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The goal in stratified medicine is to administer the “best” treatment to a patient.
Not all patients might benefit from the same treatment; the choice of best treat-
ment can depend on certain patient characteristics. In this article, it is assumed
that a time-to-event outcome is considered as a patient-relevant outcome and
a qualitative interaction between a continuous covariate and treatment exists,
ie, that patients with different values of one specific covariate should be treated
differently. We suggest and investigate different methods for confidence interval
estimation for the covariate value, where the treatment recommendation should
be changed based on data collected in a randomized clinical trial. An adapta-
tion of Fieller's theorem, the delta method, and different bootstrap approaches
(normal, percentile-based, wild bootstrap) are investigated and compared in a
simulation study. Extensions to multivariable problems are presented and eval-
uated. We observed appropriate confidence interval coverage following Fieller's
theorem irrespective of sample size but at the cost of very wide or even infi-
nite confidence intervals. The delta method and the wild bootstrap approach
provided the smallest intervals but inadequate coverage for small to moderate
event numbers, also depending on the location of the true changepoint. For
the percentile-based bootstrap, wide intervals were observed, and it was slightly
conservative regarding coverage, whereas the normal bootstrap did not provide
acceptable results for many scenarios. The described methods were also applied
to data from a randomized clinical trial comparing two treatments for patients
with symptomatic, severe carotid artery stenosis, considering patient's age as
predictive marker.
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1 INTRODUCTION

For many medical indications, it is observed that treatments work differently in different patients, or that different patients
with the same medical indication might benefit from different treatments or treatment strategies.1,2 Selection or iden-
tification of optimal treatment regimes for individual patients in an evidence-based manner is currently discussed. The
literature provides proposals for study designs to investigate differential treatment effects3-5 and statistical methods for
identification of relevant predictive markers6,7 or subgroups benefiting from different treatments.8

It is possible to investigate differential treatment effects in data from a two-group randomized clinical trial by estimat-
ing a mean difference, an odds ratio, or a hazard ratio in dependence of a continuous variable with a regression model by
including the main effect of treatment, the main effect of the covariate, and their interaction term.9,10 A test for homo-
geneity of the treatment effect over the range of the covariate is obtained under common model assumptions. When a
qualitative covariate-treatment interaction is observed,11 the covariate value that is associated with no difference between
the two treatment groups can be estimated from the regression coefficients for treatment and the covariate-treatment
interaction. This is the value of the covariate, where the difference between the mean outcomes of the treatments is zero
or the odds ratio or the hazard ratio between the treatments is one and the direction of the treatment effect changes.12 We
call the covariate value, where the superior treatment changes, the changepoint of treatment stratification in this article.
As this estimate relies on a finite sample and is prone to sampling variability, a confidence interval for that value should
be estimated and provided to indicate uncertainty, as commonly recommended for treatment effect estimates.13,14

In this article, we present and investigate different approaches for calculation of a confidence interval for this change-
point of treatment stratification based on data collected in a randomized clinical trial with a time-to-event outcome. An
adaptation of Fieller's theorem for confidence interval estimation for the ratio of two means,15,16 the delta method for
transformation of maximum-likelihood estimates,17,18 normal and percentile-based bootstrap approaches,19,20 as well as
the wild bootstrap21,22 are presented and investigated in a simulation study. Relevant characteristics as the number of
investigated patients, the censoring distribution, the location of the changepoint in the covariate distribution, and the
distribution of the covariate of interest are varied in the simulation study, and their influence on the performance of the
different confidence interval estimators is assessed. Extensions to situations with multiple covariates are presented and
investigated. Performance of the methods is evaluated by the proportion of simulation runs, where the true changepoint
is covered by the confidence interval (coverage)23 and the distribution of confidence interval width.

Moreover, the different methods were applied to data from the stent-protected angioplasty versus carotid endarterec-
tomy (SPACE) study, a randomized clinical trial comparing two interventions for treatment of patients with severe,
symptomatic carotid stenosis.24,25 In our analysis, the changepoint of treatment stratification regarding patient's age was
investigated, as a qualitative age-treatment interaction was observed in the trial.

The article is organized as follows. In Section 2, estimation of the interaction term using a standard Cox regression model
and calculation of the estimate for the changepoint of treatment stratification from the estimated regression coefficients is
presented. In Section 3, the different methods for confidence interval estimation for that changepoint are introduced. The
simulation study, including the investigated scenarios, methods for simulation of the data, methods for analysis of the
generated data, and the observed results, is presented in Section 4. Application of the different methods for confidence
interval estimation to the data from the SPACE trial is presented in Section 5, and a discussion of the observed results is
given in Section 6.

All analyses presented in the manuscript were performed using the statistical software R.26

2 ESTIMATION OF THE CHANGEPOINT OF TREATMENT
STRATIFICATION FROM A COX REGRESSION MODEL

The Cox regression model,27 is widely used for analysis of time-to-event data in clinical research as well as in epidemiology.
Consequently, we decided to focus on the Cox model for estimation of the changepoint of treatment stratification in this
article. Following the previously described scenario, the interaction between a continuous covariate of interest X and
treatment G ∈ {0; 1} is to be estimated from data observed in a randomized clinical trial with a potentially censored
event-time outcome T. Moreover, scenarios with further prognostic or predictive variables, which will be called Z1 to Zk
in our manuscript, were considered.

In order to estimate the changepoint of treatment stratification for the covariate of interest X, a Cox regression model,
including the main effects of treatment G and the covariate X as well as their interaction term G × X and, where applicable,
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main effects of further covariates Z1, … ,Zk and interaction terms between those covariates and treatment group, is fitted
to the data. In this article, we consider three different scenarios:

Model I – No further covariates:

𝜆(t | X ,G) = 𝜆0(t) exp(X 𝛽X + G𝛽G + G × X 𝛽G×X ). (1)

Model II – Considering the effect of k further prognostic variables Z1,… ,Zk not interacting with treatment:

𝜆(t |X ,G,Z1, … ,Zk) = 𝜆0(t) exp

(
X 𝛽X + G𝛽G + G × X 𝛽G×X +

k∑
i=1

Zi 𝛽Zi

)
. (2)

Model III – Moreover, considering the interaction with treatment for l covariates Z1,… , Zl (with l≤k):

𝜆(t |X ,G,Z1, … ,Zk) = 𝜆0(t) exp

(
X 𝛽X + G𝛽G + G × X 𝛽G×X +

k∑
i=1

Zi 𝛽Zi +
l∑

𝑗=1
G × Z𝑗 𝛽G×Z𝑗

)
. (3)

Here, t denotes time, 𝜆0(t) is the unspecified baseline hazard rate, and 𝛽G, 𝛽X, 𝛽Zi , 𝛽G×X, and 𝛽G×Z𝑗
are the regression

coefficients for treatment, the covariates, and the covariate-by-treatment interactions, respectively. Regression coefficients
can be estimated by maximizing the partial (log-)likelihood, and the variance-covariance matrix can be derived as the
inverse of the observed Fisher information matrix (more details can, eg, be found in the textbooks by Therneau and
Grambsch28 or Kalbfleisch and Prentice.29)

When an interaction term between the covariate of interest X and treatment is incorporated in the regression model,
it is investigated whether the hazard ratio between the two treatments G = 1 and G = 0 is the same for all values of the
covariate X or whether the treatment effect depends on the covariate value. A statistical test for

H0 ∶ 𝛽G×X = 0 vs. H1 ∶ 𝛽G×X ≠ 0,

ie, a test on homogeneity of the treatment effect over the range of X, can be performed using the estimated regression
coefficients and the standard error derived from the variance-covariance matrix (Wald test). An estimate for the hazard
ratio between the two treatment groups depending on the covariate of interest X at a given covariate value can be derived
for the three different models. While the estimated hazard ratio does only depend on the value of X for Model I and
Model II, the estimate of the hazard ratio is also a function of Z1 to Zl for Model III.

Model I:

ĤR(x) = �̂�(t |x,G = 1)
�̂�(t |x,G = 0)

=
�̂�0(t) exp(𝛽G + x𝛽X + x𝛽G×X )

�̂�0(t) exp(x𝛽X )
= exp(𝛽G + x𝛽G×X ).

Model II:

ĤR(x) = �̂�(t |x,G = 1, z1, … , zk)
�̂�(t |x,G = 0, z1, … , zk)

=
�̂�0(t) exp

(
𝛽G + x𝛽X + x𝛽G×X +

∑k
i=1 zi 𝛽Zi

)
�̂�0(t) exp

(
x𝛽X +

∑k
i=1 zi 𝛽Zi

) = exp(𝛽G + x𝛽G×X ).
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Model III – Hazard ratio depending on the values for the covariates Z1 to Zl:

ĤR(x, z1, … , zl) =
�̂�(t |x,G = 1, z1, … , zk)
�̂�(t |X ,G = 0, z1, … , zk)

=

�̂�0(t) exp

(
𝛽G + x𝛽X + x𝛽G×X +

k∑
i=1

zi 𝛽Zi +
l∑

𝑗=1
z𝑗 𝛽G×Z𝑗

)

�̂�0(t) exp

(
x𝛽X +

k∑
i=1

zi 𝛽Zi

) = exp

(
𝛽G + x𝛽G×X +

l∑
𝑗=1

z𝑗 𝛽G×Z𝑗

)
.

