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Chapter 1

Introduction

Knowledge distillation for binary classification was first introduced by Caruana et al. (2006).
The goal of this technique is to ‘compress’ large ensemble models into small and fast neural
nets with negligible loss in predictive performance. This means that for specific data, the
knowledge of an ensemble learner gets transferred into a neural net. The intention behind
is, to get the same predictive behavior, while receiving one kind of learner, for any problem.
There was little scientific follow up. The next significant research paper was published 9
years later by Hinton et al. (2015). It introduced a method to make use of soft labels, to
improve knowledge distillation even for multiclass classification problems and mobilized more
research on this topic. Since then, more papers on model compression have been publicized.
These papers concentrate on reducing the size of large neural nets into small ones. Examples,
therefore, are Sau and Balasubramanian (2016) or Mirzadeh et al. (2019).

When just focusing on the compression of large neural nets into smaller ones, one misses
another point of view on knowledge distillation. There are ongoing discussions on how and if
neural nets are applicable to tabular data.

Knowledge distillation can be part of the answer to this question. The goal of knowledge
distillation is, to reach the same predictive behavior as the original learner. In this thesis, it
is shown, that a xgboost model on a tabular data set can be distilled successfully, performing
almost as good as xgboost itself. Additionally, this method could be very helpful when
thinking of deployment. If it is possible to transform any learner into a neural net, training
and data transformation can be done in any language with any learner, while the deployed
version for prediction is always a neural net.

Throughout this thesis, knowledge distillation for binary classification is investigated. The
focus especially lies on transforming learners like SVM, random forest and xgboost on tabular
data into neural nets.

1.1 Knowledge distillation

Before discussing a few aspects surrounding this topic, a basic understanding of knowledge
distillation is conveyed.

1



2 CHAPTER 1. INTRODUCTION

The basic components required are a data set with a target variable and two machine learning
algorithms. One of these algorithms is the so called ‘student’. The other one is the ‘teacher’.
The teacher is an arbitrary machine learning algorithm, already fitted on the data. The
student is a neural net.

The goal is, to distill this teacher’s predictive behavior into the student net.

Therefore, many pseudo observations are generated from the original data set. These pseudo
observations are then labeled by the teacher. This generated data set, consisting of labeled
pseudo observations, bears the knowledge of the teacher about the original data set applied to
pseudo observations. By fitting the student net on this pseudo data set, it learns the behavior
of the teacher algorithm. Figure 1.1 shows this process.

Figure 1.1: Knowledge distillation - The process of transferring the knowledge from a teacher
algorithm into a student net

1.2 Notation

To keep the definitions clear, a notation holding for the whole thesis is provided.

1. D = (X, y) is an arbitrary tabular data set. W.l.o.g. it consists of N observations
(xi, yi) with i ∈ {1, ..., N}. Each observation consists of J features and one target
variable. While yi ∈ {0, 1} represents this binary target variable, xi is the vector of
feature values for all i ∈ {1, ..., N}. Further xi,j is the j-th feature value of the i-th
observation for all j ∈ {1, ..., J}. So, X is the feature matrix, and y the binary target
vector. The features in X can be numeric or categorical or a mix of both.

2. f̂teacher is an arbitrary machine learning algorithm, already fitted on D.

3. D∗ = (X∗, y∗) is the data set representing the pseudo observations. X∗ is the unla-
beled pseudo feature matrix. y∗ is the label of the pseudo observations, generated by
predictions of f̂teacher on X∗: y∗ = f̂teacher(X∗).

4. fstudent is the (not yet fitted) student neural net. f̂student is the result of fitting fstudent

on the pseudo observations D∗.
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1.3 Research questions

Knowledge distillation is a broad field. The research for this paper is focused on transferring
knowledge of a teacher on tabular data with binary classification into a neural net. Two
questions are stated, to give a guideline for this thesis. The experimental setup in section 4
is designed to answer these questions.

1.3.1 Can knowledge distillation outperform a neural net fitted directly on

the data?

This question is crucial for the significance of this paper. If fitting a regular neural net on
the data performs as good as fitting one with a teacher in the background, there would be no
point in knowledge distillation.

1.3.2 Is it possible to copy an arbitrary learner and how good can the

approximation become?

This is the question, also (Caruana et al., 2006) aimed to answer. In general, if a process
tries to copy another process, it is always rated on its performance compared to the original
version. In this case, the student neural net is trying to copy the behavior of the teacher
algorithm.

The first approach is, to compare the performance by both f̂teacher and f̂student on test data.
The closer the values of the performance measures are, the better the student imitates the
teacher. For some use cases, this can be seen as a good enough measure for the ‘goodness’
of copy. But hereby only the mean over the performance measure is considered. Although
this is the crucial measure to decide for or against a trustful machine learning algorithm, one
important issue is not considered. Two algorithms can have the same average performance
on the test data while predicting differently on single observations.

1.4 Research contributions

To answer the first research questions, in section 4.1.2.1 fstudent is compared with its teacher
and a directly fitted net in a benchmark experiment on 19 tabular data sets with binary
classification. These data sets show more diversity compared to the eight tasks investigated
in Caruana et al. (2006). The observations per task range from less than 1,000 to more than
45,000. Only ‘real’ tabular data sets are used, in contrast to some letter classification in
Caruana et al. (2006). Unlike in any other paper in section 4.1.2.2, observation-wise predic-
tions between students and teachers are compared, to answer the second research question.
Furthermore some modifications to the data generating method MUNGE by Caruana et al.
(2006) are implemented to improve the technique. For the student net, different shapes and
activation functions are tried as well. As f̂teacher, not just the ensemble methods random
forest and xgboost but also SVM and in section 5, machine learning pipelines are used and
evaluated.
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Related Work

2.1 Knowledge distillation

This thesis is mainly based on two papers, Caruana et al. (2006) and Hinton et al. (2015).

Caruana et al. (2006) introduced the idea of compressing ensemble learners into neural nets
on binary data sets. An effective method to generate unlabeled pseudo observations called
‘MUNGE’ is introduced (section 3.1). It is shown that neural nets using this method as
a generator of pseudo observations would outperform those nets, using other methods like
sampling randomly from the hypercube surrounding the original data points. The general
capability of neural nets, to compress ensemble learners is demonstrated by comparing the
performance of teacher ensembles and student nets on eight data sets. Among these data sets,
there is also image classification, which today would be tackled with deep learning anyway.

Hinton et al. (2015) expanded knowledge distillation to multiclass classification problems. Ad-
ditionally a term called ‘dark knowledge’ was used to improve knowledge distillation. Hereby
the pseudo observations are not labeled by the hard class prediction of the teacher, like in
Caruana et al. (2006), but by the probabilities for the respective classes. This method is also
used in this thesis and therefore introduced in section 3.2.2. Targeting multiclass classifica-
tion problems, this work is more focused on knowledge distillation for typical deep learning
problems, like speech and letter recognition. There is also no comparison over tasks, it rather
shows different application possibilities.

2.2 Model compression

The term ‘model compression’ sometimes is used as a synonym for knowledge distillation
(Caruana et al., 2006). But in most cases, it means something else. Model compression in the
context of neural nets is mainly about making large neural nets smaller and faster. In com-
puter vision, neural nets are supposed to be small and fast, to improve power efficiency and
performance on mobile devices for example. There are different approaches to compress feed-
forward networks, including knowledge distillation, quantization and pruning (Cheng et al.,
2017).

4



2.3. DEEP LEARNING ON TABULAR DATA 5

Knowledge distillation is basically done the same way as shown in figure 1.1. Just the teacher,
in this case, is a neural net as well and the student needs to be a smaller net than the teacher
net is. Mirzadeh et al. (2019), for example, states that distillation from a large into a small net
can be improved, by transferring the knowledge not directly into the target size. Instead one
after another, the knowledge is distilled into a just slightly smaller network until the target
size is reached or the performance decrease is too high.

Pruning describes the process, where successively connections between units or even whole
units are dropped regarding their importance for classification. After deleting these connec-
tions, the net is fitted and evaluated, to monitor the predictive performance after modification.
This process is continued, till a target number of connections remains or till the performance
drops under a defined value (Yeom et al., 2019).

Quantization is a method especially to reduce the memory for neural nets. Hereby weights
are clustered together, to require less memory (Cheng et al., 2017). For example Chen et al.
(2015) creates hash buckets, to store and share weights.

These methods also can be applied together. Ashok et al. (2018) uses pruning and distillation,
while Polino et al. (2018) presented a possibility to combine quantization and knowledge
distillation.

As stated above, these methods aiming to make large nets smaller. These large nets are
typically applied to text or visual recognition problems and no tabular data. So, this is not
exactly the goal of this thesis, since there is another topic, this thesis attempts to contribute
to.

2.3 Deep learning on tabular data

There are various discussions on the web and in scientific literature, whether deep learning is
useful for tabular/structured data or not.

