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Abstract
Word alignments are useful for tasks like sta-
tistical and neural machine translation (NMT)
and annotation projection. Statistical word
aligners perform well, as do methods that ex-
tract alignments jointly with translations in
NMT. However, most approaches require par-
allel training data and quality decreases as
less training data is available. We propose
word alignment methods that require no par-
allel data. The key idea is to leverage multilin-
gual word embeddings – both static and con-
textualized – for word alignment. Our multi-
lingual embeddings are created from monolin-
gual data only without relying on any parallel
data or dictionaries. We find that alignments
created from embeddings are competitive and
mostly superior to traditional statistical align-
ers – even in scenarios with abundant parallel
data. For example, for a set of 100k parallel
sentences, contextualized embeddings achieve
a word alignment F1 for English-German that
is more than 5% higher (absolute) than eflo-
mal, a high quality alignment model.

1 Introduction

Word alignments are essential for statistical ma-
chine translation and useful in NMT, e.g., for im-
posing priors on attention matrices (Liu et al., 2016;
Alkhouli and Ney, 2017; Alkhouli et al., 2018)
or for decoding (Alkhouli et al., 2016; Press and
Smith, 2018). Further, word alignments have been
successfully used in a range of tasks such as ty-
pological analysis (Lewis and Xia, 2008; Östling,
2015b), annotation projection (Yarowsky et al.,
2001; Hwa et al., 2002; Padó and Lapata, 2009)
and creating multilingual embeddings (Guo et al.,
2016; Ammar et al., 2016; Dufter et al., 2018).

Statistical word aligners such as the IBM models
(Brown et al., 1993) and their implementations fast-
align (Dyer et al., 2013), GIZA++ (Och and Ney,

∗ Equal contribution - random order.
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Figure 1: Algorithms that do not rely on parallel train-
ing data can align distant language pairs (e.g., German-
Uzbek in top) or even mixed sentences (bottom). Align-
ments are created with our IterMax algorithm.

2003), as well as newer models such as eflomal
(Östling and Tiedemann, 2016) are widely used for
alignment. With the rise of NMT (Bahdanau et al.,
2014), attempts have been made to interpret atten-
tion matrices as soft word alignments (Koehn and
Knowles, 2017; Ghader and Monz, 2017). Several
methods create alignments from attention matrices
(Peter et al., 2017; Li et al., 2018; Zenkel et al.,
2019) or pursue a multitask approach for alignment
and translation (Chen et al., 2016; Garg et al., 2019).
However, most systems require parallel data (a suf-
ficient amount to train high quality NMT systems)
and their performance deteriorates when parallel
text is scarce (Tables 1–2 in (Och and Ney, 2003)).

Recent unsupervised multilingual embedding al-
gorithms that use only non-parallel data provide
high quality static (Artetxe et al., 2018a; Conneau
et al., 2018) and contextualized embeddings (De-
vlin et al., 2019; Liu et al., 2019). Our key idea
is to leverage these embeddings for word align-
ments – without relying on parallel data. Requir-
ing no or little parallel data is advantageous, e.g.,
in the low-resource case and in domain-specific
settings without parallel data. A lack of parallel
data cannot be easily remedied: mining parallel
sentences is possible (Schwenk et al., 2019) but
assumes that monolingual corpora contain paral-
lel sentences. We extract word alignments from
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similarity matrices induced from pretrained mul-
tilingual word embeddings. Overall we find the
quality of these alignments to be competitive with
the state of the art.

Contributions: (1) We introduce three new
alignment methods based on the matrix of em-
bedding similarities. (2) We propose two post-
processing algorithms that handle null words and
integrate positional information. (3) We show
that word alignments obtained from multilingual
pretrained language models have comparable and
mostly superior performance to strong statistical
word aligners like eflomal. (4) We provide ev-
idence that subword processing is beneficial for
aligning rare words. We bundle the source code
of our methods in a tool called SimAlign, which
is available online.1 An interactive online demo is
available.2

2 Methods

2.1 Alignments from Similarity Matrices

We propose three methods to obtain alignments
from similarity matrices. ArgMax is a simple base-
line, IterMax a novel iterative algorithm, and Match
a graph-theoretical method based on identifying
matchings in a bipartite graph.

Consider parallel sentences s(e), s(f), with
lengths le, lf in languages e, f . Assume we have
access to some embedding function E that assigns
each word in a sentence a d-dimensional vector,
i.e., E(s(k)) ∈ Rlk×d for k ∈ {e, f}. Let E(s(k))i
denote the vector of the i-th word in sentence
s(k). We define the similarity matrix as the matrix
S ∈ [0, 1]le×lf induced by the embeddings where
Sij := sim

(
E(s(e))i, E(s(f))j

)
is some normal-

ized measure of similarity, e.g., cosine-similarity
normalized to be between 0 and 1. We now de-
scribe our methods for extracting alignments from
S, i.e., obtaining a binary matrix A ∈ {0, 1}le×lf .

