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ABSTRACT 

Consider the regression model 

with Yt E ~. x t E ~n observations. at E ~n coefficients to be 

estimated and u
t 

E ~ normal disturbances for the time periods 

t=1.2 .. ..• T. The coefficients are assumed to be generated by a 

. . t n random walk wlth normal dlsturbances v E ~ 

t=1.2 ....• T: 
t 

v - Jf{o.Z) 

The variance-covariance matrix Z is assumed diagonal 

Z = 

0 1
2 

o 

a 2 
1 

o 

o~ 
1 

> O. i=1.2 •.••• n 
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Thus the variances in the model are 0 2 and X or (0 2 , 0 1
2 , ••• 0 2 ). 

n 

This paper develops a method for estimating these variances by 

means of certain "expected statistics estimators". These 

estimators are compared to maximum likelihood estimators. 

( 

Ekkehart
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Introduction 

Consider the regression model 

with Y
t 

E ~. x
t 

E ~n observations. at E ~n coefficients to be 

estimated and u t E ~ normal disturbances for the time periods 

t=1.2 •...• T. The coefficients are assumed to be generated by a 

. . t n random walk wlth normal dlsturbances v E ~ 

t 
v t=1.2 ....• T: 

t 
v - .H(o.1:) 

The variance-covariance matrix 1: is assumed diagonal 

1: = 

o 2 
1 

o 

o 2 
1 

o 

'02 
n 

o~ 
1 

> O. i=1.2 •...• n 

Thus the variances in the model are 02 and 1: or (02, 0 1
2 , ••• 02 ). 

n 

The estimation problem is the following: Given the observations 

(Xl' x 2 .... ,X T ) and (Yl' Y2 .... ,y T), how to estimate the time 

path of the coefficients (a l • a 2 •••. a
T

) and the variances 02 

and 1:7 
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The main difficulty here is to obtain estimates for the 

variances. Once the variances are determined it is relatively 

easy to give estimates for the coefficients. either by recursive 

Kalman filtering or. still easier. by the method described in 

Schlicht (1985. 52-SO). 

One possibility would be to estimate the variances by the maximum 

likelihood method. The purpose of this paper is to propose a 

variance estimator which compares favorably to the maximum 

likelihood estimator in several respects: 

it is asymptotically equivalent to the maximum likelihood 

estimator: 

- it is computationally much easier to implement: 

- it has a direct intuitive interpretation also in small 

samples: 

- and it seems to work better in small samples. 

The plan of the paper is as follows: Part 1 gives some notation 

and preliminary results. Part 2 introduces the "expected 

statistics" estimators and compares them with maximum likelihood 

estimators. The appendix gives a numerical illustration. 



-(;,-

1. The Model 

1.1 Notation 

Define 

Y1 u 1 d 1 v 2 

Y2 u 2 a 2 Vi 

Y:= u:= a'-. - v·-. -
. T 

YT 
U T aT V 

order Txl Txl Tnxl (T-l)nXl 

o -1 1 o 
1 1 

X ·-.- P:= 

x • 
T 

o -1 1 

order T x Tn (T-l) n x Tn 

and write (1). (2) as 

Y = Xa + u, u - K(O.a 2 1) 

Pa = V. V - K{O,S}. S:= I ® E. 

Define further 

Q: = 
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which permits us to write 

P = Q ® I 

Denote further by n . . e ~ the n-th column of an nxn ldentlty 

matrix and define 

e. 
1 

which permits us to write 

e: 
1 

v. : = P. a 
1 1 

-- (2 3 T). . h th h where v. - v .. v ..... v. denotes the tlme pat of e c ange 
1 1 1 1 

the i-th coefficient. 

1.2 A Likelihood Function 

Consider now the time averages of the coefficients 

a ·-. -

By using the Tn x n matrix 

1 
T 

in 
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I 

1 
I 

Z·-. - T 

I 

can be expressed also als 

(14) Z'a = a 

We note 

(15) PZ = 0, Z'Z = I, P'(pp,)-lp + ZZ' = I 

Define the Tn xTn matrix 

(1b) 
..., 
p = [ ~,] 

Eqs. (7) and (14) can be combined now to 

Since p-l = (P'(pp·)-l, Z), this can be solved for a: 

(18) a = p.(pp.)-l V + Za 

Inserting this into (b) yields 



-9 

-
(19) y = XZa + w. 