The rather conservative doctrine on this topic is ‘If your data set doesn’t consist of images,
speech or language and you have limited data, then neural nets for most part are useless (or
not that great).’ (Student, 2018). Another qoute came up in a discussion on kaggle.com,
stating ‘XGBoost is usually extremely good for tabular problems, and deep learning the best
for unstructured data problems.’ (kaggle-user anokas, 2017). kaggle.com is one of the most
popular machine learning platforms world wide. Companies or research institutes can host
data science challenges for price money. Thus, opinions published by advanced kaggle users
are influencing the community of data scientists. A quote here states that ‘XGBoost is the
leading model for working with standard tabular data’ (kaggle-user DanB, 2018). So, the
picture becomes clear: For many data scientists, deep learning is not the first choice when it
comes to tabular data.

Taking a look at another platform called openML.org only confirms this general opinion.
openML is a platform, similar to kaggle, but with another intention. It is made to conduct
experiments on many different tasks. ‘A task consists of a data set, together with a machine
learning task to perform, such as classification or clustering and an evaluation method’ (Van-
schoren et al., 2013). On each task, the performance of learners and their hyper parameter
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sets is visible. Considering the tasks on openML and their best performing algorithms, it is
hard to find a neural net being the best performing algorithm for tabular data or even within
a close range to the top performers. For tabular data, support vector machine (SVM), random
forest and xgboost are the dominant algorithms. This might be the case, because neural nets
are hardly tried on openML tasks. Either way it indicates, how infamous neural nets are for
this purpose.

On the other hand, there are approaches to find deep learning structures specialized for tabular
data. A paper on Self-Normalizing Neural Networks has been published by Klambauer et al.
(2017). There, regular neural nets make use of an activation function called ‘selu’ (Scaled
Exponential Linear Unit). On a benchmark comparison it is shown that these selu nets can
outperform e.g. random forest or SVM on tabular data. Another approach to make neural nets
more suitable for tabular data with categorical features are embeddings. Guo and Berkhahn
(2016) show the general usage of embeddings for neural nets. It is a method well known from
word2vec (Mikolov et al., 2013), where categorical features - like words - are transformed into
vectors, to make the intrinsic information available for the neural net. An alternative attempt
is to make use of the advantages of the dominant tree ensemble methods, by ‘transforming’
part of the tree structures into neural nets. Examples therefore are Arik and Pfister (2019),
Yang et al. (2018), Popov et al. (2019) or Tanno et al. (2018). All these approaches use
different tree-like differentiable structures as core of the neural net. These nets are directly
fitted on the data, without a teacher. The goal behind this is to overcome one of the biggest
issues neural nets are having with tabular data. I.e. that ‘conventional DNNs based on
stacked convolutional layers or multi-layer perceptrons (MLPs) are vastly overparametrized –
the lack of appropriate inductive bias often causes them to fail to find optimal solutions for
tabular decision manifolds’ (Arik and Pfister, 2019). This inductive bias is for example the
choice of machine learner by the data scientist. If structural changes in the neural net force
it to behave more like a tree based ensemble, this can be seen as this inductive bias as well.

One problem with these approaches is, that they are hardly validated on benchmarks, and
at best sporadically compared to each other. They are evaluated on other data sets and
compared to different other algorithms. Nonetheless they share the same intention, to find a
deep learning algorithm, performing well on tabular data.

Besides from copying arbitrary learners, knowledge distillation can be seen as this inductive
bias, too. The teacher, a pre trained model, bearing knowledge of the underlying data, ‘biases’
the student net to learn the ‘right’ connections.



Chapter 3

Method

The process of knowledge distillation is a regular machine learning algorithm. A learner with
tunable hyperparameters receives a data set with a target variable as input. The method
described in this thesis heavily relies on the method introduced by Caruana et al. (2006).

The following pseudo code defines the algorithm called ‘knowledge distillation’ for this thesis.

Algorithm 1: Knowledge distillation

Input : D = (X, y)
Hyperparams : λstudent = (f̂teacher, λdatagen, λnet)

Result : Fitted student net f̂student

1 generate unlabeled pseudo observations X∗ from X via λdatagen

2 label X∗ with teacher: y∗ = f̂teacher(X∗) and combine it to D∗ = (X∗, y∗)
3 fit fstudent (defined by λnet) on D∗

4 return fitted student neural net f̂student

The hyperparameters in algorithm 1 are split into three parts. λdatagen are the parameters,

defining the generation of pseudo observations. f̂teacher is the teacher, which gets its knowledge
distilled. λnet are the parameters, defining the student neural net’s design.

f̂teacher is the most important hyperparameter since it indicates the label, the student net
considers as truth. It is an arbitrary learner fitted on D, needing no further explanation.
The other parameters, defining how exactly the three main steps (1 - 3) from algorithm 1 are
processed, are explained in the following subchapters.

3.1 MUNGE

A major point of knowledge distillation is the artificial generation of pseudo observations.
Since the goal is to copy any learner on tabular data sets with unknown distributions, it is
hardly possible to use parametric methods to sample data. Instead, a special nonparametric
method, called ‘MUNGE’ introduced by Caruana et al. (2006), is used. ‘’To munge data’
literally means ‘To modify data in a way that cannot be described succinctly” (Caruana et al.,

7



8 CHAPTER 3. METHOD

2006). There are other methods available to generate pseudo observations. The first best guess
would be to draw random combinations from the hypercube represented by all observations.
But this method generates a lot of completely unrealistic points and is therefore not as good
as MUNGE (Caruana et al., 2006). Another possible method being considered is Synthetic
Minority Over-sampling Technique, also called SMOTE (Bowyer et al., 2011). As the name
states, it was developed to generate more observations from the minority class to balance the
number of observations per class. It linearly combines feature values from nearest neighbors
within the same target class to generate new pseudo observations.

Throughout this paper, MUNGE with slight changes is used to generate pseudo observations.
First, the original method from Caruana et al. (2006) is shown. Afterwords modifications are
introduced.

The MUNGE algorithm has a few parameters to set, defining how exactly pseudo observations
are generated. They are among the hyperparameters of the knowledge distillation algorithm.
These parameters are:

1. K ∈ N - The size multiplier
2. swap_prob ∈ [0, 1] - The swapping probability
3. var_param ∈ R

+
0 - The variance parameter

Algorithm 2 shows the pseudo code for MUNGE. In step 2 the index of the nearest neighbor
of each observation is determined. For continuous features, the euclidean distance is used
and for categorical features the hamming distance. Hereby the nearest neighbor of the i-th
observation, gets the index inn ∈ {1, ..., N}. In consequence it holds: xinn is the nearest
neighbor of xi.

In steps 9 to 15 the swapping of feature values is conducted. If the j-th feature value of
observation i (x′

i, j) is categorical, it is swapped with the j-th feature value of the nearest
neighbor (x′

inn, j). And if it is numeric, it is also swapped, since the new value of for x′
i, j is

drawn from a normal distribution centered around the feature value of its nearest neighbor.
The other way around, x′

inn, j is sampled around x′
i, j . So in expectation, these two feature

values are getting swapped as well. Since this swapping happens with probability swap_prob,
this parameter is called swapping probability.

Swapping always influences both observations. inn is the index of the nearest neighbor of
the i-th observation in the original feature set X. During each of the K loops, X ′ is looped
through. So, the neighbor of x′

i could have been modified through a swap with another feature
having this observation as its nearest neighbor. This means the nearest neighbor could have
been modified through a swapping process in advance. Thus, it does not necessarily have
exactly the same feature values each time X ′ is looped through since one observation can be
the closest to multiple others.

Through swapping and not necessarily using the exact same nearest neighbor each time,
many new and slightly different data points are generated. But they are likely in a reasonable
area around the observations in X. The variance of these pseudo observations around the
original points can be regulated by swap_prob and var_param. High swap_prob and low
var_param yield to a broad variance of new data points and the other way around. Through
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resetting X ′ in each of the K loops to X, X ′ is always beginning the loop as the original data
set X. This way, new points are prevented from drifting too far away by swapping over and
over again.

Algorithm 2: MUNGE

Input : D = (X, y)
Parameters : K, swap_prob, var_param

Result : Unlabeled pseudo observations X∗

1 for i ∈ {1, ..., N} do

2 determine index of nearest neighbor of xi as inn ∈ {1, ..., N}
3 end

4 set X∗ := ∅
5 loop K times

6 set X ′ := X (copy unlabeled original data)
7 for i ∈ {1, ..., N} do

8 for j ∈ {1, ..., J} do

9 with probability swap_prob do

10 if x′
i, j is categorical then

11 set x′
i, j = x′

inn, j and x′
inn, j = x′

i, j

12 else

13 set dist := |x′
i, j − x′

inn, j |

14 sample x′
i, j from N (x′

inn, j , dist
var_param

)

15 sample x′
inn, j from N (x′

i, j , dist
var_param

)

16 end

17 end

18 end

19 end

20 set X∗ = X∗ ∪ X ′

21 end

22 return X∗

In this thesis, only MUNGE and its modifications are used to generate pseudo observations.
It shows way better performance for knowledge distillation than sampling randomly from the
hypercube surrounding the data (Caruana et al., 2006) and also than SMOTE. The reason
why lies in the constellation of the problem.

