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ABSTRACT: Nonadiabatic molecular dynamics (NAMD)
simulations of molecular systems require the efficient
evaluation of excited-state properties, such as energies,
gradients, and nonadiabatic coupling vectors. Here, we
investigate the use of graphics processing units (GPUs) in
addition to central processing units (CPUs) to efficiently
calculate these properties at the time-dependent density
functional theory (TDDFT) level of theory. Our implemen-
tation in the FermiONs++ program package uses the J-engine
and a preselective screening procedure for the calculation of
Coulomb and exchange kernels, respectively. We observe
good speed-ups for small and large molecular systems (comparable to those observed in ground-state calculations) and reduced
(down to sublinear) scaling behavior with respect to the system size (depending on the spatial locality of the investigated
excitation). As a first illustrative application, we present efficient NAMD simulations of a series of newly designed light-driven
rotary molecular motors and compare their S1 lifetimes. Although all four rotors show different S1 excitation energies, their
ability to rotate upon excitation is conserved, making the series an interesting starting point for rotary molecular motors with
tunable excitation energies.

1. INTRODUCTION

Nonadiabatic processes such as electronic excitations,1

radiationless transitions,2 and electron transfer3 are of key
importance in chemistry and biology. One of the most
prominent examples in these fields is the rhodopsin protein,
whose chromophore undergoes a photoisomerization when
exposed to light.4 This energy conversion of light to
mechanical motion has inspired chemists to design synthetic
light-driven rotary molecular motors,5,6 for which Bernard
Feringa was awarded the Nobel Prize in chemistry in 2016
together with Jean Pierre Sauvage and Sir James Fraser
Stoddart.7 The description of theses nonadiabatic processes is
an ongoing challenge in modern quantum chemistry (e.g., ref
8). This is mainly due to the fact that (1) excited states have to
be taken into account and (2) the dynamics of the nuclei need
to be considered.
To tackle the first challenge, several quantum-chemical

methods have been developed. Examples include the complete
active space self-consistent field (CASSCF) method,9 the
algebraic-diagrammatic construction (ADC(2)),10 several
coupled cluster methods (e.g., CC2),11 and time-dependent
density functional theory (TDDFT).12,13 The latter serves
(despite its well-known limitations using today’s func-
tionals13,14) as a good compromise between effort and
accuracy.15,16 As a consequence of this, not only excited-state
energies but also excited-state gradients17 and nonadiabatic

coupling vectors (NACVs)18−29 have been implemented to
provide access to molecular properties at the TDDFT level of
theory. Having excited-state energies and properties at hand,
trajectory surface hopping (TSH)30,31 is a straightforward way
to conduct nonadiabatic molecular dynamics (NAMD)
simulations including several electronic states.
Despite many advances in the field of NAMD32−34 and their

broad field of application,35−44 it remains difficult or even
impossible to investigate large molecular systems. The reason
for this is that TSH requires, because of its stochastic nature, a
large set of independent trajectories including many time steps,
which involve expensive (even at the TDDFT level of theory)
excited-state energy and property calculations. One way to
accelerate NAMD simulations is the use of exciton models.45

Another approach is the use of graphics processing units
(GPUs) in addition to central processing units (CPUs) for the
calculations. It was shown that this leads to significant speed-
ups for ground-state energy and forces evaluations46−53 and
was also successfully applied to excited-state energies and
properties45,54−56 as well as ab initio multiple spawning57,58

and NAMD59,60 simulations.
In this work, we present efficient NAMD simulations with

TDDFT energies, gradients, and NACVs calculated on hybrid
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CPU/GPU architectures using the FermiONs++ program
package.50−52 We start with a brief summary of the theory
behind TSH as well as TDDFT energies, gradients, and
NACVs in Section 2 and discuss their implementation on
GPUs, featuring the hybrid CPU/GPU engine52 for the two-
electron integrals as well as the preselective screening
procedure for the evaluation of exchange kernels.50,51

Computational details are given in Section 3. In Section 4,
we discuss the accuracy and the performance of our GPU-
based excited-state routines, investigating the scaling of our
integral evaluations and contractions. We show timings for
selected molecules containing more than 500 atoms. As a
prototypical application, we investigate the photoinduced
rotation of four newly designed rotary molecular motors via
NAMD in Section 5, followed by a conclusion and an outlook.

2. THEORY
All equations in this section use the standard notation for
orbitals: i, j, k... denote occupied, a, b, c... denote virtual, and p,
q, r... denote arbitrary molecular orbitals, while μ, ν, λ... denote
basis functions. I, J, ... denote different electronic states. vxc and
f xc are the first- and second-order exchange-correlation
functional derivatives, respectively. cx is the amount of exact
exchange. F and S are the Kohn−Sham and the overlap
matrices, respectively. P is the ground-state density, and h is
the one-electron core Hamiltonian matrix. The two-electron
integrals are written using Mulliken notation (..|..). Superscript
ξ denotes derivatives with respect to the nuclear coordinates,
and * and † symbolize complex conjugation and adjungation,
respectively. For the sake of simplicity, we use the same symbol
for matrices in the atomic orbital (AO) and molecular orbital
(MO) bases with different indices (e.g., Pμν vs Ppq).
2.1. Trajectory Surface Hopping. In nonadiabatic

molecular dynamics (NAMD), the electronic time-dependent
wave function of the system is assumed to be a linear
combination of the time-independent electronic wave
functions of the individual electronic states weighted by the
state amplitudes (c)⃗

