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Thinking—is it a social function
or one of the brains?

Stanistaw Jerzy Lec

Preface

In their paper on a “General theory of natural equivalences” Eilenberg
and MacLane laid the foundation of the theory of categories and
functors in 1945. It took about ten years before the time was ripe for
a further development of this theory. Early in this century studies of
isolated mathematical objects were predominant. During the last
decades, however, interest proceeded gradually to the analysis of
admissible maps between mathematical objects and to whole classes of
objects. This new point of view is appropriately expressed by the
theory of categories and functors. Its new language—originally called
‘““general abstract nonsense’” even by its initiators—spread into many
different branches of mathematics.

The theory of categories and functors abstracts the concepts ‘“‘object”
and “map”’ from the underlying mathematical fields, for example, from
algebra or topology, to investigate which statements can be proved in
such an abstract structure. Then these statements will be true in all
those mathematical fields which may be expressed by means of this
language.

Of course, there are trends today to render the theory of categories
and functors independent of other mathematical branches, which will
certainly be fascinating if seen for example, in connection with the
foundation of mathematics. At the moment, however, the prevailing
value of this theory lies in the fact that many different mathematical
fields may be interpreted as categories and that the techniques and
theorems of this theory may be applied to these fields. It provides the
means of comprehension of larger parts of mathematics. It often occurs
that certain proofs, for example, in algebra or in topology, use ‘“‘similar”’
methods. With this new language it is possible to express these ‘“‘simi-
larities” in exact terms. Parallel to this fact there is a unification. Thus
it will be easier for the mathematician who has command of this language
to acquaint himself with the fundamentals of a new mathematical field
if the fundamentals are given in a categorical language.

vii



viii PREFACE

This book is meant to be an introduction to the theory of categories
and functors for the mathematician who is not yet familiar with it,
as well as for the beginning graduate student who knows some first
examples for an application of this theory. For this reason the first
chapter has been written in great detail. The most important terms
occurring in most mathematical branches in one way or another have
been expressed in the language of categories. The reader should consider
the examples—most of them from algebra or topology—as applications
as well as a possible way to acquaint himself with this particular field.

The second chapter mainly deals with adjoint functors and limits
in a way first introduced by Kan.

The third chapter shows how far universal algebra can be represented
by categorical means. For this purpose we use the methods of monads
(triples) and also of algebraic theories. Here you will find represented
one of today’s most interesting application of category theory.

The fourth chapter is devoted to abelian categories, a very important
generalization of the categories of modules. Here many interesting
theorems about modules are proved in this general frame. The em-
bedding theorems at the end of this chapter make it possible to transfer
many more results from module categories to arbitrary abelian categories.

The appendix on set theory offers an axiomatic foundation for the
set theoretic notions used in the definition of categorical notions. We
use the set of axioms of Gédel and Bernays. Furthermore, we give a
formulation of the axiom of choice that is particularly suitable for an
application to the theory of categories and functors.

I hope that this book will serve well as an introduction and, moreover,
enable the reader to proceed to the study of the original literature. He
will find some important publications listed at the end of this book,
which again include references to the original literature.

Particular thanks are due to my wife Karin. Without her help in
preparing the translation I would not have been able to present to
English speaking readers the English version of this book.



1

Preliminary Notions

The first sections of this chapter introduce the preliminary notions of
category, functor, and natural transformation. The next sections deal
mainly with notions that are essential for objects and morphisms in
categories. Only the last two sections are concerned with functors and
natural transformations in more detail. Here the Yoneda lemma is
certainly one of the most important theorems in the theory of categories
and functors.

The examples given in Section 1.1 will be partly continued, so that at
the end of this chapter—for some categories—all notions introduced
will be known in their specific form for particular categories. The verifica-
tion that the given objects or morphisms in the respective categories have
the properties claimed will be left partly to the reader. Many examples,
however, will be computed in detail.

1.1 Definition of a Category

In addition to mathematical objects modern mathematics investigates
more and more the admissible maps defined between them. One familiar
example is given by sets. Besides the sets, which form the mathematical
objects in set theory, the set maps are very important. Much information
about a set is available if only the maps into this set from all other sets

_are known. For example, the set containing only one element can be
characterized by the fact that, from every other set, there is exactly one
map into this set.

Let us first summarize in a definition those properties of mathematical
objects and admissible maps which appear in all known applications. As a
basis, we take set theory as presented in the Appendix.

Let € be a class of objects A, B, C,... € Ob € together with

(1) A family of mutually disjoint sets {Morg(4, B)} for all objects
A, Be¥, whose elements f, g, A,... € Morg(4, B) are called
morphisms and
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(2) afamily of maps
{Morg(4, B) x Mor(B, C)3 (f, £) — gf € Morg(4, C}}

for all 4, B, C € Ob ¥, called compositions.

