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ABSTRACT: Starting from our recently published implementation of nonadiabatic
molecular dynamics (NAMD) on graphics processing units (GPUs), we explore further
approaches to accelerate ab initio NAMD calculations at the time-dependent density
functional theory (TDDFT) level of theory. We employ (1) the simplified TDDFT schemes
of Grimme et al. and (2) the Hammes-Schiffer−Tully approach to obtain nonadiabatic
couplings from finite-difference calculations. The resulting scheme delivers an accurate
physical picture while virtually eliminating the two computationally most demanding steps of
the algorithm. Combined with our GPU-based integral routines for SCF, TDDFT, and
TDDFT derivative calculations, NAMD simulations of systems of a few hundreds of atoms at
a reasonable time scale become accessible on a single compute node. To demonstrate this and
to present a first, illustrative example, we perform TDDFT/MM-NAMD simulations of the
rhodopsin protein.

Nonadiabatic molecular dynamics (NAMD) simulations
using trajectory surface hopping (TSH)1−4 have become

a powerful tool to describe the dynamics of molecular systems
involving multiple electronic states. Their field of application
ranges from the description of rather small molecular
machines5−9 over medium-sized photoswitches10,11 to the
dynamics of entire photoactive proteins.12,13 They can be used
with a variety of excited-state methods, e.g., the complete active
space self-consistent field (CASSCF) method,14 the algebraic−
diagrammatic construction (ADC(2)),15 several coupled
cluster methods (e.g., CC2),16 as well as time-dependent
density functional theory (TDDFT).17,18 Also, triplet states19

can be included.
However, the greatest challenge remains the large computa-

tional cost of NAMD simulations, which is a result of the
expensive excited-state methods mentioned above and the fact
that TSH requires not only one but a series of trajectories to
determine observables as ensemble averages. This problem can
be tackled by using semiempirical methods,5,6 employing
exciton models20 or using graphics processing units (GPUs).
The latter have been applied to ground-state properties,21−28

excited-state calculations,9,20,29−31 ab initio multiple spawning
(AIMS),32−35 and NAMD36,37 simulations.
Based on our recent work,9 we explore in our present work

the use of simplified TDDFT schemes38,39 and the Hammes-
Schiffer−Tully (HST)2 model in addition to GPU-based
integral routines. They tackle the two major bottlenecks of
NAMD: The calculation of the state energies and the
nonadiabatic couplings between the states. After a brief
summary of the corresponding theory and its validation for

the investigated problems, we show timings and use our
approach to simulate the photoinduced rotation of the retinal
chromophore in the rhodopsin protein at the TDDFT/MM
level of theory. Details on the methods (thresholds,
convergence criteria, etc.) implemented in our FermiONs++
program package25,26 and the computational setup can be
found in the Supporting Information.
In TSH,1,2 a system is allowed to switch the potential energy

surface (PES) within one trajectory. The occurrence of such a
surface hop depends on the hopping probability: if it exceeds a
randomly drawn number between 0 and 1, the trajectory
continues on a different PES with a rescaled nuclear velocity.
The average of multiple trajectories with a different series of
random numbers describes the behavior of the system. The
hopping probability itself is calculated from the change of the
state energies and the nonadiabatic couplings (Q), which can
also be obtained as the product of the nonadiabatic coupling
vectors (τ) and the nuclear velocity (Ṙ)
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where ΦI is the wave function of the electronic state I. While τ
can be calculated using response theory, Q cannot be
determined analytically.
Energies of all considered states, gradients, and Q are thus

the main ingredients of a TSH algorithm. The first can be
obtained from TDDFT by solving the TDDFT or random
phase approximation (RPA) equations17,40,41
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with ωI being the excitation energy of state I. A and B are the
orbital rotation Hessians, and XI and YI are the transition
densities for excitation and de-excitation, respectively.
Neglecting B in eq 2 is known as the Tamm−Dancoff
approximation (TDA),42 leading to

ω=AX XI I I (3)

The calculation of excitation energies with eqs 2 and 3 is
time-consuming, mainly because of the evaluation of the two-
electron integrals in A and B. To accelerate these calculations,
we apply the simplified RPA and TDA methods by Grimme
and co-workers.38,39,43 Here, Coulomb and exchange kernels
are approximated (J′ for Coulomb and K′ for exchange) using
the Mataga−Nishimoto−Ohno−Klopman44−46 damped Cou-
lomb operators together with the transition/charge density
monopoles q obtained from a Löwdin population analysis47
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p, q, ... are arbitrary molecular orbitals. r is the interatomic
distance, η is the mean of the chemical hardness of the atoms
N and M. α and β are global fit parameters, while cx is the
amount of exact exchange. This leads to the following
approximate orbital rotation Hessians