∑Ψ { } = Φ { }t c t tx r x r( , , ) ( ) ( ( ), )
I

I I
(1)

where x represents nuclear coordinates and {r} is the set of
electronic coordinates. Having the state energies (ωI, see
Section 2.2) and nonadiabatic coupling vectors (NACVs, τI → J

ξ ,
see Section 2.4) at hand, it is possible to propagate the state
amplitudes along with the nuclei during the molecular
dynamics (MD) simulation using a unitary propagator:36
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Here, ωJI is the energy difference between two states (ωJ −
ωI). The applied δt for the propagation of c ⃗ is normally 3
orders of magnitude smaller than the time step of the MD
simulation (Δt).31 In the fewest-switches surface hopping
algorithm,30,31 c ⃗ is used to calculate the probability gI → J

t → t + Δt of
the system switching from its current state I to another state J
at every time step:
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If a random number between zero and one exceeds g, then the
MD simulation is continued on the potential energy surface of
state J and the nuclear velocity is rescaled along τI → J

ξ .
Observables (e.g., lifetimes of states or relaxation pathways)
can be drawn from ensembles of trajectories using a different
set of random numbers. In the following sections, we will
briefly summarize the calculation of the necessary ingredients
of TSH (excited-state energies, gradients, and NACVs) at the
time-dependent density functional theory (TDDFT) level of
theory.

2.2. Excited-State Energies. Excitation energies can be
calculated from linear response TDDFT by solving the
TDDFT or the random phase approximation (RPA)
equation12,61,62
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A ± B are the orbital rotation Hessians

δ δ+ = ϵ − ϵ + | +

− [ | + | ]

ia jb f

c ja ib ab ij

A B( ) ( ) 2( ) 2

( ) ( )

iajb ij ab a i iajb
xc

x (5)

δ δ− = ϵ − ϵ + [ | + | ]c ja ib ab ijA B( ) ( ) ( ) ( )iajb ij ab a i x (6)

with ϵp being the energy of orbital p. XI and YI are the
transition densities for excitation and de-excitation, respec-
tively. Neglecting B is known as the Tamm−Dancoff
approximation (TDA) of TDDFT,63 simplifying eq 4 to

ω=AX XI I I (7)

Please note that eqs 4 and 7 are equivalent to the time-
dependent Hartree−Fock (TDHF) and configuration inter-
action singles (CIS) equations, respectively, when cx is set
equal to 1 and all exchange-correlation terms are neglected.
TDA is computationally less demanding than TDDFT because
fewer two-electron integrals have to be evaluated. It may also
be more suitable for NAMD simulations because it is more
stable (regarding its convergence) and thus typically delivers
better results than TDDFT in the vicinity of conical
intersections involving the ground state.39,64

TDDFT is nowadays widely used for the calculation of
excitation energies, being a good compromise between
accuracy and computational cost.15,16 Shortcomings are,
however, the inability to calculate double excitations and the
poor description of charge-transfer excitations.13,14 To tackle
the latter, range-corrected functionals (e.g., ωB9765) have been
introduced.

2.3. Excited-State Energy Gradients. To determine the
energy gradient of an excited state I, one has to calculate the
change in the excitation energy with respect to the nuclear
coordinates (ωI

ξ). The final equation in the AO basis has been
derived by Furche et al.17

∑
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The calculations of the relaxed difference density matrix (PI),
the energy-weighted difference density matrix (WI), and the
two-particle difference density matrix (ΓI) are shown in the
Appendix. The first two require an iterative solution of a Z-
vector equation.17 RI is XI + YI or XI in the case of TDDFT or
TDA, respectively.
2.4. Nonadiabatic Coupling Vectors. The NACV

between two states (I and J) is defined as

τ = ⟨Φ |Φ ⟩ξ ξ
→I J I J (9)

It thus describes the change of the overlap of the wave
functions of I and J with respect to the nuclear coordinates.
The first formulation of the NACV involving the ground state
(τ0 → I

ξ ) derived by Chernyak and Mukamel18 was corrected for
finite basis set effects by Send et al.23 in 2010:
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Equations for the density matrices (P0I, W0I, and Γ0I) are again
given in the Appendix. They can be calculated directly from
the TDDFT transition densities so that no Z-vector equation
needs to be solved. Sμν