Consequently, the estimated covariate value x̂cp, at which the estimated hazard ratio between the two treatments equals
one or equivalently the log-hazard ratio equals zero, ie, the covariate value, for which a patient is considered to have the
same expected outcome from both treatments, is as follows.

For Model I and II:

x̂cp = − 𝛽G

𝛽G×X
. (4)

For Model III:

x̂cp(z1, … , zl) = −

𝛽G +
l∑

𝑗=1
z𝑗 𝛽G×Z𝑗

𝛽G×X
. (5)

In the following, we call this covariate value the estimated changepoint of treatment stratification.

3 METHODS FOR CONFIDENCE INTERVAL ESTIMATION

3.1 Adaptation of Fieller's theorem
Fieller's theorem was originally proposed for estimation of a confidence interval for the ratio of two means from bivariate
normal and possibly correlated data.15 Later, the approach was adapted to allow estimation of ratios of regression coeffi-
cients in multivariable regression models.30,31 Following Cox,31 a confidence interval for the ratio of linear combinations
of regression coefficients

𝜃 =
KT𝜷

LT𝜷
(6)

can be estimated by calculating

A = (LT�̂�)2 − z2
1−𝛼∕2LTI−𝟏L, (7)

B = 2
(

z2
1−𝛼∕2KTI−𝟏L − (KT �̂�)(LT �̂�)

)
, (8)

and

C = (KT �̂�)2 − z2
1−𝛼∕2KTI−𝟏K, (9)

with I−1 representing the variance-covariance matrix of �̂�.
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Confidence interval limits can be determined by solving the quadratic equation

A𝜃2 + B𝜃 + C = 0, (10)

providing an interval of the form

100(1 − 𝛼)% ci =

[
−B −

√
B2 − 4AC

2A
to − B +

√
B2 − 4AC

2A

]
(11)

if A > 0 (which implies B2 − 4AC > 0).32

If A < 0 and B2 − 4AC > 0, the confidence interval will be the complement of a finite interval

100(1 − 𝛼)% ci =

(
−∞ to − B +

√
B2 − 4AC

2A

&

−B −
√

B2 − 4AC
2A

to ∞

)
.

(12)

For A < 0 and B2 − 4AC < 0, the confidence interval is

100(1 − 𝛼)% ci = (−∞ to ∞). (13)

For our question of interest, the vectors K and L have to be chosen appropriately to represent the relationship described
in Equations (4) and (5).

Model I: The negative ratio of the estimated regression coefficient for treatment 𝛽G and the coefficient for the interaction
between treatment and the covariate of interest 𝛽G×X has to be considered. Consequently, for �̂� = (𝛽G, 𝛽X , 𝛽G×X )T , up to
constant factors, K and L have to be specified as

K = −(1, 0, 0)T (14)

and

L = (0, 0, 1)T . (15)

Model II: The same ratio as for Model I has to be calculated. The covariates Z1, … ,Zk and their according regres-
sion coefficients are not directly used in the confidence interval estimation, but it has to be considered that 𝛽G,
𝛽G×X and the estimated variance-covariance matrix are from a model considering Z1, … ,Zk as covariates and con-
sequently other results will be obtained compared to the confidence interval for Model I described above. Thus, for
�̂� = (𝛽G, 𝛽X , 𝛽G×X , 𝛽Z1 , … , 𝛽Zk )

T , the vectors K and L have to be chosen as

K = −(1, 0, 0, 0, … , 0)T (16)

and

L = (0, 0, 1, 0, … , 0)T . (17)

Model III: The estimated changepoint and consequently the estimated confidence interval will depend on the values
of Z1, … ,Zl. With �̂� = (𝛽G, 𝛽X , 𝛽G×X , 𝛽Z1 , … , 𝛽Zk , 𝛽G×Z1 , … , 𝛽G×Zl )

T , up to constant factors, the vectors K and L have to be
chosen as

K = −(1, 0, 0, 0, … , 0, z1, … , zl)T (18)
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and

L = (0, 0, 1, 0, … , 0, 0, … , 0)T , (19)

where z1 to zl represent the values of interest for the l further predictive variables, at which the confidence interval for the
changepoint of treatment stratification is to be estimated.

As a finite interval is obtained if A > 0, which only contains the vector L but not K and consequently does not depend
on the chosen values of Z1 to Zl, a finite confidence interval is either obtained for all combinations of z1 to zl or for none.

An alternative representation for Model I based on the original proposal replacing means of normally distributed vari-
ables by regression coefficients can be found in the supplemental material (Section S1.1). The resulting confidence interval
for the changepoint of treatment stratification corresponds to the cutpoints of a pointwise 100(1− 𝛼)% confidence interval
around the log-hazard ratio in dependence of the covariate values (sometimes called the treatment-effect plot6) with the
line of zero. This relationship is shown in the supplemental material (Section S1.2) and is illustrated for the three different
cases using simulated data in Figure S1.

3.2 Delta method
The delta method17 can be used for calculation of a variance-covariance estimator for transformations of maximum like-
lihood estimates (see, eg, Davison18). Generally, the estimator for the variance-covariance matrix of a transformation g(�̂�)
of a parameter vector �̂� can be obtained as

ĉov
(

g(�̂�)
)
= D(�̂�)T ĉov(�̂�)D(�̂�), (20)

where D(�̂�) contains the partial derivatives of g(�̂�).
Models I and II: The relevant parameter vector is �̂� = (𝛽G, 𝛽G×X )T and the relevant transformation is g(�̂�) = −𝛽G∕𝛽G×X

(see Equation (4)). Following the delta method, the partial derivatives of g(�̂�) have to be calculated. Here, the vector of
the partial derivatives is

D(�̂�) =

(
− 1
𝛽G×X

,
𝛽G

𝛽2
G×X

)T

. (21)

It has to be considered that the estimated regression coefficients and the variance-covariance matrix will generally differ
for Models I and II.

Model III: The vector �̂� = (𝛽G, 𝛽G×X , 𝛽G×Z1 , … , 𝛽G×Zl )
T and the transformation g(�̂�) = −(𝛽G +

∑l
𝑗=1 z𝑗 𝛽G×Z𝑗

)∕𝛽G×X have
to be considered. The partial derivatives are

D(�̂�) =

(
− 1
𝛽G×X

,
𝛽G +

∑l
𝑗=1 z𝑗 𝛽G×Z𝑗

𝛽2
G×X

,− z1

𝛽G×X
, … , − zl

𝛽G×X

)T

. (22)

The variance of g(�̂�) can now be estimated following Equation (20).
For all models, an asymptotic 100(1 − 𝛼)% confidence interval for x̂cp, assuming normality of x̂cp, is given by

100(1 − 𝛼)% ci =
[

g(�̂�) − z1−𝛼∕2

√
D(�̂�)T ĉov(�̂�)D(�̂�) to g(�̂�) + z1−𝛼∕2

√
D(�̂�)T ĉov(�̂�)D(�̂�)

]
, (23)

where zq is the (100·q)th percentile of the standard normal distribution. The variance-covariance matrix of �̂� is represented
by the according components used in the calculation of g(�̂�) of the inverse of the observed Fisher information matrix of
the Cox model fitted to the data.
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3.3 Bootstrap
As an alternative to the analytical approaches described above, bootstrap methods20 investigated in the simulation study
and applied to the data collected in the clinical trial are described here.

When a dataset of n patients is considered, for each bootstrap sample, n individuals are drawn with replacement. This
procedure is repeated k times, where k should be a large number. Recommendations on the minimum number of bootstrap
replications vary depending on the parameters that are to be estimated.20 It appears that a minimum number of 1000
replications should be considered when the percentile-based bootstrap, which is described in Section 3.3.1, is to be applied
in order to obtain reliable results. For each of the k datasets, a Cox regression model is fitted to the data and the estimated
changepoint of treatment recommendation x̂cp is calculated as described in Equations (4) and (5). The estimate obtained
for the jth bootstrap sample ( j ∈ {1, … , k}) is denoted as b̂𝑗 .

3.3.1 Percentile-based intervals
In the percentile-based bootstrap approach, limits of the 100(1 − 𝛼)% confidence interval for x̂cp are given by the (100 ·
𝛼∕2)th and the (100 · (1 − 𝛼∕2))th percentiles of the approximated changepoint distribution derived from the k bootstrap
samples. With b̂(1), b̂(2), … , b̂(k) denoting the k ordered estimates of the changepoints derived from the bootstrap samples,
the 100(1 − 𝛼)% confidence interval is

100(1 − 𝛼)% ci =
[

b̂(k·𝛼∕2) to b̂(k·(1−𝛼∕2))

]
. (24)

3.3.2 Normal intervals
For the normal interval approach, the estimated changepoint of treatment stratification is derived as mean of the
changepoints obtained in the bootstrap samples

x̂boot
cp = 1

k

k∑
𝑗=1

b̂𝑗 . (25)

The standard error for the estimate is calculated as standard deviation of the changepoints obtained from the k samples

�̂�boot =

√√√√ 1
k − 1

k∑
𝑗=1

(
b̂𝑗 − x̂boot

cp

)2
. (26)

Under the assumption of an asymptotic normal changepoint estimate, the asymptotic 100(1 − 𝛼)% confidence interval
can now be derived as

100(1 − 𝛼)% ci =
[
x̂boot

cp − z1−𝛼∕2 �̂�
boot to x̂boot

cp + z1−𝛼∕2 �̂�
boot] . (27)

3.3.3 Wild bootstrap
The wild bootstrap is a resampling procedure which has been proposed by Wu21 in the context of linear regression analy-
ses. The idea was to introduce random centered weights to the residuals from which the bootstrapped response variables
are derived. As Wu21 wrote, the wild bootstrap benefits from a “bias-robustness against error variance heteroscedasticity.”
In this sense, the wild bootstrap seems to be a particularly reasonable choice for Cox regression models in survival anal-
ysis because different covariate measurements and unobserved patient heterogeneity involve heteroscedasticity among
the individuals.