Ue note that 

XZ 1 = - . 
T 

Thus (19) stands for a standard GLS regression in the 

time-averages a of the coefficients. and it is reasonable to 

assume that XZ has full rank: 

(21) r(XZ) = n 

The disturbances w in (19) are normally distributed 

-w - Jf ( 0 , V), -V : = X P • ( P P • ) - 1 S ( P P , ) - 1 PX' -+ (] 2 I 

likelihood function associated with (19) is therefore 

(23) 

Minimization with respect to a yields the Aitken estimate 

(24) 
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Ue may thus view a as a function of the variances and the 

observations and insert it into (23) in order to obtain a 

concentrated likelihood function 

(2S) + constants 

which could be used. in principle. -to determine the variances 

This can. however. be simplified considerably. 

-1.3 Estimates for the Coefficients 

For given a. y. and X. the system (1S). (22) defines the 

conditional normal distribution of a with mode and expectation 

equa I to 

(2b) 

Ue replace the parameter a by its estimate a and take the 

resulting expression as our estimate for the coefficients a 

(27) 

This estimate can be represented also in a different way. 
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Proposition 1 (SChlicht 1985, 55-50) The estimate a in (27) 

satisfies 

M a = x'y 

where 

is nonsingular. 

Proof. Eq. (28) is proved by evaluating the left-hand side 

explicitly, which leads to the result X'y. 

In order to prove nonsingularity of M. consider its rank: 

r(M) = r {(X' . 

= r(X'.p') 

If (X' .P') were not of full r~nk, there would exist vectors 

n -
CtE ~ • t = 1.2 ... ,T. not all of them zero, such that 

(31) X'C 1 = p' [ ~~. T: 1 
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is satisfied. If (31) is premultiplied by Z· from (13). this 

leads to Z'X'c 1 = 0 which implies. together with (21). c1=O. 

Since p' is of full rank (T-1)·n. this implies also that 

c 2 • c 3 ••••• c T are zero. This proves the proposition. 

In view of Prop. 1. the estimate a can be given a direct 

desriptive characterization: It minimizes the weighted sum of 

squares 

1 n 1 

~ u'u + Z ~ vi vi 
i=1 1 

This minimization is. for given variances. equivalent with the 

minimization of the expression 

-Eq. (28) is just the first-order condition for a minimum of Q 

with respect to a. 

1.4 Another Representation of Likelihood 

~e may define the estimated disturbances associated with the 

estimated coefficients in a natural way: 

u := y-Xa. V:= Pa. i = 1.2 ••..• n 
A A A 

W : = XP' (PP • ) - 1 V + u. 
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All these are functions of the variances (and the observations). 

We may insert them into (32) and obtain the estimated sum of 

squares as a function of the variances: 

A A '" A. 

Q := u'u + 0 2 v'S- l V 

Position 2 (SChlicht 1~85.55). The concentrated likelihood 

function L*. as defined in Eq. (23). is equivalently given by 

(35) log det V + 

Proof. The first terms in (23) and (35) are identical. 
A 

We must prove that the second term in (23) is equal to Q/a 2 . 

From (1~). (24). and (33) we find for this term 

1 A 

-- u'V U 
0" 

A A 

Using the definition of V and the relation X'u = 02p·S- l V. which 

can be derived from (28). (2~). and (33). this reduces to 

1 A-A /'to. A 

= -- U U + v'S-lv = 
0 2 

which completes the proof 

1 

0'"2 Q 
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1.5 Notes on computation of the Maximum Likelihood Estimates 

The representation (35) of the likelihood function makes it 

possible to actually do maximum likelihood estimation since a 

inversion of V is avoided. The determinant of V can be determined 

practically since each element of V can be expressed by a simple 

formula (Schlicht 1985. 57-78). The sum of squares Q is also 

rather easy to compute since it requires. basically. to solve the 

system (Z8) for a. The matrix M is a very simple symmetric band 

matrix of band width (n-l). The system can be solved accurately 

and efficiently by a Cholesky decomposition. When actually doing 

these computations. I encountered repeatedly the problem. 

however. that the likelihood function was rather badly behaving 

for short time series. An example is provided in the appendix. 