[A]ξ denotes an antisymmetric overlap
derivative

χ χ χ χ= ⟨ | ⟩ − ⟨ | ⟩μν
ξ

μ
ξ

ν μ ν
ξ[ ]S A

(11)

whereas γ0I is defined as

γ = LI I0 (12)

with LI being XI − YI or XI in the case of TDDFT or TDA,
respectively.
The calculation of NACVs between two excited states has

been tackled by many publications showing expressions based
on linear and quadratic response at different levels of
theory.25,26,29,66−71 The main conclusion is that the use of
quadratic response theory leads to unphysical poles when the
energy difference between excited states matches the excitation
energy of another state.66−70 The use of linear response theory
or the so-called pseudowave function approach25−27,29 is
therefore recommended. The resulting equation in the AO
basis is as follows:
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Equations for the density matrices (PIJ, WIJ, and ΓIJ) can again
be found in the Appendix. γIJ is defined as
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It was shown by Fatehi et al.25 that the antisymmetric overlap
derivatives (eq 11) introduce translational variance into the
NACV calculations. Neglecting these terms in eqs 10 and 13 is
equivalent to adding electron-translational factors (ETFs).

However, trajectory surface hopping (TSH) simulations using
NACVs with and without ETFs lead to nearly identical results
for larger molecular systems.72

2.5. Graphics Processing Units. Graphics processing
units (GPUs) significantly accelerate quantum-chemical
calculations because they allow for an efficient evaluation
and contraction of two-electron integrals (eq 15) and their
derivatives with respect to the nuclear coordinates (eq
16).46−52
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J and K denote the Coulomb and exchange parts, respectively,
and M and N denote general density matrices. For the
Coulomb part, large speed-ups can be observed when the J-
engine73,74 is applied to the rearranged shell-pair data.47 To see
comparable speed-ups for the exchange part, we apply an
additional preselective screening (preLinK):50,51

∑ μκ μκ νλ νλ| × | | × | ≥ ϑ
κλ

κλM( ) ( ) pre
(17)

≥ ϑμν μν
∇K NM( ) pre (18)

It determines the significant shell pairs (those with an expected
value above the given thresholds ϑpre and ϑpre

∇ ) before their
distribution to and calculation on the GPUs. The two-electron
integral evaluation can be done even more efficiently when the
workload is spread among both GPUs and CPUs.52

In ground-state calculations, M and N are solely the ground-
state density (P), whereas for excited states M and N can
additionally be PI, RI, or LI. However, the discussed procedure
(shell pair rearrangement, J-engine, and preLinK) is still valid
and can easily be adapted to excited-state routines when
keeping in mind that M is not always equal to N and may be
nonsymmetric.

3. COMPUTATIONAL DETAILS
3.1. General Remarks. The FermiONs++ program

package50−52 was used for all calculations presented in this
work. It was compiled using the Intel compiler (2019),75 and
the Intel Math Kernel Library (MKL). Routines on AMD
GPUs were compiled with the AMD APPSDK compiler. In
addition, LibXC library v4.0.176,77 was used. In all calculations,
we used the gm5 grid78 (with the modified Becke weighting
scheme described in ref 78) and tight thresholds for the SCF
convergence (ϑSCF = 10−7 using the FP-commutator), the
integrals (ϑINT = 10−10), and the Z-vector equation
convergence (ϑZ = 10−5). Throughout all calculations, we
neglected the symmetry of the molecules and solely calculated
singlet excitations. Excited-state energies, gradients, and
nonadiabatic coupling vectors (with electron transition factors)
at the TDDFT level of theory were calculated using eqs 4, 8,
10, and 13, respectively.
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3.2. Preparation and Calculation of Systems I, II, IIIn,
IVn, V, VI, and VII. To illustrate the performance and/or
accuracy of our implementation on GPUs, we use protonated
formaldimine (I), the Schiff base of retinal (II), a series of
linear polyethynes (IIIn) and dialkylethenes (IVn), a motorized
nanocar (without “wheels”, V),79 and one (VI) and three
(VII) pores of a covalent organic framework80 as example
molecules. The structures of I, II, and V have been optimized
at the PBE081−84/def2-SVP85,86 level of theory, while IIIn and
IVn have not been optimized to maintain their linear structures.
VI and VII have been prepared according to ref 80. All
structures are available at https://www.cup.uni-muenchen.de/
pc/ochsenfeld/download/.
TDDFT energies and properties of I, II, IIIn, IVn, V, VI, and

VII were calculated at the PBE0/def2-SVP or PBE/def2-TZVP
level of theory. We used tight thresholds for preLinK (ϑpre =
10−4), the preLinK gradient (ϑpre

∇ = 10−10), and the TDDFT
convergence (ϑTDDFT = 10−6). For I, II, IIIn, IVn, V, VI, and
VII, four, six, five, three, six, seven, and seven states were taken
into account, respectively.
When investigating the accuracy, we use a calculation

performed on CPUs with tight thresholds (ϑTDDFT = 10−7) as a
reference. To allow for a fair comparison, we employed the
continuous fast multipole method (CFMM)87,88 and the LinK
scheme89,90 for Coulomb and exchange kernels (and their
derivatives) on CPUs when comparing CPU and GPU
performance. Coulomb and exchange kernels on GPUs were
calculated with the J-engine73,74 and the preLinK scheme,50,51

respectively. Timings of integral evaluations and entire routines
were determined as an average over five independent
calculations on two Intel Xeon CPU E5 2640 v4 @ 2.20
GHz (20 threads) CPUs and four AMD FirePro 3D W8100
GPUs. The scaling behavior is determined as the slope of the
corresponding log−log plots (Supporting Information) using
the timings of IIIn and IVn with n = 40, 50, 75, 100. The
parallel efficiency is determined as the ratio between the
measured and ideal speed-ups.
3.3. Preparation and Calculation of the Rotary

