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Abstract. Proton computed tomography (pCT) promises to reduce or even eliminate

range uncertainties inherent in the conversion of Hounsfield units into relative stopping

power (RSP) for proton therapy treatment planning. This is of particular interest for

proton irradiation studies in animal models due to the high precision required and

uncertainties in tissue properties.

We propose a dedicated single-particle tracking pCT system consisting of low

material budget floating strips Micromegas detectors for tracking and a segmented

time-projection-chamber with vertical Mylar absorbers, functioning as a range

telescope. Based on Monte Carlo simulations of a realistic in silico beam and

detector implementation, a geometrical optimization of the system components was

conducted to safeguard an ideal operation close to intrinsic performance limits at

75 MeV. Moreover, the overall imaging capabilities relevant for pre-clinical proton

therapy treatment planning were evaluated for a mouse model.

In order to minimize extrinsic uncertainties in the estimated proton trajectories, a

spacing of the two tracking planes of at least 7 cm is required in both tracking detectors.

Additionally, novel in-house developed and produced aluminum-based readout

electrodes promise superior performance with around 3 mm−1 spatial resolution due to

the reduced material budget. Concerning the range telescope, an absorber thickness

within 500 µm to 750 µm was found to yield the best compromise between water-

equivalent path length resolution and complexity of the detector instrumentation, still

providing sub-0.5% RSP accuracy. The optimized detector configuration enables better

than 2% range accuracy for proton therapy treatment planning in pre-clinical data sets.

This work outlines the potential of pCT for small animal imaging. The performance

of the proposed and optimized system provides superior treatment planning accuracy

compared to conventional X-ray CT. Thus, pCT can play an important role in

translational and pre-clinical cancer research.

This is an author-created, un-copyedited version of an article accepted for publication



Proton CT for pre-clinical imaging 2

in Physics in Medicine & Biology. IOP Publishing Ltd is not responsible for any er-

rors or omissions in this version of the manuscript or any version derived from it. The

Version of Record is available online at https://iopscience.iop.org/article/10.

1088/1361-6560/ab8afc

Keywords: proton CT, small animal imaging, pre-clinical research, proton therapy,
micromegas
Submitted to: Phys. Med. Biol.

1. Introduction

Pre-clinical in vivo irradiation studies with small animals are of paramount importance

for translational cancer research in order to bridge the gap between in vitro cell

experiments and clinical realization (Tillner et al. 2014). Various research platforms for

photon-based pre-clinical irradiation studies have been developed and commercialized

during the last decade (Verhaegen et al. 2011, Verhaegen et al. 2018). However, those

systems are typically not applicable for nowadays emerging proton beam irradiations,

except for rare cases (Ford et al. 2017).

The main benefit of proton irradiation stems from the characteristic rise in energy

deposition towards the end of the proton beam range, the so-called Bragg peak.

However, the resulting steep dose gradient also bears the risk of inflicting severe damage

to healthy tissue if the proton beam range is not precisely known. A major source of

range uncertainties is the imaging data used for treatment planning, typically relying

on X-ray CTs expressed in the Hounsfield unit (HU) scale. For clinical cases, the

uncertainty inherent in the typically employed stoichiometric conversion of HU values

into the required ion relative (to water) stopping power (RSP) is around 3% (Yang

et al. 2012). Furthermore, for pre-clinical research with mice it is common practice to

employ human reference data for dose calculation (Schyns et al. 2019), due to the limited

availability of detailed information on murine tissue compositions in the literature. This

potentially introduces additional range uncertainties, since the elemental composition

of murine and human tissues can substantially differ.

Proton computed tomography (pCT) represents a promising replacement for X-

ray CT in proton therapy treatment planning since it allows to directly reconstruct

3D RSP distributions. Thus, aforementioned uncertainties originating from the HU-

RSP conversion can be in principle completely eliminated. pCT has experimentally

demonstrated excellent RSP accuracy (Dedes et al. 2019) and simulation studies have

shown superior range calculation accuracy compared to X-ray CT (Meyer et al. 2019).