A variant of the wild bootstrap has been developed for resampling in Cox models with right-censored survival data.33

In this framework, where the patient-related counting process t → N(t) for the event of interest admits a martingale
structure through a Doob-Meyer decomposition M = N − Λ, the martingale increments dM = dN − dΛ take the role
of unobservable error terms. The, so to say, bootstrapped residuals are now given as 𝜉dN, where the multiplier 𝜉 has a
standard normal distribution. It was later shown that the multipliers can have any distribution with zero mean and unit
variance.34,35 Another useful feature is that the 𝜉dN are again martingale increments.35
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To apply the wild bootstrap for Model I, we first note that, for large sample sizes n, (𝛽X − 𝛽X , 𝛽G − 𝛽G, 𝛽G×X − 𝛽G×X )T =
[ 1

n
In(𝛽X , 𝛽G, 𝛽G×X )]−1 1

n
Un(𝛽X , 𝛽G, 𝛽G×X )+op(n−1∕2), where Un is the score function and In is the negative of its gradient with

respect to the parameter vector.36 Now, to obtain a wild bootstrap version of this, we replace all martingale increments
dM in the score function Un by 𝜉dN, with independent multipliers 𝜉 for the counting processes of different individuals.
Moreover, we replace in In the counting processes dN with 𝜉2dN; see Dobler and Pauly37 for a similar approach in the
context of nonparametric cumulative incidence functions. It was shown that using these squared multipliers corresponds
to using the optional variation process of the bootstrapped processes when considered as martingales in time.35 We denote
the resulting wild bootstrap version of (𝛽X − 𝛽X , 𝛽G − 𝛽G, 𝛽G×X − 𝛽G×X )T by (ŴX , ŴG, ŴG×X )T .

The confidence intervals for the changepoint, which are based on the wild bootstrap, are of a particularly simple form.
Instead of the standard normal quantile z1−𝛼/2 we use the (1−𝛼)-quantile qwild

1−𝛼 of |||D(�̂�)T (ŴG, ŴG×X )T|||, for which the origi-
nal survival and covariate data are considered as fixed values. Here, the gradient D(�̂�)T again results from the delta-method
applied to the changepoint functional g (see Section 3.2). The wild bootstrap approach makes a separate estimation of
variances and covariances superfluous, which is why the 1 − 𝛼 confidence interval equals

100(1 − 𝛼)%ci =
[
− 𝛽G

𝛽G×X
− qwild

1−𝛼 to − 𝛽G

𝛽G×X
+ qwild

1−𝛼

]
. (28)

Intervals for Model II and Model III can be estimated accordingly.

4 SIMULATION STUDY

A simulation study covering different relevant aspects, which might have relevant influence on the performance of the
presented methods, was performed in order to compare the quality of different approaches for confidence interval estima-
tion. The scenarios differed in sample size, censoring distribution, distribution of the covariate of interest, location of the
true changepoint of treatment stratification, strength of association between further covariates and outcome, strength of
interaction between further predictive covariates and treatment, and the correlation structure between considered covari-
ates. A detailed description of the scenarios investigated for Model I, Model II, and Model III is given below. An overview
over all considered scenarios can be found in the supplemental material in Tables S5, S6, and S7. The quality of the esti-
mated confidence intervals was measured by their resulting width and coverage. For each scenario, 2000 simulation runs
were performed.

As the data are assumed to be collected in a randomized clinical trial with two treatment arms, group allocation was
performed randomly with equal probability for both groups for each individual (P(G = 0) = P(G = 1) = 0.5). Event
times were drawn following the specification of a Cox regression model as shown in Equations (1) to (3) with a constant
baseline hazard and regression coefficients as defined below.

4.1 Model I
Sample size: Different sample sizes were investigated in order to assess performance of the methods in small, moderate,
and large samples. Sample sizes of 200, 500, 1000, 2000, and 5000 independent observations were considered.

Covariate distribution: In order to assess the influence of the distribution of the covariate X, covariates were simulated
following

• A standard normal distribution: X ∼ N(0; 1);
• A uniform distribution between −0.5 and 0.5: X ∼ U(−0.5; 0.5).

Regression coefficients: The regression coefficient for the main effect of the covariate X was chosen to be 𝛽X =
ln(1.25) = 0.223 for all scenarios, indicating a higher risk of death for individuals with larger covariate values. The regres-
sion coefficient for treatment 𝛽G, indicating the group difference for an individual with X = 0 was varied in order to obtain
scenarios with different true values for the changepoint of treatment stratification (see description below). The regression
coefficient for the interaction between the covariate X and treatment G was chosen to be

• 𝛽G×X = ln(1.4) = 0.336 for scenarios with a normally distributed covariate;
• 𝛽G×X = ln(3.2) = 1.163 for scenarios with a uniformly distributed covariate.
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in order to have a probability (power) of about 90% to observe a statistically significant covariate-treatment interaction for
scenarios with a sample size of 500 individuals and a low amount of censored observations. Consequently, the statistical
power for detection of a covariate-treatment interaction was smaller for scenarios with a lower number of observed events
and higher for scenarios with larger event numbers.

Location of the changepoint: In order to assess the impact of the location of the changepoint in the covariate
distribution, different scenarios with the true changepoint located at

• the median (50th percentile)
• the 70th percentile
• the 90th percentile

of the covariate distribution were considered. These different settings were achieved by choosing the regression coefficient
for treatment accordingly. Regression coefficients for treatment G of 𝛽G = −zq𝛽G×X were used for scenarios with normally
distributed X, where zq is the (100·q)th percentile of the standard normal distribution for the desired changepoint location.
For scenarios with uniformly distributed X, 𝛽G was chosen to be 𝛽G = −uq𝛽G×X, where uq is the (100 · q)th percentile of a
uniform distribution with minimum −0.5 and maximum 0.5.

Censoring distribution: Censoring time distributions were chosen to generate event time data with different
proportions of censored observations.

• Low to moderate amount of censored observations of about 25% (leading to about 150, 375, 750, 1500, or 3750 expected
events for the different sample sizes) were simulated by drawing censoring times from an exponential distribution with
a hazard rate of 𝜆cens. = 0.3.

• High amount of censored observations of about 70% (translating to about 60, 150, 300, 600, or 1500 expected events)
were simulated by drawing censoring times from an exponential distribution with a hazard rate of 𝜆cens. = 2.2.

If the generated censoring time for an individual was smaller than the generated event time, the individual was
considered as a censored observation. The shorter time was allocated as observed time.

4.2 Model II
Simulations were performed in order to derive whether inclusion of further prognostic variables can increase the perfor-
mance of the estimation procedures. In these simulations, two additional prognostic variables Z1 and Z2 (k = 2) were
considered. Properties of confidence interval estimators with and without consideration of Z1 and Z2 in the regression
model used for estimation of the regression coefficients, which are considered for estimation of the changepoint of treat-
ment stratification, were compared. Only analytical approaches (Fieller's and delta method) were considered in these
simulations. Covariates were drawn from a multivariable normal distribution with means of zero and variances of one
for X, Z1, and Z2. Covariances between the variables were set as described below. For all simulations, the regression
coefficients for the covariate of interest X, treatment G, and their interaction were set to 𝛽X = ln(1.25), 𝛽G = 0, and
𝛽G×X = ln(1.4). The following aspects were varied in order to derive their influence on performance of the estimators.

Sample size: Datasets with 200, 1000, and 5000 observations were considered.
Censoring distribution: Exponentially distributed censoring times were generated leading to scenarios with

• Low censoring: about 25% censored observations (𝜆cens. = 0.3);
• High censoring: about 70% censored observations (𝜆cens. = 2.5).

Correlation between covariates: Covariates (X, Z1 and Z2) were drawn from multivariate normal distributions with
two different variance-covariance matrices Σ0 and Σ1 giving either independent covariates or covariates with moderate
pairwise correlations (r = 0.5)

Σ0 =

( 1 0 0
0 1 0
0 0 1

)
, Σ1 =

( 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

)
. (29)

Strength of association between the prognostic variables Z1 and Z2 and the outcome: To investigate the influ-
ence of the strength of association between the prognostic variables Z1 and Z2 and the event time of interest, two different
settings for the according regression coefficients were chosen with
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• 𝛽Z1 = 𝛽Z2 = ln(1.2);
• 𝛽Z1 = 𝛽Z2 = ln(1.5).