Molecular Motors. The structures of the four rotary
molecular machines (C, N, S, and O) have been optimized

at the ωB9765/def2-SVP level of theory. Excited-state
properties and timings were calculated at the TDA (ωB97/
def2-SVP) level of theory using accurate thresholds (ϑpre =
10−3, ϑpre

∇ = 10−10, and ϑTDDFT = 10−5). NAMD simulations
were conducted at the same level of theory. The propagation of
the nuclei was calculated using the Velocity Verlet
algorithm.91,92 The extended Lagrangian method93 for the
extrapolation of ground-state density was used to accelerate
SCF convergence. Transition densities and relaxed difference
densities of the previous step were used as guesses for the TDA
and Z-vector equation, respectively.
Twenty initial geometries and velocities (available at

https://www.cup.uni-muenchen.de/pc/ochsenfeld/download/
) were drawn from a 5 ps ground-state NVT simulation (200 fs
equilibration, 0.2 fs step size, velocity rescaling thermostat94)
at the same level of theory. From each initial condition, five
independent (different series of random numbers) NAMD
simulations were conducted for 1 ps (0.2 fs step size) without
equilibration, thermostat, or decoherence correction, starting
at the first excited singlet state (S1). At every step of the
simulation, the overall rotation and translation of the molecule
was removed. Three excited states were taken into account,
whereas only the coupling vector from the ground state to the
first excited state was calculated and used for the propagation
of the state amplitudes (eq 2) and the calculation of the
hopping probability (eq 3).

4. PERFORMANCE
4.1. Accuracy and Thresholds. We start with an analysis

of the errors of excited-state energies and properties
introduced by their calculation on GPUs and the use of the
preLinK scheme51,52 for integrals and integral derivatives.

Table 1. Mean Absolute Errors (MAE, in Atomic Units) of Excitation Energies (ωI), Gradients (ωI
ξ), and Nonadiabatic

Coupling Vectors (τI→J) of Protonated Formaldimine (I) and the Schiff Base of Retinal (II) Calculated at the PBE0/def2-SVP
Level of Theory on GPUs, Employing the preLinK Scheme and Using Different Thresholds for preLinK (ϑpre), the preLinK
Gradient (ϑpre

∇ ), and the TDDFT Convergence (ϑTDDFT)
a

screening thresholds and convergence criteria

ϑpre 10−3 10−4 10−4 10−5 10−5 10−5 10−5 10−5

ϑpre
∇ 10−11 10−11 10−11 10−11 10−11 10−9 10−10 10−11

ϑTDDFT 10−5 10−5 10−6 10−6 10−7 10−7 10−7 10−7

I

MAE(ωI) 2.2 × 10−4 2.2 × 10−4 8.8 × 10−5 8.8 × 10−5 2.3 × 10−6 2.3 × 10−6 2.3 × 10−6 2.3 × 10−6

MAE(ω2
ξ) 5.8 × 10−5 5.8 × 10−5 3.7 × 10−5 3.7 × 10−5 6.5 × 10−6 6.7 × 10−6 6.6 × 10−6 6.5 × 10−6

MAE(τ0→1) 5.7 × 10−4 5.7 × 10−4 1.2 × 10−4 1.2 × 10−4 9.2 × 10−5 8.8 × 10−5 9.1 × 10−5 9.2 × 10−5

MAE(τ1→2) 1.0 × 10−3 9.1 × 10−4 4.7 × 10−4 4.7 × 10−4 2.8 × 10−4 9.2 × 10−4 5.5 × 10−4 2.8 × 10−4

II

MAE(ωI) 1.9 × 10−4 1.9 × 10−4 9.6 × 10−5 9.6 × 10−5 1.1 × 10−5 1.1 × 10−5 1.1 × 10−5 1.1 × 10−5

MAE(ω2
ξ) 2.8 × 10−5 2.8 × 10−5 1.2 × 10−5 1.2 × 10−5 3.1 × 10−6 3.8 × 10−6 3.2 × 10−6 3.1 × 10−6

MAE(τ0→1) 1.7 × 10−3 1.7 × 10−3 7.5 × 10−4 7.5 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4

MAE(τ1→2) 8.9 × 10−4 8.9 × 10−4 3.8 × 10−4 3.8 × 10−4 1.1 × 10−4 1.2 × 10−4 1.1 × 10−4 1.1 × 10−4

aA calculation on CPUs with ϑTDDFT = 10−7 and without CFMM or preLinK is used as a reference. Throughout this work, we will use accurate
(ϑpre = 10−3, ϑpre

∇ = 10−10, and ϑTDDFT = 10−5) or tight thresholds (ϑpre = 10−4, ϑpre
∇ = 10−10, and ϑTDDFT = 10−6).

