Ca²⁺ Binding to Chromaffin Vesicle Matrix Proteins: Effect of pH, Mg²⁺, and Ionic Strength†

Felicitas U. Reiffen and Manfred Gratzl*
Abteilung Klinische Morphologie, Universität Ulm, D-7900 Ulm, FRG
Received January 16, 1986; Revised Manuscript Received March 21, 1986

ABSTRACT: Recently we found that Ca²⁺ within chromaffin vesicles is largely bound [Bulenda, D., & Gratzl, M. (1985) Biochemistry 24, 7760–7765]. In order to explore the nature of these bonds, we analyzed the binding of Ca²⁺ to the vesicle matrix proteins as well as to ATP, the main nucleotide present in these vesicles. The dissociation constant at pH 7 is 50 μM (number of binding sites, n = 180 nmol/mg of protein) for Ca²⁺–protein bonds and 15 μM (n = 0.8 μmol/μmol) for Ca²⁺–ATP bonds. When the pH is decreased to more physiological values (pH 6), the number of binding sites remains the same. However, the affinity of Ca²⁺ for the proteins decreases much less than its affinity for ATP (dissociation constant of 90 vs. 70 μM). At pH 6 monovalent cations (30–50 mM) as well as Mg²⁺ (0.1–0.5 mM), which are also present within chromaffin vesicles, do not affect the number of binding sites for Ca²⁺ but cause a decrease in the affinity of Ca²⁺ for both proteins and ATP. For Ca²⁺ binding to ATP in the presence of 0.5 mM Mg²⁺ we found a dissociation constant of 340 μM and after addition of 35 mM K⁺ a dissociation constant of 170 μM. Ca²⁺ binding to the chromaffin vesicle matrix proteins in the presence of 0.5 mM Mg²⁺ is characterized by a K_d of 240 μM and after addition of 15 mM Na⁺ by a K_d of 340 μM. The similar affinity of Ca²⁺ for protein and ATP, especially at pH 6, in media of increased ionic strength and after addition of Mg²⁺, points to the possibility that the intravesicular medium determines whether Ca²⁺ is preferentially bound to ATP or the chromaffin vesicle matrix proteins. Purified chromogranin A, after sodium dodecyl sulfate–polyacrylamide gel electrophoresis, stains with a carbocyanine dye (“Stains-all”) and, following blotting onto nitrocellulose, binds to ⁴⁵Ca²⁺. A spectrophotometric analysis of dye binding to chromaffin vesicle matrix proteins revealed a strong absorption band at 615 nm for the dye–protein complex. Since the observed spectral changes were unaffected by the presence of Ca²⁺ (100 μM free), the sites interacting with the dye and Ca²⁺ must be regarded as different.

In resting secretory cells, the cytoplasmic concentration of free Ca²⁺ is low. Increase of cytoplasmic Ca²⁺ upon stimulation results in the release of secretory products by exocytosis. Secretory vesicles of various types of endocrine cells contain Ca²⁺, and a Ca²⁺ transport system dependent on Na⁺ has been described in chromaffin (Phillips, 1981; Krieger-Brauer & Gratzl, 1981, 1982, 1983) and neurohypophyseal vesicles (Saermark et al., 1983a,b).

Calculation of the apparent Ca²⁺ concentration within the chromaffin vesicles resulted in values between 20 and 40 mM (Borowitz et al., 1965; Phillips et al., 1977; Krieger-Brauer & Gratzl, 1982). Binding of Ca²⁺ inside the vesicles would obviously be of great importance for the Ca²⁺ transport systems present in the vesicle membrane, because lowering of the Ca²⁺ gradient between the cytoplasmic space and the interior of the vesicle can be expected to enhance the efficiency of Ca²⁺ uptake.

In fact, using secretory vesicles isolated from adrenal medulla, Bulenda and Gratzl (1985) obtained experimental evidence that only a small fraction of total Ca²⁺ (about 0.1%) is in the free state. In order to elucidate the physiological importance of the vesicle matrix proteins, we determined their Ca²⁺ binding properties under conditions comparable to the composition of the chromaffin vesicle content with respect to ionic strength, pH, and the presence of Mg²⁺. In order to facilitate direct comparison, Ca²⁺ binding to the vesicle matrix proteins and to adenosine triphosphate (ATP), another Ca²⁺ binding compound present within the chromaffin vesicle, was analyzed under identical conditions by means of a specific electrode. It was found that the vesicle matrix protein chromogranin A provides significant amounts of the Ca²⁺ binding sites within chromaffin vesicles.