4.3 Model III
Simulations were also performed for scenarios considering Model III, ie, in the presence of further predictive variables
that also interact with treatment. As for the simulations for Model II, different scenarios in the presence of two further
covariates Z1 and Z2 were investigated (k = l = 2). As described in Equation (5), the changepoint of treatment stratification
depends on the values of Z1 and Z2 in this situation. For all simulations investigating properties of confidence interval
estimators under Model III, the regression coefficients for X, G, and their interaction were set to 𝛽X = ln(1.25), 𝛽G = 0,
and 𝛽G×X = ln(1.4). The coefficients for Z1 and Z2 were chosen to be 𝛽Z1 = 𝛽Z2 = ln(1.25). Censoring times were drawn
from an exponential distribution with a hazard rate of 𝜆cens. = 0.3, leading to a mean proportion of censored observations
of about 25%. The following aspects were varied in the simulation study.

Sample size: Datasets with 200, 1000, and 5000 observations were considered.
Correlation between covariates: Covariates were chosen to be either independent or moderately correlated (Σ0, Σ1)

as described in Section 4.2.
Strength of interaction between Z1 and Z2 and treatment: Two situations with smaller and larger interaction

effects between the two predictive variables Z1 and Z2 and treatment were considered with

• 𝛽G×Z1 = 𝛽G×Z2 = ln(1.2);
• 𝛽G×Z1 = 𝛽G×Z2 = ln(1.5).

4.4 Results of the simulation study
4.4.1 Model I
All methods described in Section 3 were applied to the generated data. For the bootstrap methods, 1000 bootstrap samples
were drawn. In order to evaluate and compare the confidence interval approaches, different measures are provided. For
each method, the coverage, ie, the proportion of simulation runs for which the true changepoint is covered by the con-
fidence interval,23 was calculated and is presented in Figures 1 and 2 and tabulated in the appendix (Tables A1 and A2).
Moreover, the width of the interval, ie, the difference between the upper limit and the lower limit, was derived. Scatterplots
showing combinations of confidence interval coverages and median confidence interval widths are presented in Figure 1
(for a standard normally distributed covariate) and Figure 2 (for a uniformly distributed covariate) for all methods strati-
fied for different scenarios (true location of the changepoint, proportion of censored observations). Different sample sizes
are indicated by different symbols within the according figures, and different methods are represented by different colors
of symbols and lines. As a confidence interval with a width of more than four was considered to be uninformative, when
the covariate of interest follows a standard normal distribution, median confidence interval widths larger than four are
all presented as “>4” in Figure 1. For scenarios with a uniformly distributed X, median confidence interval widths larger
than one are presented as “>1” in Figure 2. For a better visual comparability, median width is presented on a logarithmic
scale. An overview over the results obtained for all scenarios stratified by method is presented in Figure 3.

Observed median confidence interval widths with 10th and 90th percentile are also tabulated for each method stratified
by scenario. These tables are presented in the supplemental material (Tables S1 and S2). Additionally, the number of
estimated confidence intervals using Fieller's approach with one or both limits being plus or minus infinity is given in
Table 1.

Confidence intervals estimated based on Fieller's theorem (green symbols and lines in the Figures) provided a good
confidence interval coverage close to 95% for all investigated scenarios irrespective of sample size and true location of
the changepoint (observed coverage proportions between 93.6% and 96.0%, Tables A1 and A2). This comes at the cost
of very wide or infinite confidence intervals, especially in the scenarios with small sample sizes. With a sample size of
200 observations and a high amount of censored observations (about 60 expected events), an infinite confidence interval
(ie, at least one infinite confidence interval limit) was observed in about 75% of the simulation runs (Table 1). With
expected numbers of 300 to about 375 events, an infinite confidence interval was still obtained in about 10 to 25% of the
simulation runs.
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FIGURE 1 Scatter plots illustrating median confidence interval (CI) widths and observed coverage proportions for all methods under
investigation for a normally distributed covariate. Scenarios with different true changepoints for treatment stratification are presented in
different rows, and columns indicate different censoring distributions. The dotted grey line illustrates the desired level of 95%. Different
symbols indicate different sample sizes used in the simulation study, with circles showing results for the smallest sample size (n = 200) and
inverse triangles for the largest sample size (n = 5000). Median confidence interval widths exceeding a value of 4 are presented as “>4”
[Colour figure can be viewed at wileyonlinelibrary.com]

With the standard delta method (blue lines and symbols in the Figures), obtained confidence interval widths were
smaller than for Fieller's approach, but confidence interval coverage varied tremendously for small sample sizes depend-
ing on the true location of the changepoint. For a sample size of 200 observations, a confidence interval coverage of 99.2%
was observed for the scenario with a low amount of censored observations and of 99.0% with a high amount of censored
observation, when the true changepoint was located at the median of the covariate distribution (normally distributed
covariate). When the true changepoint was located at the 90th percentile, observed coverage proportions were 91.8% (low
censoring) and 91.3% (high censoring). This was caused by the facts that standard errors of the changepoint estimate were
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FIGURE 2 Scatter plots illustrating median confidence interval (CI) widths and observed coverage proportions for all methods under
investigation for a uniformly distributed covariate. Scenarios with different true changepoints for treatment stratification are presented in
different rows, and columns indicate different censoring distributions. The dotted grey line illustrates the desired level of 95%. Different
symbols indicate different sample sizes used in the simulation study, with circles showing results for the smallest sample size (n = 200) and
inverse triangles for the largest sample size (n = 5000). Median confidence interval widths exceeding a value of 1 are presented as “>1”
[Colour figure can be viewed at wileyonlinelibrary.com]

overestimated by the delta method in scenarios with small to moderate numbers of observed events and that the delta
method always provides symmetrical confidence intervals, but the distribution of estimated changepoints was skewed
in scenarios with the true changepoint not located at a value of zero (ie, not at the mean and median of the covariate
distribution).
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FIGURE 3 Summary of all observed confidence interval coverages and median widths stratified by estimation method. Scenarios are
indicated by numbers as presented in the supplemental Table S5. For Fieller's approach (A), scenarios with an observed infinite median
confidence interval width are illustrated by red numbers [Colour figure can be viewed at wileyonlinelibrary.com]

For the percentile-based bootstrap, observed confidence interval coverage was above 95% for all scenarios with 200 or
500 observations with a maximum observed coverage of 99.4%. For all scenarios with at least 500 expected events (at least
1000 observations with low amount of censoring or at least 2000 observations with high amount of censoring), observed
coverage proportions were between 94.0% and 96.8%. Median confidence interval widths were smaller than those obtained
following Fieller's theorem but larger than those based on the delta method.
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TABLE 1 Proportion of infinite intervals obtained with Fieller's approach in the different scenarios

Covariate True loc. Sample size
distribution of xcp 𝜷Z 𝜷G×Z 𝚺 Cens. 200 500 1000 2000 5000

normally 50th — — — low 49.4% 11.7% 0.5% 0.0% 0.0%
normally 50th — — — high 74.0% 43.4% 15.6% 1.1% 0.0%
normally 70th — — — low 50.5% 12.6% 0.4% 0.0% 0.0%
normally 70th — — — high 76.7% 48.8% 20.6% 1.8% 0.0%
normally 90th — — — low 51.4% 13.5% 0.8% 0.0% 0.0%
normally 90th — — — high 77.9% 51.4% 22.6% 2.2% 0.0%

Model I
uniformly 50th — — — low 47.8% 11.2% 0.6% 0.0% 0.0%
uniformly 50th — — — high 74.9% 44.0% 18.0% 1.6% 0.0%
uniformly 70th — — — low 49.4% 10.0% 0.4% 0.0% 0.0%
uniformly 70th — — — high 77.7% 48.4% 20.8% 1.9% 0.0%
uniformly 90th — — — low 52.8% 10.9% 0.6% 0.0% 0.0%
uniformly 90th — — — high 78.4% 53.2% 25.0% 2.8% 0.0%
normally — ln(1.2) — Σ0 low 50.9% — 1.2% — 0.0%
normally — ln(1.2) — Σ0 high 76.9% — 20.3% — 0.0%
normally — ln(1.2) — Σ1 low 52.2% — 1.0% — 0.0%

Model II normally — ln(1.2) — Σ1 high 76.8% — 21.4% — 0.0%
(not considering

Z1 and Z2) normally — ln(1.5) — Σ0 low 59.4% — 4.2% — 0.0%
normally — ln(1.5) — Σ0 high 78.0% — 25.2% — 0.0%
normally — ln(1.5) — Σ1 low 61.6% — 3.9% — 0.0%
normally — ln(1.5) — Σ1 high 78.6% — 27.0% — 0.0%

normally — ln(1.2) — Σ0 low 48.4% — 0.6% — 0.0%
normally — ln(1.2) — Σ0 high 76.3% — 19.2% — 0.0%
normally — ln(1.2) — Σ1 low 49.4% — 1.0% — 0.0%

Model II normally — ln(1.2) — Σ1 high 76.3% — 19.6% — 0.0%
(considering
Z1 and Z2) normally — ln(1.5) — Σ0 low 48.4% — 1.0% — 0.0%

normally — ln(1.5) — Σ0 high 74.5% — 19.2% — 0.0%
normally — ln(1.5) — Σ1 low 53.0% — 0.9% — 0.0%
normally — ln(1.5) — Σ1 high 76.4% — 20.4% — 0.0%
normally — ln(1.2) ln(1.2) Σ0 low 49.6% — 0.6% — 0.0%

Model III normally — ln(1.2) ln(1.2) Σ1 low 61.6% — 5.2% — 0.0%
normally — ln(1.2) ln(1.5) Σ0 low 50.6% — 0.8% — 0.0%
normally — ln(1.2) ln(1.5) Σ1 low 63.5% — 5.6% — 0.0%

The normal bootstrap approach described in Section 3.3.2 provided wide confidence intervals and coverage proportions
exceeding the desired level, as standard errors of the changepoint estimate were overestimated by the standard deviation of
the bootstrap estimates, especially in scenarios with small to moderate event numbers. The observed coverage proportions
were between 97% and 100% for most scenarios with 200, 500, or 1000 observations. The normal bootstrap also performed
worst regarding coverage proportion and confidence interval width for scenarios with 5000 observations.