Figure 1. Structures of the linear polyethynes (IIIn) and
dialkylethenes (IVn).
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Therefore, we compare calculations of the smallest Schiff base
(protonated formaldimine, CH2NH2

+, I) and the Schiff base of
retinal (C20H30N

+, II) with GPUs and preLinK to calculations
on CPUs without prescreening or the continuous fast
multipole method (CFMM). (For computational details, see
Section 3.2.) The mean absolute errors for different thresholds
are listed in Table 1.
The choice of the preLinK threshold (ϑpre) for excited-state

calculations should always depend on the applied convergence
threshold for the TDDFT equation (ϑTDDFT). If the chosen
threshold is too loose, then the iterative solution of the
TDDFT equation does not converge (especially for large
molecular systems), while a ϑpre that is too tight does not
improve the result when ϑTDDFT is not adjusted accordingly
(Table 1). The latter is also attributed to the small effect of
preLinK on these relatively small systems.50,51 In our
calculations with the FermiONs++ program package, the
“ideal” ϑpre is 2 orders of magnitude larger than ϑTDDFT. A
tightening of these two parameters (left side of Table 1)
systematically leads to smaller errors. However, the errors in
the coupling vectors of the large system do not fall below 10−4

a.u., marking the numerical limit of these second- to third-
order properties. The use of the tight thresholds (ϑTDDFT =
10−6, ϑpre = 10−4) should thus, in general, be sufficient because
all errors are below 10−3 a.u. A looser preLinK threshold (ϑpre
= 10−3 a.u.), which is expected to give μH accuracy for ground-
state properties, is still accurate for excited-state properties and
could be used in extensive application calculations such as
NAMD simulations, where observables are determined as
ensemble averages.

The effect of the preLinK gradient threshold (ϑpre
∇ ) on the

error is not straightforward (right side of Table 1). However,
we recommend it to be at least as tight as the integral threshold
(ϑINT = 10−10). Because the difference between ϑpre

∇ = 10−11

and ϑpre
∇ = 10−10 is negligibly small, we apply the latter

throughout this work.
4.2. Scaling with the System Size. To compare timings

on CPUs and GPUs and to investigate the effective scaling
behavior of the excited-state integral routines on GPUs, we use
integral timings of linear polyethynes (IIIn) and dialkylethenes
(IVn) (for structures, see Figure 1). In Figure 2, we compare
CPU and GPU timings of Coulomb (Figure 2a,c) and
exchange (Figure 2b,d) calculations at the PBE0/def2-SVP
level of theory. We show contractions of the ground-state
density (J/K(P)), the transition density of the first excited
state (J/K(X1 + Y1)) (Figure 2a,b), the integral derivatives
involving the ground state and the relaxed difference density of
the first excited state (Jξ/Kξ(P, P1)), and the transition density
of the first excited state (Jξ/Kξ(X1 + Y1, X1 + Y1)) (Figure
2c,d). The same integrals are shown in Figure 3, where we
compare the timings of IIIn and IVn on GPUs. The effective
scaling behaviors of the integral evaluations are shown in the
Supporting Information. Definitions of the integral contrac-
tions are given in eqs 15 and 16. Details of the calculations are
given in Sections 3.1 and 3.2.
For the Coulomb and exchange kernels of the transition

densities, we observe similar speed-ups (up to a factor of 5) as
for the ground-state kernels (Figure 2a,b). The accelerations of
the gradient kernels stem (nearly exclusively) from their
Coulomb part, which is extremely efficient on GPUs (Figures

Figure 2. Timings of (a, c) Coulomb and (b, d) exchange integral evaluations (a, b; eq 15) and their derivatives with respect to the nuclear
coordinates (c, d; eq 16) of polyethyne (IIIn) with n = 1−100 calculated at the PBE0/def2-SVP level of theory on CPUs (dashed lines) and GPUs
(solid lines). For details on the calculations and the computational setup, see Sections 3.1 and 3.2.
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2c). We also see minor speed-ups for Kξ(X1 + Y1, X1 + Y1)
(Figures 2d). The evaluation of Kξ(P, P1) is significantly
slower because the GPU routine has to be called twice. This is
due to the fact that the analytical exchange evaluation on
GPUs48−51 does not exploit the full symmetry of the two-
electron integral. Please note that this problem can be solved
by applying a seminumerical exchange scheme, which is
currently developed for GPUs in our group.95 For the largest
molecule (III100), a speed-up of two for the entire
determination of an excited-state gradient involving calcu-
lations of the ground-state and excited-state energy and
gradient is observed. Here, it should be stressed that the
linear algebra and the evaluation of the exchange-correlation
kernels are performed entirely on CPUs.
When comparing the effective scaling behavior of the