€ is called a category if % fulfills the following axioms:

(1) Associativity: For all 4, B, C, D € Ob % and all f € Morg(4, B),
g € Morg(B, C), and & € Morg(C, D) we have

h(gf) = (he) f

(2) Identity: For each object 4 € Ob % there is a morphism
1, € Morg(A4, A), called the identity, such that we have

fla=f and 1, =¢
for all B, C € Ob % and all f € Morg(4, B) and g € Morg(C, A4).

Therefore the class of objects, and the class of morphism sets, as well
as the composition of morphisms, always belong to a category €. The
compositions have not yet been discussed in our example of sets,
whereas the morphisms correspond to the discussed maps. In the case
of sets the composition of morphisms corresponds to the juxtaposition of
set maps. This juxtaposition is known to be associative. The identity map
of a set complies with the axiom of identity. Thus all sets together with
the set maps and juxtaposition form a category, which will be denoted
by S.

Here it becomes clear why one has to consider a class of objects.
In fact because of the well-known inconsistencies of classical set theory,
the totality of all sets does not itself form a set. One of the known ways
out of this difficulty is the introduction of new boundless sets under the
name classes. This set theory will be axiomatically treated in the Appendix.
A further possibility is to ask axiomatically for the existence of universes
where all set theoretic constructions do not exceed a certain cardinal.
In some cases this makes possible an elegant formulation of the theorems
on categories. It requires, however, a further axiom for set theory. This
possibility was essentially used by A. Grothendieck and P. Gabriel.
W. Lawvere developed a theory in which categories are axiomatically
introduced without using a set theory and from which set theory is
derived. Here we shall only use the set theory of Goedel-Bernays
(Appendix).

Before examining further examples on categories, we will agree on a
sequence of abbreviations. In general, objects will be denoted by capital
Latin letters and morphisms by small Latin letters. The fact that A4 is



1.1 DEFINITION OF A CATEGORY 3

an object of € will be expressed by 4 € %, and f € € means that fis a
morphism between two objects in €, that is, there are two uniquely
defined objects A4, Be % such that fe Morg(4, B). A is called the
domain of f and B the range of f. We also write

f:A—-B o ALB

If there is no ambiguity, Morg(4, B) will be abbreviated by Mor(4, B).

Mor € denotes the union of the family of morphism sets of a category.
Observe that Morg(A4, B) may be empty, but that Mor € contains at
least the identities for all objects so that it is empty only for an empty
class of objects. Such a category is called an empty category. Observe
further that for each object 4 € €, there is exactly one identity 1, . If
1, is another identity for 4 then we have 1,/ = 1,/1, = 1,.

In the following examples only the objects and morphisms of a category
will be given. The composition of morphisms will be given only if it is
not the juxtaposition of maps. We leave it to the reader to verify the
axioms of categories in the following examples.

Examples

1. S—Category of sets: This is sufficiently described above and in the
Appendix.

2. Category of ordered sets: An ordered set is a set together with a
relation on this set which is reflexive (a€ 4 = a < a), transitive
(a < b, b<c=a<c),and antisymmetric (a < b, b < a = a = b).
The ordered sets form the objects of this category. A map f between two
ordered sets is order preserving if a << b implies f(a) < f(b). The order
preserving maps form the morphisms of this category.

3. S*—Category of pointed sets: A pointed set is a pair (4, a) where 4
is a nonempty set and a€ 4. A pointed map f from (4, a) to (B, d)
isamap f: 4 — B withf(a) = b. The pointed sets form the objects and
the pointed maps, the morphisms of this category.

4. Gr—Category of groups: A group consists of a nonempty set 4
together with a composition

A X A>3(abr>abed

such that the following axioms hold:

(1) a(bc) = (ab)c for all a,b,cec A4
(2) thereisanee A with ea = ae = aforall ac 4
(3) for eachae A thereisan a'eA with aal=ala=e
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A group homomorphism f from a group A into a group B is a map from
A into B with f(aa’) = f(a) f(a’). The groups form the objects and the
group homomorphisms, the morphisms of this category.

5. Ab—Category of abelian groups: A group A is called abelian if
ab = ba for all a, b€ A. The abelian groups together with the group
homomorphisms form the category Ab.

6. Ri—Category of unitary, associative rings: A unitary, associative ring
consists of an abelian group A (whose composition is usually written as
(a, b) > a + b) together with a further composition

A X A>3(a,b)r—>abe 4

such that the following axioms hold:

(1) (@a+b)c=ac+bc forall a,bceAd

(2) a(b+c)=ab+ ac forall a,b,ceAd

(3) (ab)e = a(bc) forall a,b,ced

(4) thereisaleAwith la=al =a forall ac4

A unitary ring homomorphism f from a unitary, associative ring A into
a unitary, associative ring B is a map from 4 to B with

fla+ad) = fla) +f(@), flad) =f(@)f(a), and f(l)=1

The unitary, associative rings together with the unitary ring homomor-
phisms form the category Ri.