Experimental Procedures

Materials

EGTA, Mes, Mops, and Hepes were from Serva, Heidelberg. ATP was vanadate free and from Sigma, München. Chelex-100 (200–400 mesh, sodium form) was obtained from Bio-Rad. "Stains-all" was from Aldrich. All other reagents were of analytical grade.

Methods

Isolation of Chromaffin Vesicles. A fraction of crude chromaffin secretory vesicles was obtained from bovine adrenal medulla homogenized in a medium containing 340 mM sucrose and 20 mM MOPS/KOH, pH 7.3, as described earlier (Gratzl et al., 1981). This sample was put on a sucrose step gradient consisting of 2.4/2.0/1.8/1.7 M sucrose in 20 mM MOPS/KOH, pH 7.0, and centrifuged for 1 h at 146000g, in a Beckman L 8-M ultracentrifuge using a 50.2 Ti rotor. In this way mitochondria and lysosomes could be removed as

†This study was supported by the Deutsche Forschungsgemeinschaft (Gr 681/2-2) and by Forschungs schwerpunkt 24 of the State of Baden-Württemberg.

Abbreviations: EGTA, ethylene glycol bis(2-aminoethyl ether)-N,N,N',N' tetraacetic acid; Mes, 2-(N-morpholino)ethanesulfonic acid; Mops, 3-(N-morpholino)propanesulfonic acid; Hepes, N-(2-hydroxyethyl)piperazine-N'2-ethanesulfonic acid; ATP, adenosine triphosphate; Stains-all, 3,3'-diethyl-9-methyl-4,5,4'-difluorobenzothiacarbo cyanine bromide; Tris, tris(hydroxymethyl)aminomethane; SDS–PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis.
described for a similar gradient centrifuged in a swing out rotor (Gratzl, 1984). After centrifugation, the secretory vesicles were concentrated around the 1.8-2.0 M sucrose interface. In order to lower the sucrose concentration, the collected secretory vesicles were dialyzed for 60 min in homogenization buffer and condensed by centrifugation (146000g, 30 min). Afterward they were lysed in 20 mM MOPS/KOH, pH 7.0 (1 volume of vesicle fraction diluted with 40 volumes of buffer). The secretory vesicle membranes were spun down by centrifugation (146000g, for 30 min), and the supernatant was lyophilized. The material obtained was dissolved in a small volume of bidistilled water and dialyzed twice for 24 h in 20 mM MOPS/KOH, pH 7.0, in order to remove catecholamines, nucleotides, and other low molecular weight components.

Measurement of Ca$^{2+}$ Binding. Prior to the analysis of Ca$^{2+}$ binding properties, isolated matrix proteins were dialyzed overnight in a large volume of 20 mM MOPS/KOH or NaOH at pH 7.0 either alone or also containing additional K$^+$, Na$^+$, or Mg$^{2+}$. It should be noted that the original buffer, due to pH adjustment, already contained 15 mM K$^+$ or Na$^+$. Mes and Hepes were used as buffer substances at pH 6.0 and 8.0, respectively. All buffers used for dialysis also contained 0.5 g of Chelex-100/200 mL, in order to remove residual Ca$^{2+}$ before titration. After dialysis, Ca$^{2+}$ concentrations between 10$^{-6}$ and 10$^{-7}$ were determined in the samples. The Ca$^{2+}$ concentrations were quantified by using a Ca$^{2+}$-selective minielecetrode operating with a neutral carrier incorporated in a polyvinyl chloride membrane (Simon et al., 1978). The difference in voltage between the Ca$^{2+}$ electrode and the reference electrode was recorded with a Knick pH meter connected to a chart recorder. The calibration curve of this electrode was linear down to 10$^{-6}$ M Ca$^{2+}$. The dialyzed chromaffin vesicle matrix proteins were titrated in a volume of 1 mL (0.3-0.4 mg of protein/mL) with 5 or 10 mM Ca$^{2+}$ stock solutions. The amount of bound Ca$^{2+}$ was calculated from the difference between free Ca$^{2+}$ in pure buffer and free Ca$^{2+}$ in buffer containing the vesicle matrix proteins. Scatchard plots were constructed with the aid of linear regression analysis using values up to 100 nmol of Ca$^{2+}$/mg of protein. Ca$^{2+}$ binding to ATP (0.5 mM) was measured in freshly prepared solutions from a commercial preparation. One drawback of this technique is that one titration takes about 20-30 min. The instability of nucleotides during this period might slightly modify their binding data.