δ δ′ = ϵ − ϵ + ′ − ′

′ = ′ − ′

A s K J

B s K c K

( )iajb ij ab a i k iajb ijab

iajb k iabj ibajx (5)

i, j, ... denote occupied molecular orbitals, and a, b, ... denote
virtual molecular orbitals. sk is 2 or 0 for singlet−singlet or
singlet−triplet excitations, and ϵp is the orbital energy of p.
The excitation energies (ω′) are then obtained by

diagonalizing A′ in the case of sTDA or (A′ − B′)1/2(A′ +
B′)(A′ − B′)1/2 in the case of sRPA. To avoid the
diagonalization of the entire matrix, the number of included
configuration-state functions (CSFs) is truncated using the
thresholds ϑpCSF, ϑsCSF, and ϑCSF.

38 Only primary (with an
energy below ϑpCSF) and secondary CSFs (with an energy
between ϑpCSF and ϑCSF and a significant coupling to the
primary CSFs > ϑsCSF) are considered. The sTDA scheme
greatly reduces the cost of excited-state calculations, giving
access to absorption spectra of large molecular systems.38 The
sRPA scheme yields better transition densities,39 leading to
better transition dipole moments and even enabling the
calculation of higher order dynamical response properties.48

Excited-state gradients (ωI
x) and τ’s at the TDDFT/TDA

level of theory can be derived from eqs 2 and 3 using linear

response theory.49−59 These equations cannot easily be
transferred to sTDA/sRPA, as the derivatives of J′ and K′
with respect to the nuclear coordinates have, so far, not been
implemented. Instead, we are using the calculated ωI′, X′I, and
Y′I in the RPA/TDA algorithms for ωI

x and τ featuring exact
evaluations of the two-electron integrals, i.e., without the
Mataga−Nishimoto−Ohno−Klopman damped Coulomb op-
erators. As a consequence of this, we expect a slight
disagreement between the calculated energies and the
excited-state properties (ωI

x and τ’s). To validate this approach,
we compare optimized structures of biphenyl (I) using the S1
potential energy surface at the TDDFT and sTDDFT levels of
theory in Table 1 and show ωx’s and τ’s of optimized ground-

state structures of protonated formaldimine (II) and the Schiff
base of the retinal chromophore (III) in Figure 1. A validation
based on NAMD is discussed below. Additionally, selected
natural transition orbitals60 and a screening of the thresholds
(ϑpCSF, ϑCSF, and ϑsCSF) are shown in the Supporting
Information.
All four optimized S1 structures of I in Table 1 are nearly

planar and feature a similar central C−C distance. The ωx’s
and τ’s based on sTDDFT results in Figure 1 are also in good
agreement with the RPA and TDA properties. The only
differences are the weaker nonadiabatic couplings of II and III
and the fact that ω1

x of III has a larger contribution in the six-
membered ring and a smaller contribution in the conjugated
system. Both are the result of the slightly different excitation
energies (II: 9.76 eV (RPA), 9.87 eV (sRPA); III: 2.74 eV
(RPA), 3.17 eV (sTDA)) and transition densities. In the case
of III, three other observations can be made (see Figures S8−
10 in the Supporting Information): (1) sRPA performs worse
than sTDA, (2) PBE061−64/def2-SVP65,66 is, in contrast to
ωB9767/def2-SVP, not able to capture the charge transfer
character of the excitation, and (3) the natural transition
orbitals at the RPA and sTDA levels of theory are nearly
identical, indicating that the major source of error is the
excitation energy. Table 1 and Figure 1 suggest that simplified
TDDFT might also be used for NAMD simulations, which
require, however, time-consuming calculations of the Q’s
between the states. To circumvent the analytical calculation of
Q via τ, we apply the numerical HST model2

Table 1. Comparison of Optimized Structuresa of Biphenyl
(I) Calculated at RPA, TDA, sRPA, and sTDA (PBE0/def2-
SVP) Levels of Theory Listing the Central C−C Distance
(c) and the Dihedral γ