To distill the knowledge of f̂teacher into f̂student, the intention behind generating many pseudo
observations is to cover the relevant area of the feature space. Together with the teacher’s
labels, fstudent is fitted on this pseudo data. If the coverage of the relevant feature space is
high and the student can approximate the teacher’s predictions well, the behavior on new
data points is supposed to be similar for f̂teacher and f̂student. The data, f̂teacher is fitted on
is possibly high dimensional. Good coverage of high-dimensional spaces is hard. Due to the
‘curse of dimensionality’ (Chen, 2009), exponentially many observations would be required.
This is the reason why sampling randomly does not lead to a good knowledge distillation.
But it is assumed that the data lies on a low dimensional manifold since there are machine
learning algorithms (used as teachers), that can predict well on this data. And MUNGE is a
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non-parametric sampling technique aiming to approximate this manifold.

3.2 MUNGE modifications

In the implementation used for this paper, there are some points slightly different from the
original method. The first difference is in step 2 of algorithm 2. In the original MUNGE,
the numeric values are scaled between 0 and 1 to determine the nearest neighbor, too. In
the implementation used for this work, they are scaled to the standard normal distribution
N (0 , 1). Since the reason for scaling is, to make all features comparable for the nearest
neighbor calculation, it does not matter in which exact range it is done. Secondly, the size
of the final munged data set X∗ is not a multiple of N . Due to better comparability among
data sets, it is a specific number, called munge_size. The algorithm iterates over the copies
of X until the overall count of pseudo observations reaches munge_size.

Apart from these two points, MUNGE is implemented as it was defined by Caruana et al.
(2006) and then extended by the modifications, introduced in the following sections. The
intention behind these modifications is to possibly improve the MUNGE method, to get
better-performing students. The goal is either to get a closer approximation of f̂teacher or to
even outperform the teacher, regarding its generalization error.

3.2.1 MUNGE with a portion of original data

The variance of the pseudo observations sampled by MUNGE is regulated by the two hyper-
parameters swap_prob and var_param. When these parameters are set to provoke a large
sampling variance (big swap_prob and small var_param), the danger of ‘losing the focus’
on the relevant area of the feature space rises. Then really unrealistic observations can be
generated. These are observations where the teacher might predict strangly and the student
tries to fit these points. Therefore it loses performance on the relevant observations. To avoid
this, the hyperparameter orig_portion ∈ [0, 1] is defined. orig_portion is the portion of real
data points (observations of D) sampled via bootstrapping from D in the returned ‘munged’
data set. An orig_portion = 0.1 means, that in the artificially created data set 10% of the
observations are real observations except for their label which is set by the teacher algorithm.
Keeping the label of the original observation did not lead to performance improvement, so
original observations are relabeled by f̂teacher.

3.2.2 Dark Knowledge

In Caruana et al. (2006), the pseudo observations are hard labeled. Meaning y∗ ∈ {0, 1} for
all i ∈ {1, ..., target_size}. Hinton et al. (2015) introduced a term called ‘dark knowledge’.
Most learners do not just predict classes by the class itself, but by assigning probabilities for
each class. Especially for multi-class classification, these probabilities bear a lot of additional
knowledge, compared to just one returned label (Hinton et al., 2015). But also for binary
classification, it is a difference, if the student net tries to learn a positive label or just a positive
probability of 75%. These probabilities are called soft labels. When f̂teacher labels the pseudo
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observations with these soft labels, knowledge distillation makes use of this dark knowledge,
since it is additional information, which would stay unseen by hard labels only. This results
in a boolean hyperparameter: dark_knowledge

3.2.3 MUNGE with linearly combined labels

In most data constellations, observations lying closely together are of the same class. A
possibility to get even better than f̂teacher could lie in linearly combining the soft teacher
labels for pseudo observations with the original label of the nearest neighbors of this pseudo
observation.

Algorithm 3 defines this linear combination with nearest neighbors.

Algorithm 3: Linear combination with nearest neighbors from original data

Input : D∗ = (X∗, y∗) and X

Parameters : α, k

Result : D∗ with linearly combined labels

1 set new target vector as y∗new = y∗

2 for each pseudo observation (x∗
i , y∗

i ) ∈ (X∗, y∗) do

3 find k nearest neighbors of x∗
i in original data X

4 if all knearest neighbors of x∗
i have the same label ysame then

5 set y∗ new
i = α ∗ y∗

i + (1 − α) ∗ ysame

6 end

7 end

8 return relabeled data set (X∗, y∗new)

To put it in a nutshell, this linear combination aims to combine the knowledge of the teacher
with a potential correction for the original k nearest neighbor’s label. This method is especially
applicable in this way, since only binary target variables are considered and y∗ ∈ (0, 1) is a
soft label, respectively the probability for the positive class. ysame ∈ {0, 1} on the other hand
represents the original hard label, transferred into numeric value 1 (or 0) for the positive (or
negative) class. The boolean hyperparameter lin_comb_nn decides if this combination is
applied to the labeled pseudo observations.

This approach stands in conflict with the idea of knowledge distillation since fstudent does not
learn from the teacher only but from combined labels. The goal is, to outperform the teacher.
And it suits perfectly within the data generating method MUNGE.

3.2.4 MUNGE on the fly

The last modification of MUNGE is closely connected to the training method of neural nets.
When training a neural net, one goes over and over through the training data until the
maximum number of epochs is reached, or the improvement in performance stagnates. The
data set is divided into partitions of batches for each epoch. In each epoch, the weights of the
neural net are updated after each batch via backpropagation. These batches can be generated
on the fly during training. Instead of creating one large MUNGE data set in the beginning,
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the modification here is, to generate a ‘munged’ data set for each batch from scratch. These
data sets of pseudo observations would be way smaller than the MUNGE data set, which
is normally generated. The boolean hyperparameter, deciding if pseudo observations are
generated for each batch from scratch or once, in the beginning, is defined as munge_otf .

This method brings one big advantage. The memory requirements decrease heavily since no
huge data set has to be generated. In addition, no max number of epochs would need to be
defined. The training could just stop when there is no improvement anymore.

The set of these hyper parameters results in:
λdatagen = (munge_size, swap_prob, var_param, orig_portion, dark_knowledge,

lin_comb_nn, munge_otf)

3.3 Student net

While in Caruana et al. (2006) the method MUNGE is explained well, the properties of the
student nets are hardly documented. There is no description, how many layers or which
activation functions are used. It is also not stated which training loss the net minimizes or
anything else about the hyperparameters of the net. It is just stated that the student nets
consist of 4 to 256 hidden units. For these numbers of units the performance is compared
on eight data sets. In Hinton et al. (2015), a little more information is given. ‘relu’ is used
as activation function and by far more hidden units. In one experiment a net with 2 hidden
layers and 1,200 units per layer is trained. But there is no experiment conducted, comparing
the same students on different tasks.

In section 4, student nets are compared on 19 tabular data sets. Therefore the nets are
constructed from a broad range of hyperparameters.

1. Shape of neural net - net_shape

The shape of the neural net can be set to “conic” or “rectangular”. If the shape is conic,
each hidden layer consists of half the units, its forerunner does consist of. A rectangular
shape, on the other hand, means, that from the first to the last hidden layer, they all
share the same number of units.

2. First layer units - fl_units

This parameter is a number (4, 8, 16, 32,. . . ), defining the number of units in the first
hidden layer. In consequence, it also defines the number of units in the other hidden
layers, depending on the shape selected for the net.

3. Loss
A typical loss for binary classification is the binary cross-entropy. The issue, in this
case, is, that the neural net f{student} does not get hard labels as input, but the positive

probabilities y∗ = f̂teacher, predicted by the teacher. So it is actually not trained like a
regular binary classification neural net. Instead, it is a regression on the probabilities.
Therefore the mean squared error to the pseudo labels is chosen as loss to be minimized.
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Apart from these parameters, tunable parameters for the student net are learning rate, weight
decay, the number of hidden layers, the activation function, batch normalization and the
dropout rate as well.

All together, they result in λnet = (net_shape, fl_units, act_function, learning_rate,
dropout_rate, weight_decay, optimizer, batch_norm)



Chapter 4

Experiments

4.1 Benchmark comparison

In this section, a benchmark comparison between the teacher, its student, and a regular neural
net is carried out on different data sets. Since, the teacher algorithms are already tuned and
well-performing predictors on these tasks, they are used as the benchmark. This experiment
should clarify, whether knowledge distillation can outperform a directly fitted neural net on
different tabular data sets. It is also designed to show if knowledge distillation can be done on
a broad range of binary classification problems and how close the students can approximate
the predictive behavior of f̂teacher.