Further. the intuitive understanding of the estimation procedure 

seemed hard to me to obtain. This led to the development of 

another kind of estimator. which will be described in the 

following part of the paper. 
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2. Variance Estimation 

2.1 The Heuristic Argument 

The estimated coefficients a along with the estimated 

disturbances are random variables. Their distribution is 

determined by the true variances along with the observations. We 

may write for instance 

(38) 

by using (28) and (6). This gives a in terms of the true 

coefficients a and the true disturbances. Since 

(39) 

and v = Pa from (7) Eq. (38) can be re-written as 

Premultiplication of (40) with Pi yields 

(41) i = 1.2 •.... n 

Similarily. u = y - Xa = X(a-a) + u can be formed and 
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(42) 

is obtained. 

Thus u and VI are linear functions of the normal random 

variables u and v. and we may calculate the expectation of the 

squared errors: 

'" A 

(43) E{U'U)= 02(T - trXM-1X') 

(44) 

deriving (43) and (44) we note that 

n 0
2 

(45) 1: ~ i=1 1 

i = 1.2 •••. n 

P .• P. 
1 1 

and that E(~'~) = E{tr{~~'» for any random vector ~.) 

The expectations (43) and (44) are functions of the variances and 

the observations: 

1 A A 

f (0.1:): = 0 2 
-o T 

tr XM-1X' = E(--T- u'u) 

0
2 

(47) f.{O.1:): = o~ - --- . tr P.M-1p.'= 
1 1 T-1' 1 1 

i = 1.2 ••.•• T. 
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On the other hand. the estimated errors v. and u are functions of 
1 

the variances and the observations. too. and the corresponding 

"empirical variances" can be written as functions of the 

theoretical variances again: 

1 1 A A 

(48) m (02.X): = y'{I-M-IX'){I-XM-I)y = u'u 
0 T T 

1 1 A 

(49) m.{02.X): = ---y·M-lp. ·P.M-ly = v. v. 
1 T-1 1 1 T-1 1 1 

i = 1 .2 •••.• n 

'" 
The proposed estimation procedure is to select variances 0 2 and X 

such that the "empirical variances" (48). (49) are just equal -to 

the corresponding expectations (46) and {47}: 

{50} i = O.1.2 ..... n 

We call these est imators "expected stat ist ics est imators". The 

intuition underlying these estimators is straightforward: We 

select the variances such that some observed statistics - i.e. 

the values of the moments (48) and (49) - are just equal to their 

expectations under the assumption that the postulated variances 

are the true variances. 

Before we proceed to analyze our variance estimators further. a 

small digression on the underlying estimation principle might be 

in place. 



-18 

Some Remarks on the Method of Expected Statistics. 

The method of expected statistics is obviously a simple 

generalization of the well-known method of moments where 

theoretical moments are equated to their empirical counterparts. 

It leads actually to very familiar results in many cases, as the 

following two examples might indicate. 

1. The Parameters of a Normal Distribution. Consider a random 

draw (x l' X 2 ' .. ,x ) from a normal population with unknown mean p 
n 

and unknown variance 0 2
• In order to employ the method of 

expected statistics, we need two statistics. Take the mean x and 

the variance S2 

1 n 
(51) x := - Z x. n 

i=1 
1 

1 n 
s 2 : = - Z (Xi X)2 

n 
i=1 

Since x. is normally distributed, x and S2 are random variables 
1 

with the expectations 

E(X) = P 

and 
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1 

(S4) = (1- -) n 
• 0 2 

Equating (Sl) with (S3) and (S2) with (S4) gives the estimators 

for J.l and 0
2

: 

A 1 n 
(SS) J.l = - Z x. n 

i=l 
1 

A 1 n 
(So) 0 2 = X (X._X)2 

n-1 i=l 1 

which are just the usual unbiased moment estimators. 

2. Parameter Estimation in the Classical Regression Model. 

Consider. as a further example. the classical regression problem 

(S7) y = Yf3 + C 

T T-
CE~ . yE~ and Y a real Txn matrix. Observations are Y 

and y. and the parameters f3 and 0
2 are to be estimated. 