The wild bootstrap approach performed similarly to the delta method for most of the scenarios, with coverage propor-
tions being larger than the desired level for scenarios with the true changepoint located at the 50th or the 70th percentile,
when sample sizes were small to moderate. For scenarios with the true changepoint located at the 90th percentile, the
wild bootstrap also provided confidence interval coverages smaller than 95%, when sample sizes of 200 or 500 observa-
tions were used, but coverage proportions were closer to 95% than those obtained using the delta method (91.6% to 93.5%
as compared to 89.9% to 93.0%). Distributions of confidence interval widths were very similar to those obtained from
the delta method, with slightly larger median widths observed for confidence intervals derived using the wild bootstrap
approach for most of the scenarios.

For all methods and all scenarios, confidence interval coverage approached the desired value of 95% with increas-
ing sample size. With a sample size of 5000 observations and a low amount of censored observations (3750 expected
events), observed proportions of confidence interval coverage were between 94.0% and 96.0% for all methods, changepoint
locations, and covariate distributions.
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FIGURE 4 Observed confidence interval (CI) coverage (bars on the left side of the figures) and distributions of confidence interval widths
(boxplots on the right side) for scenarios with a small effect of Z1 and Z2 on the outcome (𝛽Z1

= 𝛽Z2
= ln(1.2)) obtained following Fieller's

approach (light colors) or the delta method (dark colors) from models not considering Z1 and Z2 as covariates (blue) or from models also
considering Z1 and Z2 (red). Proportions of confidence intervals of infinite width using Fieller's approach are presented as hatched boxes.
Confidence interval widths larger than 4 are displayed as “>4” [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Observed confidence interval (CI) coverage (bars on the left side of the figures) and distributions of confidence interval widths
(boxplots on the right side) for scenarios with a large effect of Z1 and Z2 on the outcome (𝛽Z1

= 𝛽Z2
= ln(1.5)) obtained following Fieller's

approach (light colors) or the delta method (dark colors) from models not considering Z1 and Z2 as covariates (blue) or from models also
considering Z1 and Z2 (red). Proportions of confidence intervals of infinite width using Fieller's approach are presented as hatched boxes.
Confidence interval widths larger than 4 are displayed as “>4” [Colour figure can be viewed at wileyonlinelibrary.com]
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4.4.2 Model II
The results of the simulations for Model II are illustrated in Figures 4 and 5. Observed coverage proportions for confidence
intervals based on regression coefficients not considering the prognostic variables Z1 and Z2 (blue bars) and based on
regression models obtained from models also considering the effects of Z1 and Z2 (red bars) are illustrated for Fieller's
approach (light colors) and the delta method (dark colors). The desired coverage level of 95% is illustrated by a dashed
line. Obtained proportions of infinite confidence intervals when Fieller's approach was used are visualized by the hatched
boxes within the bars indicating the coverage proportions and are tabulated in Table 1. Moreover, the distribution of
confidence interval widths is presented by boxplots (on a logarithmic scale given on the right side of each Figure). As
described for Model I, obtained widths larger than four are summarized as “>4.” Results are presented stratified for
strength of association between Z1 and Z2 and outcome (weak effect of Z1 and Z2 on the outcome in Figure 4, strong effect
in Figure 5), sample size (columns), censoring distribution (rows), and correlation structure of the covariates (top and
bottom half of the Figures).

Under the considered settings, coverage proportions of confidence intervals based on Fieller's approach were very close
to the desired level of 95% irrespective of inclusion of Z1 and Z2 into the regression model, with all portions ranging
between 94.0% and 95.7% when Z1 and Z2 were not considered and 94.2% and 95.8% when Z1 and Z2 were included as
predictors in the regression model as given in Equation (2). The proportion of infinitely wide confidence intervals obtained
by the use of Fieller's approach was up to 78.6% for the scenarios with a sample size of 200 when Z1 and Z2 were not
considered and up to 76.4%, else. For large sample sizes, infinitely wide confidence intervals were observed less often (up
to 27.0% and 20.4% for n = 1000 with and without inclusion of Z1 and Z2 and none for n = 5000). For the delta method,
coverage proportions were slightly too large for the sample sizes of n = 200 and n = 1000, irrespective of consideration
of Z1 and Z2 (between 97.6% and 99.8% for models without and between 97.3% and 99.6% for models with inclusion of Z1
and Z2 in the regression model for n = 200 and between 96.2% and 98.0% or 95.8% and 97.4% for n = 1000, respectively).
As also observed for Model I, confidence interval widths were generally smaller for the confidence intervals estimated
using the delta method than for those obtained by Fieller's approach. Confidence interval width could be reduced by
inclusion of the prognostic variables in the regression model, especially for the scenarios with the stronger effect of Z1
and Z2 on the outcome variable, which are shown in Figure 5. Median widths were, eg, 1.03 and 0.972 using Fieller's
approach without and with consideration of Z1 and Z2 as compared to 0.910 and 0.871 using the delta method when the
sample size was n = 1000, the amount of censored observations was low, 𝛽Z1 = 𝛽Z2 = ln(1.2), and X, Z1, and Z2 were
independent (Figure 4B). With a stronger association between Z1 and Z2 and the outcome (𝛽Z1 = 𝛽Z2 = ln(1.5)), a sample
size of 1000 observations, low amount of censoring and independent covariates, median confidence interval widths were
1.21 (not considering Z1 and Z2 in the regression model) and 0.975 (including Z1 and Z2 as covariates in the regression
model) following Fieller's approach and 1.03 and 0.874 when the delta method was applied. Exact numbers of observed
confidence interval coverage and confidence interval widths (medians with 10th and 90th percentile) are presented in the
appendix (Table A3) and in the supplemental material (Table S3).

4.4.3 Model III
In Figures 6 and 7, results of the simulations with additional predictive variables Z1 and Z2 that also interact with treat-
ment are presented. The scenarios are described in detail in Section 4.3, and an overview is given in the supplemental
material (Table S7). As discussed in Section 2, the estimated changepoint of treatment stratification depends on Z1 and
Z2. Consequently, the estimated coverage proportions are presented for given values of the covariates Z1 and Z2, namely
at the 5th, 25th, 50th = median = mean, 75th, and 95th percentile of the theoretical covariate distribution, which was the
standard normal distribution in our simulations. In the Figures, corresponding percentiles for Z1 are given at the x-axis,
and percentiles of Z2 are illustrated in different grey scales, so results for all possible combinations of the given percentiles
for Z1 and Z2 are shown. Results are presented stratified for sample size (columns, n = 200, n = 1000, n = 5000), method
under investigation (rows, estimation following Fieller's approach, and the delta method), correlation between covariates
X, Z1 and Z2 (Σ0: top of the Figures, Σ1: bottom, as defined in Section 4.2), and strength of interaction between Z1 and
Z2 and treatment (𝛽G×Z1 = 𝛽G×Z2 = ln(1.2): Figure 6, 𝛽G×Z1 = 𝛽G×Z2 = ln(1.5): Figure 7). Observed coverage proportions
are illustrated by barplots and median confidence interval widths by red dots. Again, median widths larger than four are
indicated as “>4.” Proportions of confidence intervals of infinite width obtained following Fieller's approach, which do
not depend on the chosen values for Z1 and Z2 as described in Section 3.1, are presented by hatched boxes and are given in
Table 1. Observed confidence interval coverages are also tabulated in the appendix (Table A4). Median confidence interval
widths with observed 10th and 90th percentiles are shown in the supplemental material (Table S4).
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FIGURE 6 Observed confidence interval (CI) coverage proportions (grey bars) and median confidence interval widths (red dots) for
scenarios with small interaction effects between covariates Z1 and Z2 and treatment (𝛽G×Z1

= 𝛽G×Z2
= ln(1.2)). Coverage proportions and

median confidence interval widths are displayed for given combinations of covariate values of Z1 (x-axis) and Z2 (grey scale), namely for the
5th, 25th, 50th, 75th, and 95th percentile of the theoretical distributions. Proportions of infinite confidence intervals obtained following
Fieller's approach are illustrated by hatched boxes. Confidence interval widths larger than 4 are displayed as “>4” [Colour figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 7 Observed confidence interval (CI) coverage proportions (grey bars) and median confidence interval widths (red dots) for
scenarios with large interaction effects between covariates Z1 and Z2 and treatment (𝛽G×Z1