Moreover, pCT images do not exhibit metal artifacts (Oancea et al. 2018) and can

be obtained at extremely low dose exposure (Schulte et al. 2005), in particular

https://iopscience.iop.org/article/10.1088/1361-6560/ab8afc
https://iopscience.iop.org/article/10.1088/1361-6560/ab8afc
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if complementary fluence modulation is employed (Dedes et al. 2017, Dickmann

et al. 2019).

Originally proposed in the 1960s, imaging with ion beams has experienced a

revived interest by various research groups worldwide in the last 20 years (Poludniowski

et al. 2015, Johnson 2018). While the main focus is on proton imaging, also heavier

ions like helium or carbon ions have demonstrated promising results due to their

reduced multiple Coulomb scattering (Volz et al. 2017, Gehrke et al. 2018, Magallanes

et al. 2019). State-of-the-art in pCT imaging is the so-called single-particle tracking

technique, which relies on the measurement of individual protons. To this end, pCT

systems consist of two main components: a residual range/energy detector and a

tracking system. The latter typically employs two pairs of 2D position-sensitive tracking

detectors before and behind the imaged object, providing information on proton position

and direction in order to estimate the individual trajectories throughout the object. The

residual energy or range of every transmitted proton is measured with a calorimeter or

range telescope (or hybrid system) placed downstream. This provides the energy lost

by a proton inside the object, which is commonly expressed in terms of water-equivalent

path length (WEPL). Nevertheless, despite tremendous advances in detector technology

and reconstruction algorithms, pCT has not yet entered the clinical environment and is

also barely investigated for pre-clinical imaging.

The SIRMIO project (Parodi et al. 2019) aims to provide a link between proton

beam therapy and pre-clinical research by developing a dedicated platform for small

animal proton irradiation. In order to achieve a high-precision irradiation, the platform

will be equipped with a dedicated pCT system tailored to small animal imaging.

In this work, we present a Monte Carlo (MC) study on the feasibility and

performance of the aforementioned pCT system. For the envisaged construction of

a first prototype, a geometrical design optimization of the detector components was

conducted. This is necessary in order to enable an operation close to the intrinsic

physical performance limits. Furthermore, we evaluated the overall imaging capabilities

and provide the first demonstration of the potential of pCT for treatment planning in

pre-clinical scenarios.

2. Materials and methods

2.1. Principle of proton computed tomography

For proton energies relevant in pCT, i.e., sufficiently high to fully traverse the imaged

object, the mean energy loss dE in matter per unit path length dl is well described by

the Bethe-Bloch (Bethe 1930) equation

−dE (E,~r)

dl
= S (E (~r) I (~r)) , (1)

where S is called (electronic) stopping power and E and I are the proton energy and

material mean excitation energy at position ~r, respectively. Within the context of pCT,
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equation 1 can be rewritten as the integral RSP along a proton trajectory L∫
L

RSP (~r) dl = −
∫ Eout

Ein

dE

Sw (Iw, E)
≡WEPL , (2)

where Sw and Iw are the stopping power and mean excitation energy of water,

respectively. The inverse problem of equation 2 represents the mathematical foundation

of pCT since it enables a direct reconstruction of the 3D RSP distribution inside the

imaged object. Within this work, we employed the iterative ordered-subset simultaneous

algebraic reconstruction technique (Wang & Jiang 2004) coupled to a total variation

superiorization scheme (Penfold et al. 2010) for tomographic image reconstruction.

In order to minimize undesired effects of nuclear reactions and large-angle

scattering, the statistical 3σ event filter (Schulte et al. 2008) was implemented for

parallel-ray projection bins. The air gap surrounding the imaged object was accounted

for by computing a convex hull contour from an initial filtered back projection

reconstruction. Subsequently, a straight line path through the object was assumed

for every proton.

