shaded, unit: m⋅s−1), radial velocity component u (blue dashed

contours for negative values and black solid contours for positive values, unit: m⋅s−1) and vertical velocity component w (yellow thick contour with a

value 0.25 m⋅s−1); (b) forcing term for the Sawyer–Eliassen equation (the right-hand side of Equation 1), (contours and shading, contour values

every 0.8 units from ±0.2 units to ±5 units: 1 unit = 1× 10−11 K⋅m−1⋅s−1). Shown also are the zero contours of the discriminant (black thick solid

line or dotted yellow contours; the latter enclose regions of inertial instability). (c–f) show fields of the ratio 𝐼2
g /N2 in the Sawyer–Eliassen equation

(red thick contours and shaded) and the radial velocity component u (blue dashed contours for negative values and solid black contours for positive

values, unit: m⋅s−1) and vertical velocity component w (yellow thick contour with a value 0.25 m⋅s−1) from the solution of this equation using the

three regularization schemes: (c) Scheme A, (d) Scheme B, (e) Scheme C, (f) Scheme C with the forcing set to zero inside the upper-level region of

non-positive discriminant. Contour intervals: For v, every 5 m⋅s−1 from 0 to 30 m⋅s−1; for u, every 0.5 m⋅s−1 from ±0.5 to ±2 m⋅s−1 and every

3 m⋅s−1 from ±2 to ±20 m⋅s−1. For 𝐼2
g∕𝑁2, every 0.2 units from 0.2 to 1 unit, 1 unit = 1× 10−3. Shading as shown in the colour bar [Colour figure

can be viewed at wileyonlinelibrary.com].

sharp gradients of 𝐼2
g at the boundary of the region where

Δ< 0. Even so, the reduction in the magnitude of 𝐼2
g gener-

ally requires a reduction in the magnitude of B to keep Δ> 0.

In this section, 𝐵
2

is replaced with 0.99𝐴𝐶 at each grid

point where Δ remains negative after modifying 𝐼2
g . Other

possibilities are explored in section 7.

While both schemes capture the broad features of the

secondary overturning circulation, the flow structure in the

upper troposphere shows considerable differences, princi-

pally in the region of regularization and regions adjacent to

it. As shown in section 3, a small inertial stability as in the

modified scheme provides for an enhanced response of the

radial velocity component to the forcing, while the larger

inertial stability in the original scheme acts to inhibit the

radial flow. Figure 5f provides a clue to understanding this

behaviour. It shows that there is enhanced radial outflow

flow just inside the region of reduced inertial instability and

enhanced radial inflow or reduced outflow below that region.

Conversely, if the inertial stability in the region of regulariza-

tion is increased in magnitude beyond that of the surrounding

values, there is enhanced radial inflow or reduced outflow

above the boundary of regularization (not shown).

The new regularization scheme appears to reproduce the

flow structure in the numerical model somewhat better than

the original scheme, although the layer of inflow just below

the main outflow layer is much too strong. The maximum

outflow in the upper troposphere in the balance solution is

20.2 m⋅s−1 compared with 11.2 m⋅s−1 in the numerical model,

while the maximum upper-level inflow is 10.7 m⋅s−1 com-

pared with only 1.8 m⋅s−1 in the numerical model. Thus,

even with the new procedure for replacing negative values

of 𝐼2
g (𝑟, 𝑧), the regularized balance solution does a relatively

poor job in capturing the outflow and inflow strengths in the

numerical model.
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6.2 The Möller and Shapiro scheme
An alternative regularization scheme, which we refer to as

Scheme C, is to set 𝐶 = 𝐵
2
∕0.99𝐴, whereupon it is not nec-

essary to change 𝐵. This scheme was suggested by Möller

and Shapiro (2002). The results of this scheme are shown

in Figure 6e. While the radial flow structure in this figure

is closer to that in Figure 6d than that in Figure 6c, it

is no improvement in relation to the numerical solution in

Figure 6a. In this case, the maximum outflow in the upper

troposphere is 20.2 m⋅s−1, the same as before, but the maxi-

mum upper-level inflow is slightly larger, 11.2 m⋅s−1 instead

of 10.7 m⋅s−1, making the agreement with the numerical

solution slightly worse.