Other Procedures. Protein was determined according to Lowry et al. (1951). Chromogranin A was purified according to Kiang et al. (1982).

Electrophoresis and Nitrocellulose Blotting. Gel electrophoresis was performed according to Laemmli (1970) with 10% acrylamide in the separation gel and 4% acrylamide in the stacking gel.

After electrophoresis the separated proteins were blotted onto nitrocellulose. The transfer buffer contained 192 mM glycine/25 mM Tris/20% methanol (final pH 8.3). The blotting apparatus was supplied with 60 min in homogenization buffer and condensed by centrifugation (146000g, 30 min). Afterward they were lysed in 20 mM MOPS/KOH, pH 7.0 (1 volume of vesicle fraction diluted with 40 volumes of buffer). The secretory vesicle membranes were spun down by centrifugation (146000g, for 30 min), and the supernatant was lyophilized. The material obtained was dissolved in a small volume of bidistilled water and dialyzed twice for 24 h in 20 mM MOPS/KOH, pH 7.0, in order to remove catecholamines, nucleotides, and other low molecular weight components.

RESULTS

Chromaffin vesicles isolated from adrenal medulla contain in addition to catecholamines a variety of small molecular weight substances, (glyco)proteins, and proteoglycans [cf. Winkler & Carmichael (1982)]. Although the overall composition of the vesicle interior is well-defined, the molecular organization of these contents within the vesicle core is largely unknown. Recently we learned that chromaffin vesicle matrix proteins avidly bind to Ca$^{2+}$ (Reifen & Gratzl, 1986). Ca$^{2+}$ autoradiography of these proteins separated by SDS-PAGE and blotted onto nitrocellulose indicated that Ca$^{2+}$ binding is mainly limited to a protein with the electrophoretic properties of chromogranin A. Ca$^{2+}$ binding to purified chromogranin A is shown in Figure 1. This protein, separated as described (see Methods), displays one major band in the protein stain (lane B). Bound 45Ca$^{2+}$ (lane C) and staining with a carbocyanine dye (lane A), which has been observed to interact with chromogranin A and a variety of Ca$^{2+}$ binding proteins (Campbell et al., 1983; Reifen & Gratzl, 1986), exhibit bands in corresponding locations.

Since chromogranin A is obviously the only Ca$^{2+}$ binding protein present in the chromaffin vesicle matrix, we further analyzed the Ca$^{2+}$ binding properties using a dialyzed chromaffin vesicle content preparation.

As shown in Figure 2, the number of binding sites for Ca$^{2+}$ provided by the chromaffin vesicle matrix proteins [$n = 180$ nmol of Ca$^{2+}$/mg of protein (Figure 2A)] does not change with pH. However, there affinity is sensitive to the pH of the medium. At pH 7 the proteins bind Ca$^{2+}$ with a K_d of 50 pM (Figure 2A). These values should be compared with the data on Ca$^{2+}$ binding to ATP, another chelating substance present within chromaffin vesicles. Earlier investigation of the divalent cation/ATP equilibria, possibly due to the different techniques used, yielded quite different values [cf. Yount et al. (1971) and Mohan & Rechnitz (1972)]. In order to facilitate direct comparison with the proteins, we determined Ca$^{2+}$ binding to ATP in parallel under identical conditions. In this way we found that ATP, at pH 7, binds 0.8 μmol of Ca$^{2+}$/μmol with a K_d of 15 μM (Figure 2B), i.e., with a higher affinity than that of the proteins investigated. Interestingly enough, in contrast to the situation observed at pH 7, the affinities at pH 6 of Ca$^{2+}$ for ATP (70 μM) and proteins (90 μM) are very similar (Figure 2A,B). This is due to the greater influence of the pH change on the affinity of Ca$^{2+}$ binding to ATP (Figure 2B).
Determined.