2.2. Detector system and design optimization

The proposed pCT system is based on planar gaseous particle detectors of the

Micromegas (MICRO-MEsh GASeous) type (Giomataris et al. 1996). Micromegas are

asymmetric parallel plate avalanche chambers with a several millimeter wide drift region

and a sub-millimeter amplification region, separated by a thin conductive woven stainless

steel micro-mesh held on supportive pillars. The Townsend electrons are detected at

the charge-sensitive readout strips, which are individually connected to high-voltage and

capacitively coupled to the electronics, so-called ’floating strips’ (Bortfeldt 2014). This

design massively reduces performance deterioration due to nondestructive discharges.

Thus, Micromegas allow to reliably detect individual particles at fluxes of up to

60 MHz/cm2 and enable excellent spatial and good multi-hit resolution (Bortfeldt

et al. 2016).

Within this work, Micromegas detectors in two different functionalities are

investigated. The tracking detectors each consist of a doublet of novel 2D position

sensitive Micromegas tracking detectors (Bortfeldt et al. 2017, Klitzner 2019). Here,

the beam enters perpendicularly to the readout structure, hence, directly providing

2D position information. In the conventional approach, the anode is formed by 33 µm

thick photo-lithographically etched copper strips, which are individually connected to

high-voltage. In order to obtain 2D position information, signals are registered via two

additional layers of copper strips (one perpendicular and one parallel with respect to the

floating strips). To reduce the material budget, two modifications of this configuration

are proposed. First, the parallel position information can be directly retrieved by

decoupling signals capacitatively from the floating strips with capacitors outside the

active area, which allows to remove the last strip layer. Additionally, the copper strips

can be replaced by 9 µm thick aluminum strips glued onto insulating Kapton.
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The residual range detector functions as a range telescope and is based on a time-

projection-chamber (TPC) (Marx & Nygren 1978) with Micromegas readout structure

and integrated Mylar field-shaping absorbers placed parallel to the electric drift field. In

order to obtain the best compromise between WEPL resolution and detector complexity,

different absorber thicknesses d={250; 500; 750; 1000} µm were investigated. A proton

track is retrieved from the position information, which is directly measured in horizontal

direction by the readout pads and indirectly inferred in vertical direction from the

measured electron drift time. The residual proton range, i.e., the TPC stage in beam

direction detecting the last energy deposition, can be calibrated to WEPL as explained

later on. A schematic of the complete pCT system is shown in figure 1.

Micromegas-based

time-projection-chamber

with vertical Mylar absorber
Imaged object

(rotatable)

Micromegas doublet 

front tracking system

Micromegas doublet

rear tracking system

Ionization

chamber

d1

d2

Figure 1: Schematic view of the SIRMIO pCT system components, including the

precision dual strip ionization chamber for proton beam monitoring, both during imaging

and treatment. The tracking systems located on both sides of the imaged object each

consist of a doublet of 2D planar Micromegas detectors (separated by a distance d1
and d2 respectively). For measuring the proton residual range, a Micromegas-based

TPC with vertical Mylar absorber plates. For improved visibility, the spacing of the

components is exaggerated.

2.3. Monte Carlo simulation framework

All simulations were performed using the FLUKA (Ferrari et al. 2005, Böhlen et al. 2014)

MC code (version 2011.2x.6 using HADROTHE defaults). The experimental beam

characteristics of a ProBeam R© beam line (Varian Medical Systems, Inc., Palo Alto,

CA, USA) were implemented for scanned proton beams of 75 MeV nominal energy (i.e.,

a range in water of around 46.2 mm), using the approach of Würl et al. (2016).
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The simulation model of the Micromegas tracking detector system explicitly

considered the used materials and geometries, except for neglecting the fill factor of

the micro-mesh by assuming a homogeneous iron layer of 18 µm thickness. In order

to incorporate the expected spatial resolution of the position-sensitive detectors, an

uncertainty (randomly sampled from a normal distribution with conservatively chosen

σ=80 µm (Bortfeldt et al. 2016)) was added to the obtained lateral position values. The

range telescope was modeled as alternating structures of 5 mm wide gas-filled regions

and homogeneous Mylar absorbers. For each proton, the integrated energy deposition

within each gas layer in between two consecutive absorbers was scored through dedicated

FLUKA user routines; however, solely the residual range is later used (i.e., the available

position information at each layer is not employed). Additionally, a model of the parallel

plate ionization chamber, foreseen to be permanently installed in the SIRMIO system

for beam monitoring, was included in the simulation (upstream of the front tracker). All

gaseous detectors contained an 80:20 vol. % mixture of Ne:CF4 at atmospheric pressure

and the electric field was neglected.