Argmax. A simple baseline is to align each
word in sentence s(e) with the most similar word
in s(f) and vice versa. That is, we set Aij = 1 if

(i = argmax
l
Sl,j) ∧ (j = argmax

l
Si,l)

and Aij = 0 else. In case of ties, which are un-
likely in similarity matrices, we choose the smaller
index. If all entries in a row i or column j are 0

1https://github.com/masoudjs/simalign
2http://simalign.cis.lmu.de/

Algorithm 1 Itermax.
1: procedure ITERMAX(S, nmax , α ∈ [0, 1])
2: A,M = zeros like(S), zeros like(S)
3: for n ∈ [1, . . . , nmax ] do
4: ∀i, j :

5: Mij =


1 if max

(∑le
l=0Alj ,

∑lf
l=0Ail

)
= 0

0 if min
(∑le

l=0Alj ,
∑lf
l=0Ail

)
> 0

α else
6: Ato add = get argmax alignments(S �M)
7: A = A+Ato add
8: end for
9: return A

10: end procedure

Figure 2: Description of the Itermax algorithm. ze-
ros like yields a matrix with zeros and with same shape
as the input, get argmax alignments returns alignments
obtained from the Argmax Method, � is elementwise
multiplication.

we set Aij = 0. Similar methods have been ap-
plied to Dice coefficients (Och and Ney, 2003) and
attention matrices (Garg et al., 2019).

Itermax. Argmax identifies only few alignment
edges for many sentences because mutual argmaxes
can be rare. As a remedy we propose to apply
Argmax iteratively. To this end, we modify the sim-
ilarity matrix conditioned on the alignment edges
found in a previous iteration: if two words i and
j have both been aligned, we zero out the similar-
ity. Similarly if neither is aligned, we leave the
similarity unchanged. In case only one of them is
aligned, we multiply the similarity with a discount
factor α ∈ [0, 1]. Intuitively, this encourages the
model to focus on unaligned word pairs. However,
if the similarity with an already aligned word is ex-
ceptionally high, the model can add an additional
edge. Note that this explicitly allows one word to
be aligned to multiple other words. For details on
the algorithm see Figure 2.

Match. Argmax finds a local, not a global opti-
mum and Itermax is a greedy algorithm. To find
global optima, we frame alignment as an assign-
ment problem: we search for a maximum-weight
maximal matching (Ramshaw and Tarjan, 2012) in
the bipartite weighted graph which is induced by
the similarity matrix. This optimization problem is
given by

A∗ = arg max
A∈{0,1}le×lf

le∑
i=1

lf∑
j=1

AijSij

https://github.com/masoudjs/simalign
http://simalign.cis.lmu.de/


subject toA being a matching (i.e., each node has at
most one edge) that is maximal (i.e., no additional
edges can be added). There are known algorithms
to solve the above problem in polynomial time
(Kuhn, 1955).

Note that alignments generated with the match-
ing method are inherently bidirectional and do not
require any symmetrization as post-processing.

2.2 Post-Processing Alignments

Distortion Correction [Dist]. Distortion, as intro-
duced in IBM Model 2, is essential for alignments
based on non-contextualized embeddings since the
similarity of two words is solely based on their
surface form, independent of position. To penalize
high distortion, we multiply the similarity matrix
S componentwise with

Pi,j = 1− κ (i/le − j/lf )2 ,

where κ is a hyperparameter to scale the distortion
matrix P between [(1 − κ), 1]. We use κ = 0.5.
See §4.1 for different values. We can interpret
this as imposing a locality-preserving prior: given
a choice, a word should be aligned to a word
with a similar relative position ((i/le − j/lf )2
close to 0) rather than a more distant word (large
(i/le − j/lf )2).

Null. Null words model untranslated words
and are an important part of alignment models (al-
though questioned by Schulz et al. (2016)). Given
an alignment matrixA, we remove alignment edges
when the normalized entropy of the similarity dis-
tribution is above a threshold τ , a hyperparameter.
We consider normalized entropy (i.e., entropy di-
vided by the log of sentence length) to account for
different sentence lengths. Intuitively, if a word is
not particularly similar to any of the words in the
target sentence, we do not align it. That is, we set
Aij = 0 if

min(−
∑le

k=1S
h
iklogS

h
ik

log le
,−
∑lf

k=1S
v
kj logS

v
kj

log lf
)>τ,

where Sh
ik := Sik/

∑le
j=1 Sij , and Sv

kj :=

Skj/
∑lf

i=1 Sij . As the ideal value of τ depends
on the actual similarity scores we set τ to a per-
centile of the entropy values of similarity distribu-
tions in all aligned edges. We investigate different
percentiles in §4.1.

2.3 Embedding Learning

Static. We train monolingual embeddings with
fastText (Bojanowski et al., 2017). Subsequently
we use VecMap (Artetxe et al., 2018b) to map
the embeddings into a common multilingual space.
Note that this algorithm works without any crosslin-
gual supervision (e.g., multilingual dictionaries).
We use the same procedure for word and subword
levels. We use the label fastText to refer to these
embeddings as well as to the word alignments in-
duced by them.

Contextualized. We use the multilingual BERT
model (mBERT).3 It is pretrained on the 104 largest
Wikipedia languages. This model only provides
embeddings on the subword level. To obtain a
word embedding, we simply average the vectors
of its subwords. We consider word representations
from all 12 layers as well as the concatenation of
all layers. Note that the model is not finetuned.
We denote this method as mBERT[i] (when using
embeddings from the i-th layer, where 0 means us-
ing the non-contextualized initial embedding layer)
and mBERT[conc] (for concatenation).

In addition, we use XLM-RoBERTa base (Con-
neau et al., 2019), which is pretrained on 100 lan-
guages on CommonCrawl data. We denote align-
ments obtained using the embeddings from the i-th
layer by XLM-R[i], analogously to mBERT.