6.3 The issue of forcing overlapping
with regions in which 𝚫< 0
As indicated in Figure 6b, there is considerable overlap

between the total forcing distribution due to heating and

friction and the primary region where the flow is inertially

unstable. Figure 3a shows that this is a situation where the

response to the forcing is particularly large in amplitude. This

finding may explain why the magnitude of upper-tropospheric

inflow and outflow shown in Figure 6e is overestimated. To

examine this possibility, we show in Figure 6f the solution to

the SE-equation analogous to that in Figure 6e, but with the

forcing function set equal to zero in the upper-level region

of non-positive discriminant. While the maximum outflow

and maximum inflow are indeed reduced in comparison with

those in Figure 6e, the second layer of outflow centred at

a level of about 8 km has strengthened considerably and

this layer is not even present in the numerical calculation in

Figure 6a. This feature is presumably a result of the artificially

large vertical gradient of the forcing on the boundary of the

main regularization region, which is introduced by setting the

forcing abruptly to zero inside the region of regularization.

The inability of the SE-calculation to capture quantita-

tively the upper-level structure seen in the numerical calcula-

tion could be the fact that the flow in the numerical model is

nowhere near axisymmetric at the time shown (32 h). An alter-

native, but not necessarily mutually exclusive explanation

would be that the inability is simply a consequence of regu-

larizing the SE-equation. Based on the understanding gained

in section 4, this would seem to be the most likely scenario,

since the flow in the lower half of the troposphere is somewhat

better captured by the balance calculation, except in a shal-

low layer near the surface. The flow in the near-surface layer,

which is one that overlaps also with negative discriminant of

the SE-equation, is examined in the next section.

Despite the large differences in the structure of inflow and

outflow in the middle and upper troposphere in Figure 6c–e

as a result of the different regularization schemes, there is

little difference in the lower troposphere and there are only

small differences in Figure 6f, in which the forcing is sup-

pressed in the region requiring regularization. We conclude

that the boundary-layer inflow is at most weakly influenced

by the regularization of regions of inertial instability in the

upper troposphere. This is counter to the claim by Heng et al.
(2017) that “… the boundary layer inflow in the balanced

response is very sensitive to the adjustment to inertial stability

in the upper troposphere… ”. A more detailed examination of

boundary-layer structure is shown in the next section.

7 REGULARIZATION IN
REGIONS OF LARGE VERTICAL
SHEAR

In regions of large vertical shear, Δ may become negative on

account of 𝐵
2

exceeding 𝐴𝐶 . Typically, such regions occur

in a shallow surface-based layer within the friction layer itself.

As explained in section 5, one method for removing the neg-

ative discriminant is to set 𝐵
2
= 1

2
𝐴𝐶 or, perhaps preferably,

𝐵
2
= 0.99𝐴𝐶 to make Δ positive, but closer to zero.

7.1 Exploitation of the membrane analogy
The consequences of redefining 𝐵 are illustrated in three

idealized calculations shown in Figure 7. These calculations

involve solutions of Equation 8 with 𝜇2 = 0.01, as in Figure 5,

and with an idealized surface-based layer of forcing, −F(x,

z) shown in Figure 7a. This forcing distribution is analogous

to that involving the vertical gradient of �̇� in Equation 1.

Figure 7b shows the stream function 𝜓(x, z) induced by the

forcing distribution shown in (a).

Figure 7c shows the radial velocity derived from the

stream function shown in (b), highlighting the fact that there

is inflow in the region of forcing and outflow above it, but

because of the implied strong vertical stability in the value

chosen for 𝜇, the maximum outflow occurs at low levels, just

above the layer of forcing.

Figure 7d shows the stream function for a similar calcu-

lation to that in (b), but when a term 2𝐵𝜕2𝜓∕𝜕𝑥𝜕𝑧 is added

to the left-hand side of Equation 7 in a layer that has half

the depth of the layer of forcing. The constant 𝐵 is chosen to

be equivalent to setting 𝐵
2
= 0.99𝐴𝐶 in the SE-equation in

cases where the vertical shear is large and would otherwise

make the discriminant Δ negative. Moreover, when taking

the square root, the sign of 𝐵 should be preserved as it was

before regularization.

Comparison of Figure 7d with Figure 7b shows that the

effect on the stream function from the inclusion of the term

involving 𝐵 in Equation 7 is minimal, producing a slight

clockwise rotation of the streamlines in the region of non-zero

𝐵. Such rotation was explained in the classic paper by Shapiro
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 7 (a) Idealized forcing distribution –F (x,z) used to solve Equation 8 with 𝜇 = 0.1 for the stream function 𝜓 (x,z) (contours and

shading) shown in (b). (c) Lateral velocity component, u = −𝜕𝜓 /𝜕z obtained from 𝜓 (x,z) in (b). (d) the solution for 𝜓 (x,z) when the value of 𝐵 is

set to −
√

0.99𝜇 in the rectangular region included by a dot-dash pattern; (e) the corresponding pattern of u = −𝜕𝜓 /𝜕z; (f) the difference in u, du,

between (e) and (c). (g,h) are similar to (e,f) when the region of 𝐵 = −
√

0.99𝜇 is smaller and to the right. Contour intervals for (a): from −40 to −10

in steps of 10. For (b,d): from 5 to 15 in steps of 5 and from 15 to 45 in steps of 15; for (c,e,g): from −100 up to 100 in steps of 20 and from −500 to