Thus, it seemed to be interesting to know whether both sub-matrix proteins, we added increasing amounts of the proteins to Na+ drastically modify the dye matrix proteins. At pH 6 which is closer to the pH found in intact chromaffin vesicles, addition of 15 mM or 35 mM Na+ results in a considerable decrease of the binding affinity vs. B). Addition of 15 mM Na+ results in a marked decrease of the binding affinity for Ca2+ for both components, but the decrease in the affinity of ATP for Ca2+ much more than Ca2+ binding to the chromaffin vesicle matrix proteins.

Since pH 6 is closer to the pH present within the intact chromaffin vesicle (Johnson & Scarpa, 1976; Pollard et al., 1976; Bashford et al., 1976), most of the following experiments were carried out at this pH. The affinity of Ca2+ binding to chromaffin vesicle matrix proteins is decreased by monovalent ions and by Mg2+ at pH 6 (Figure 3). Addition of 15 mM Na+ results in a considerable decrease of the binding affinity (Kd = 340 μM). In the presence of 0.5 mM Mg2+, a Kd of 240 μM was found. There was no difference whether K+ or Na+ was used in these experiments (data not shown).

Mg2+ decreases also the affinity of Ca2+ to ATP (Figure 4). In the presence of 0.5 mM Mg2+ a Kd of 340 μM was determined. K+ at 15 mM reduces the binding constant in a similar magnitude as does 0.1 mM Mg2+ (not shown).

Studies using total chromaffin vesicle matrix proteins (Reiffen & Gratzl, 1986) as well as experiments with purified chromogranin A (Figure 1) demonstrated that Ca2+ binding and carbocyanine binding are shared by the same proteins. Thus, it seemed to be interesting to know whether both substances bind to the same sites or not. When studying the interaction of the carbocyanine dye with the chromaffin vesicle matrix proteins, we added increasing amounts of the proteins to 20 μM Stains-all. As can be seen in Figure 5, only a few micrograms of protein per milliliter drastically modify the dye spectrum. As the concentration of protein increases, the Stains-all peak (510 nm) decreases and the protein dye complex (615 nm) increases in parallel. In further experiments we adjusted the amount of free Ca2+ with the specific electrode to 100 μM (i.e., twice the value of the Kd at pH 7 for Ca2+ binding to the proteins). Since we did not observe quantitative or qualitative changes in the spectra, we concluded that Ca2+ and Stains-all bind to different sites of the matrix proteins.

DISCUSSION

The characterization of the Ca2+ binding properties of the chromaffin vesicle matrix proteins as well as those for ATP, the latter constituting the main small molecular weight substance capable of binding to Ca2+, was carried out in order to clarify the possible molecular organization of the interior of the chromaffin vesicle. This in turn may help to understand the function of the Ca2+ transport systems present in the chromaffin vesicle membrane.

Chromaffin vesicles contain about 2.5 μmol of catecholamines/mg of protein (cf. Winkler & Carmichael [1982]). Since the molar ratio of ATP to catecholamines is roughly 1:4, about 600 nmol of ATP/mg of protein is present within the vesicles which can bind about 500 nmol of Ca2+ (Figure 2B).
Le., they could also have a regulatory function as does the pH. It may very well be that the activity of this enzyme plays a direct role in the control of intravesicular Ca²⁺ binding.

At pH 6, the affinity of the two components for Ca²⁺ is very similar (see Figure 2); they compete for the Ca²⁺ ion. The affinities may be even more alike in intact vesicles, where a lower pH (around 5.5) has been determined (Johnson et al., 1965; Phillips et al., 1977; Krieger-Brauer Gratzl, 1982).