2.4 Word and Subword Alignments

We investigate both alignments between subwords
such as BPE/wordpiece (Sennrich et al., 2016)
(which are widely used for contextualized language
models) and words. For the word level, we use
NLTK tokenizer (Bird et al., 2009) (e.g., for tok-
enizing Wikipedia in order to train fastText). For
the subword level, we generally use multilingual
BERT’s vocabulary3 and BERT’s tokenizer.4 Only
for XLM-R we use the XLM-R vocabulary.

As gold standards are all word-level, we can only
evaluate on the word level. Each gold standard
comes with a gold tokenization, thus no additional
tokenization is necessary. To convert subword to
word alignments for evaluation we apply the rule:
“two words are aligned if any of their subwords are
aligned” (see Figure 3). Thus a single word can be
aligned with multiple other words.

3https://github.com/google-research/
bert/blob/master/multilingual.md

4https://github.com/google-research/
bert

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert
https://github.com/google-research/bert


Ski excursions are excellent .

Ski ##ausflüge sind hervor ##ragend .

Ski excursions are excellent .
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Figure 3: Subword alignments are converted to word
alignments for evaluation.

2.5 Baselines
We compare to three popular statistical alignment
models that all require parallel training data. fast-
align (Dyer et al., 2013) is an implementation of
an alignment algorithm based on IBM Model 2.
It is popular because of its speed and high qual-
ity. eflomal5 (based on efmaral by Östling and
Tiedemann (2016)), a Bayesian model with Markov
Chain Monte Carlo inference, is claimed to outper-
form fast-align on speed and quality (Östling and
Tiedemann, 2016). Further we use the widely used
software package GIZA++ (Och and Ney, 2003),
which combines IBM Alignment Models. We use
its standard settings: 5 iterations each for the HMM
model, IBM Model 1, 3 and 4 with p0 = 0.98.

Symmetrization. Traditional word alignment
models create forward and backward alignments
and then symmetrize them (Koehn, 2010). We
compared the symmetrization methods grow-diag-
final-and (GDFA) and intersection and found them
to perform comparably. See Table 7 in the appendix
for a comparison. We use GDFA throughout the
paper.

3 Experiments

3.1 Data
We work with a diverse set of 7 languages. As
test data we use three language pairs from the
WPT2005 shared task:6 English-Hindi, English-
French (Och and Ney, 2000), and English-
Romanian (Mihalcea and Pedersen, 2003). In
addition, we use Europarl gold alignments7 for
English-German, gold alignments by Tavakoli and
Faili (2014) for English-Persian, and by Bojar and
Prokopová (2006) for English-Czech. Note that

5https://github.com/robertostling/
eflomal

6http://web.eecs.umich.edu/˜mihalcea/
wpt05/

7www-i6.informatik.rwth-aachen.de/
goldAlignment/

the Persian gold standard is lowercased. FAS, CES
and RON contain only sure edges and no possible
edges.

For models requiring parallel training data we
select additional parallel training data that is con-
sistent with the target domain where available. See
Table 1 for an overview of the used data as well as
the corresponding size. Unless indicated otherwise
we use the whole parallel training data for training
of eflomal, fast-align and GIZA++. We show the
effect of adding more or less training data in Fig-
ure 7. Since mBERT is pretrained on Wikipedia,
we train fastText embeddings on Wikipedia as well.
For hyperparameters of all models see Table 8 in
the appendix.

3.2 Evaluation Measures
Given a set of predicted alignment edges A and a
set of sure (possible) gold standard edges S (P ),
we use the following evaluation measures:

prec. =
|A ∩ P |
|A|

rec. =
|A ∩ S|
|S|

F1 =
2 prec. rec.
prec. + rec.

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

,

where | · | denotes the cardinality of a set. This
is the standard way of evaluating alignments (Och
and Ney, 2003).

4 Results

Given the large amount of possible experiments
when considering 6 language pairs we do not have
space to present all numbers for all languages. If
we show results only for one pair, we choose ENG-
DEU as it is an established and well-known dataset
(EuroParl). If we show results for more languages
we fall back to DEU, CES and HIN, to show effects
on a mid-resource morphologically rich language
(CES) and a low-resource language written in a
different script (HIN).

4.1 Hyperparameter Investigation
Layers. Figure 4 shows a parabolic trend across
layers of mBERT as well as of XLM-R with layer
8 yielding the best performance. This is consistent
with other work (Voita et al., 2019; Tenney et al.,
2019): in the first layers the contextualization is

https://github.com/robertostling/eflomal
https://github.com/robertostling/eflomal
http://web.eecs.umich.edu/~mihalcea/wpt05/
http://web.eecs.umich.edu/~mihalcea/wpt05/
www-i6.informatik.rwth-aachen.de/goldAlignment/
www-i6.informatik.rwth-aachen.de/goldAlignment/


Gold Gold St. Parallel Parallel Wikipedia
Lang. Standard Size Data Data Size Size

ENG-CES (Bojar and Prokopová, 2006) 2501 EuroParl (Koehn, 2005) 646K 8M
ENG-DEU EuroParla 508 EuroParl (Koehn, 2005) 1920K 48M
ENG-FAS (Tavakoli and Faili, 2014) 400 TEP (Pilevar et al., 2011) 600K 5M
ENG-FRA WPT2005, (Och and Ney, 2000), 447 Hansardsb(Germann, 2001) 1130K 32M
ENG-HIN WPT2005c 90 Emille (McEnery et al., 2000) 3K 1M
ENG-RON WPT2005, (Mihalcea and Pedersen, 2003) 203 Constitution, Newspaperd 50K 3M
a www-i6.informatik.rwth-aachen.de/goldAlignment/
b https://www.isi.edu/natural-language/download/hansard/index.html
c http://web.eecs.umich.edu/ mihalcea/wpt05/
d http://web.eecs.umich.edu/ mihalcea/wpt05/

Table 1: Overview of datasets. “Size” refers to the number of sentences. “Parallel Data Size” refers to the number
of parallel sentences in addition to the gold alignments. Our sentence tokenized version of the English Wikipedia
has 105M sentences.