Ye may calculate the expectation of the empirical 

cross-correlations Y'y: 

(S8) E{Y'y) = E(Y'Yf3 + Y'C) = Y'Yf3 
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This is equated to the observed vector Y'y and yields the least 

squares estimate 

(59) 

We may further calculate the expected variance of the estimated 

'" '" error e = y-Yp = (I-Y(Y'y)-lY')e 

which is 

'" A 

(bO) E(e'e) = 02{T-n) 

A A 

Equating this expectation with the calculated value of u'u yields 

the usual best quadradic unbiased estimator 

1 A A 1 
(bl) T-n 

e'e = T-n 

In a similar but less straightforward fashion we may also obtain 

the GLS estimators via expected statistics, and we could 

interpret the Aitken-estimator (24) for a along these lines. 
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Consider the function 

(62) 
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O~ 
1 

which we wish to minimize. We note (using the "envelope theorem" 

and representation (4S)) that 

(63) 

d 

dO ~ 
1 

d 

-aaz log 

log det M = -

d A 

ao~ 
Q = 

1 

1 
det M = I ~ 

i 1 

0 2 

~ tr P
i

M- 1 P
1

, 
1 

0 2 

- ~ 
1 

= X 
i 

A 

v. 
1 

• A 

v. 
1 

0
2 

tr P.M-1p .• 
1 1 

i= 1 .. 2 ........ n 

i= 1.2. . . . .n 

tr M-1M = tr XM- 1 X + I ~ Pi M- 1 P i ' = Tn 
1 
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Necessary conditions for a minimum of (02) are: 

dK 1 1 

---aOT = Z A tr P.M-1p .. - T{n-l) 
1 1 A 

i o~ 0 2 
1 

1 A 1 1 A • A 

- -- Q +-- z v. v. = 0 A A A 1 1 0" 0 2 i 0 2 

dK 0 2 1 A ' A 
1 

{oS} 
do~ = A tr P.M-1p. '_ 

A V. V. + {T-l} = 0 
1 1 1 1 A 

1 o~ o~ o~ 
1 1 1 

-i = 1.2 •.••• n 

A 

The first term in (04) is equal to (Tn - trXM-1X')/02, and the 

"'·A '" 
last two terms add to u u/o". Thus we may write instead 

{oo} 

(07) v.v. 
1 1 

1 

T 

o 

T-l 

1 

T 
u u 

i= 1.2 •••.• n 

Comparing these equations with our estimation equations (40) -

(50) we see that they are equivalent. In case K has a unique 

minimum we might characterize our variance estimators therefore 

also as minimizers of K. 
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Asymptotic Equivalence Uith Maximum Likelihood Estimators 

In this section it will be shown that the "statistics criterion" 

K, as defined in (62) is asymptotically equivalent to the 

* "Likelihood criterion" L as given in (25) or (35). Ue show 

that 

(68) 

n 
log det M - T{n-l) log 0'2 + (T-l) X 

i=l 
A 

log det V + Q/0'2 

approaches unity if T goes to infinity 

Consider the Tn x Tn matrixes 

'" '" 

log 

p = [ ~.] S = 1 ® X 

Note that p- 1 = P'{pp')-l and consider 

(70) V = Xp- 1 S P'- l X· + 0'21 

O'~ 
1 

A 

+ Q/0'2 

which is obtained by substituting P and S in the definition (22) 

'" '" of V by P and S. Since 

we find 
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(72) p-l S p'-l _ P'(PP'}S(pp'}-lp = ZZZ' 

which tends to zero with increasing T. This implies that 

det (V) 

det (V) 
..... 1 for T ..... 00 

and we may approximate det V by det V for large T. 

Consider now the matrix 

(74) M := X'X + 0 2 P' S-1 P 

which is obtained by substituting p'S-lp by P'S -lp 

in the definition (2~) of M. 

We note that 

M - M = ZI-1Z~ 

"-

which approches zero for large T, and we may approximate M by M 

large T. 

We are going to consider now how V and M are interrelated. Define 

the matrix 



) -

(7&) A : = (X P -1 '$* ) 

IJe note that 

(77) '" V = AA' + ,,21 

and 

(78) 

Denote the T eigenvalues of AA' by ~1' ~2' ••• '~T' These are also 

eigenvalues of A'A. but A'A has in addition Tn-T zero 

-eigenvalues. The eigenvalues of AA' -+ ,,21 are 11. = ~. +,,2, 
1 1 

i=1.2 •...• T. These are also eigenvalues of A'A + ,,21. but this 

matrix has. in addition. the eigenvalue ,,2 with mUltiplicity 

Tn-T. Since the determinant of a matrix is equal to the product 

of its eigenvalues. we obtain 

(79) 

-and. together with (77) and (78). 