4.1.1 Setup

4.1.1.1 Tasks and teachers

The evaluation is done on 19 binary classification tasks from openML. They were selected
according to the following criteria.

They all . . .

1. are labeled with the OpenML-CC18 tag.
2. have xgboost, SVM or random forest learner - from mlr (Bischl et al., 2016) - among

the best-performing algorithms.
3. consist of categorical, numeric or mixed features in tabular form.

In openML, classification tasks gathered under the OpenML-CC18 tag are tasks, that are
‘carefully curated from the many thousands available on OpenML’ (Bischl et al., 2017a). ‘It
includes data sets frequently used in benchmarks published over the last few years’ (Bischl
et al., 2017a). Since here it is the goal to set up a benchmark comparison, only data sets with
this tag are selected. The implementation of knowledge distillation for this paper is written in
R, mainly with the packages mlr (Bischl et al., 2016) and Keras (Chollet et al., 2017). Thus,

14
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Table 4.1: Task and teacher selection - The task names are abbreviations (full names can be
found in table 7.1). The number of features is counted without the target variable. For the
’SVM’ teachers, the term in braces is their kernel type. The last column is the rank of the
teacher for this task in the openML leader board from December 2019.

Task Observations Features Feature types Teacher oML rank

ilpd 583 10 mixed xgboost 4
qsar 1055 41 mixed SVM(radial) 5
ozone 2534 72 numeric xgboost 1
phoneme 5404 5 numeric random forest 3
wdbc 569 30 numeric SVM(linear) 3
banknote 1372 4 numeric SVM(radial) 5
blood 748 4 numeric random forest 1
spam 4601 57 numeric xgboost 8
tic 958 9 categorical SVM(radial) 1
diabetes 768 8 numeric random forest 1
kc2 522 21 numeric xgboost 2
pc1 1109 21 numeric random forest 1
phishing 11055 30 categorical random forest 9
wilt 4839 5 numeric SVM(radial) 2
monks2 601 6 categorical xgboost 2
elect 45312 8 mixed xgboost 2
bankmark 45211 16 mixed xgboost 1
credit 1000 20 mixed SVM(radial) 20
chess 3196 36 categorical SVM(polynomial) 1

only mlr algorithms are used from openML as f̂teacher. In this benchmark comparison, three
well-known algorithms for tabular data are used as a teacher: xgboost, SVM and random
forest. To get the best possible teacher algorithm for a task, only those tasks with one of
these algorithms among the top-performing ones are selected.

Table 4.1 shows the selection of tasks with the corresponding teacher for this benchmark
comparison. The range of observations goes from 569 up to 45,312. The number of features
ranges from 4 to 72. Seven times SVM serves as f̂teacher with different kernels, five times
random forest and seven times xgboost. So, it represents a variety of data sets and teachers.
The last column shows the rank of the teachers among all learners applied to the corresponding
task on openML. 11 are ranked first or second. The others are all among the ten best
learners. Only the SVM on ‘credit’, is ranked 20th. But it lies not even 0.02 behind the best
performing algorithm, regarding the accuracy. Among these tasks, only ‘credit’ and ‘chess’
were used for pre-tests to develop the implementation and to gain basic knowledge about the
hyperparameters.
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4.1.1.2 Measures

On these tasks, teacher, student net and directly fitted neural net are compared, regarding
performance measures. These measures are:

1. mmce - the mean misclassification error
2. logloss - also known as binary cross-entropy

4.1.1.3 Resampling and tuning

In openML, pre-defined cross-validation (CV) folds exist for each task. The same folds are
used in this case for evaluation. Since the teacher’s hyperparameters are set already, there is
no tuning necessary. The student and the directly fitted net need tuning. Therefore nested
resampling with model-based optimization is used. Model-based optimization is a tuning
method, specially developed for algorithms with long training time. The exact process is
explained in section 7.1. For this comparison, the implementation in mlrCPO (Bischl et al.,
2017b) is used with the following parameters: Initially 40 points from the tuning space are
sampled by Maximin Latin Hypercube Sampling (Carnell, 2019). As the surrogate model a
random forest is used with jackknife-after-bootstrap variance estimation (Efron, 1992). The
infill criterion is lower confidence bound. With this criterion one new hyperparameter set at a
time is chosen and evaluated before the surrogate model is fitted again. The evaluation method
is 3-fold cross-validation with logloss as the performance measure. All in all, 100 different
hyperparameter sets are evaluated using 3-fold CV, to determine and finally evaluate the best
model on each of the 10 outer CV folds.

4.1.1.4 Hyperparameters

The student net and the directly fitted net share part of their hyperparameters (λnet). The
tuning ranges for this experiment are shown in the left part of table 4.2. Most of them are
well known, except for the activation functions. The choice here is between ‘relu’, ‘selu’ and
‘hard_sigmoid’. relu is the classic activation function, also used by Hinton et al. (2015).
selu was introduced by Klambauer et al. (2017). These ‘self normalizing nets’ (with selu
activation function) are supposed to compete with tree-based ensemble learners, like xgboost
on tabular data. On the one hand, it is interesting to see, how directly fitted nets perform
with selu activation function. On the other hand, it might even improve student nets, so this
parameter is available for both, the directly fitted net and the student. It is implemented
as suggested with the initialization kernel ‘Lecun Normal’ and the dropout method ‘Alpha
Dropout’ (Chollet et al., 2017). Additionally for selu no batch normalization is used.

hard_sigmoid(x) =















0 x < −2.5

x ∗ 0.2 + 0.5 −2.5 ≤ x ≤ 2.5

1 2.5 < x

(4.1)
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Table 4.2: Tuning ranges for neural net and data generating hyper parameters

Neural net Data generation

Hyper parameter Tuning range Hyper parameter Tuning range

net_shape {conic, rectangular} munge_size 100,000
act_function {relu, selu, hard_sigmoid} swap_prob [0.01, 0.5]
fl_units {16, 32, 64, 128, 256} var_param [0.5, 5]
hidden_layers {2, 4, 8, 16} orig_portion [0.001, 0.5]
learning_rate [0.000001, 0.1] lin_comb_nn {TRUE, FALSE}
dropout_rate [0, 0.5] dark_knowledge TRUE
weight_decay [0.0001, 0.01] munge_otf FALSE
optimizer adam
batch_norm {TRUE, FALSE}

The activation function hard_sigmoid (equation (4.1)) shares properties with a step function.
Since the splits in tree-based learners can be represented by step functions, it might be helpful
to distill knowledge from random forest or xgboost.

The hyperparameters exclusively used by fstudent are in the right columns of table 4.2. The
first and the last two parameters are especially noticeable since there is no range defined.
munge_size is set to 100,000 pseudo observations for all data sets and teachers. In the
pre-tests, it seemed like a reasonable trade-off between performance and learning time. Ad-
ditionally, it is used in the original paper (Caruana et al., 2006). In section 4.2.2, a deeper
investigation on this hyperparameter is done, supporting this decision. The next fix param-
eter is dark_knowledge. It is set to true since only this method has a chance to match
probabilities on the observation level. In consequence, the training loss for the student net is
the mean squared error, while for the directly fitted net it is binary cross-entropy. The last
fix parameter is munge_otf . It did not improve the performance in pre-experiments but was
slower, so there was no further investigation in this direction. If lin_comb_nn is set to true,
the labels of pseudo observations are combined half and half with the label from the nearest
neighbor’s label in the original data set only if the three nearest neighbors from the original
data set have the same label. This means, parameters α and k in algorithm 3 are set to 0.5
and 3. For the other parameters, neither was a hint on defaults in the literature, nor they
could be narrowed more in pre-tests, so they are up to tuning in the benchmark experiment.
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4.1.2 Results

In the following sections, the results of this benchmark comparison are shown. The teacher,
its student and a neural net directly fitted on the data are compared. While on the next
pages only mmce is analyzed, the results for logloss can be found in table 7.3. In section 4.2.5
recommendations for hyperparameter settings are provided.

4.1.2.1 Benchmark comparison

Figure 4.1 shows the mean misclassification error across all test sets of the 10-fold cross-
validation. For each task, one plot shows first the regular net’s mmce, then the student’s and
on the right the teacher’s error. The means are connected by a line, to visualize the difference
between these three algorithms. For all 19 tasks, the student net outperforms the directly
fitted neural net. In most cases the teacher algorithm is the best performing one, except
for the tasks ‘wdbc’, ‘phishing’ and ‘monks2’. Here, the student is slightly better, than the
teacher. Looking at these plots, one has to be careful, since the scaling is not uniform. For
example, the tasks ‘ilpd’ and ‘monks2’ look the same at first glance. While in the first case,
the student is just 3% better in accuracy than the directly fitted net, it is over 30% better for
the ‘monks2’ task.