The in silico phantom geometries described later on were modeled directly within

the MC simulation according to the their physical dimensions and the manufacturer

material composition specification. X-ray CT data of a mouse (isotropic voxel size

of 0.2 mm) in DICOM format was imported into FLUKA using the standard HU

segmentation into 24 different materials of defined elemental composition and nominal

mean density (Parodi et al. 2007). Electromagnetic processes were re-scaled to match

a bijective clinical-like HU-RSP conversion curve. The knowledge of the exact (i.e.,

error-free) conversion curve allows to directly access the RSP ground truth reference.

2.4. System performance characterization and physical limitations

The achievable RSP accuracy depends on the detector WEPL resolution, which itself

is intrinsically limited by the total range straggling. For a residual range measurement,

this uncertainty is composed of the initial energy spread of the particle beam and

the statistical energy loss fluctuations during the proton slowing-down process. The

latter corresponds to around 1.1% of the mean range (Bashkirov et al. 2016). Based

on the analytical relationship between initial energy E0 and range R according to

Bortfeld (1997) (R = α Ep
0 with α = 0.0022 cm/MeVp and p = 1.77), the additional

range straggling due to the initial Gaussian momentum spread can be derived through

Gaussian error propagation. For the simulated proton beams of 75 MeV nominal energy

with 1% momentum spread the total range straggling equals to 0.83 mm.

The WEPL resolution was quantified according to the procedure of Bashkirov et al.

(2016) by evaluating the detector response for different (water) absorber thicknesses.

In order to quantitatively evaluate the achievable RSP accuracy, the pCT acquisition

of a cylindrical water phantom (∅ 30 mm) with five tissue-equivalent insert rods (∅
6 mm) was simulated (cf. figure 5a). The insert materials were muscle, liver, adipose,

trabecular bone200 and bone400 (CIRS, Inc., Norfolk, VA, USA), and details on the
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elemental composition can be found in Hudobivnik et al. (2016).

The precision of the estimated ion trajectories within the imaged object strongly

influences the spatial resolution of the reconstructed image. In addition to the intrinsic

inaccuracy of the selected trajectory model, the path estimation accuracy depends

on four extrinsic factors, two related to the tracker configuration and two to its

characteristics (Bopp et al. 2014). The latter are given by: (1) the single layer spatial

resolution of the position-sensitive tracking detectors and (2) the material budget of

the innermost (i.e., facing the imaged object) layer of the Micromegas doublet, which

determines the amount of scattering a particle undergoes without the possibility to

measure it. The limitations due to the tracker configuration can be characterized by: (3)

the spacing between the individual sub-systems/layers within one Micromegas doublet

(i.e., d1 and d2 in figure 1) and (4) the distance between object and tracker module,

causing an amplification of uncertainties in position and direction estimation.

The path estimation accuracy was investigated in simulations of a 2 cm thick water

phantom. The root mean square (RMS) deviation between the actual MC proton

trajectories and the estimated paths was calculated for 105 proton histories at 41

equally spaced points along the paths. Moreover, the pCT image spatial resolution

was quantified using a slanted-edge phantom (i.e., a water phantom with a square insert

of 8 mm side length and 2◦ inclination as shown in figure 3a) (Mori & Machida 2009).

Due to the symmetry of the phantom, an average composite edge-spread function was

obtained by combining the oversampled profiles from each side of the insert. The spatial

resolution is quantified in terms of the 10% modulation transfer function.