Figure 4: Word alignment performance across layers
of mBERT (top) and XLM-R (bottom). Results are F1

on subword level with Argmax and no post-processing
applied.

too weak for high-quality alignments while the last
layers are too specialized on the pretraining task
(masked language modeling).

Itermax. Table 2 shows results for Argmax (i.e.,
1 Iteration) as well as Itermax (i.e., 2 or more it-
erations of Argmax). As expected, with more iter-
ations precision drops in favor of recall. Overall
Itermax achieves higher F1 scores for the three lan-
guage pairs (equal for ENG-CES). For Hindi the
performance increase is the highest. We hypoth-
esize that for more distant languages Itermax is

ENG-DEU ENG-CES ENG-HIN
Emb. Iter. α Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

mBERT[8]

1 - .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .53 .47

2
.90 .85 .77 .81 .19 .87 .86 .87 .14 .75 .46 .57 .43
.95 .83 .80 .81 .19 .85 .89 .87 .13 .73 .48 .58 .42
1 .77 .79 .78 .22 .80 .86 .83 .17 .63 .46 .53 .47

3
.90 .81 .80 .80 .20 .83 .88 .85 .15 .70 .49 .57 .43
.95 .78 .83 .81 .20 .81 .91 .86 .15 .68 .52 .59 .41
1 .73 .83 .77 .23 .76 .91 .82 .18 .58 .51 .54 .46

fastText

1 - .81 .48 .60 .40 .86 .59 .70 .30 .75 .35 .48 .52

2
.90 .69 .56 .62 .38 .74 .69 .71 .29 .63 .42 .50 .50
.95 .66 .56 .61 .39 .71 .69 .70 .30 .59 .41 .48 .52
1 .59 .55 .57 .43 .62 .65 .63 .37 .53 .39 .45 .55

3
.90 .63 .59 .61 .39 .67 .72 .70 .31 .57 .43 .49 .51
.95 .59 .59 .59 .41 .63 .73 .68 .33 .53 .44 .48 .52
1 .53 .58 .55 .45 .55 .70 .62 .39 .48 .43 .45 .55

Table 2: Itermax with different number of iterations as
well as different α. Results are on word level.

more beneficial as similarity between wordpieces
may be generally lower, thus exhibiting fewer mu-
tual argmaxes. For the rest of the paper we use for
Itermax 2 Iterations with α = 0.9 as it exhibits best
performance (5 out of 6 wins in Table 2).

Hyperparameters κ and τ . In Figure 5 we plot
the performance for different values of κ. We ob-
serve that introducing distortion indeed helps (i.e.,
κ > 0) but the actual value is not decisive for
performance. This is rather intuitive, as a small ad-
justment to the similarities is sufficient while larger
adjustments do not necessarily hurt or change the
Argmax or the optimal point in the Matching Algo-
rithm. We choose κ = 0.5.

For τ in null-word post-processing, we plot pre-
cision, recall and F1 in Figure 6 when assigning
τ different percentile values. Recall that values
for τ depend on the similarity distribution of all
aligned edges. As expected, when using the 100
percentile no edges are removed and thus the per-
formance is not changed compared to not having
a null-word post-processing. With decreasing the
value of τ the precision increases and recall goes
down, while F1 remains fairly stable. We assign τ



Figure 5: F1 for ENG-DEU with fastText (Argmax) on
word level for different values of κ.

Figure 6: Performance for ENG-DEU with mBERT[8]
(Match) on word level when setting the value of τ to dif-
ferent percentiles. τ can be used for trading precision
against recall. F1 remains stable although it decreases
slightly when assigning τ the value of a smaller per-
centile (e.g., 80)

the 95th percentile from now on.
Table 3 compares alignment and post-

processing methods. Argmax and Itermax
generally have higher precision whereas Match has
higher recall. Adding Null almost always increases
precision, but at the cost of recall, resulting
mostly in a lower F1 score. Adding a distortion
prior boosts performance for static embeddings,
e.g., from .70 to .77 for ENG-CES Argmax F1.
However, for Hindi a distortion prior is harmful.
Further Dist has little and sometimes harmful
effects on mBERT indicating that mBERT’s
contextualized representations already match well
across languages.