Coulomb integrals of IIIn (Supporting Information), one can
see that the scaling of the GPU integrals is slightly larger than
the scaling of the CPU integrals. This is due to the formal
quadratic scaling of the J-engine employed on GPUs, in
comparison to the (asymptotically linear scaling) CFMM
method. This larger scaling behavior is, however, irrelevant as
the prefactor of the routines is greatly reduced (Figure 2a,c).
The scaling of the exchange integrals is slightly reduced by
exploiting the preLinK method on GPUs. We observe ∼1.5
and ∼1.0 scalings for the integrals and the integral derivatives
of these system sizes, respectively.
The excitation in IIIn is delocalized over the entire molecule,

leading to similar scaling behavior for the ground-state and
excited-state properties. To show the performance of a system
with local excitation, we also investigate IVn, where only one

double bond instead of a conjugated system is excited. This
leads to massive speed-ups (Figure 3) of the excited-state
exchange integrals and reduces their scaling significantly
(Supporting Information). For the exchange integral deriva-
tives, we even observe sublinear scaling behavior as a result of
the preLinK screening. The effect on the Coulomb integrals is
smaller, mainly because of the fact that these routines take only
a few seconds even for the largest investigated molecules.

4.3. Example Calculations. To demonstrate the applic-
ability of our excited-state properties routines in the
FermiONs++ program package,50−52 we study four molecules
of interest in modern excited-state research and show their
timings at the PBE0/def2-SVP and PBE/def2-TZVP levels of
theory on GPUs (Table 2). We investigate the Schiff base of
retinal (II), a model system of the chromophore in rhodopsin,4

a nanocar79 (V) using a rotary molecular motor, and one (VI)
and three (VII) pores of a covalent organic framework,80

which catalyze the formation of hydrogen from water when
exposed to light. Details of the calculations and the
computational setup are again listed in Sections 3.1 and 3.2.
Table 2 shows that with the presented implementation on

GPUs, excited-state properties and dynamics become acces-
sible even for large systems and when applying DFT methods
with exact exchange (e.g., PBE0) or triple-ζ basis sets. In our
examples, the calculations of excited-state properties at the
PBE/def2-TZVP level of theory are even faster than at the
PBE0/def2-SVP level of theory mainly due to the fast
Coulomb contractions discussed above. The only exception
is t(ω1

ξ) of VII, for which the Z-vector equation converges

Figure 3. Timings of (a, c) Coulomb and (b, d) exchange integral evaluations (a, b; eq 15) and their derivatives with respect to the nuclear
coordinates (c, d; eq 16) of polyethine (IIIn, solid line) and dialkylethene (IVn, dashed line) with n = 1−100 calculated at the PBE0/def2-SVP level
of theory on GPUs. For details on the calculations and the computational setup, see Sections 3.1 and 3.2.
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slowly at the PBE/def2-TZVP level of theory (seven instead of
four iterations).
When comparing CPU and GPU timings of the entire

calculations, we observe speed-ups of three and eight for VI
and VII, respectively. This clearly shows that the use of GPUs
becomes more attractive with increasing system size, where the
integral evaluations dominate the overall computational time.
However, even for relatively small molecule II we already
obtain a speed-up of two. These speed-ups exclusively stem
from the Coulomb and exchange calculations as the linear

algebra and the evaluation of the exchange-correlation kernels
are performed entirely on CPUs. The entire calculations of II
and VII at the PBE0/def2-SVP level of theory take ∼5 min and
∼5 h, respectively, enabling NAMD simulations of II and the
calculation of excited-state properties of VII on a reasonable
time scale and yet good accuracy.

4.4. Scaling with the Computational Resources. In
Figure 4, we show the parallel efficiency of J/K(XI + YI)
(Figure 4a) and Jξ/Kξ(P, PI) (Figure 4b) for II, VI, and rotary
molecular machine C (C10H13FN), which will be investigated

Table 2. Molecular Structures and Computational Times (t(s)) of the Schiff Base of Retinal (II), a Motorized Nanocar (V),
and One (VI) and Three (VII) Pores of a Covalent Organic Framework, Calculating Ground-State Energies (E0) and
Gradients (E0

ξ), Excited-State Energies (ωI) and Gradients (ωI
ξ), and Nonadiabatic Coupling Vectors (τI→J) at the PBE0/def2-

SVP and PBE/def2-TZVP Levels of Theory on GPUsa

II V VI VII

formula C20H30N
+ C51H28S2 C144H102N30 C312H213N69

Natoms 51 81 276 594
PBE0/def2-SVP

t(E0)/step 1.3 4.4 17.8 67.7
t(ω1)/(step and state) 1.6 6.3 34.4 179.5
t(E0

ξ) 12.36 54.5 140.9 334.3
t(ω1

ξ) 65.4 247.9 668.4 1392.6
t(τ0→1) 24.3 123.4 375.2 914.8
t(τ1→2) 82.7 349.4 959.0 1858.0

PBE/def2-TZVP
t(E0)/step 1.8 1.5 51.5 272.6
t(ω1)/(step and state) 2.1 1.7 30.2 95.3
t(E0

ξ) 6.0 5.2 65.3 241.9
t(ω1

ξ) 52.5 47.9 576.7 1942.9
t(τ0→1) 12.3 10.1 124.4 377.0
t(τ1→2) 56.1 52.7 523.2 1060.3

aPlease note that t(E0) and t(ω1) are given per step (and state). For details on the calculations and the computational setup, see Sections 3.1 and
3.2.