RPA TDA sRPA sTDA

c [Å] 1.42 1.44 1.44 1.44
|γ| [deg] 0.02 0.03 0.02 0.01

aUsing the S1 potential energy surface.
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Assuming that the excited-state wave functions can be

obtained from the ground-state Kohn−Sham orbitals (ϕp) and

the transition densities, O0I and OIJ take the following form
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RI and LI are (XI + YI) and (XI − YI), respectively, in the case
of RPA and XI in the case of TDA. The HST model is
nowadays widely used in NAMD simulations,68−70 because it
reduces the computational time (as shown below) and leads to
more stable trajectories in the vicinity of conical intersec-
tions.71−73

A validation of the presented numerical scheme for Q used
in the HST model is shown in the Supporting Information,
where we have calculated numerical and analytical τ’s for
formaldehyde. Additionally, we have performed NAMD
simulations of II, using the HST model and analytically
calculated τ’s as well as RPA, TDA, sRPA, and sTDA. After
excitation to the S2 state, the molecule shows a fast conversion
to the S1 state, which goes along with the elongation of the C−
N bond. Further relaxation to the S0 state is achieved via a
rotation around this bond. In Figure 2, the increase (S2 → S1)
and decrease (S1 → S0) of the S1 occupation is shown. The
change of occupation for all states as well as energies and Q’s
of selected trajectories are listed in the Supporting Information.
In all sets of trajectories, we observe a similar behavior of II,

indicating that the HST model and the simplified TDDFT are
valid approximations for this example. This is reflected in the
S1 occupations, which are very similar for all cases. The only
differences are slightly different S2−S1 nonadiabatic couplings
when applying the HST model and a slower decay of the S1
occupation in the case of the simplified TDDFT methods,
which is, however, also visible in the case of TDA. The first
observation is in good agreement with previous findings71−73

comparing analytical and numerical Q’s in the vicinity of

Figure 1. (a−d) RPA and sRPA excited-state gradients of the second
excited state (a + b, green) and nonadiabatic coupling vectors
between the ground and the second excited state (c + d, red) of II at
the PBE0/def2-SVP level of theory. (e−h) RPA and sTDA excited-
state gradients of the first excited state (e + f, green) and nonadiabatic
coupling vectors between the ground and the first excited state (g + h,
red) of III at the ωB97/def2-SVP level of theory. All calculations have
been performed at optimized ground-state geometries.

Figure 2. Change of S1 state occupations of protonated formaldimine (II) calculated as an average of all NAMD simulations at (a) the RPA
(PBE0/def2-SVP) level of theory using analytical and numerical nonadiabatic couplings and (b) RPA, TDA, sRPA, and sTDA (PBE0/def2-SVP)
results using numerical nonadiabatic couplings.
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conical intersections. The latter trend is also reflected in the
Q’s and τ’s.
Here, we want to stress that one of the well-known

limitations of TDDFT is its poor description of conical
intersections involving the ground state,74,75 which can be
improved by applying, e.g., the TDA.76,77 Alternatively, the
spin-restricted ensemble-referenced KS (REKS) method78 can
be employed. Obviously, these limitations are not overcome by
applying the simplified TDDFT approach. However, for this
particular system, good agreement between TDDFT and
CASSCF simulations has been observed,70 so that we are
confident that our chosen setup allows for a good qualitative
description of the investigated processes. Please note that the
simulations using sTDA or sRPA are not strictly energy
conserving as discussed above. Therefore, the standard
deviation of the total energy is approximately 5 times higher
than in standard TDDFT simulations. However, rescaling the
nuclear velocities to enforce energy conservation has no effect
on the average properties of the system, which illustrates the
validity of the present approach.
Table 2 presents the impact of the approximations on the

performance of an NAMD simulation of III. It shows that HST
and sRPA virtually eliminate the computational cost of the
calculations of ωI

x’s and Q’s. In combination with the GPU-
based integral evaluations, the total speed-up in the case of
Nroots = 2 is ∼4 with respect to the CPU-based RPA
implementation using analytical τ’s. An NAMD simulation of
III involving 5000 steps (e.g., 1 ps simulation using 0.2 fs time
steps) can thus be conducted within ∼5 instead of ∼21 days.
The acceleration becomes even larger when more excited
states and nonadiabatic couplings are considered (e.g., a factor
of more than 20 for III in case of Nroots = 7). This and the fact
that the performance of GPUs is better for large molecular
systems (see, ref 9) makes the presented approach interesting
for the investigation of systems involving hundreds of atoms
and plenty of electronic states.
As a first application of our proposed scheme, we have