Table 4.3 shows corresponding numbers, including the mean misclassification errors presented
by figure 4.1 in columns ‘mmce NN’, ‘mmce student’ and ‘mmce teacher’. The other columns
are differences of these errors. ‘NN - student’ is the average difference in mmce from the
directly fitted net to student. In consequence, positive values mean a better performance by
the student. ‘Student - teacher’ is the difference between student to teacher performance.
Here, negative values show better performance by the student, compared to the teacher. The
table is ordered by ‘NN - student’. In just one case (task ‘wdbc’), the directly fitted neural
net gets closer than 1% within the accuracy of the student net. For the majority of the tasks
(12), the difference in mmce is between 1% and 3%. Tasks ‘ilpd’, ‘qsar’, ‘blood’, ‘tic’ and
‘phoneme’ show a higher difference from 4% up to more than 10%. The largest difference
appears for task ‘monks2’. Here the student outperforms the directly fitted net by a huge
margin of 34.28% in accuracy. Even the teacher is slightly worse than the student in this
case.

These results indicate, that knowledge distillation driven neural nets are indeed able to out-
perform the same neural nets directly fitted on tabular data. In some cases, of this benchmark
comparison, the difference between the student and the regular neural net is almost negligi-
ble, but for some tasks, the gain in performance by learning from a teacher is significant. Of
course, the prerequisite is a well-tuned f̂teacher.

4.1.2.2 Student vs teacher

The original goal of knowledge distillation is not to outperform directly fitted neural nets. It
is to get a copy of the teacher algorithm, regarding predictive behavior. So now, the second
research question is answered and the ‘quality’ of knowledge distillation in this benchmark
comparison is investigated.
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Additionally to the mean misclassification error across all folds, figure 4.2 shows an estimation
of the distributions of the mmce over the folds. Like in figure 4.1, the black points in the
middle of the violin plot are the overall mmce. This time the scale is just different, since
outliers of the cross-validation are shown as well. For tasks ‘wilt’, ‘ilpd’, ‘qsar’, ‘ozone’,
‘wdbc’ and ‘blood’, the violin plots show a pretty similar distribution for student and teacher
algorithm. In the case of ‘credit’, ‘phoneme’ and ‘spam’, the plots look similar, just shifted a
bit upwards. A completely different distribution is shown just by the task ‘elect’. Regarding
column ‘Student - teacher’ in table 4.3, the difference in mmce from teacher to student is
almost 10%. In this case, knowledge distillation outperformed the directly fitted net, but it
is far away from a ‘copy’ of the teacher algorithm. Except for the task ‘credit’, where the
difference is 1.1%, on all other 17 tasks, the student is beneath 1% within the mmce of the
teacher algorithm. In three cases the mmce is even slightly better than the teacher’s mmce.
And for 9 tasks, the difference is below a half percent (see table 7.2, a reorder of table 4.3 by
‘Student - teacher’). This indicates, that knowledge distillation was applied successfully to
most of these teachers.

As stated in section 1.3.2, a similar mean misclassification error is not necessarily the result of
the same predictive behavior on single observations. To get the observation-wise comparison,
the predictions on the test splits from the CV are used. Both, teacher and student predict the
positive probability for each observation. For these predictions, the absolute and the squared
error from teacher to student and the correlation are calculated.

Figure 4.3 shows these values for each task. The first two plots show the average squared
(mse) and absolute error (mae). The plot on the right shows the Pearson correlation coefficient
between teacher’s and student’s predictions. The tasks are ordered according to the mse. The
mean squared error is indeed very low. Leaving out task ‘elect’, it is below 0.02 for all data
sets, and below 0.01 for all others, except ‘phoneme’. One has to bear in mind, that this is
the measure, f̂student has been trained on. While fitting, the student net aims to minimize
the mse between its prediction for positive probability and the teacher’s soft positive label for
the pseudo observations.

The mean absolute error is also within a low distance to zero. 14 of the tasks show a mean
absolute error below 0.05, four between 0.05 and 0.075, while only ‘elect’ is beyond 0.15.

The Pearson correlation coefficient is close to 1, while here the most extreme outlier is ‘elect’,
too. In most cases the coefficient is greater than 0.95. Surprisingly, there are three tasks,
‘ozone’, ‘pc1’ and ‘ilpd’, all having fair results in mse and mae, but their correlation coefficient
lies below 0.90. This seems a bit low, especially for ozone, which is ranked 8th, regarding the
mse.

Overall, except for one problematic data set ‘elect’, knowledge distillation seems to be pro-
cessed successfully, also on a single observation level. The results of this benchmark compar-
ison indicate, that there are good reasons to use knowledge distillation for tabular data with
binary classification. It not just outperformed directly fitted neural nets on all tasks, it also
gets pretty close to the performance and behavior of the teacher. Whether it is close enough
naturally depends strongly on the application.
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Figure 4.1: Overall mmce comparison - Comparison of directly fitted neural net’s, student’s
and teacher’s overall mean misclassification error on 19 tasks. The short name of the task is
in the upper left corner of each plot.
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Table 4.3: Overall mmce comparison with differences - The first three columns are the directly
fitted neural net’s, student’s and teacher’s overall mean misclassification error. The last two
columns show the difference in mmce for direct NN to student and student to teacher.

Task mmce NN mmce student mmce teacher NN - student Student - teacher

wdbc 0.0263 0.0175 0.0193 0.0088 -0.0018
spam 0.0645 0.0528 0.0435 0.0117 0.0093
pc1 0.0757 0.0631 0.0595 0.0126 0.0036
phishing 0.0397 0.0257 0.0269 0.0140 -0.0012
diabetes 0.2514 0.2327 0.2240 0.0187 0.0086
banknote 0.0196 0.0000 0.0000 0.0196 0.0000
wilt 0.0320 0.0122 0.0112 0.0198 0.0010
bankmark 0.1121 0.0915 0.0892 0.0207 0.0022
elect 0.1721 0.1508 0.0536 0.0213 0.0972
kc2 0.1762 0.1533 0.1436 0.0230 0.0097
ozone 0.0816 0.0545 0.0533 0.0272 0.0012
credit 0.2740 0.2460 0.2350 0.0280 0.0110
chess 0.0332 0.0041 0.0022 0.0291 0.0019
ilpd 0.3275 0.2864 0.2864 0.0411 0.0000
qsar 0.1688 0.1166 0.1147 0.0522 0.0019
blood 0.2928 0.2112 0.2072 0.0815 0.0040
tic 0.1074 0.0073 0.0010 0.1001 0.0062
phoneme 0.2073 0.0946 0.0851 0.1127 0.0094
monks2 0.3428 0.0000 0.0066 0.3428 -0.0066
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Figure 4.2: mmce distribution across CV folds - Directly fitted neural net (blue), student (or-
ange) and teacher (grey) are evaluated with mean misclassification error on a 10-fold CV. The
plots are so-called truncated violin plots. They are (truncated) estimations of the distribution
of the fold-wise mmce.
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Figure 4.3: Errors and correlation between student and teacher - The teacher’s and student’s
predictions (positive probabilities) for each task are compared. The two left plots show the
mean squared error and the mean absolute error between teacher’s and student’s soft labels.
The plot on the right shows the Pearson correlation coefficient for these positive probabilities
of student and teacher. The tasks are ordered, according to the MSE.
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4.2 Ablation Analysis

The following sections examine aspects of knowledge distillation that are not explicitly part
of the research questions. Partly the results from the benchmark comparison are used, partly
some additional calculations are made.

4.2.1 Teachers and activation functions

The first question to be answered is divided into two parts. First, are different teachers easier
to copy than others among xgboost, random forest and SVM? Second, are there activation
functions that suit better to copy different teacher algorithms?

To answer the first question, results from the benchmark comparison are considered. For
each task, figure 4.4 shows the distribution of the differences between student and teacher
predictions (observation-wise), calculated on the test splits of the CV. This difference is the
error between student and teacher. To keep the plots comparable, they all show the area
[−0.1, 0.1]. So in most cases, some outliers are cut off. For the sake of completeness, figure 7.1
in the appendix shows the whole span for all tasks. The plots are ordered and colored, regard-
ing their teacher. There are again violin plots to estimate the distribution and additionally
regular boxplots in the middle of them. The outliers are represented by black dots.

Starting with SVM as f̂teacher, 5 out of 7 tasks show an extremely low error with whiskers
below 0.0125. In just two cases, the distribution has a higher variance. For the random forest,
only the task ‘phishing’ has whiskers so close to 0. The other 4 data sets, especially ‘diabetes’,
show a relatively high variance, where the outliers start between |0.05| and |0.1|. Same holds
for ‘elect’, ‘kc2’, ‘ilpd’ and ‘monks2’ with xgboost as teacher. Just 3 out of 7 tasks show a
low variance for xgboost and none of them is as low as the ones for tasks with an SVM as the
teacher.