= 𝛽G×Z2
= ln(1.5)). Coverage proportions and

median confidence interval widths are displayed for given combinations of covariate values of Z1 (x-axis) and Z2 (grey scale), namely for the
5th, 25th, 50th, 75th, and 95th percentile of the theoretical distributions. Proportions of infinite confidence intervals obtained following
Fieller's approach are illustrated by hatched boxes. Confidence interval widths larger than 4 are displayed as “>4” [Colour figure can be
viewed at wileyonlinelibrary.com]
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As observed for the other investigated scenarios, the observed coverage proportions for Fieller's approach were close to
the desired level under all scenarios and for all investigated covariate values of Z1 and Z2 (observed proportions between
93.2% and 96.0%). For the scenario with n = 200, strong interaction between Z1 and Z2 and treatment and the correlation
structure Σ1, 63.5% of the estimated confidence intervals were of infinite width. For n = 1000, the proportions ranged
from 0.6% to 5.6% for the different settings. No confidence intervals of infinite width were observed in simulations with
a sample size of n = 5000. When the delta method was applied to estimate confidence intervals for the changepoint of
treatment stratification for X, the observed coverage proportions varied, strongly depending on the values of Z1 and Z2,
especially for scenarios with the variance-covariance structureΣ1. While coverage proportions ranged from 93.4% to 99.4%
under Σ0 for n = 200 and weak interaction between Z1 and Z2 and treatment (Figure 6D), the observed proportions were
between 88.2% and 99.6% using Σ1 (Figure 6J). Large deviations from the desired confidence level of 95% were especially
observed for combinations of very small values of Z1 and Z2 (5th percentile and 5th percentile) or both very large values
(95th percentile and 95th percentile).

As observed in the other simulated scenarios, median confidence interval widths were generally larger for Fieller's
approach as compared to the delta method, which was more pronounced for sample sizes of n = 200 or n = 1000. For
both methods and under all settings, median confidence interval widths were smaller when a confidence interval for the
changepoint of treatment stratification was to be estimated at the center of the distribution of the predictive covariates
Z1 and Z2 than at the tails of the distribution, eg, median widths of the observed confidence intervals for a sample size of
n = 1000, 𝛽G×Z1 = 𝛽G×Z2 = ln(1.5), and the variance-covariance structure Σ0 were 1.00 following Fieller's approach and
0.897 using the delta method, when the interval was estimated at the 50th percentile of Z1 and Z2, each. For the same
scenario, median widths were 4.88 for Fieller's approach and 4.05 for the delta method, when a confidence interval for
the changepoint was estimated at the 95th percentile of Z1 and Z2.

5 APPLICATION

The methods presented in Section 3 and investigated in Section 4 were applied to data from the randomized clinical SPACE
trial.24,25 In the SPACE trial, patients with symptomatic, severe (≥ 70% ECST) carotid artery stenosis in the previous
six months were randomly assigned to either carotid artery endarterectomy (CEA) or carotid artery angioplasty with
stenting (CAS). The study was originally designed as noninferiority trial and was intended to show noninferiority of
CAS as compared to CEA for ipsilateral stroke or death within 30 days, which could not be established in the primary
analysis.24 In the analysis of the two-year follow-up data, a relevant qualitative interaction between treatment and age
(dichotomized at an age of 68 years) was found, when time to any stroke or death was analyzed, indicating a higher risk
from CEA as compared to CAS for younger patients and a higher risk from CAS as compared to CEA for older patients.25

This interaction was also observed in other randomized trials comparing these procedures.38,39

We applied the different methods for confidence interval estimation for the changepoint of treatment stratification to
the two-year per protocol data of the SPACE trial considering any stroke or death as events of interest. Overall, 146 events
(77 in 573 patients treated with CAS and 69 in 563 patients treated with CEA) were observed. We fitted a Cox regression
model, including main effects of treatment (CEA: G = 0, CAS: G = 1) and age (as continuous variable) as well as their
interaction to the data as described in Section 2. The results are shown in Table 2. In Figure 8, the estimated hazard ratio
between the treatment groups in dependence of age is illustrated and a pointwise 95% confidence interval, as described
in Shen et al,12 is given (see supplemental material, Section S1.2).

Following Equation (4), the estimate for the changepoint is

x̂cp = − 𝛽G

𝛽G×Age
= −−3.302

0.049
= 67.95 years, (30)

which is at the 49th percentile of the age distribution of the included patients. Estimated confidence boundaries derived
from the different approaches are given in Table 3 and are illustrated as colored lines in Figure 8.

�̂� exp(�̂�) se(�̂�) z p
Treatment (G) −3.302 0.037 1.476 −2.236 0.025

Age 0.018 1.018 0.014 1.257 0.209
Treatment(G) × Age 0.049 1.050 0.021 2.347 0.019

TABLE 2 Results of the Cox regression model fitted to the
stent-protected angioplasty versus carotid endarterectomy (SPACE)
data
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FIGURE 8 Illustration of the estimated
treatment effect in dependence of patient's
age using a Cox regression model with
main effects of treatment and age and their
interaction (dashed line). Dotted lines
indicate a pointwise 95% confidence
interval for the hazard ratio. Colored lines
show estimated 95% confidence intervals for
the changepoint of treatment stratification
obtained from the different approaches.
The histogram at the bottom illustrates the
age distribution in the data. CAS, carotid
artery angioplasty with stenting; CEA,
carotid artery endarterectomy; HR, hazard
ratio [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 3 Confidence intervals for the changepoint derived from the stent-protected
angioplasty versus carotid endarterectomy (SPACE) study estimated using Fieller's
approach, the delta method, and the bootstrap approaches

95% conf. int.
Fieller 46.6 to 75.9

Delta 60.8 to 75.1
Bootstrap (percentile) 52.7 to 75.1

Bootstrap (normal) -2.8 to 134.6
Bootstrap (wild) 60.5 to 75.4

It can be seen that the normal bootstrap (red line) provides a confidence interval that exceeds the range of the covariate
of interest for both limits. The confidence interval based on Fieller's approach (green line) is wider than the interval
for the delta method (blue line) and the percentile-based (orange line) and wild bootstrap (brown line). Again, the wild
bootstrap provides confidence intervals similar to those obtained by the delta method. The delta method provides the
smallest confidence interval, but based on the result of the simulation study, coverage of the delta method may differ
relevantly from the desired level of 95%. The percentile-based bootstrap gives a confidence interval with a width between
the intervals obtained from Fieller's approach and that derived using the delta method.

6 DISCUSSION

Stratified or personalized medicine aims to find the best available treatment for each individual patient based on his or her
characteristics.2 Various examples for suggested or established treatment stratification based on, eg, molecular biomark-
ers exist in the literature, mainly for cancer therapies.40-42 In order to establish stratified treatment decisions, relevant
covariates have to be identified and validated. While some strategies are motivated based on biological plausibility and
preclinical data, many predictive biomarkers appear to be identified in retrospective analyses of clinical trial data.43 In
our article, we consider the setting of a two-armed randomized clinical trial, which compares two treatment groups or an
experimental treatment versus placebo. Often, a post hoc analysis is performed to assess treatment effect heterogeneity
in dependence on one continuous covariate. When a qualitative interaction between the covariate and treatment exists,
ie, when not all patients benefit most from the same treatment, treatment allocation should depend on the patient's covari-
ate value, and a cut-off value for treatment stratification has to be determined. We call this cut-off value the changepoint
of treatment stratification.

In practice, treatment effect heterogeneity is often investigated by estimation of treatment effects in predefined or post
hoc–defined subgroups. While this approach is intuitive for categorical covariates of interest, categorization of continuous
variables was criticized due to loss of information leading to decreased power for detection of interaction effects and due
to biological implausibility.44,45 While different approaches for classification of patients that respond differently to the
therapies were proposed in recent years,8 we focus on estimation of the cut-off value based on a common regression model,
including a covariate-treatment interaction term.9 As most predictive biomarkers were identified for cancer therapies,
we considered a time-to-event outcome and used a Cox regression model for analysis. As the estimated cut-off value is
a very relevant quantity derived from clinical trial data, presentation of the estimated value should be accompanied by

http://wileyonlinelibrary.com


HALLER ET AL. 91

an adequate confidence interval indicating uncertainty of the estimate, as it is recommended for estimated treatment
effects.13,14

We performed a simulation study to investigate behavior of various confidence interval estimators under different sce-
narios. An adaptation of Fieller's theorem,15,46 originally proposed for a confidence interval for the ratio of two means
from a bivariate normal distribution, the delta method for transformation of maximum likelihood estimates,16 and various
bootstrapping procedures (percentile-based interval, normal interval, wild bootstrap) were investigated regarding cover-
age probabilities and confidence interval widths considering one predictive covariate of interest as well as in the presence
of further prognostic or predictive covariates. Different aspects as the number of observed individuals, the proportion of
censored observations, the distribution of the covariate of interest, the location of the true changepoint, the strength of
association between further prognostic covariates and the outcome, the strength of interaction between further predictive
covariates and treatment, and the correlation between the considered covariates were varied in different scenarios. The
simulation study for comparison of confidence interval methods was intended to be performed as a neutral study.47,48 On
that note, the main objective of the study was the comparison of methods and not the introduction or promotion of a new
method. We also established a team of researchers that are equally experienced with each of the considered methods and
do not have preferences for any particular method. Finally, the chosen evaluation criteria are objective, and the compared
methods were selected based on a literature research on available approaches.