2.5. Small animal treatment planning

To investigate the suitability for treatment planning of the reconstructed pCT images,

a research version of the MC-based proton treatment planning system µ-RayStation

(RaySearch Laboratories, Stockholm, Sweden) was used. Prior to the data import

the images were back-converted into HUs using the inverse HU-RSP conversion curve

implemented in the MC simulations. Due to the imposed bijectivity of that function,

no uncertainty or ambiguity is introduced by this procedure (Meyer et al. 2019).

Treatment plans were optimized on the ground truth using the beam properties of

the SIRMIO beam line, obtained from validated MC simulations (Parodi et al. 2019,

Kurichiyanil et al. 2019), and subsequently recalculated on the pCT images. The

dosimetric agreement was quantified in terms of (water-equivalent) beam’s-eye view

range differences (Meyer et al. 2019) for a hypothetical brain and lung tumor treatment.

3. Results

3.1. Tracking detector performance and optimization

The Micromegas spatial resolution is i.a. determined by the pitch of the readout strips

and is (conservatively) assumed to yield 80 µm. Moreover, the distance between detector
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front face and isocenter must allow sufficient space for the object being imaged and is

consequently fixed at 4 cm. Since the intrinsic path model uncertainty is rather low

(i.e., maximum RMS error of 0.07 mm) due to the limited amount of multiple Coulomb

scattering inside of 2 cm water, only two points for optimization remain: the spacing

between the individual Micromegas planes in a doublet and their material budget.

The total RMS path estimation deviation for the three different readout structure

configurations is shown in figure 2a as a function of depth inside the water phantom.

The average (i.e., for the entire path within the object) RMS path deviation for the

configuration with aluminum strips was around 0.29 mm, and thus 0.07 mm and 0.10 mm

lower than for the copper-based designs with two and three layers of strips in the readout

structure, respectively.

The distance between the inner and outer detector of each Micromegas doublet

influences the precision of the track angle measurement. Hence, the distance between

the layers in the upstream and downstream tracker doublets was varied from 1 cm to

10 cm in 0.5 cm increments independent of one another. For the detector system with

aluminum strip readout the resulting surface plot of the average RMS path estimation

error is shown in figure 2b. Increasing upstream and downstream tracker spacing to more

than around 7 cm did not considerably improve the path accuracy. This configuration

yielded an average RMS path deviation of 0.18 mm. As a cautious choice to avoid

potential spatial resolution degradation in the image, 10 cm spacing of the tracker sub-

systems will be used for front and rear tracker hereafter.

For the aluminum-based design, the reconstructed pCT image of the slanted-edge

phantom and the regions used for the construction of the oversampled edge profile can

be seen in figure 3a. The resulting modulation transfer functions for the different tracker

configurations are shown in figure 3b. The obtained spatial resolution was 1.9 mm−1,

2.2 mm−1 and 2.8 mm−1 for the copper-based designs with three and two layers, and the

aluminum strips configuration, respectively. The results are close to the performance

of an ideal tracker system (obtained by using the MC information on the particles’

position and direction at the entrance/exit of the tracking modules), which enabled a

spatial resolution of 3.4 mm−1.

3.2. Range telescope performance and optimization

The range-to-WEPL calibration plots are shown in figure 4a. Based on the established

linear calibration function, the standard deviation of the detector response can be

translated into WEPL standard deviation by using Gaussian error propagation. The

resulting WEPL resolutions as a function of WEPL being imaged are shown in figure

4b. As expected, the value generally improves towards thinner absorbers and is

mostly constant except for statistical fluctuations. For increasing absorber thicknesses

a systematically deteriorated performance toward lower WEPL values can be observed.

An exemplarily reconstructed pCT slice of the cylindrical insert phantom can be

seen in figure 5a. The corresponding RSP accuracy for the insert materials achieved
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Figure 2: (a) Comparison of the total RMS path estimation error for the three different

readout structure designs. (b) Surface plot of the average (i.e., for the entire path

within the object) RMS path estimation error for the aluminum-based readout structure

configuration as a function of upstream and downstream detector separation.

for different absorber thicknesses is displayed as bar plot in figure 5b, reflecting the

improved WEPL resolution for thinner absorber slabs. Overall, sub-1% RSP accuracy

was demonstrated; however, results for 1000 µm absorber thickness resulted in image

artifacts of slightly distorted insert geometries. The mean RSP accuracy was 0.53%,

0.27%, 0.24% and 0.22% for the designs with a granularity of 1000 µm, 750 µm, 500 µm

and 250 µm Mylar, respectively.