It seems like SVM is the easiest teacher to get its knowledge distilled into a neural net. The
two ensemble methods random forest and xgboost are a bit harder to copy. This assumption
gets supported by figure 4.5. It shows basically the same like figure 4.3. Just in this case the
errors and the correlation coefficient are grouped by the teacher classes. The values for mse,
mae and Pearson correlation are similarly distributed for xgboost and random forest. SVM
on the other hand shows constantly low values for the errors and a correlation coefficient,
which is above 0.97 for all seven tasks.

These results point to the assumption, that in general an SVM is easier to copy with knowledge
distillation, than ensembles like random forest or xgboost.
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Figure 4.4: Distribution of error from student to teacher - The distribution of the observation-
wise difference in positive prediction between teacher and student is ordered by the type of
teacher. First SVMs (blue), second random forest (orange) and third xgboost (grey). The
scale is [-0.1, 0.1], meaning some outliers are cut off.
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Figure 4.5: Errors and correlation by teacher type - The teacher’s and student’s predictions
(positive probabilities) for each task are compared. They are ordered by the teacher types,
SVM, random forest and xgboost. The plots on the left show the mean squared error and the
mean absolute error between teacher’s and student’s soft labels. The plot on the right shows
the Pearson correlation coefficient for these positive probabilities of student and teacher. The
tasks are ordered, according to the MSE.

The second question in this context is which activation function is preferably chosen for which
learner?

In the benchmark comparison, for each cross-validation fold, the hyperparameters were tuned.
For the activation function, three parameters were available for the student and the directly
fitted net: ‘selu’, ‘relu’ and ‘hard_sigmoid’.

Figure 4.6 shows the tuning results for this parameter in each fold. For each task, the student’s
and the directly fitted net’s choices are visualized. Additionally, for each teacher algorithm,
the distribution of activation functions selected by the corresponding student can be seen, as
well.

The first interesting point is the activation function hard_sigmoid. It does not seem to be
of any use, neither for the student nor for the directly fitted net. Especially, it was not used
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once, to distill the knowledge out of a random forest. So, in this context, it does not help, to
copy a tree-based learner. Considering the plot in the left lower corner, there is no indication
for an activation function in favor of one special teacher. In most cases relu is chosen. For
random forest only relu was selected, for SVM it is definitely the favorite. For xgboost it is
relu as well, while selu has a bit more appearances here compared to SVM. In general, relu
is selected more often by the student, than selu. Only for the tasks ‘ilpd’ and ‘monks2’, relu
has not been selected once. On seven of the other tasks, only relu was the result of tuning.
Contrary to that, for the directly fitted net, selu seems to be the best choice. There is just
one real outlier, the task ‘monks2’, where exclusively relu was used. For the other tasks, the
directly fitted net used mainly selu as activation function.

Figure 4.6: Activation functions selected by tuning - The results of MBO tuning in the
benchmark experiment, regarding hyperparameter activation_function. For each task, the
activation functions used for prediction on test data are plotted against the tasks for student
and directly fitted net and once against the teacher type to learn from.

In summary, there is no clear preference for an activation function indicated by the type of
teacher. In most of the cases, relu is the result of tuning, so it could be used as the default
value for this parameter of the student net. But selu might be worth a try anyway.

Apart from that figure 4.6 shows, how strong the influence of knowledge distillation is on the
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choice of hyperparameters, like activation_function. With the same parameters available,
tuning resulted in a strong and contrary tendency, once towards relu and once towards selu.

4.2.2 MUNGE size

A parameter with a strong influence on knowledge distillation is munge_size. The goal of
MUNGE is to cover the part of the hypercube in the feature space where potentially realistic
observations are located. Thereafter, the f̂teacher labels them and the student is fitted on
these observations. So when new (real) observations need to be labeled by f̂student, it should
be able to label them almost as the teacher would do, since the student has been trained on
many pseudo observations, which are very similar to any new observation.

Derived from this intention behind MUNGE, the theory is formulated, that the larger the
parameter munge_size is, the closer the student approximates the teacher’s behavior.

When examining this theory, some problems arise. In the benchmark comparison,
munge_size was set to 100,000. Choosing this number, had different reasons. First, it
performed well in the pre-testing phase. Secondly, it was suggested by Caruana et al.
(2006) (for no explained reason). Third, it is a trade-off between size and duration of
fitting fstudent and, as a consequence, tuning its hyperparameters. To draw a picture of
the influence of munge_size, the tuning results for the other hyperparameters from the
benchmark comparison were combined with different munge sizes and evaluated on the same
CV folds. The different evaluated numbers of generated pseudo observations are 10,000,
50,000, 100,000, 500,000 and 1 million.

Table 4.4 shows the results of this comparison, regarding munge_size. The measure is mmce.
The first column presents the overall misclassification for fstudent with munge_size = 10,000,
evaluated on each task. The next four columns show the improvement in mmce to the next
higher evaluated munge_size. For example, column ‘100K - 500K’, represents the difference
in mmce from a student with 100,000 pseudo observations to one with 500,000. Positive values
mean improvement and negative ones degradation in mmce. This way, the development from
10,000 to 1 million pseudo observations can be seen in one line. The last column is the
evaluation of f̂teacher, and the column before is the mmce for fstudent trained on 1 million
pseudo observations.

A systematic improvement in accuracy from 10,000 to 1 million observations is shown by
tasks ‘bankmark’, ‘elect’, ‘ilpd’, ‘kc2’ and ‘phoneme’. For the other tasks, there is at least one
step with a negative value, meaning degradation of performance. The largest differences are
obtained from 10,000 to 50,000. Here an improvement between 5% and 10% in accuracy is
normal. Additionally, there is just one degradation for task ‘wilt’. In the next step from 50
to 100 thousand observations, a large step is only on this task ‘wilt’, with a 5% improvement.
Apart from that, there are six low degradations and the rest are slight improvements. Almost
the same holds for the next step from 100 to 500 thousand. There are four cases with
worsening, one of them relatively high with 3.4% for task ‘monks2’, and the rest are positive
values, below 1% except for ‘diabetes’ and ‘elect’, with improvements between 1% and 2%.
The last step is split in half. 9 tasks show a degradation, and 10 an improvement. The values
in both directions are all 1% or lower.
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Table 4.4: Influence of MUNGE size - Comparison of performance for different sizes. The
mmce for different numbers of pseudo observations generated by MUNGE is compared. The
first column shows the value for 10,000. The following column is the difference to the next
higher number of pseudo observations, while positive values mean an improvement. In the
last two columns the mean misclassification errors for the student with MUNGE size set to 1
million and the teacher’s results are shown.

Task 10K 10K - 50K 50K - 100K 100K - 500K 500K - 1M 1M Teacher

bankmark 0.1037 0.0119 0.0004 0.0006 0.0002 0.0907 0.0892
banknote 0.1095 0.1095 0.0000 -0.0022 0.0007 0.0015 0.0000
blood 0.2632 0.0560 -0.0040 0.0054 0.0013 0.2045 0.2072
chess 0.0147 0.0113 -0.0006 0.0013 -0.0006 0.0034 0.0022
credit 0.2760 0.0300 0.0000 0.0100 -0.0100 0.2460 0.2350
diabetes 0.2514 0.0288 -0.0101 0.0129 -0.0072 0.2269 0.2197
elect 0.2371 0.0735 0.0128 0.0168 0.0035 0.1305 0.0536
ilpd 0.3549 0.0668 0.0017 0.0000 0.0017 0.2847 0.2864
kc2 0.2206 0.0635 0.0038 0.0019 0.0019 0.1495 0.1436
monks2 0.1028 0.1028 0.0000 -0.0344 -0.0017 0.0361 0.0066
ozone 0.0619 0.0079 -0.0004 0.0028 -0.0004 0.0521 0.0533
pc1 0.1424 0.0676 0.0117 0.0045 -0.0027 0.0613 0.0595
phishing 0.0829 0.0569 0.0004 -0.0011 0.0014 0.0254 0.0269
phoneme 0.1696 0.0668 0.0083 0.0072 0.0011 0.0862 0.0851
qsar 0.1770 0.0632 -0.0028 0.0066 -0.0048 0.1147 0.1147
spam 0.0578 0.0063 -0.0013 0.0028 0.0015 0.0485 0.0435
tic 0.0438 0.0354 0.0011 0.0042 -0.0021 0.0052 0.0010
wdbc 0.0263 0.0070 0.0018 -0.0018 -0.0018 0.0211 0.0193
wilt 0.0528 -0.0121 0.0527 0.0000 0.0004 0.0118 0.0112

All in all, the theory, that larger munge_size results in a better approximation of the student
does not hold in general. There are only 5 of 19 tasks, where this behavior can be seen. For
all other tasks, there are some step backs in mmce when increasing the number of pseudo
observations. But it is reasonable, to generate at least 50 or 100 thousand pseudo obser-
vations since in this area significant improvements are recognized, compared to just 10,000
observations. In some cases, it might even be worth a try to go beyond that, especially, when
knowledge distillation is not successful like it is the case for the task ‘elect’.
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4.2.3 Linear combinations with nearest neighbors

In section 3.2.3, a modification to MUNGE was introduced, combining teacher labels with
nearest neighbor labels from the original data set. The goal is, that misclassifications of the
teacher, can be smoothed out through the nearest neighbors and f̂student outperforms f̂teacher.