To summarize: Itermax exhibits the best and
most stable performance, for high precision align-
ments one should use Argmax, for high recall
Match is recommended. A distortion prior is rec-
ommended for static embeddings (except for HIN).
Null should be applied when one wants to push pre-

ENG-DEU ENG-CES ENG-HIN
Emb. Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .81 .48 .60 .40 .86 .59 .70 .30 .75 .35 .48 .52
+Dist .84 .53 .65 .35 .89 .68 .77 .23 .64 .29 .40 .60
+Null .81 .46 .59 .41 .86 .56 .68 .32 .74 .33 .46 .54

Itermax .66 .56 .61 .39 .71 .69 .70 .30 .59 .41 .48 .52
+Dist .71 .61 .66 .34 .75 .76 .76 .25 .54 .36 .43 .57
+Null .69 .53 .60 .40 .74 .66 .70 .30 .63 .39 .48 .52

Match .60 .58 .59 .41 .65 .71 .68 .32 .55 .42 .48 .52
+Dist .67 .64 .65 .35 .72 .78 .75 .25 .49 .38 .43 .57
+Null .61 .56 .58 .42 .66 .69 .67 .33 .56 .41 .47 .53

m
B

E
R

T
[8

]

Argmax .92 .69 .79 .21 .95 .80 .87 .13 .84 .39 .53 .47
+Dist .91 .67 .77 .23 .93 .79 .85 .15 .68 .29 .41 .60
+Null .93 .67 .78 .22 .95 .77 .85 .15 .85 .38 .52 .48

Itermax .83 .80 .81 .19 .85 .89 .87 .13 .73 .48 .58 .42
+Dist .82 .75 .79 .22 .84 .85 .85 .15 .56 .34 .42 .58
+Null .86 .75 .80 .20 .88 .84 .86 .14 .76 .45 .56 .44

Match .78 .74 .76 .24 .81 .85 .83 .17 .67 .51 .58 .42
+Dist .75 .71 .73 .27 .79 .83 .81 .20 .45 .34 .39 .61
+Null .80 .73 .76 .24 .83 .83 .83 .17 .68 .50 .58 .43

Table 3: Comparison of methods for inducing align-
ments from similarity matrices. All results are word-
level. Best result per embedding type and method
across columns in bold.

cision even higher (e.g., for annotation projection).

4.2 Comparison with SoTA

Overall. Table 4 shows that mBERT and XLM-
R consistently perform well. Our three baselines,
eflomal, fast-align and GIZA++, are mostly outper-
formed (except for RON). XLM-R yields mostly
higher values than mBERT. In comparison with
other published numbers, alignments from contex-
tualized embeddings outperform them or are almost
on-par.

Only Garg et al. (2019) has higher performance
for ENG-DEU and ENG-FRA. They train a mul-
titask NMT system. However, extracting align-
ments from similarity matrices is a very simple and
efficient method which yields surprisingly strong
performance – we attribute this to the strong con-
textualization in mBERT and XLM-R.

Numbers for ENG-RON are worse than eflomal
and (Östling, 2015a). We will investigate the rea-
son for this more closely.

Surprisingly, fastText outperforms fast-align in
two languages. We consider this surprising as fast-
Text did not have access to parallel data or any
multilingual signal. Thus for very small parallel
corpora (<10K sentences) using fastText embed-
dings is an alternative to fast-align.

Parallel Data. Figure 7 shows that fast-align
and eflomal get better with more training data
with eflomal outperforming fast-align, as expected.
However, even with 1.9M parallel sentences
mBERT outperforms both statistical baselines. fast-
Text becomes competitive for fewer than 1000 par-



ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method F1 AER F1 AER F1 AER F1 AER F1 AER F1 AER

Pr
io

rW
or

k

(Dyer et al., 2011) .21
(Tamura et al., 2014) RNN .93
(Östling, 2015a) .94 .06 .58 .42 .73 .27
(Legrand et al., 2016) .16 .10
(Östling and Tiedemann, 2016) efmaral .08 .47 .28
(Zenkel et al., 2019) fast-align .27 .11 .32
(Zenkel et al., 2019) GIZA++ .21 .06 .28
(Garg et al., 2019) Multitask .16 .05

B
as

el
in

es W
or

d fast-align .76 .25 .71 .29 .46 .54 .84 .18 .34 .66 .68 .33
GIZA++ .82 .18 .77 .23 .57 .43 .92 .09 .48 .52 .69 .32
eflomal .85 .15 .77 .23 .59 .41 .93 .08 .51 .49 .71 .29

Su
bw

or
d fast-align .78 .23 .71 .30 .45 .55 .83 .19 .38 .62 .68 .32

GIZA++ .82 .18 .78 .22 .57 .43 .92 .09 .48 .52 .69 .32
eflomal .84 .17 .76 .24 .63 .37 .92 .09 .52 .48 .72 .28

M
et

ho
ds W

or
d fastText - Argmax .70 .30 .60 .40 .50 .50 .77 .22 .48 .52 .47 .53

mBERT[8] - Argmax .87 .13 .79 .21 .67 .33 .94 .06 .53 .47 .64 .36
XLM-R[8] - Argmax .87 .13 .79 .22 .70 .30 .93 .06 .58 .42 .70 .30

Su
bw

or
d fastText - Argmax .58 .42 .56 .44 .09 .91 .73 .26 .04 .96 .43 .58

mBERT[8] - Argmax .86 .14 .81 .19 .67 .33 .94 .06 .54 .46 .65 .35
XLM-R[8] - Argmax .87 .13 .81 .19 .71 .30 .93 .07 .60 .40 .71 .29

Table 4: Comparison of out methods, baselines and related work. Best overall result per column in bold.

Figure 7: Learning curves of fast-align/eflomal vs.
embedding-based alignments. Results shown are F1 on
word and subword level for ENG-DEU.

allel sentences and outperforms fast-align even
with 10K sentences. The main takeaway is that
mBERT-based alignments, a method that does not
need any parallel training data, are competitive
with state-of-the-art aligners, even in the high re-
source case.