(80) det M = (,,2) Tn-T - det '$-1 . det PP' ..... 
. det V 
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(81) 

we find det PP' 
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-1 1 

1 -1 1 
det P = . det T 

. 1 
1 1 1 •••• 1 

-1 0 

1 -1 
(_1)T-1 = - det = T . -1 

1 2 ...... T 

n 
= 1. We note further that det S =( n O~)T 

i=1 

logarithms in (80). rearrange terms. and obtain 

n .... 
log det M + T 'i~1 log O~ - T (n-1) 

(82) 
'" /'<. 

log det V + Q/02 

take 

= 1 

Compare this with (68). For large T we can approximate M by M. V 

'" by V and T-1 by T. This establishes the asymptotic equivalence 

between maximum likelihood estimators and the expected moments 

estimators proposed here. 

2.5 Computation 

In this section. we drop the circumflexes and denote our 

estimates simply by 0 2 • O~. etc. Multiply Eq. (64) by 0 2 and Eqs 
1 

(65) by If we add the resulting equations. we obtain 
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is inserted into (02) and we obtain the concentrated loss 

function which involves only the variance ratios 

(84) i= 1.2 •••.• n 

Note that Q and M are functions of these variance ratios. rather 

than of the variances themselves: 

M = M(p}. Q = Q(p) 

Disregarding constants. the resulting loss function can be 

written as 

(80) H(p) = log det M(p) + (T-n)log Q(p) + (T-l)Xlog p. 
1 

\.Ie shall refer to this function as the "statistics criterion" 

henceforth. 

The estimation equations (40) - (50) may be expressed in terms of 

the variance ratios as 

with 
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1 

(87) g.(p} 
1 := T-l ( V. V. 

1 1 

(T-n) 

Q 

where v. 
1 vi' Q and M are functions of p. 

i=1.2 •.....• n 

In order to calculate tr P.M- 1 P: we use the decompostition 
1 1 

M = BB' which has been used for solving the normal equation. and 

we note that tr P.M- 1 P: is equal to the sum of all squared 
1 1 

elements of B- 1 P: 
1 

Ue need not store B- 1 (Which is not banded) 

in order to do this calculation. it is only necessary to compute 

two colums of B- 1 at a time. In this way. we determine gi(P) and 

update the weights according to 

(88) i=1.2 •.••.• n 

This process has been found to converge in many examples. (I have 

not found a single case where (88) dit not converge). It has not 

been possible up to now to establish general concavity of the 

statistics criterion. however. 

2.~ Comparison Uith the Maximum Likelihood Estimator 

The likelihood (35) may be expressed in terms of the variance 

ratios by using 



(S<?) 

-2<? -

1 

U = ---ci2 v 

which is a function only of the variance ratios. This leads to 

1 

(<?O) L* = log det U + ~ Q + T·log 0
2 

which may be compared with (S6). 

Minimization with respect to 0 2 leads to 0 2 = Q/T which may be 

inserted into (<?O). Ue disregard constants and write the 

resulting likelihood function as 

(<?1) ** L (p) = log det U(p) + T·log Q(p) 

This is the "likelihood criterion" which may be compared with the 

statistics criterion (S6). In order to minimize this function. we 

may calculate the deviatives with respect to p. and put them to 
1 

zero. The resultung conditions (given in Schlicht l<?SS;SS) are 

numerically rather complicated. however. and much less tractable 

than (S7). They involve an inversion of a full (rather than 

banded) TxT matrix. If T is large. this is practically 

infeasible. but then the expected statistics estimators. which 

are much easier to compute. are equivalent. and the estimators 

proposed here seem better. If T is small. however. we typically 

encounter convergency problems. It has been observed. as a rule. 
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** that the function L has no reasonable minima if T is small. 

whereas the minimization of (86) give at least a definite result. 

The example given in the appendix illustrates that. 

3. Concluding Comments 

The proposed variance estimator seems to be a useful alternative 

to maximum likelihood estimators. Many questions are still open -

uniqueness and consistency in particular. 