7. xMod—Category of unitary R-modules ( for a unitary, associative
ring R): A unitary R-(left-)module is an abelian group 4 [whose com-
position is usually written as (a, b) > a + b] together with a composition

R X A>(r,a)—~>racA

such that the following axioms hold:

(1) r(a+a)=ra+ra" forall reR,a,dcd
2) (r+7r)a=ra+7ra foral r,reR acd
(3) (rr)a =r(r'a) forall r,eR,acd

4) la=a forall acA

A homomorphism f from a unitary R-module 4 into a unitary R-module
B is a map from 4 into B with f(a + a') = f(a) + f(a’) and f(ra) =
7f(a). The unitary R-modules together with the homomorphisms of
unitary R-modules form the category fMod. If R is a field, then the
R-modules are called vector spaces.
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8. Top—Category of topological spaces: A topological space is a set 4
together with a subset @, of the power set of A such that the following
axioms hold:

(1) ifB,e®, foriel, then (), B;€0,

(2) if B,eO, fori=1,.,n then (\;_;B,e0,
(3) @e€0,

4) Aeo,

The elements of @, are called open sets of A. A continuous map f from
a topological space 4 into a topological space B is a map from A4 into B
with f=(C)e 0, for all Ce0y. The topological spaces together with
the continuous maps form the category Top.

9. Htp—Category of topological spaces modulo homotopy: Two con-
tinuous maps f and g from a topological space 4 to a topological space B
are called homotopic if there is a continuous map k:I X A — B
with %(0, a) = f(a) and A(l, a) = g(a) for all ac A, where I is the
interval [0, 1] of the real numbers. The open sets 0, of I X A are
arbitrary unions of sets of the form J X C, where JC I is an open
interval and C € @, . Homotopy is an equivalence relation for continuous
maps. The equivalence classes are called homotopy classes of continuous
maps. Juxtaposition of homotopic, continuous maps gives again homo-
topic, continuous maps. Thus the juxtaposition of maps defines a com-
position of homotopy classes which is independent of the choice of
representatives. The topological spaces together with the homotopy
classes of continuous maps and the just discussed composition form the
category Htp.

10. Top*—Category of pointed topological spaces: A pointed topological
space is a pair (4, a) where 4 is a nonempty topological space and a € 4.
A pointed continuous map f from (4, a) to (B, b) is a continuous map
f: A — B with f(a) = b. The pointed topological spaces together with
the pointed continuous maps form the category Top*.

11. Htp*—Category of pointed topological spaces modulo homotopy:
Two pointed continuous maps f and g from a pointed topological space
(4, a) into a pointed topological space (B, b) are homotopic if they are
homotopic as continuous maps and if A(r,a) = b for all »el. The
pointed topological spaces together with the homotopy classes of
pointed continuous maps and the composition of homotopy classes as
defined in Example 9 form the category Htp*.
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12.  Ordered set as a category: Let A be an ordered set in the sense of
Example 2. A defines a category &/ with the elements of A as objects.
Fora,be A = Ob &/ we define

if a<b

_ {(a, )}
Mor y(a, b) = & otherwise

The transitivity of the order relation uniquely defines a composition of
the morphisms. The reflexivity guarantees the existence of the identity.
Since Mor (a, b) has at most one element, the composition is associative.

13.  Group as a category: Let A be a group. A defines a category & with
exactly one object B and Mor (B, B) = A such that the composition
of the morphisms is the multiplication (composition) of the group.

14. Natural numbers as a category: The natural numbers form an
ordered set with the order relation @ < b if and only if a|b. As in
Example 12, the natural numbers form a category.

15.  Category of correspondences of sets: A correspondence from a set 4
toaset Bisasubsetof 4 X B.If fC A x Bandg C B x Clet

gf ={(a,c)|acd, ceC, thereisabeBwith (ab)ef and (b, c)eg}

The sets as objects and the correspondences of sets as morphisms form
a category.

16. Equivalence relation as a category: Let M be a set and R be an
equivalence relation on M. Let the objects be the elements of M. If
(m, m’) e R, then Mor(m, m') = {(m, m'")}. If (m,m')¢ R, then
Mor(m, m') = . This defines a category.

A category ¥ is called a discrete category if Morg(4, B) = @ for any
two objects 4 7 B in ¥ and if Morg(4, 4) = {1,} for each object 4
in €. Similarly to Example 12, every class defines a discrete category.
Conversely, every discrete category may be interpreted as a class.