4.3 Words and Subwords
In Table 4 subword processing yields slight im-
provements over word-level processing for most
methods. Only fastText is harmed by subword pro-
cessing. We use VecMap to match (sub)word dis-
tributions across languages. We hypothesize that
it is harder to match subword than word distribu-
tions – this effect is strongest for Persian and Hindi,
probably due to different scripts and thus different
subword distributions. Initial experiments showed
that adding supervision in terms of a dictionary

Figure 8: Results for different frequency bins. An edge
in S, P , or A is attributed to exactly one bin based on
the minimum frequency of the involved words (denoted
by x). Eflomal is trained on 100k parallel sentences.
Word frequencies are computed on this 100k parallel
corpus. For a version with 1000k parallel sentences see
appendix.

helps restore performance. We will investigate this
more closely in future work.

We hypothesize that subword processing is ben-
eficial for aligning rare words. To show this, we
compute our evaluation measures for different fre-
quency bins. More specifically, we only consider
alignment edges for the computation where at least
one of the member words has a certain frequency
in a reference corpus (in our case 100k lines from
the ENG-DEU EuroParl corpus). That is, we only
consider the edge (i, j) in A,S or P if the mini-
mum of the source and target word frequency is in
[γl, γu) where γl and γu are bin boundaries.

Figure 8 shows F1 for different frequency bins.



Figure 9: Comparison of some alignment systems.
Dark/light green: sure/possible edges in the gold stan-
dard. Circles are alignments from the first mentioned
system in the headline, boxes alignemnts from the sec-
ond system.

For rare words both eflomal and mBERT show a
severely decreased performance on word level, but
not on subword level. This provides some evidence
for our hypothesis.

4.4 Alignment Examples

Figure 9 gives alignment examples. One can see
that Itermax adds a correct alignment edge in the
second iteration (Argmax vs Itermax). The distor-
tion prior in fastText does not help in this example,
as it is heavily distorted, but we see that the prior
works as intended (fastText vs fastText+Dist). The
null-alignment removes some wrong edges, but
unfortunately also the correct edge between “be-
troffen” and “concern” (Match vs Match+Null).

5 Related Work

Brown et al. (1993) introduced the IBM models, the
best known statistical word aligners. More recent
aligners, often based on IBM models, include fast-
align (Dyer et al., 2013), GIZA++ (Och and Ney,
2003) and eflomal (Östling and Tiedemann, 2016).
Neural network based extensions of these models
have been considered as well (Ayan et al., 2005; Ho
and Yvon, 2019) . All of these models are trained
on parallel text. Our method instead aligns based
on embeddings that are induced from monolingual
data only. Niehues and Vogel (2008) model the
alignment matrix with a conditional random field.
To train this they require a manually created gold
alignment.

Prior work on using learned representations for
alignment includes (Smadja et al., 1996; Och and
Ney, 2003) (Dice coefficient), (Sabet et al., 2016)
(incorporation of embeddings into IBM models),
(Legrand et al., 2016) (neural network alignment
model) and (Pourdamghani et al., 2018) (embed-
dings are used to encourage words to align to sim-
ilar words). Tamura et al. (2014) use recurrent
neural networks to learn alignments. They use
noise contrastive estimation to avoid supervision.
All of this work requires parallel data. Concurrent
to us, Libovický et al. (2019) find that mBERT
gives raise to good word alignments. But they
do not focus on mBERT’s use as a high perfor-
mance alignment tool, but rather on evaluating the
“language-neutrality” of mBERT.

Attention in NMT (Bahdanau et al., 2014) is
related to a notion of soft alignment, but often de-
viates from conventional word alignments (Ghader
and Monz, 2017; Koehn and Knowles, 2017). One
difference is that standard attention does not have
access to the target word. To address this, Pe-
ter et al. (2017) tailor attention matrices to obtain
higher quality alignments. Li et al. (2018)’s and
Zenkel et al. (2019)’s models perform similarly to
GIZA++. Ding et al. (2019) propose better decod-
ing algorithms to deduce word alignments from
NMT predictions. Chen et al. (2016), Mi et al.
(2016) and Garg et al. (2019) obtain alignments
and translations in a multitask setup. Garg et al.
(2019) find that operating on subword level can
be beneficial for word alignment models. Li et al.
(2019) propose two methods to extract alignments
from NMT models, however they do not outper-
form fast-align. Stengel-Eskin et al. (2019) com-
pute similarity matrices of encoder-decoder repre-



sentations that are leveraged for word alignments,
together with supervised learning which requires
manually annotated alignment. We find our pro-
posed methods to be competitive with some of this
work. Further, in contrast to our work, they all
require parallel data.

6 Conclusion

We presented word aligners based on contextual-
ized (resp. static) embeddings that perform better
than (resp. comparably with) statistical word align-
ers. Our method does not require parallel data and
is particularly useful for scenarios where a low or
medium number of parallel sentences need to be
aligned, but no additional parallel data is available.
For a set of 100k parallel sentences, contextualized
embeddings achieve an alignment F1 that is 5%
higher (absolute) than eflomal. In future work we
plan to investigate how to leverage existing parallel
data effectively in combination with our proposed
methods.
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a Zentrum Digitalisierung.Bayern fellowship
awarded to the second author. This work was
supported by the European Research Council (#
740516). We thank Matthias Huck, Jindřich Li-
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and valuable comments. Thanks to Jindřich for
pointing out that mBERT can align mixed-language
sentences as shown in Figure 1.
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Robert Östling. 2015b. Word order typology through
multilingual word alignment. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing.
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Figure 10: Results for different frequency bins. An
edge in S, P , orA is attributed to exactly one bin based
on the minimum frequency of the involved words (de-
noted by x). Eflomal is trained on 1000k parallel sen-
tences. Word frequencies are computed on this 1000k
parallel corpus.