calculated 105 NAMD simulations of the rhodopsin protein
(IV) at the sTDA/MM (ωB97/def2-SVP) level of theory. The
chromophore of IV (Figure 3a) undergoes a cis−trans
isomerization when exposed to light (see Figure 3c). For a

review of calculations on this system, the reader is referred to
ref 79. Similar systems have also been investigated by Martıńez
et al.34,35 The change of the dihedral γ1 (defined in Figure 3b)
and the state occupations are shown in Figure 4.
Out of 105 calculated trajectories, 9 feature a cis−trans

isomerization (see Figure 4. A movie of the isomerization is
available at https://www.cup.uni-muenchen.de/pc/
ochsenfeld/download/). Most of them reach γ1 = −90° at
∼280 fs, which coincides with the crossing point of the state
occupations (see Figure 4). This hop time (t) is significantly
higher, and the yield (y) of 9% significantly lower than the
experimental (t = 147.7 ± 1.0 fs; y = 0.63 ± 0.01) results
reported in ref 13. Our analysis of III (see Figure 1) indicates
that the weaker gradients and nonadiabatic couplings of sTDA
or the discussed problems of TDDFT with conical
intersections (see also refs 79−81) may be the reason for
this. However, our approach describes the direction and
mechanism (see Figure 3c) of the isomerization correctly. In
contrast to previous work,12,13,79 our method requires, besides
α, β, and the QM/MM ansatz, no further parametrizations
and/or reductions of the system. One trajectory of IV takes
∼5−7 days on two Intel Xeon CPU E5 2640 v4 @ 2.20 GHz
(20 threads) CPUs and four AMD FirePro 3D W8100 GPUs
using our FermiONs++ program package.25,26

We have introduced a combination of GPU-based integral
routines, simplified TDDFT schemes, and numerical non-
adiabatic couplings for efficient NAMD simulations. For all
investigated systems ranging from small organic molecules (II)

Table 2. Computation Times of Ground-State Energy (E0) and Gradient (E0
x), Excited-State Energies (ωI) and Gradient (ω1

x),
and Nonadiabatic Couplings (Q) Calculations of the Schiff Base of the Retinal Chromophore (III) at the RPA and sRPA

(PBE0/def2-SVP) Levels of Theory, Using a Different Number of Roots (Nroots) and Nonadiabatic Couplings ( +N N( 1)
2

roots roots ) as

Well as Analytical and Numerical Q’sa

Nroots Q RPA/sRPA t(E0) + t(E0
x) t(ωI) t(ω1

x) t(Q) t (total)

2 analytical* RPA* 34 s 28 s 101 s 201 s ∼6 min
2 analytical RPA 26 s 19 s 62 s 128 s ∼4 min
2 numerical RPA 26 s 19 s 62 s <1 s ∼2 min
2 numerical sRPA 26 s <1 s 62 s <1 s ∼1.5 min

3 analytical RPA 26 s 36 s 62 s 309 s ∼7 min
3 numerical RPA 26 s 36 s 62 s <1 s ∼2 min
3 numerical sRPA 26 s <1 s 62 s <1 s ∼1.5 min

7 analytical RPA 26 s 51 s 62 s 1822 s ∼32.5 min
7 numerical RPA 26 s 51 s 62 s <1 s ∼2.5 min
7 numerical sRPA 26 s <1 s 62 s <1 s ∼1.5 min

aAsterisks mark calculations that have been performed entirely on CPUs. All calculations were conducted on two Intel Xeon CPU E5 2640 v4 @
2.20 GHz (20 threads) CPUs and four AMD FirePro 3D W8100 GPUs.

Figure 3. (a) Structure of the chromophore of rhodopsin (IV). (b)
Important dihedrals (γ1 and γ2) in and (c) the bicycle pedal
isomerization mechanism of IV. The part of the molecule shown in
(b) and (c) is located by the rectangle in (a).
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to proteins (IV), excited-state properties and dynamics are
described qualitatively correctly with a significantly reduced
computational cost. The latter is due to the vanishing
computational times for TDDFT energies and nonadiabatic
couplings calculations. The present approach may be used to
qualitatively explore relaxation pathways and predict trends
(e.g., effects of mutations or different isotopes) within these
reactions.
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