3.3. Imaging of pre-clinical data sets

Figure 6a shows the reconstructed pCT images of a mouse head for the optimized

detector system (i.e., aluminum-based tracking detector layers, spaced 10 cm, and TPC

with 500 µm thick Mylar absorbers) along with the ground truth and the result for an

ideal detector. The images were obtained for a dose exposure of (93 ± 5) mGy. While

the images clearly resemble the reference anatomy at a low noise level, blurring due to

the limited spatial resolution is immanent. The corresponding RSP distributions are

displayed as joint histogram in figure 6b for the realistic detector model. The mean

RSP for bone-like materials (HU>1200) and soft tissue-tissue (−500 <HU< 0) are

underestimated by up to 0.15.



Proton CT for pre-clinical imaging 10

-20 -10 0 10 20

x [mm]

-20

-15

-10

-5

0

5

10

15

20

z
 [

m
m

]

(a)

0 1 2 3 4 5

Spatial frequency [1/mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
o

d
u

la
ti
o

n
 t

ra
n

s
fe

r 
fu

n
c
ti
o

n

Cu strips (3 layers)

Cu strips (2 layers)

Al strips (2 layers)

Ideal

(b)

Figure 3: (a) Reconstructed pCT image of the slanted-edge phantom using an optimized

aluminum-based tracker system. The indicated rectangles are the regions used for the

construction of the oversampled edge profile and the viewing window is set between RSP

values of 0.7 (black) and 1.7 (white). (b) Comparison of the corresponding modulation

transfer functions for the different tracker configurations along with an ideal system.

3.4. Treatment planning accuracy

Figure 7 exemplary shows the optimized single field uniform dose distributions along

with the results for plan recalculations on the reconstructed pCT images. In both cases,

pCT enabled sub-millimeter accuracy with an average (±1σ) relative proton-beam range

error of (−0.02± 1.42)% and (+0.87± 0.98)% for the lung and brain case, respectively.

The corresponding absolute water-equivalent range differences are (−0.01 ± 0.20) mm

and (+0.09± 0.10) mm.

4. Discussion

4.1. Detector optimization

Both proposed modifications of the design of previously existing tracking detectors

resulted in a substantial performance benefit. Moving the layer of parallel readout strips

out of the active area reduces the total material budget by around 33%. The aluminum-

based design exhibits 3.7 times lower overall metal thickness (from 33 µm down to 9 µm)

with about six times larger radiation length compared to copper (8.897 cm and 1.436 cm

respectively). These changes will substantially reduce multiple Coulomb scattering in

the tracking detectors, which scales with the square-root of the material budget. Hence,
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Figure 4: (a) Simulated calibration plots for the different TPC-based range telescope

configurations: WEPL value versus range inside the detector obtained as mean value of

the Gaussian fit. The black lines are linear fits used to extract the calibration functions.

(b) WEPL resolution plots for the different TPC-based range telescope configurations

as a function of WEPL being imaged: the intrinsic range straggling limit is indicated

by the dashed gray line and the shaded area represents the 95% confidence interval

obtained from the Gaussian fits.

these changes limit the amount of scattering a particle undergoes without the possibility

to measure it. The path accuracy increases towards the object center (cf. figure 2a)

since the information from both trackers is combined. In contrast, the intrinsic path

model inaccuracy for relevant objects due to the stochastic nature of multiple Coulomb

scattering, which is largest slightly downstream the center of the object, is rather small.