Results of the simulation study showed that the confidence intervals based on Fieller's theorem provided coverage
probabilities close to the desired level of 95% for all scenarios irrespective of the number of observed events and the
presence of further covariates, but the approach led to intervals of infinite width for a large number of generated datasets,
when the number of observed events was small. The coverage proportions of the often applied delta method were observed
to depend heavily on the sample size and the true location of the changepoint of treatment stratification. This dependence
was caused by the two facts that the delta method provides symmetric confidence intervals, but the changepoint estimate
followed a skewed distribution if the true changepoint was not located at the center of the covariate distribution, and that
the delta method overestimated the variability of the changepoint estimate in scenarios with a low number of observed
events. For large samples, the confidence intervals obtained following Fieller's theorem and the delta method were very
similar, and the coverage proportions approximated the desired level of 95%. This was also shown before by Cox.31 While
calculation of a normal confidence interval from bootstrap samples performed inferior to other estimators with regard
to confidence interval coverage and width, percentile-based bootstrap confidence intervals were generally conservative
for small to moderate numbers of events, ie, confidence interval coverage exceeded the nominal level of 95% for most
scenarios, and consequently, intervals were wider than those obtained by other methods. In our investigated scenarios,
the wild bootstrap performed very similar to the delta method. When the methods were applied to data from the SPACE
study, where only a number of 146 events was observed in 1136 patients, large differences between the confidence intervals
obtained by application of the different estimators were observed.

There are several limitations in our simulation study that might relevantly influence the results and consequently our
recommendations. Firstly, as it is often the case for simulation studies, only a moderate number of scenarios could be
investigated due to limited time and space. We varied the total number of included subjects, the censoring distribution,
the distribution of the covariate, and the true location of the changepoint but did not consider, eg, different strengths of
interaction or asymmetric covariate distributions in the simulations where only treatment and the covariate of interest
were considered. When further covariates, either prognostic or predictive, were included, we only focused on the change-
point of treatment stratification of the predefined variable of interest but did not estimate the changepoint for the other
covariates. Moreover, we only investigated the approaches based on Fieller's theorem and the delta method when further
covariates were considered. Furthermore, for estimation of the changepoint of treatment stratification, we only used the
information of one time-to-event endpoint and did not involve further outcome variables (as, eg, quality of life) or costs
and risks of the treatment options. The code used for performance of our simulations is provided as online supplemental
material, so readers will be able to investigate further scenarios of interest.

We only used a standard Cox regression model with main effects and interaction term, and data were generated ful-
filling the common model assumptions. Methods that relax the linearity assumptions6,7,49 or that rely on classification
methods8,50 were not considered. When the established approach using multivariable fractional polynomials for estima-
tion of nonlinear interactions (MFPI) with one polynomial transformation (FP1) is used, some of the proposed methods,
as, eg, the delta method or the bootstrapping approaches, could be adapted easily for estimation of a confidence inter-
val. Adaptation of the delta method and results of some simulations are shown in the online supplementary material to
this manuscript (Section S4). This approach appears to work very well, when the true association is covered by the MFPI
transformations. As the estimate for the changepoint of treatment stratification will be biased for functional relationships
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not covered by the MFPI approach, the confidence interval coverage will decrease when the sample size is increased in
that situation (see Figure S2 in the supplemental file). Consequently, in the presence of nonlinear associations and inter-
actions, identification of the correct functional form and unbiased estimation of the changepoint are prerequisites for
estimation of an adequate confidence interval. The same holds true for application of spline-based methods, where boot-
strapping approaches can be used for confidence interval estimation. Moreover, incorporation of spline functions in the
regression models might lead to multiple changepoint estimates. Further research is needed with regard to changepoint
and confidence interval estimation in these more complex situations.

We believe that the changepoint of treatment stratification is an important quantity that should be estimated and
reported, when a qualitative biomarker-treatment interaction was detected, and that a corresponding confidence interval
should be presented. Based on the results of our simulation study, confidence interval estimation for the changepoint of
treatment stratification following Fieller's theorem provided the most reliable results regarding confidence interval cover-
age but led to infinite intervals in a relevant number of simulation runs when the number of observed events was small to
moderate. While all other methods always provide finite intervals, in small sample scenarios, a wide range of the covariate
distribution was covered by the confidence intervals, which was also observed in our example using data from a random-
ized clinical trial, indicating high uncertainty regarding the estimated changepoint. Thus, we recommend application of
the approach based on Fieller's theorem for data with small to moderate event numbers. For a large number of observed
events, the delta method and the wild bootstrap will also provide confidence intervals with the desired properties but
smaller confidence interval widths.

Generally, a large number of observations are necessary in order to precisely estimate the changepoint of treatment
stratification from the data collected in randomized clinical trials. If this is one major goal in a certain study, this should be
considered adequately in the sample size determination. Sharing of clinical research data will also be important in order to
determine the changepoint with an adequate precision and consequently identify the correct patients for administration
of a certain treatment. It has to be considered that the changepoint is estimated from a regression model that underlies
certain assumptions and consequently is prone to model misspecification.
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APPENDIX

COVERAGE TABLES

TABLE A1 Coverage for Model I for scenarios with
normally distributed covariate for the different methods for
confidence interval estimation. (2000 runs, 1000 bootstrap
samples)

Bootstrap
n Loc. Cens. Fieller Delta Perc. Normal Wild

200 50th perc. low 93.6% 99.2% 97.3% 99.8% 99.5%
200 50th perc. high 94.0% 99.0% 98.9% 100.0% 99.4%
200 70th perc. low 95.1% 97.8% 97.9% 99.5% 98.2%
200 70th perc. high 96.0% 99.4% 99.3% 99.9% 99.6%
200 90th perc. low 94.6% 91.8% 97.1% 97.2% 92.7%
200 90th perc. high 94.7% 91.3% 97.2% 99.2% 93.5%
500 50th perc. low 95.2% 98.3% 96.0% 99.3% 98.2%
500 50th perc. high 95.5% 98.6% 98.0% 99.7% 99.0%
500 70th perc. low 95.8% 97.2% 97.0% 98.7% 97.4%
500 70th perc. high 95.0% 98.6% 97.8% 99.8% 99.0%
500 90th perc. low 95.4% 92.4% 97.0% 95.8% 93.0%
500 90th perc. high 95.2% 92.2% 97.4% 98.2% 93.1%

1000 50th perc. low 95.2% 97.3% 94.8% 98.2% 97.1%
1000 50th perc. high 95.3% 98.0% 96.0% 99.2% 98.0%
1000 70th perc. low 95.1% 96.2% 95.5% 97.2% 96.4%
1000 70th perc. high 94.6% 97.9% 96.0% 99.4% 98.2%
1000 90th perc. low 93.9% 94.0% 94.6% 95.8% 94.0%
1000 90th perc. high 95.6% 94.6% 97.8% 97.8% 95.0%
2000 50th perc. low 95.7% 96.7% 95.8% 97.1% 96.6%
2000 50th perc. high 95.6% 97.4% 95.8% 98.6% 97.6%
2000 70th perc. low 94.5% 95.4% 94.0% 95.9% 95.4%
2000 70th perc. high 95.2% 97.2% 95.2% 98.6% 97.4%
2000 90th perc. low 95.4% 95.8% 95.2% 96.7% 95.8%
2000 90th perc. high 95.6% 94.8% 96.6% 96.8% 95.0%
5000 50th perc. low 95.2% 95.4% 95.0% 95.8% 95.5%
5000 50th perc. high 95.0% 95.9% 94.8% 96.4% 96.0%
5000 70th perc. low 95.1% 95.8% 95.4% 96.0% 95.8%
5000 70th perc. high 95.4% 96.3% 94.9% 96.9% 96.5%
5000 90th perc. low 95.4% 95.6% 95.0% 95.8% 95.6%
5000 90th perc. high 94.7% 94.9% 94.4% 96.4% 95.2%

Loc., True location of xcp; Cens., Censoring; Perc., percentile-based.
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Bootstrap
n Loc. Cens. Fieller Delta Perc. Normal Wild

200 50th perc. low 95.0% 99.4% 97.6% 99.9% 99.4%
200 50th perc. high 95.2% 99.7% 99.4% 100.0% 99.9%
200 70th perc. low 96.0% 95.8% 97.8% 99.1% 96.8%
200 70th perc. high 94.4% 97.4% 98.4% 99.8% 98.2%
200 90th perc. low 95.4% 91.5% 97.2% 97.6% 92.0%
200 90th perc. high 96.0% 89.9% 97.7% 99.1% 91.6%
500 50th perc. low 95.2% 98.2% 95.9% 99.8% 98.3%
500 50th perc. high 95.0% 98.9% 97.7% 99.8% 99.0%
500 70th perc. low 95.2% 95.4% 96.5% 97.6% 95.6%
500 70th perc. high 95.0% 96.2% 97.8% 99.2% 96.7%
500 90th perc. low 95.4% 93.0% 96.9% 96.2% 93.2%
500 90th perc. high 95.4% 91.8% 97.5% 97.5% 92.6%