500 in steps of 100. For (f): from −20 to 20 in steps of 5 and from −100 to 100 in steps of 20. Shading as shown in the colour bar [Colour figure can

be viewed at wileyonlinelibrary.com].

and Willoughby (1982): see especially their Figure 1 and

related discussion. The effect is mainly discernible in the

slight elevation of the streamlines in the inner region (x < 5)

and in the slight depression of the streamlines in the outer

region (x > 5).

Figure 7e shows the lateral component of flow in this case,

which should be compared with Figure 7c. In essence, the

“regularization” has reduced both the surface-based inflow

and the outflow above it on the inner side of the forcing and

has enhanced both the inflow and outflow on the outer side of

the forcing. These effects are highlighted in (f), which shows

the difference between the lateral flow in (e,c). A comparison

of Figures 7g,h indicate that the “inflow” on the right side of

the regularization region has been strengthened, which is the

situation in our simulation as discussed in the next subsection.

7.2 Low-level comparison between
the numerical simulation and the balance
calculation
Figure 8 shows similar fields to those in Figure 6, but focusing

on the low-level flow structure in the numerical model

simulation and in the calculation of the balanced response to

the total forcing due to heating and friction. Figure 8a shows

the flow structure of Figure 6a in the lowest 3 km, while

Figure 8b shows the structure of the forcing (Figure 6b) in

this region together with the regions where the SE-equation

requires regularization. The region where large vertical shear

leads to a need for regularization is rather shallow, less than

400 m deep, extending from a radius near 30 km. Based on

the idealized calculations in Figure 7, the effect of the reg-

ularization required in this layer would be expected to be

minimal and unlikely to account for the difference in low-level

structure between the numerical solution in Figure 8a and the

balance solution shown in Figure 8c. (The latter figure shows

just the lower 3 km of Figure 6d.)

While the maximum inflow in the numerical solution

is 11 m⋅s−1, that in the balance calculation is only about

8.3 m⋅s−1. Moreover, the radial location of the maximum

inflow occurs at a much smaller radius (41 km) compared

with the radius in the balance calculation (174 km). One pos-

sible reason is that the inflow inside the regularization area to

the right side of the momentum forcing maximum has been

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

F I G U R E 8 (a,b) Radius–height cross-sections of 3 h time-averaged and azimuthally averaged fields from the numerical model simulation at

32 h from surface to 3 km: (a) tangential velocity component v (black thick contours, unit: m⋅s−1), radial velocity component u (blue dashed contours

for negative values and red solid contours for positive values, unit: m⋅s−1) and vertical velocity component w (yellow thick contour with a value

0.25 m⋅s−1); (b) forcing term (the right-hand side of Equation 1) derived from the model (contours and shading, contour values every 0.8 units from

±0.2 units to ±5 units. 1 unit = 1× 10−11 K⋅m−1⋅s−1). Shown also are the zero contours of the discriminant (black thick solid line). (c–f) Tangential

velocity component v (black thick contours, unit: m⋅s−1), the radial velocity component u (blue dashed contours for negative values and solid black

contours for positive values, unit: m⋅s−1) and vertical velocity component w (yellow thick contour with a value 0.25 m⋅s−1) from the solution of this

equation using the four regularization schemes; (c) Scheme B, (d) Scheme D, (e) Scheme A, (f) Scheme C. Contour intervals are: for v, every

5 m⋅s−1 from 0 to 30 m⋅s−1; for u, every 0.2 m⋅s−1 from ±0.2 to ±1 m⋅s−1 and every 1 m⋅s−1 from ±1 to ±10 m⋅s−1. Shading as shown in the colour

bar [Colour figure can be viewed at wileyonlinelibrary.com].

enhanced, as in Figure 7e. However, the analysis of the pre-

vious subsection suggests that this effect would not be large

enough to explain the large difference between Figure 8c and

Figure 8a.

Figure 8d shows a similar regularization scheme to

Scheme A, but in regions of large baroclinicity,𝐵
2

is replaced

with 0.5𝐴𝐶 . We refer to this as Scheme D. This is the scheme

used by Bui et al. (2009), Smith et al. (2018) and Smith and

Wang (2018). There are only small differences from the fields

shown in (c) and these are confined to the vicinity of the reg-

ularization region. From this result it would appear that the

flow in regions of large vertical shear that are common in the

lower part of the boundary layer is less sensitive to the regu-

larization procedure than that in regions of inertial instability.