A Further Results

The analogous numbers from Table 3 on subword-
level can be found in Table 6. Again Distortion is
essential for fastText and not necessary for mBERT.
Adding Null helps especially for mBERT. Overall
the takeaways are consistent with the results from
subword-level.

A more detailed version of Table 4 with preci-
sion and recall can be found in Table 5

Figure 10 shows the same as Figure 8 but now
with a reference corpus of 1000K parallel sentences.
The main takeaways are similar.

B Symmetrization

For asymmetric alignments different symmetriza-
tion methods exist. (Dyer et al., 2013) provide an
overview and implementation (fast-align) for these
methods, which we use. We compare intersection
and grow-diag-final-and (GDFA) in Table 7. In
terms of F1 GDFA performs better (Intersection
wins four times, GDFA eleven times, three ties).
As expected, Intersection yields higher precision
while GDFA yields higher recall. Thus intersection
is preferable for tasks like annotation projection,
whereas GDFA is typically used in statistical ma-
chine translation.

C Hyperparameter Details

We provide a list of customized hyperparameters
used in our computations in Table 8. For remaining
hyperparameters we used default values as pro-
vided in the corresponding implementation (see

respective links to the code repositories).

D Examples

We show some more alignment examples in Fig-
ure 11, Figure 12, Figure 13, and Figure 14.



ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER

(Dyer et al., 2011) .21
(Tamura et al., 2014) RNN .93
(Östling, 2015a) .94 .06 .58 .42 .73 .27
(Legrand et al., 2016) Neural .16 .10
(Östling and Tiedemann, 2016) efmaral .08 .47 .28
(Zenkel et al., 2019) GIZA++ .21 .06 .28
(Zenkel et al., 2019) fast-align .27 .11 .32
(Garg et al., 2019) Multitask .16 .05

B
as

el
in

es W
or

d fast-align .71 .81 .76 .25 .70 .73 .71 .29 .48 .44 .46 .54 .77 .92 .84 .18 .34 .33 .34 .66 .69 .67 .68 .33
GIZA++ .79 .86 .82 .18 .79 .75 .77 .23 .58 .56 .57 .43 .89 .95 .92 .09 .52 .44 .48 .52 .74 .64 .69 .32
eflomal .84 .87 .85 .15 .80 .75 .77 .23 .64 .55 .59 .41 .91 .95 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

Su
bw

or
d fast-align .72 .84 .78 .23 .67 .74 .71 .30 .47 .44 .45 .55 .77 .91 .83 .19 .39 .37 .38 .62 .69 .67 .68 .32

GIZA++ .79 .86 .82 .18 .78 .78 .78 .22 .58 .56 .57 .43 .89 .95 .92 .09 .52 .44 .48 .52 .74 .64 .69 .32
eflomal .80 .88 .84 .17 .74 .78 .76 .24 .66 .60 .63 .37 .89 .96 .92 .09 .58 .47 .52 .48 .78 .67 .72 .28

M
et

ho
ds

W
or

d

fastText - Itermax .71 .69 .70 .30 .66 .56 .61 .39 .60 .45 .52 .48 .72 .79 .75 .25 .59 .41 .48 .52 .59 .41 .48 .52
mBERT[8] - Itermax .85 .89 .87 .13 .83 .80 .81 .19 .77 .66 .71 .29 .89 .96 .92 .09 .73 .48 .58 .42 .73 .48 .58 .42
XLM-R[8] - Itermax .88 .87 .87 .13 .85 .76 .80 .20 .83 .64 .73 .28 .89 .94 .92 .09 .79 .49 .60 .40 .79 .49 .60 .40
fastText - Argmax .86 .59 .70 .30 .81 .48 .60 .40 .75 .38 .50 .50 .85 .71 .77 .22 .75 .35 .48 .52 .77 .34 .47 .53
mBERT[8] - Argmax .95 .80 .87 .13 .92 .69 .79 .21 .88 .54 .67 .33 .97 .91 .90 .06 .84 .39 .53 .47 .90 .50 .64 .36
XLM-R[8] - Argmax .96 .80 .87 .13 .93 .68 .79 .22 .91 .57 .70 .30 .96 .91 .93 .06 .88 .44 .58 .42 .94 .56 .70 .30

Su
bw

or
d

fastText - Itermax .58 .57 .58 .43 .61 .54 .57 .43 .20 .07 .11 .89 .68 .77 .72 .29 .13 .04 .06 .94 .13 .04 .06 .94
mBERT[8] - Itermax .83 .90 .86 .14 .81 .81 .81 .19 .74 .66 .70 .30 .89 .97 .92 .09 .70 .50 .59 .42 .70 .50 .59 .42
XLM-R[8] - Itermax .82 .89 .86 .15 .81 .79 .80 .20 .78 .68 .72 .28 .87 .95 .91 .10 .74 .51 .61 .39 .74 .51 .61 .39
fastText - Argmax .72 .48 .58 .42 .75 .45 .56 .44 .27 .06 .09 .91 .80 .67 .73 .26 .14 .02 .04 .96 .67 .31 .43 .58
mBERT[8] - Argmax .92 .81 .86 .14 .92 .72 .81 .19 .85 .56 .67 .33 .96 .92 .94 .06 .81 .41 .54 .46 .88 .51 .65 .35
XLM-R[8] - Argmax .92 .83 .87 .13 .92 .72 .81 .19 .87 .59 .71 .30 .95 .91 .93 .07 .86 .46 .60 .40 .91 .58 .71 .29

Table 5: Comparison of word and subword levels. Best overall result per column in bold.