Figure 4. Parallel efficiency of selected GPU integral routines for the calculations of C, II, and VI. The computational time of the integral
evaluation using four GPUs is given in parentheses. For details on the calculations and the computational setup, see Section 3.
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in the next section using up to four GPUs. The Coulomb
integrals of II and C are not analyzed because their
computational time is too short.
Figure 4 again shows the suitability of GPUs for large

molecular systems. For the time-consuming integral evalua-
tions of VI, we observe a nearly perfect scaling of >0.9. This
also indicates that adding even more GPUs will still lead to
decent speed-ups of the calculations. The parallel efficiency
observed in the case of the smaller molecules is lower but still
remarkable considering that some computational times are
<1 s. This strong scaling makes the use of GPUs also attractive
for small to medium-sized molecules, as shown in the rotary
molecular machine example presented in this work.

5. ILLUSTRATIVE EXAMPLES: ROTARY MOLECULAR
MACHINES

As a prototypical example, we investigate the properties and
the dynamics of four newly designed rotary molecular
machines. For structures and definitions, see Figure 5. Similar
to previous ab initio studies,41−44 our machines contain a C
N+ motif, which is also present in the chromophore of
rhodopsin. Upon excitation, the molecule should rotate around
the central C−C double bond. The fluoride substituent should
accelerate this rotation because of the steric repulsion, whereas
the puckering of the six-membered ring should influence the
direction of the rotation.43,44 Here, we want to investigate the
influence of the atom or group X adjacent to the central double
bond on the light-driven rotation of the molecule. We use
CH2, NH, S, and O as X denoted as C, N, S, and O,
respectively.
When calculating the excited-state properties and dynamics

of the rotary molecular machines, we switch to the Tamm−
Dancoff approximation (TDA).63 As discussed in Section 2.2,
this accelerates the calculation and leads to more stable
trajectories close to conical intersections.39,64 A comparison of
the excited-state energies and properties at the TDA and RPA
levels of theory is presented in the Supporting Information,
where we show mean differences as well as plots of the
difference density, the first excited-state gradient, and the
NACV between the ground state and the first excited state. We
observe an average difference below 10−2 a.u., with the state
ordering and the shape of relaxed difference densities not being
affected. The comparison of TDA and CASSCF energies
(Supporting Information) also proves the suitability of TDA
for the investigated problem. Trends between the systems and
the energies close to the conical intersection agree remarkably
well. Moreover, we apply the looser accurate thresholds (ϑpre =
10−3, ϑpre

∇ = 10−10, and ϑTDDFT = 10−5) because they introduce
only a maximum average error of a few 10−5 a.u. (Supporting

Information). Additional details on the calculations are listed
in Section 3.3.
In Figure 6, we show the excitation energies of C, N, S, and

O. Changing the substituent has an influence on the bright S1
state of the rotary molecular motor. While the difference
density plots look similar for all molecules, the excitation
energies increase (S < C < N < O) and the directions of the
gradients and NACVs change slightly. This is due to the
different electronegativities of the substituents (C ≈ S < N <
O) and the fact that S, N, and O atoms have free electron pairs.
To study their effect on the light-induced rotation, we

conducted NAMD simulations (105 trajectories for each
rotor). In Table 3, we list the percentage of the trajectories that
showed a rotation (η) as well as the ratio of clockwise and
counterclockwise rotations (r). The direction of the rotation
has been determined using the dihedral γ. (See the Supporting
Information for plots.) The time-dependent occupation of the
S1 state (calculated as an average over all trajectories) and
d(X−F) for the trajectory with the fastest rotation of C, N, S,
and O, respectively, are shown in Figure 7.
For all system, we observed (1) the expected rotation

around the central C−C bond, which can be detected using
either γ or d(X−F) and (2) the relaxation from S1 to the
ground state (S0). Movies of the rotations are available at
https://www.cup.uni-muenchen.de/pc/ochsenfeld/download/
. The decay of the S1 population (Figure 7a) seems to correlate
with the rotational speed of the corresponding rotary
molecular machine (Figure 7b). C shows the fastest rotation
and the fastest decay, followed by S and O, which behave
nearly identically. The rotation of N is the slowest, so is the
decay of the S1 occupancy. The trend in the rotational speeds
(N < S < O < C) can easily be explained. O rotates slower than
C because the nuclear repulsion between X and F is smaller. In
the case of S, the repulsion of the S atom should be similar to
that of the CH2 moiety, but the time for the rotation increases
because of its larger mass. The rotation of N is even slower
because of the hydrogen bond between the NH moiety and the
F atom.
However, this trend cannot be observed when looking at the

rotational efficiency (η, see Table 3). Although C shows the
largest number of trajectories featuring a rotation (70%), the η
of S and O (∼55%) is significantly smaller than the η of N
(61%). The reason for this might be the slightly different
coupling vectors between the ground state and the first excited
state (Supporting Information). In contrast to refs 43 and 44,
we do not observe an influence of the puckering of the ring on
the rotation. The ratios of CW and CCW rotations (r) are

Figure 5. (a) Structures of rotary molecular machines C, N, S, and O
and (b) definitions of the X−F distance (d(X−F)), the dihedral angle
(γ), and the direction of rotation: clockwise (CW) and counter-
clockwise (CCW).