In support of our conclusion at the end of subsection 6.3

that the boundary-layer inflow is at most weakly influenced

by the regularization of regions of inertial instability in the

upper troposphere, Figure 8e,f show just the lower 3 km of

Figure 6c,e. The boundary-layer structures in Figure 6c–e

are almost identical and they even have the same magni-

tude of maximum inflow (8.3 m⋅s−1) at the same radius

(174 km).

Clearly, the balance solution poorly captures the

boundary-layer inflow in the numerical calculation, a finding

consistent with the study of Bui et al. (2009) and the more

recent calculations of Montgomery and Persing (personal

communication, 2019). The finding is clearly at odds with

one of Heng et al. (2017) who claim that “balanced dynamics

can well capture the secondary circulation in the full-physics

model simulation even in the inner-core region in the bound-
ary layer”, but is supported by a scaling analysis of the

boundary-layer equations, which shows that the unbalanced

(nonlinear) terms are important in the inner-core region of

a tropical cyclone (Vogl and Smith, 2009). It is supported

also by the finding of Vogl and Smith (2009) that even a

http://wileyonlinelibrary.com
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linear (but unbalanced) approximation to the boundary-layer

equations is a poor representation of the inner-core boundary

layer of a tropical cyclone.

8 DISCUSSION AND
CONCLUSIONS

We have developed a framework for exploring the conse-

quences of regularizing the Sawyer–Eliassen equation to

diagnose the stream function for the axisymmetric secondary

circulation of a tropical cyclone subject to a given distribution

of diabatic forcing and tangential frictional stress. Regular-

ization amounts to adjusting the coefficients of the equation

in regions where the discriminant is negative to ensure that

the equation is globally elliptic. The possible consequences

of regularization have been explored using the analogue

behaviour of a stretched membrane subject to a particular

force distribution.

Regularization is required in three regions: (a) regions

where the flow is inertially unstable, (b) regions where it is

statically unstable, and (c) regions where the baroclinicity

is large. Regions of large baroclinicity are typically ones of

large vertical shear. In numerical models of tropical cyclones,

regions of azimuthally averaged inertial instability are gener-

ally the most extensive, while regions of static instability are

typically small in areal extent. Regions where the azimuthally

averaged baroclinicity is large are typically confined to the

lower part of the frictional boundary layer, where the verti-

cal shear is large. However, setting the inertial stability to be

small and positive in regions of inertial instability generally

requires the baroclinicity to be reduced in magnitude as well

to keep the discriminant of the Sawyer–Eliassen equation pos-

itive. Possible improvements in the procedure for regularizing

in cases (1) and (3) were suggested.

A comparison of the azimuthally averaged radial flow

from a three-dimensional numerical simulation of a tropical

cyclone with those from an axisymmetric balance calculation

of the Sawyer–Eliassen equation forced by diabatic and fric-

tional terms from the numerical simulation was presented.

Important findings from this comparison are:

1. The largest uncertainty in the integrity of the balance solu-

tions results from the regularization in regions of inertial

instability, especially when the diagnosed forcing over-

laps with such regions. In the example shown, where

there is some overlap of this type, the diagnosed balanced

flow is sensitive to the particular procedure for regulariza-

tion and none of the schemes produced a flow that was

structurally and quantitatively close to that obtained from

the numerical solution.

2. Regularization in regions of large vertical shear that typi-

cally occur in the lower part of the boundary layer is less

problematic, even though such regions are ones in which

there is forcing. The reason is that a modification of the

coefficient B in the SE-equation leads to a rotation of the

stream function response, but the degree of rotation is

constrained by the proximity of the lower boundary.

3. On account of (2), the large difference found between the

low-level inflow in the azimuthally averaged numerical

solution and that in the axisymmetric balance solution is

further indication that balance dynamics is unable to ade-
quately capture the flow in the boundary layer, contrary to

recent claims.

While balance ideas have played a central role in the devel-

opment of a theoretical framework for understanding tropical

cyclone dynamics, the application of such ideas to diagnose

the results of numerical simulations almost always requires

that the Sawyer–Eliassen equation be regularized. Regular-

ization is intrinsically an ad hoc procedure and some methods

may be better than others. Exploitation of the membrane

analogy as outlined herein would seem to offer a useful frame-

work for assessing the integrity of such procedures and their

possible limitations. Our analysis suggests, however, that reg-

ularization introduces uncertainties in the integrity of balance

solutions to a degree that much caution is called for in the

use of such solutions for “explaining” tropical cyclone struc-

ture, especially within and near the regions which have been

regularized.
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