For the same reason, the benefit of sophisticated proton path estimation models like the

cubic spline path (Collins-Fekete et al. 2015) or most likely path (Schulte et al. 2008)

over the computationally efficient straight line path is limited. In addition, the finite

angular precision of the detector system is causing increased inaccuracies for those

models exploiting the measured proton direction, in particular at the entrance and

exit of the object. This can even lead to a superior performance of the straight line

path for certain objects.

While the ideal detector layer spacing for the presented irradiation scenario was

above 7 cm, the value for the separation of the upstream tracker planes will generally

depend on the absolute angular value (i.e., the divergence of the incident proton

beam) since the angular uncertainty decreases with increasing absolute angular value.

Furthermore, the optimum downstream value will vary according to the proton residual
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Figure 5: (a) Reconstructed pCT image of the cylindrical insert phantom obtained for an

absorber thickness of 500 µm. The viewing window is set between RSP values of 0.7 and

1.7. (b) RSP relative error distributions for different absorber thicknesses displayed as

bar plot. The bars correspond to the mean relative error values and whiskers represent

the ±1σ intervals.

energy (i.e., shape and water-equivalent thickness of the object) (Penfold et al. 2011).

This justifies the previous choice of 10 cm despite the reduced detector compactness.

Concerning the TPC, an absorber thickness between 500 µm and 750 µm represents

the best trade-off between achievable WEPL/RSP resolution and detector complexity,

since a larger quantity of thinner absorbers (and readout channels) would be required

to enable the same dynamic WEPL range. The slightly degraded WEPL resolution

toward smaller WEPL values (cf. figure 4b) might be a consequence of the large residual

range within the TPC of the corresponding protons. Scattering and the initial particle

direction could accumulate to a detectable difference between the CSDA range within the

detector and the actually measured projected range in beam direction. This effect can

potentially be compensated by applying an advanced residual range calibration. Future

improvements could also encompass a more sophisticated event filtering as proposed by

Volz et al. (2019) in conjunction with embedding the available TPC proton trajectory

information.
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Figure 6: (a) Exemplary reconstructed pCT images for a mouse head obtained for

an aluminum-based tracker and TPC with 500 µm thick absorber foils along with the

ground truth. (b) Corresponding joint histogram of the reconstructed RSP and the

original HU values. The red line indicates the ground truth conversion curve being used

to import the initial X-ray CT data into the MC simulation. The curve below shows

the corresponding mean RSP error (±1σ).

4.2. Imaging performance

The obtained spatial resolution of around 3 mm−1 for the optimized pCT system is

comparable to the performance of cone beam CT systems commonly used in pre-clinical

research (Song et al. 2010). However, the level of detail visible in the presented pCT

reconstructions for realistic small animal data (cf. figure 6a) appears slightly inferior to

the estimated spatial resolution based on the phantom study. One reason is the highly

heterogeneous 3D anatomy, which creates additional path uncertainties compared to

the rotationally symmetric homogeneous phantom case. Nevertheless, the observed

sub-0.5% RSP accuracy of pCT is expected to be substantially superior to X-ray CT

imaging. The observed systematic minor RSP underestimation (cf. figure 5b) is also

reflected in the reconstructions for pre-clinical data (cf. figure 6b). This once again

promotes the investigation of more sophisticated TPC-range calibration methods.

For the study of pre-clinical small animal data, the mouse holder being developed

in-house for the SIRMIO project was not included in the simulation. It consists of

a rigid yet low material budget fixation system, heating and connections for air and

anesthesia supply. In order to guarantee a sterile environment for immunodeficient

mice, the chamber will be surrounded by a nearly cylindrical shell consisting of a 50 µm

thin Kapton foil (Parodi et al. 2019). To further reduce scattering for ultra-precise

irradiation, the support bed will contain cutouts (sealed with a thin Kapton foil) at
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Figure 7: Treatment plans for a hypothetical lung (left) and brain (right) tumor case in

a mouse model. Relative dose distributions (with respect to the prescribed target dose)

are shown for the optimized reference plans and the recalculated ones (i.e., on the pCT

images) along with the corresponding relative dose differences.

irradiation locations specific to the treated indiciation. In order to compensate the

potential deterioration of the pCT spatial resolution due to the additional material the

tracking system could be moved slightly closer towards the holder.