Figure 6. Singlet excitation energies of the four rotary molecular
machines (C, N, S, and O) calculated at the TDA (wB97/def2-SVP)
level of theory. For details on the calculations, see Section 3.3.
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close to 1 for all four rotors, and no general trend is visible in
the γ plots (Supporting Information).
Changing X thus has an interesting effect on the rotary

molecular machines. While the excitation energy changes
significantly, the ability of the molecule to rotate around the
central C−C bond is (nearly) preserved. These systems may
thus be a good starting point for the design of a series of
molecular rotors with tunable excitation energy. Our GPU-
based routines aide these investigations by accelerating NAMD
simulations even for these small systems. Because of the strong
scaling (shown in Figure 4), we observe speed-ups in Coulomb
and exchange integral evaluations (even when their computing
time is shorter than 1 s), leading to a total speed-up of two
with respect to a calculation entirely on CPUs. One trajectory
took ∼1 day on two Intel Xeon CPU E5 2640 v4 @ 2.20 GHz
(20 threads) CPUs and four AMD FirePro 3D W8100 GPUs.

6. CONCLUSIONS
Throughout this work, we have examined the use of graphics
processing units (GPUs) for the evaluation of two-electron
integrals in excited-state energies and property (gradients and
nonadiabatic coupling vectors) calculations at the time-
dependent density functional theory (TDDFT) level of theory.
Similar to ground-state calculations, we observe that the use of
GPUs along with the J-engine73,74 and the preLinK
scheme50,51 leads to decent speed-ups of the integral
calculations while additionally showing a reduced scaling
behavior depending on the locality of the examined excitation.
These speed-ups may even become larger with our currently
developed seminumerical exchange scheme.95 By using GPUs,
nonadiabatic molecular dynamics become more efficient for
large but also small molecules (as the a result of the strong
scaling) without a loss of accuracy or the introduction of
further assumptions. As a first example, we investigated a series
of newly designed rotary molecular machines showing that one

can tune the excitation energy of these systems without losing
their ability to rotate by changing the hetereocycle. For future
applications, we consider extending the current implementa-
tion toward decoherence corrections96 and triplet states.97

■ NOTATION
All equations in this section use the same notation as in
Section 2. gxc are the third order exchange correlation
functional derivatives. The linear transformations H+ and H−

are defined as follows:

∑
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■ EXCITED-STATE ENERGY GRADIENTS
The unrelaxed difference density matrix T is calculated as
follows:
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To obtain the Lagrangian multiplier ZI it is necessary to solve
the following Z-vector equation:
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Solving this Z-vector equation thus leads to the calculation of
ZI, which is used to determine the relaxed difference density
matrix (PI):

= +P T ZI I I (23)

Table 3. Efficiency (η, Determined from the Percentage of
Rotating Molecules in the NAMD Simulations) of the Four
Rotary Molecular Machines (C, N, S, and O) and Ratio [r =
n(CW)/n(CCW)] of CW and CCW Rotations

C N S O

η 70% 61% 54% 56%
r 0.68 0.78 1.19 1.68

Figure 7. (a) Time-dependent decay of the occupancy of the S1 state determined as a mean of all nonadiabatic molecular dynamics simulations. (b)
Change in d(X−F) during one selected trajectory of C, N, S, and O, respectively, showing the rotation of the molecule around the central C−C
bond. The maxima (180° rotation) are marked by the vertical dashed lines.
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Using the calculated matrices, the energy-weighted difference
density matrix (WI) can be formed:
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The calculation of the effective two-particle difference density
matrix is

Γ = { + − [ +

+ + − + ]}
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■ NONADIABATIC COUPLING VECTORS BETWEEN
THE GROUND AND AN EXCITED STATE

First the Lagrangian multipliers Z0I and W0I need to be
determined. In order to obtain Z0I the following Z-vector
equation has to be solved:

∑ + =Z LA B( )
jb

ijab jb
I

ia
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(26)

An iterative solution of eq 26 is not necessary. Z0I is equal to RI
and the relaxed difference density matrix (P0I) is calculated as
follows:

ω
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1
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(27)

The calculation of W0I is presented in eq 28.
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Γ0I is defined as

Γ = − [ + ]μνκλ μν κλ μλ κν νλ κμP P c P P P P
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■ NONADIABATIC COUPLING VECTORS BETWEEN
TWO EXCITED STATES

The unrelaxed difference density matrix (TIJ) is calculated as
follows:
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To obtain the Lagrangian multiplier ZIJ it is necessary to solve
the following Z-vector equation:
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ZIJ is used to calculate the relaxed difference density matrix
(PIJ):

= +P T ZIJ IJ IJ (33)

The calculation of WIJ is
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ΓIJ is defined as
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