1000 50th perc. low 95.7% 97.4% 95.8% 98.6% 97.5%
1000 50th perc. high 95.6% 98.2% 96.7% 99.4% 98.6%
1000 70th perc. low 95.6% 96.3% 95.6% 96.9% 96.2%
1000 70th perc. high 95.2% 96.0% 97.0% 98.2% 96.4%
1000 90th perc. low 94.6% 94.0% 95.4% 96.0% 94.2%
1000 90th perc. high 95.5% 93.1% 97.5% 96.8% 93.4%
2000 50th perc. low 94.3% 95.4% 94.1% 95.9% 95.5%
2000 50th perc. high 95.2% 97.4% 95.2% 98.4% 97.6%
2000 70th perc. low 95.0% 95.3% 94.8% 96.3% 95.5%
2000 70th perc. high 95.0% 96.4% 95.2% 97.5% 96.6%
2000 90th perc. low 95.8% 94.4% 95.2% 95.8% 94.4%
2000 90th perc. high 94.7% 93.8% 96.8% 96.4% 94.4%
5000 50th perc. low 94.0% 94.2% 94.0% 94.4% 94.2%
5000 50th perc. high 95.4% 96.2% 95.2% 96.4% 96.2%
5000 70th perc. low 95.4% 95.4% 95.0% 95.6% 95.4%
5000 70th perc. high 95.2% 96.2% 94.9% 96.8% 96.3%
5000 90th perc. low 94.4% 94.7% 94.1% 95.3% 94.8%
5000 90th perc. high 95.2% 95.0% 95.0% 96.4% 95.0%

Loc., True location of xcp; Cens., Censoring; Perc., percentile-based.

TABLE A2 Coverage for Model I for scenarios with
uniformly distributed covariate for the different methods
for confidence interval estimation. (2000 runs, 1000
bootstrap samples)

Not considering Z1, Z2 Considering Z1, Z2

𝜷Z1,2
𝚺 n Cens. Fieller Delta Fieller Delta

ln(1.2) Σ0 200 low 94.2% 99.4% 94.4% 99.4%
ln(1.2) Σ0 200 high 95.1% 99.0% 94.4% 99.0%
ln(1.2) Σ1 200 low 94.0% 99.1% 94.4% 99.2%
ln(1.2) Σ1 200 high 95.2% 98.8% 95.4% 98.7%
ln(1.5) Σ0 200 low 95.5% 99.8% 95.6% 99.6%
ln(1.5) Σ0 200 high 94.8% 99.0% 94.2% 99.1%
ln(1.5) Σ1 200 low 95.6% 99.2% 95.0% 98.8%
ln(1.5) Σ1 200 high 95.3% 97.6% 94.8% 97.3%
ln(1.2) Σ0 1000 low 94.7% 96.8% 94.6% 96.5%
ln(1.2) Σ0 1000 high 95.7% 97.8% 95.1% 97.2%
ln(1.2) Σ1 1000 low 95.4% 97.9% 95.8% 97.4%
ln(1.2) Σ1 1000 high 94.5% 97.1% 94.6% 97.4%
ln(1.5) Σ0 1000 low 95.6% 98.0% 95.2% 97.4%
ln(1.5) Σ0 1000 high 94.6% 97.4% 94.5% 97.2%
ln(1.5) Σ1 1000 low 94.9% 97.8% 94.8% 96.8%
ln(1.5) Σ1 1000 high 95.5% 96.2% 95.4% 95.8%
ln(1.2) Σ0 5000 low 94.6% 95.0% 94.8% 95.2%
ln(1.2) Σ0 5000 high 95.4% 96.6% 95.8% 96.6%
ln(1.2) Σ1 5000 low 95.2% 95.4% 94.9% 95.6%
ln(1.2) Σ1 5000 high 95.5% 95.9% 94.9% 95.6%
ln(1.5) Σ0 5000 low 94.7% 95.4% 95.0% 95.3%
ln(1.5) Σ0 5000 high 95.2% 96.0% 95.0% 96.0%
ln(1.5) Σ1 5000 low 95.6% 96.1% 95.4% 95.9%
ln(1.5) Σ1 5000 high 95.0% 95.6% 94.8% 95.9%

TABLE A3 Coverage for simulations performed for
Model II (2000 runs for each scenario)
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TABLE A4 Coverage for
simulations performed for Model
III (2000 runs for each scenario).
Due to the symmetry of the results,
only results for 50th, 75th, and 95th
percentile of Z1 and Z2 are shown

Percentile of Fieller Delta
𝜷G×Z𝟏,𝟐

𝚺 Z1 Z2 n = 200 n = 1000 n = 5000 n = 200 n = 1000 n = 5000
ln(1.2) Σ0 50th 50th 94.4% 95.0% 94.7% 99.1% 96.6% 95.0%
ln(1.2) Σ0 50th 75th 94.6% 95.7% 94.8% 97.5% 97.0% 95.2%
ln(1.2) Σ0 50th 95th 94.6% 95.0% 94.4% 96.4% 96.2% 94.8%
ln(1.2) Σ0 75th 50th 94.2% 95.9% 95.8% 96.8% 96.6% 95.8%
ln(1.2) Σ0 75th 75th 94.6% 96.0% 95.2% 94.9% 96.0% 95.2%
ln(1.2) Σ0 75th 95th 94.6% 95.6% 94.6% 94.4% 95.8% 95.2%
ln(1.2) Σ0 95th 50th 94.2% 95.4% 96.0% 96.4% 95.9% 96.3%
ln(1.2) Σ0 95th 75th 94.5% 95.6% 95.5% 94.6% 95.8% 96.0%
ln(1.2) Σ0 95th 95th 94.0% 96.0% 94.9% 93.4% 95.7% 95.9%
ln(1.2) Σ1 50th 50th 94.8% 95.6% 95.1% 99.6% 98.4% 95.8%
ln(1.2) Σ1 50th 75th 94.3% 94.3% 94.9% 95.4% 94.9% 95.6%
ln(1.2) Σ1 50th 95th 94.8% 93.6% 95.2% 93.3% 93.6% 95.6%
ln(1.2) Σ1 75th 50th 94.4% 94.0% 94.6% 94.4% 94.9% 95.6%
ln(1.2) Σ1 75th 75th 94.3% 93.8% 94.9% 89.6% 92.6% 95.0%
ln(1.2) Σ1 75th 95th 94.6% 93.5% 95.0% 89.6% 92.6% 95.2%
ln(1.2) Σ1 95th 50th 93.8% 94.1% 94.6% 92.4% 94.1% 95.2%
ln(1.2) Σ1 95th 75th 94.0% 93.8% 94.4% 89.9% 93.1% 95.0%
ln(1.2) Σ1 95th 95th 94.2% 93.5% 94.8% 88.2% 91.9% 94.0%
ln(1.5) Σ0 50th 50th 94.2% 94.5% 94.9% 99.0% 96.6% 95.3%
ln(1.5) Σ0 50th 75th 94.4% 94.4% 95.5% 93.6% 94.3% 95.3%
ln(1.5) Σ0 50th 95th 94.2% 93.8% 95.5% 91.0% 93.8% 95.8%
ln(1.5) Σ0 75th 50th 94.2% 94.2% 95.1% 93.8% 94.7% 95.1%
ln(1.5) Σ0 75th 75th 94.6% 94.4% 95.2% 90.4% 93.4% 95.0%
ln(1.5) Σ0 75th 95th 94.2% 94.2% 95.6% 88.7% 93.7% 95.2%
ln(1.5) Σ0 95th 50th 94.1% 94.3% 95.1% 91.6% 93.8% 95.4%
ln(1.5) Σ0 95th 75th 94.4% 94.1% 95.4% 90.0% 93.3% 95.2%
ln(1.5) Σ0 95th 95th 94.1% 94.4% 95.1% 89.1% 93.7% 94.8%
ln(1.5) Σ1 50th 50th 94.7% 95.6% 95.9% 99.6% 98.0% 96.4%
ln(1.5) Σ1 50th 75th 94.0% 94.7% 95.2% 90.6% 93.6% 95.4%
ln(1.5) Σ1 50th 95th 93.6% 94.4% 95.0% 88.5% 93.2% 94.8%
ln(1.5) Σ1 75th 50th 95.1% 94.8% 95.0% 90.2% 93.9% 95.2%
ln(1.5) Σ1 75th 75th 94.4% 94.8% 95.3% 86.6% 92.0% 94.6%
ln(1.5) Σ1 75th 95th 94.4% 94.8% 94.8% 86.6% 92.0% 94.8%
ln(1.5) Σ1 95th 50th 94.9% 94.2% 94.9% 88.3% 92.2% 94.8%
ln(1.5) Σ1 95th 75th 95.0% 94.5% 94.8% 85.8% 91.8% 94.6%
ln(1.5) Σ1 95th 95th 95.0% 94.6% 95.0% 85.8% 91.8% 95.0%
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