ENG-DEU ENG-CES ENG-HIN
Emb. Method Prec. Rec. F1 AER Prec. Rec. F1 AER Prec. Rec. F1 AER

fa
st

Te
xt

Argmax .75 .45 .56 .44 .72 .48 .58 .42 .14 .02 .04 .96
+Dist .79 .51 .62 .38 .77 .58 .66 .34 .16 .04 .06 .94
+Null .76 .43 .55 .45 .74 .47 .57 .42 .14 .02 .04 .96

Itermax .61 .54 .57 .43 .58 .57 .58 .43 .13 .04 .06 .94
+Dist .67 .60 .64 .36 .63 .66 .65 .36 .15 .07 .09 .91
+Null .64 .52 .57 .43 .62 .56 .59 .41 .14 .04 .07 .93

Match .51 .58 .54 .46 .44 .61 .52 .49 .10 .08 .09 .91
+Dist .59 .66 .62 .38 .54 .71 .61 .39 .10 .09 .09 .91
+Null .52 .57 .54 .46 .46 .60 .52 .48 .10 .08 .09 .91

m
B

E
R

T
[8

]

Argmax .92 .72 .81 .19 .92 .81 .86 .14 .81 .41 .54 .46
+Dist .90 .70 .79 .21 .91 .80 .85 .15 .65 .30 .41 .59
+Null .93 .70 .80 .20 .92 .78 .85 .15 .82 .40 .54 .47

Itermax .81 .81 .81 .19 .83 .90 .86 .14 .70 .50 .59 .42
+Dist .81 .77 .79 .21 .82 .87 .84 .16 .53 .35 .42 .58
+Null .85 .77 .81 .20 .84 .86 .85 .15 .72 .47 .57 .43

Match .75 .80 .78 .23 .76 .90 .82 .18 .64 .52 .58 .43
+Dist .72 .77 .75 .26 .74 .88 .80 .20 .45 .37 .40 .60
+Null .77 .78 .78 .23 .77 .88 .82 .19 .65 .51 .57 .43

Table 6: Comparison of methods for inducing align-
ments from similarity matrices. All results are
subword-level. Best result per embedding type across
columns in bold.



ENG-CES ENG-DEU ENG-FAS ENG-FRA ENG-HIN ENG-RON
Method Symm. Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER Prec. Rec.F1 AER

eflomal Inters. .95 .79 .86 .14 .91 .66 .76 .24 .88 .43 .58 .42 .96 .90 .93 .07 .81 .37 .51 .49 .91 .56 .70 .31
GDFA .84 .86 .85 .15 .80 .75 .77 .23 .68 .55 .61 .39 .91 .94 .93 .08 .61 .44 .51 .49 .81 .63 .71 .29

fast-align Inters. .89 .69 .78 .22 .87 .60 .71 .29 .78 .43 .55 .45 .93 .84 .88 .11 .55 .22 .31 .69 .89 .50 .64 .36
GDFA .71 .81 .76 .25 .70 .73 .71 .29 .60 .54 .57 .43 .81 .93 .86 .15 .34 .33 .34 .66 .69 .67 .68 .33

GIZA++ Inters. .95 .60 .74 .26 .92 .62 .74 .26 .89 .26 .40 .60 .97 .89 .93 .06 .82 .25 .38 .62 .95 .47 .63 .37
GDFA .71 .79 .75 .26 .79 .75 .77 .23 .55 .48 .51 .49 .90 .95 .92 .09 .47 .43 .45 .55 .74 .64 .69 .31

Table 7: Comparison of symmetrization methods on word level. Best result across columns per method in bold.

System Parameter Value

fastText

Version 0.9.1
Code URL https://github.com/facebookresearch/fastText/archive/v0.9.1.zip
Downloaded on 11.11.2019
Embedding Dimension 300

mBERT,XLM-R Code: Huggingface Transformer Version 2.3.1
Maximum Sequence Length 128

fastalign
Code URL https://github.com/clab/fast align
Git Hash 7c2bbca3d5d61ba4b0f634f098c4fcf63c1373e1
Flags -d -o -v

eflomal
Code URL https://github.com/robertostling/eflomal
Git Hash 9ef1ace1929c7687a4817ec6f75f47ee684f9aff
Flags –model 3

GIZA++
Code URL http://web.archive.org/web/20100221051856/http://code.google.com/p/giza-pp
Version 1.0.3
Iterations 5 iter. HMM, 5 iter. Model 1, 5 iter. Model3, 5 iter. Model 4 (DEFAULT)
p0 0.98

Vecmap
Code URL https://github.com/artetxem/vecmap.git
Git Hash b82246f6c249633039f67fa6156e51d852bd73a3
Manual Vocabulary Cutoff 500000

Table 8: Overview on hyperparameters. We only list parameters where we do not use default values.



Figure 11: Comparison of alignment methods.
Dark/light green: sure/possible edges in the gold stan-
dard. Circles are alignments from the first mentioned
method in the subfigure title, boxes alignments from
the second method.

Figure 12: More examples.



Figure 13: More examples. Figure 14: More examples.