The maximal Ca²⁺ binding to the proteins or ATP was neither changed by variation of the pH (Figure 2) nor changed by addition of monovalent cations or Mg²⁺ (Figures 3 and 4). However, increasing the ionic strength or adding Mg²⁺ results in a further decrease in the affinity to Ca²⁺. Ca²⁺ binding to ATP after addition of 15 mM K⁺ exhibits almost the identical value as found with 0.1 mM Mg²⁺ present (170 µM) whereas Ca²⁺ binding to the chromaffin vesicle content proteins exhibit a Kd of 340 µM in the presence of 15 mM Na⁺, which is to be compared to that found with 0.5 mM Mg²⁺ present (240 µM). Certainly, the dilute solutions of the chromaffin vesicle matrix proteins investigated here cannot directly be compared with the densely packed chromaffin vesicle content. Still it can be concluded that the affinity of Ca²⁺ binding to the individual components, namely, the matrix proteins and ATP, is modified by other ions present within the chromaffin vesicle; i.e., they could also have a regulatory function as does the pH of the intravesicular compartment.

By means of histochemical and biochemical techniques, Ca²⁺ has been found in the secretory vesicles of the adrenal medulla (Ravazzola, 1976), the pancreatic islet (Herman et al., 1973), and the adenohypophysis (Stoeckel et al., 1975). It is worth noting that chromogranin A exists not only in the chromaffin cell but also in other endocrine cells: It has been found in pancreatic islet cells, C-cells of the thyroid gland, chief cells of the parathyroid gland, and the adenohypophysis (O'Connor et al., 1983; O'Connor & Frigon, 1984; Cohn et al., 1982; Lloyd & Wilson, 1983). Within the pancreatic islet it seems to coexist with insulin, glucagon, and somatostatin, not only within the same cell but even within the same vesicle (Ehrhart et al., 1986).

ATP is present in chromaffin vesicles in high amounts [cf. Winkler & Carmichael (1982)]. However, this nucleotide is much less abundant (at least 2 orders of magnitude) in insulin-containing (Leitner et al., 1975) or in neurohypophyseal vesicles (Poisner & Douglas, 1968; Gratzl et al., 1980). Thus, the matrix proteins may be even more important for storage and binding of Ca²⁺ in these vesicles than in chromaffin vesicles.

The Ca²⁺ binding properties of chromaffin vesicle matrix proteins can be compared with those of calsequestrin, a well-known Ca²⁺ binding protein present in the lumen of the sarcoplasmic reticulum. Calsequestrin binds nearly 1000 nmol of Ca²⁺/mg of protein, and Mac Lennan and Wong (1971) measured a dissociation constant for the Ca²⁺-calsequestrin complex of about 40 µM at pH 7.5, which is very close to the value of 50 µM at pH 7 determined in this study for the chromaffin vesicle matrix protein. Increasing the ionic strength shifts the dissociation constant for Ca²⁺-calsequestrin binding to higher values (about 1 mM) but does not change the number of binding sites (Ostwald & Mac Lennan, 1974; Mac Lennan, 1974; Ikemoto et al., 1972). The same is true for the chromaffin vesicle matrix proteins (this study). Mg²⁺ decreases Ca²⁺ binding affinity of both types of proteins (Mac Lennan & Wong, 1971; Ikemoto et al., 1973).

The same influence of the monovalent ion K⁺ in increasing the dissociation constant has also been reported for the S-100b protein (Mani et al., 1983).

The specific interaction of the major matrix protein of chromaffin vesicles chromogranin A (Reiffen & Gratzl, 1986; this study) with a positively charged carbocyanine dye is an interesting finding that parallels observations reported for other Ca²⁺ binding proteins (Campbell et al., 1983). Since the binding of the dye is not affected by low concentrations of Ca²⁺ (see Results), the binding sites for both substances must be regarded as different. This is in contrast to the properties of calmodulin, where the dye binding is sensitive to the presence of Ca²⁺ (Caday & Steiner, 1985). The low amount of protein required for the dramatic change in the dye spectrum opens a new possibility for a simple and efficient assay for chromogranins.

Acknowledgments

We thank I. Lind and P. Welk for excellent technical assistance and B. Mader for the preparation of the manuscript.
We thank Prof. Simon, Zürich, for the membrane used for the Ca2+ electrode. We also thank the local slaughterhouse for providing the bovine adrenal glands.

REFERENCES