4.3. Treatment planning accuracy

The observed range inaccuracies result as combination of limited RSP accuracy and

spatial resolution. For the rather homogenous brain case, the uncertainty is dominated

by the slight RSP underestimation for soft tissue, which accumulates to the detected

over-ranging. In contrast, the lung case is dominated by heterogeneities, resulting

in a better mean accuracy but increased standard deviation. Considering that a

stoichiometric HU-RSP conversion based on human reference tissues for small animal

irradiation will result in range uncertainties above 3%, pCT is able to provide improved

treatment planning accuracy compared to conventional X-ray CT. Moreover, pre-clinical

imaging commonly only employs cone beam CT systems, which are typically providing

only limited image quality. The pCT system will enable imaging of mice directly in

treatment position (including a correction of the proton beam position via the installed

ionization chamber).
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4.4. Potential limitations of an experimental realization

The detector system simulated in this study provides accurate imaging capabilities,

however, there are some potential limitations regarding the translation from in silico

to experimental realization. First, the manufacturing and structuring process of

the aluminum-based Micromegas is more sophisticated compared to the conventional

copper design and requires certain adjustments. Nevertheless, the process has been

completely mastered in-house and a first prototype has been already produced and

sucessfully tested in 22 MeV proton beams. No aging has been observed. A detailed

evaluation of the actual position resolution, which is possibly even better than the

assumed 80 µm is ongoing. The functional principle of the proposed TPC configuration

has been demonstrated with a first prototype (Lämmer 2019). A reliable electron

extraction within the active region in between two consecutive Mylar plates is has been

demonstrated for 6 mm absorber spacing using field-shaping foils.

5. Conclusion

The presented work is the first detailed investigation of the potential of pCT with

a single-particle tracking system for small animal imaging. It provides a thorough

MC-based optimization of the detector configuration and quantitatively evaluates the

expected performance with respect to the requirements for pre-clinical research. Both

components of the pCT system are currently under construction in-house and first

prototypes have been successfully tested in proton beams, underlining the feasibility

of the proposed system. While proton imaging is nowadays on the verge of becoming

clinically available, the proposed pre-clinical system will contribute to an improved

precision of small animal proton irradiations. This might help to provide a better

understanding of the fundamental in vivo characteristics of cancer and normal tissue

response to ion radiation exposure.

Acknowledgments

This work has been financially supported by the ERC Consolidator Grant SIRMIO

(grant number 725539). JB. acknoledges support from the COFUND-FP-CERN-2014

program (grant number 665779). Dr. Chiara Gianoli is acknowledged for fruitful

discussions. Furthermore, the authors thank Prof. Frank Verhaegen for providing

the mouse CT data and Drs. Erik Traneus and Rasmus Nilsson for support with the

treatment planning software.

Disclosure statement

The Medical Physics Department of the Ludwig-Maximilians-Universität München

has a license and research collaboration agreement with RaySearch Laboratories AB

(Stockholm, Sweden) for the µ-RayStation proton therapy treatment planning system.



Proton CT for pre-clinical imaging 16

References

Bashkirov V A, Schulte R W, Hurley R F, Johnson R P, Sadrozinski H F W, Zatserklyaniy A, Plautz

T & Giacometti V 2016 Med. Phys. 43(2), 664–674.

Bethe H 1930 Annalen der Physik 397, 325–400.
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I, Ruschke A & Zibell A 2016 Nuclear and Particle Physics Proceedings 273, 1173–1179.

Bortfeldt J, Biebel O, Flierl B, Hertenberger R, Klitzner F, Lösel P, Magallanes L, Müller R, Parodi
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Dickmann J, Wesp P, Rädler M, Rit S, Pankuch M, Johnson R P, Bashkirov V, Schulte R W, Parodi

K, Landry G & Dedes G 2019 Physics in Medicine & Biology 64(14), 145016.
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