The question is: Does this method of linear combinations of teacher labels with nearest
neighbors improve the student nets beyond the teacher’s performance?

The first answer to this can be found in the benchmark comparison. Since this method
(hyperparameter lin_comb_nn) was up to tuning, the percentage of times it was the result
of MBO, is meaningful. This parameter was selected in just 24% of all folds from the 19 tasks.
This is an indication that it is not as helpful as expected.

To investigate the influence of this hyperparameter more deeply, the tuning results from the
benchmark comparison are used for another experiment. All other hyperparameters stay as
the result from tuning, just lin_comb_nn is set once to TRUE and once to FALSE. Thereafter,
on each fold the difference between mmce for the student without linear combination minus
the student with linear combination is calculated and compared to each other.

Figure 4.7 shows the result of this comparison. The distribution of the fold-wise difference in
test mmce of students without minus students with linear combination is shown. In conse-
quence, positive values indicate, that the linear combination with nearest neighbors yields a
lower mean misclassification error.

The overall distribution is roughly centered at zero, rather a little bit shifted to the left. This
is consistent with most of the tasks. For many of them, the distribution of this difference is
centered at 0. For tasks ‘diabetes’ and ‘credit’, the median is negative around 0.02, meaning
degradation of 2% in mmce.

This analysis indicates, that this hyperparameter is of no use for knowledge distillation. It
might even make the copy of f̂teacher worse in contrary to the goal to improve it beyond.
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Figure 4.7: Influence of lin_comb_nn - The lower plot shows the distribution per task of
the difference in test mmce of students without minus students with linear combination. The
density plot on top shows the overall distribution of this difference over all tasks.
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4.2.4 Approximation error

The last point investigated in this section is the meaning of the training error of f̂student. The
concrete question is: What is possible to foresee, regarding the predictive behavior of the
student on new data, only knowing the training error on pseudo observations.

Regular machine learning algorithms, like the directly fitted net in the benchmark comparison,
are trained on exactly the same structured data, as they predict on thereafter. So, the training
error can be set in direct context with the generalization error, for example the mmce on test
data.

The student net is trained on pseudo observations with soft labels, coming from f̂teacher.
The training loss in this case is the mean squared error between the teacher’s label and the
prediction of the student net. But when it comes to predicting on new data, the goal is not
anymore to imitate the teacher, but just to regularly label data with probabilities for the
positive class. So, for this special learner, train and test data is not homogenous.

The attempt to somehow transfer the loss to the teacher’s labels on training data to a general
evaluation measure for binary classification like mmce on test data would not make sense at
all. Each teacher on each data set has a different level of accuracy for instance. And a low
training loss, could only imply, that the student is close to the teacher. If the teacher himself
has low accuracy, the student has a low accuracy as well. So, low training loss can lead to
high or low accuracy on test data, regarding the overall generalization error.

The only ‘generalization’ that can be interpreted, is the approximation of f̂teacher. Especially,
the squared differences of positive probabilities on test observations. When the student is
fitted, it aims to reduce this difference to the teacher’s soft labels. And thus, the generalization
error, in this case, is low, if the training mse is close to the test mse.

Figure 4.8 shows the difference between the training mse (validation loss of student net) and
the test mse on each fold, evaluated on the results of the benchmark comparison. All student
nets are fitted with hyperparameter lin_comb_nn set to FALSE. This way, f̂student learned
from f̂teacher only. The blue lines mark the values -0.01 and 0.01. Since, the test mse is
subtracted from training mse, positive values mean a lower difference on test data than on
training data.

For the majority of tasks, the median of the difference is pretty close to zero. Also for most
cases all observations are within the blue bars. Only for task ‘elect’ the median is shifted to
the right. It is also conspicuous, that all differences on folds with absolute values greater than
0.01 are positive.

This shows that the training error is an indication for the ‘generalization’ error, meaning that
low validation mse results in a close approximation of the teacher. There are too few positive
outliers to state, that the test error tends to be better than the training error. But it seems
very unlikely, that the training error is too optimistic.
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Figure 4.8: Difference of train and test mse - Distribution of the fold-wise difference between
student’s training mse and the mse between the student’s and teacher’s labels on test data.
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Still one has to be careful, with the interpretation. Some issues have to be kept in mind, when
using the student’s validation loss to predict its behavior on new data. First, munge_size

was set to 100,000 in this case. If it is too small, the training error might be low as well,
but the test error can be way higher. Second, the training error is the mse between the
prediction of the student and the pseudo labels. Let the teacher have an accuracy of around
75%, for example. Then it is most likely that it has many observations labeled with low
confidence, roughly around 0.5 probability for the positive class. If the student is pretty
close to the teacher, regarding these probabilities, just small differences can make a decision
for the respectively other class and the predictive behavior is not that close anymore for a
measure like mmce. Third, when methods like the linear combination with nearest neighbors
(section 3.2.3), modify the pseudo labels, it gets very hard to make any assumption about the
predictive behavior of f̂student.

4.2.5 Default values

To finish this experimental section, a suggestion for default values for the hyperparameters
is given now. On the basis of the results from the benchmark experiment and the ablation
analysis, the hyperparameter constellation shown in table 4.5 is a fair first try for knowl-
edge distillation on any tabular data set with a fitted learner. Among these parameters,
learning_rate is the one that most likely needs tuning, when knowledge distillation is ap-
plied to new data.

Table 4.5: Suggested default hyperparameters for knowledge distillation

Neural net Data generation

Hyper parameter Tuning range Hyper parameter Tuning range

net_shape rectangular munge_size 100,000
act_function relu swap_prob 0.1
fl_units 256 var_param 1
hidden_layers 4 orig_portion 0
learning_rate 0.0001 lin_comb_nn FALSE
dropout_rate 0 dark_knowledge TRUE
weight_decay 0 munge_otf FALSE
optimizer adam
batch_norm TRUE



Chapter 5

Application: Compressing an ML

pipeline

Throughout this thesis, it has been shown, how and that knowledge distillation can be done
successfully for a broad range of tabular data sets and learners. It goes well with SVM,
random forest and xgboost. In many real use cases, before the actual learner is applied to the
data, preprocessing methods are conducted on the data set.

So, the question arises, if it is possible to not just distill the knowledge of a learner but to
compress a whole machine learning pipeline?

Here only the possibility is shown, so it is just a small experiment. Randomly, two of the
task and teacher combinations from the benchmark comparison are selected (‘qsar’ and ‘kc2’
with teachers SVM and xgboost). To both learners the preprocesses scaling and principal
component analysis (PCA) are added, which are applied before the learner is fitted on the
data. These fitted pipelines of scaling, PCA and then SVM/xgboost are used as f̂teacher.
The hyper parameters for the student algorithms are only tuned for the learning_rate ∈
{10−2, 10−3, 10−4, 10−5}. The other parameters are set to default, suggest in section 4.2.5.

Table 5.1 shows the results. The student for ‘qsar’ performs slightly worse than the teacher
does, while for task ‘kc2’ and the xgboost pipeline, the student is slightly better.

This is just one example of a pipeline, but it shows that knowledge distillation can be done
successfully for such a machine learning pipeline as well.

Table 5.1: Pipeline compression - Results evaluated on 10-fold CV

Task Algorithm mmce

qsar svm.pca.scale 0.1174858
qsar student 0.1203069
kc2 xgboost.pca.scale 0.1723640
kc2 student 0.1648560
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Chapter 6

Conclusion and outlook

On a benchmark experiment with 19 tasks, it was shown, that neural nets trained via knowl-
edge distillation for binary classification can outperform nets of the same structure directly
fitted on tabular data. The method performed well across differently structured data sets with
less than 1,000 observations or with more than 45,000. It is possible to copy random forests,
SVMs, xgboost models and even learning pipelines with scaling and PCA to preprocess the
data. Additionally, the observation-wise investigation on predictions pointed out, that the
approximation of the teacher algorithm is close to the soft label predictions of the teacher
in most cases. Without success, some modifications to the method MUNGE were tried to
improve the student’s performance. Neither the linear combination with nearest neighbors
turned into an improvement, nor the use of some original portion in the pseudo observa-
tions. But the use of dark knowledge was successful, especially for the approximation of the
teacher’s predictive behavior on single observations. Some new activation functions were tried
with ‘selu’ and ‘hard_sigmoid’ but were outperformed by ‘relu’ for most cases.