The asymptotic equivalence of the proposed estimator and the 

maximum likelihood estimator in conjunction with computational 

manageability and (arguably) better performance in small samples 

might render it even the superior alternative. 

Let me conclude with a quite general remark regarding the. 

estimation of the time-path of the coefficients in (1) - (3): We 

cannot recover the coefficients a from the observations on X and 

y since there are much more coefficients than data points. We 

can. however obtain sensible guesses about the state of the 

economy. and these are our estimates a as given in (27). They 

denote the expected mean of the distribution of a which remains a 

random variable with non-zero variance even if we enlarge the 

time horizon and the sample size to infinity. 
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If we generate data and coefficients according to (1) and (2) on 

a computer, we may compute estimates for the variance ratios p 

and compare the estimated time-path of the coefficients a(p) with 

the estimation a(p) we would get if we had used the true variance 

ratios p for computing a, but it does not make very much sense to 

compare a(p) with the true time-path of the coefficients a, since 

they deviate randomly from their expectation. In Monte-Carlo 

studies we should take not the true coefficients, but rather a(p) 

as the benchmark. 



APPENDIX 

Assume n = 2. T= 100. 0
2 = 

-32 

.1. o~ = 
1 

.1 and 0
2 = 
2 

.01. all = 1 

a 12 = 2 and generate coefficients according to {2}. Let e t denote 

a random variable uniformely distributed over the interval 

[.5. 1.5] -and generate observations x 1 . t = 1 and x
2

• t = e t for all 

t=1 •... 100. Generate a time series of Yt according to (1). A 

possible outcome is summarized in Table 1. 

From x and y we may compute the likelihood criterion (~3) and the 

statistics criterion (SS) for alternative variance ratios. -This 

is done in Table 2. 

We note that the true variance ratios are PI = 1 and P2 = .1. and 

that the minimum both of the likelihood and of the statistics 

criterion is fairly close to this (We may further compute the 

T 
variances 

T-l 
t=l 

(a
it 

- a
i

_
1

)2 from the data and compute their 

ratios. These "empirical variances" and the corresponding 

"empirical variances ratios" are also given in the tables). 

If we use only T = 25 rather than T = 100. we obtain table 3. We 

see that the two criteria suggest different results 
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We find in particular that the minimization of the likelihood 

criterion leads to rather unreasonable corner solutions. It is my 

impression that this is a quite general phenomena in small 

samples. which is even more pronouced when we deal with more than 

two explanatory var iables. The "expected stat ist ics" est imators, 

on the other hand, do not seem to tend to corner solutions. 

Figures 1 and 2 illustrate, finally, the decomposition. Fig. 1 

depicts the time path of the true coefficients (light) and the 

time path of the optimal estimates a(p) (heavily drawn curve). 

Figure 2 depicts the time path of the optimal estimates a(p} and 
A A 

with the estimated time-path of the coefficients a(p}. computed 

Pl = 7.2948 and P2 = 1.4684 (light). We see that the estimated 

variance ratios are greater than the true values, and the 

resulting time-paths exhibit Slightly more variability than a(p). 
A A 

The paths a(p} and a(p) are qualitatively very similar. We 

observe also a rather close connection between the true 
A A A 

coefficients a and their expectations a(p) and a{p}. 

As an aside we note further that the averages of the true 

coefficients are (4.7953, 1.6742). The estimated averages are 

A = (5.1580. 1.3803). Estimating A by OLS yields (6.2160 •. 3210) 

which differs significantly from the true averages. Thus the 

assumption of time-invariant coefficients, although not 

unreasonable in the example, leads to a considerable 

underestimation of the influence of the exogeneous variable x 2 • 
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APPENDIX B 

Expected Statistics Estimators: A Definition 

by Ekkehart Schlicht, 

Technische Hochschule, Schloss, 6100 Darmstadt 

September 1989 

The expected statistics estimators introduced in the text can be 

defined as follows: 

Consider the model given by the density function 

f(ylx,a) 

wl}ere 

y endogenous observables 

x exogenous observables 

a exogenous non-observables, parameters 

A statistic is a function 

s(y,x,a) 

Define the expected statistic as 

S(x,a) = E{s(y, x,a) Ix,a} 
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t Yt X2t a 't B2t 

3.4777 .8568 1.0000 2.0000 
2 3.2192 1.3142 .4395 2.0318 
3 3.1478 1.3762 .6005 2.0684 
4 3.6158 1.3756 1.0356 2.0179 
5 4.5672 1.1\.389 1.4116 1.9939 
6 4.7632 1.1618 1.8959 2.0405 
7 4.5122 1.4462 1.6556 1.9873 
8 4.9027 1.2127 1.7221 2.0672 
9 3.7182 1.0832 1.5019 2.0011 

10 3.3405 .5779 1.3245 2.1217 

11 3.0737 .7879 1.2587 2.0227 
12 3.7493 1.4371 1.2494 1.9329 
13 3.4204 .7780 1.3726 2.0514 
14 3.3395 .7790 1.2386 2.0791 
15 3.2518 1.0459 1.4285 2.1699 
16 2.8992 .5290 1.5666 2.3230 
17 5.1609 1.4879 1.5812 2.2965 
18 4.1873 1.0257 2.0418 2.3285 
19 5.2289 1.4063 1.9897 2.3588 
20 5.0190 1.2098 2.2039 2.3516 

21 5.3432 1.3103 2.2618 2.2680 
22 3.7682 .5639 2.8404 2.2436 
23 5.2956 1.1062 3.1117 2.2492 
24 4.6552 .7366 3.2603 2.3524 
25 5.7304 .7848 3.3934 2.3166 
26 6.2307 1.0120 3.5689 2.2995 
27 5.1997 .5016 3.4223 2.1741 
28 6.0287 1.4527 3.2869 2.1286 
29 5.2403 .9914 3.2875 2.1221 
30 5.8486 1.3618 3.1521 1.9428 

31 6.0498 1.2297 3.2437 1.7550 
32 5.8823 1.1094 3.8664 1.7224 
33 5.4459 .8381 4.1722 1.6731 
34 5.7773 1.4476 3.8352 1.5946 
35 5.2862 .9910 3.9690 1.5227 
36 6.1220 1.2049 4.3198 1.5681 
37 5.8631 1.3865 3.9785 1.5798 
38 5.8245 1.4898 3.4866 1.5534 
39 5.6376 .6666 4.2037 1.6472 
40 5.8816 .6655 4.7851 1.6964 

41 6.3972 .9208 5.0016 1.7348 
42 6.9732 1.0285 5.5799 1.5956 
43 7.3886 1.1056 6.0284 1.4407 
44 7.2552 .6656 6.4158 1.3668 
45 8.3S01 1.2278 6.5616 1.3880 
46 9.0300 1.3585 6.8640 1.4871 
47 8.1361 .8197 6.6288 1.5646 
48 8.0489 .7605 6.7422 1.6707 
49 7.9433 .5438 6.6634 1 .5273 
50 8.9568 1.3155 6.8313 1.5170 

Table 1 (cont . ) 
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t Yt X2t a lt a Zt 

51 7.7385 .9156 6.6807 1.4629 
52 7.3690 .8551 6.3126 1.3509 
53 7.0655 .7406 6.0766 1.5048 
54 7.9063 1.2100 6.2481 1.3929 
55 8.3738 1.3415 6.3434 1.4009 
56 7.2681 .7547 6.1577 1.1500 
57 7.2228 .8431 6.3542 1.1528 
58 7.9992 1.3133 6.5360 1.1990 
59 7.6035 1.1219 6.2761 1.1540 
60 6.9535 .8827 5.9564 1.0318 

61 7.2546 .9956 6.1276 1.0470 
62 7.2167 .7956 6.3520 1.0873 
63 7.4084 1.1131 6.1554 1.1786 
64 7.6927 1.4207 6.1223 1.2878 
65 7.2911 .6858 6.6461 1.3539 
66 8.1202 .6104 6.7691 1.4368 
67 8.3668 .8745 6.7186 1.6480 
68 8.5673 .9961 6.8942 1.6926 
69 8.5418 1.2697 6.7626 1.6588 
70 9.1700 1.4169 6.6472 1.5814 

71 7.5813 .8489 6.7627 1.5028 
72 8.4218 1.4253 6.7701 1.5288 
73 7.2846 .5194 6.3379 1.3987 
74 7.9252 .7129 6.7391 1.2307 