This method might be useful in different fields. The original goal by Caruana et al. (2006),
to compress ensemble learners into a neural net for deployment, could be easily done by
transforming the fitted net into a binary file and use it in any other programming language.
Another benefit of distilling any learner into a neural net is the obtained input gradients
(Hechtlinger, 2016). By copying different learners into neural nets, it is possible to interpret
their prediction by one uniform method, applicable to neural nets. Further, it could be worth
it, to try this method on regression tasks. Most likely, the numeric target variable would need
to be scaled, to be predictable for the student net. Then it should be no problem, since, for
this thesis, the net was trained via minimizing the mse to the positive probabilities, as well.

To put it in a nutshell, there is a lot of potential in knowledge distillation, not just for binary
classification.
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Chapter 7

Appendix

7.1 Model-based optimization - mlrMBO

Model-based optimization is a method for ‘expensive black-box optimization by approximating
the given objective function through a surrogate regression model’ (Bischl et al., 2017b). Since
student nets, in this case, are time-consuming to fit and have many hyperparameters to be
tuned over, MBO was chosen to find the best parameter set.

Tuning hyperparameters is the optimization of a machine learning algorithm f regarding its
hyperparameter space Λ on a data set D = (X, y). To be able to optimize an algorithm, an
evaluation function has to be defined. Let eval_method(λ, f, D) be this evaluation function,
which - w.l.o.g - has to be minimized.

Then, the optimal result of tuning is the solution to equation (7.1).

λ∗ = argmin
λ∈Λ

eval_method(λ, f, D) (7.1)

The pseudo code for MBO’s attempt to solve equation (7.1) is algorithm 4.

Algorithm 4: Model-based optimization

Input : D = (X, y), f , Λ
Parameters : n, m, budget, fsurr, eval_method, init_method, infill_crit

Result : Best hyperparameter set λ∗

1 sample n points from Λ via init_method resulting in Λsample

2 label each λ ∈ Λsample via eval_method resulting in (y, Λsample)
3 while budget is not exceeded do

4 fit fsurr on (y, Λsample) to obtain f̂surr

5 propose m new points in Λ via f̂surr and infill_crit

6 evaluate new points and add the result tuples to (y, Λsample)

7 end

8 return λ∗ as the λ ∈ Λsample with the smallest corresponding y value
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The parameters for MBO are:

1. n - The number of initially sampled points from Λ.
2. init_method - An algorithm determining how the n initial points are sampled from

Λ. One standard method is ‘Maximin Latin Hypercube Sample’, which ‘attempts to
optimize the sample by maximizing the minimum distance between design points’ (lhs,
2019). Sampling randomly is also an alternative.

3. eval_method - A method evaluating hyperparameter sets from Λ. Usually f

with hyperparameter set λ is fitted and evaluated via cross-validation on D. So,
eval_method(λ, f, D) and in consequence the labels of Λsample are the average loss
over the CV folds.

4. fsurr - The surrogate model, approximating the evaluations of f for different hyper-
parameter sets. This model is a regression model, fitted on (y, Λsample) over and
over again when new points are added to Λsample. The goal is, to find minima of
eval_method(λ, f, D), regarding λ, by estimating its behavior with the known points
(y, Λsample).

5. infill_crit - The infill criterion. It is a function to estimate how promising new points
λ ∈ Λ are. It aims to achieve a good trade-off between ‘exploitation and exploration’
(Bischl et al., 2017b). Therefore, the estimated expected value and the estimated
variance of λ are set in context, targeting low expected value (goal is to minimize
eval_method(λ, f, D)) and high variance, since there is potential to improve. An ex-
ample for an infill criteria is the ‘lower confidence bound’ (equation (7.1)). α regulates
the balance. The estimation of Ê and ŜD are obtained by the surrogate model. The
expected value is the prediction and the variance in a random forest can be estimated
by the ‘jackknife-after-bootstrap’ method (Efron, 1992), for example.

6. m - The number of proposed new points from Λ per loop.
7. budget - The budget for the MBO process. This can be basically any condition, for

example total time for tuning or a number of total evaluations. When this limit is
reached, the algorithm stops and returns the best hyperparameter set found.

LCB(λ, α) = Ê(λ) − αŜD(λ) (7.2)
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7.2 Additional tables and plots

Figure 7.1: Distribution of error from student to teacher - The distribution of observation-wise
difference in positive prediction between teacher and student is grouped by the teacher type.
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Table 7.1: Task names and openML run IDs - The full names for the tasks and the run IDs
for the teachers in the benchmark comparison.

Task Full Name Teacher’s oML run ID

ilpd ilpd 5620384
qsar qsar-biodeg 4256262
ozone ozone-level-8hr 5722374
phoneme phoneme 8833050
wdbc wdbc 3850987
banknote banknote-authentication 2063917
blood blood-transfusion-service-center 6613421
spam spambse 6180012
tic tic-tac-toe 3373008
diabetes diabetes 5545055
kc2 kc2 4234286
pc1 pc1 3495761
phishing PhishingWebsites 8110032
wilt wilt 4201453
monks2 monks-problems-2 7781944
elect electricity 7946315
bankmark bank-marketing 6578472
credit credit-g 6384382
chess kr-vs-kp 4870477
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Table 7.2: Overall mmce comparison with differences - The first three columns are the directly
fitted neural net’s, student’s and teacher’s overall mean misclassification error. The last two
columns show the difference in mmce for direct NN to student and student to teacher. This
table is ordered, regarding the last column.

Task mmce NN mmce student mmce teacher NN - student Student - teacher

monks2 0.3428 0.0000 0.0066 0.3428 -0.0066
wdbc 0.0263 0.0175 0.0193 0.0088 -0.0018
phishing 0.0397 0.0257 0.0269 0.0140 -0.0012
banknote 0.0196 0.0000 0.0000 0.0196 0.0000
ilpd 0.3275 0.2864 0.2864 0.0411 0.0000
wilt 0.0320 0.0122 0.0112 0.0198 0.0010
ozone 0.0816 0.0545 0.0533 0.0272 0.0012
qsar 0.1688 0.1166 0.1147 0.0522 0.0019
chess 0.0332 0.0041 0.0022 0.0291 0.0019
bankmark 0.1121 0.0915 0.0892 0.0207 0.0022
pc1 0.0757 0.0631 0.0595 0.0126 0.0036
blood 0.2928 0.2112 0.2072 0.0815 0.0040
tic 0.1074 0.0073 0.0010 0.1001 0.0062
diabetes 0.2514 0.2327 0.2240 0.0187 0.0086
spam 0.0645 0.0528 0.0435 0.0117 0.0093
phoneme 0.2073 0.0946 0.0851 0.1127 0.0094
kc2 0.1762 0.1533 0.1436 0.0230 0.0097
credit 0.2740 0.2460 0.2350 0.0280 0.0110
elect 0.1721 0.1508 0.0536 0.0213 0.0972
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Table 7.3: Overall logloss comparison with differences - The first three columns are the directly
fitted neural net’s, student’s and teacher’s overall logloss. The last two columns show the
difference in logloss for direct NN to student and student to teacher.

Task logl NN logl student logl teacher NN - student Student - teacher

wdbc 0.0825 0.0765 0.0812 0.0060 -0.0046
diabetes 0.5271 0.5039 0.4800 0.0233 0.0238
phishing 0.0927 0.0690 0.0754 0.0237 -0.0065
ilpd 0.5698 0.5423 0.5834 0.0275 -0.0411
elect 0.3797 0.3479 0.1379 0.0317 0.2100
spam 0.1830 0.1458 0.1271 0.0371 0.0187
pc1 0.2438 0.1942 0.2210 0.0496 -0.0268
wilt 0.0908 0.0355 0.0345 0.0553 0.0011
credit 0.5674 0.4950 0.4893 0.0724 0.0057
ozone 0.2171 0.1440 0.1427 0.0731 0.0013
chess 0.0947 0.0149 0.0138 0.0798 0.0011
banknote 0.0877 0.0003 0.0064 0.0874 -0.0061
bankmark 0.3026 0.2019 0.1944 0.1007 0.0075
kc2 0.4910 0.3678 0.3647 0.1232 0.0032
blood 0.6584 0.5237 0.4771 0.1346 0.0467
qsar 0.4746 0.3002 0.3040 0.1744 -0.0038
phoneme 0.4376 0.2519 0.2273 0.1857 0.0245
tic 0.2536 0.0256 0.0065 0.2280 0.0191
monks2 0.5984 0.0001 0.0569 0.5984 -0.0569
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