.75 8.3108 .7689 6.8765 1.3663 
76 8.7761 1.3523 6.9093 1.5491 
77 9.4917 1.4482 6.9746 1.6582 
78 8.8959 .9283 6.9600 1.6850 
79 7.0910 .5201 6.7436 1.4821 
80 9.0190 1.1843 6.5211 1.5490 

81 7.8375 .9134 6.3191 1.4573 
82 7.3081 .6581 6.4404 1.4587 
83 7.7055 .7668 6.6858 1.4252 
84 7.6565 1.1270 6.0856 1.4073 
85 6.9751 .6991 6.1550 1.5420 

'86 6.8473 .6034 6.2800 1.4578 
87 8.2602 1.1392 6.3202 1.2982 
88 7.8593 .7662 6.5825 1.4841 
89 7.7420 .7498 6.6738 1.4990 
90 7.2886 .8759 6.1741 1.6880 

91 7.9529 1.0237 6.5046 1.5893 
92 8.6688 1.3162 6.5615 1.4438 
93 8.1529 1.2911 6.3616 1.3520 
94 7.7060 .6071 6.3456 1.4279 
95 7.8110 1.3270 5.7255 1.5697 
96 7.2386 1.4959 5.0272 1.4605 
97 5.9060 .6488 4.9153 1.4719 
98 5.2760 .6627 5.0139 1.4690 
99 6.8830 1.3133 4.8343 1.6209 

100 7.0699 1.0491 5.5069 1.6300 

(cant.) Table 
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Likelihood Criterion 

r(1) \ r(2) .0001 .001 .01 .t 10 100 1000 10000 

.0001 318.68 307.15 237.97 11ffi.15 12. ,\2 0.00 10.10 93.51 148.58 
.001 309.0-6 298.61 m;96 lllS.51 12. ilJ • Off 'fa. to 93.51 148.58 
.01 215.13 239.88 202.29 100.57 12.15 .02 10.11 93.52 HB.59 
.1 l1U8 113.69 107.33 70.96 9.98 .18 iD.21 93.59 m.6s 
1 21. 91 21.86 21.10 18.17 .60 1.59 11.02 9i.12 lt9.15 

lU Z.OS 2:65 2.63 2.S8 2.31 11.06 15.09 96.03 150.78 
100 39.19 39.19 39.20 39.29 10.01 13.97 60.97 100.96 153.29 

1000 92.n 92. t8 92.19 92.26 .. 92.77 9'1.66 99.61 117.70 158.35 
10000 117.71 117.21 m.22 117.2B 117.77 1'19.37 151. 88 157.01 175.19 

Hote: add 70.6'1 to obtain true ~alues. 

Statistics Criterion 

- - -

r(1) \ r(2) .0001 .001 .01 .r to 100 1000 10000 

-

.0001 9361.15 6129.97 5089.31 1692.92 1516.B8 1531.19 1571.15 'l621. 70 1679.70 

.001 6130.03 2899.H 186l.6f 1~67.21 . mO.9~ BOUS JH5.12 1398.36 1153.35 
.01 5093.12 1865.18 853.19 183.71 310.56 321.02 363.93 117.13 m.12 

1697.75 lm.13 'fS8.l12' 111'-3'6 69.07 51.14 93.95 1'l7.05 202.03 
1555.92 1329.61 317.97 72.35 1.36 5.07 15.32 98.20 153.11 

fa mo. 79 1301.07 321.78 ~.+l 0.00 lB.91 62.30 111.93 169.75 
100 1567.56 1340.73 358.11 85.33 37.11 59.88 105.12 157.73 212.43 

1000 1626.12 1393.58 110.95 138.02 89.53 112.09 157.17 209.15 261.00 
10000 '675.37 me.S3 165.90 192.95 111.13 166.88 211.81 263.86 318.20 

Hote: add m.69 to obtain true values. 

EXflI1PlE1:1, T= 25 
Theoretical variances s({I)= .1, 5(1)"'.1 , 5(2')~. 01 
Uariance ratios r(1)= 1 , r(2)=.1 
EMpirical variances s(1J)=. H395!J3B0656, sm" 7. 7tlJ5983736Zr-2 • 5(2)= 5.1001621515'[-3 
Uariance ratios r(1)= .536268006967. r(2)= 3. 51300032505E-2 
BllITOI18 . 

Table 3 



katharina