Examples 12, 13, 14, and 16 are categories of a special type, namely
those with only a set (instead of a class) of objects. If the objects of a
category form a set, then the category is called a small category or diagram
scheme. An explanation for the second name will be given in Section 1.8.

1.2 Functors and Natural Transformations

We stressed already in Section 1.1 that, together with every kind of
mathematical object, the corresponding maps have to be studied as well.
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The mathematical objects we defined in Section 1.1 are the categories.
The place of the maps will be taken by the functors.
Let % and € be categories. Let & consist of

(1) amap Ob# >34+ F(A)eOb¥
(2) a family of maps

{Morg(4, B) > f+F(f) € Morg(#(A4), #(B))}
forall A, BeOb %

& is called a covariant functor if & complies with the following
axioms:

1) £U,)=1g foral AeObFH
) F(fo) = F(f)F(g) forall feMorg(B, C), g € Morg(d, B)
and forall A4,B,CeOb%#

Let # and € be categories. Let & consist of

(1) amap Ob#>34+> F(A)ecOb¥
(2) a family of maps

{Morg(4, B) > fr> F(f) € More(F(B), F(A))}
forall A4, BeOb %

& is called a contravariant functor if & complies with the following
axioms:

1)y #£(1,) =lgy forall AeObZ
(2) Z(fg) = F(9)Z(f) for all fe Morg(B, C), g€ Morg(A4, B)
and forall A4,B,CeOb %

Since the (co- and contravariant) functors take the place of the maps,
we shall often write # : & — ¥ if & is a functor from the category #
to the category €. If there is no ambiguity, we shall also write F4
instead of #(4) and Zf instead of F(f). A covariant functor will
often be called only “functor.”

If #, €, and 2 are categories and ¥ : # — € and 9 : ¥ — 2 are
functors, then let 4% : # — 2 be the functor which results from the
composition of the maps defining the functors & and ¢. In fact we have

9F(la) = 9Y(lsw) = lezw
and
YF(fe) = 9F () F(g) = YF(f) 9% (o)
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Observe the change in the order of the morphisms if one of the two
functors is contravariant. Thus 4% is covariant if both functors are
simultaneously co- or contravariant. If one of the functors is covariant
and the other one is contravariant, then ¥4 is contravariant.

If ##:2 — & is an additional functor, then the composition of
functors is associative (#(9F) = (#9)F) because of the associativity
of the composition of maps.

Idy : € — € denotes the functor with the identity maps as defining
maps. Idy is a covariant functor. As above, we have for functors &# and ¢

Ide#F = F and Glde =9

After these considerations one should expect that the categories and
functors themselves form a category (of categories). This, however, is
not the case in the set theory we use. In fact a category is in general no
longer a set but a proper class. Thus, we cannot collect the categories
in a new class of objects (see Appendix). In general, the functors, too,
are proper classes and cannot be collected in morphism sets. But if we
admit only small categories, every category, interpreted as a set of certain
sets, is a set, and every functor is a set. Therefore, the category of small
categories with functors as morphisms, Cat, may be formed.

As an example, we want to mention only a special type of functor.
Later on we shall study further examples of functors in more detail.
All the categories S*, Gr, Ab, Ri, ;Mod, Top, and Top* have sets
with an additional structure as objects. The morphisms are always maps
compatible in a special way with the structure of the sets. The composi-
tion is always juxtaposition. If one assigns to every object the underlying
set and to every morphism the underlying set map, then this defines a
covariant functor into S, very often called a forgetful functor.

Instead of forgetting the structure on the sets completely, one can
also forget only part of the structure. For example, the abelian groups are
also groups, and the homomorphisms are the same in both cases. The
rings are also abelian groups, and the ring homomorphisms are also
group homomorphisms. So we get forgetful functors Ab — Gr and
Ri — Ab respectively. Similarly, there are forgetful functors ;Mod — Ab
and Top* — Top. If the topological spaces carry an additional structure
(e.g., hausdorff, compact, discrete), respective categories are defined
thereby. So we get forgetful functors into the category Top.

The example Ab — Gr and the aforementioned examples have an
additional property. An abelian group is a group with a special property.
Likewise, a hausdorff topological space is a topological space with a
special property. The objects of one category are in each case also objects
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of the other category. The morphisms of one category are morphisms
of the other category. The composition is the same. The identities are
preserved by the forgetful functor. A category &7 is called a subcategory
of a category % if

ObZ COb# and Mor (A4, B) C Morg(4, B)

for all 4, Be Ob &, if the composition of morphisms in & coincides
with the composition of the same morphisms in &, and if the identity
of an object in & is also the identity of the same object viewed as an
object in #. Then there is a forgetful functor from &7 to %. ot

We note that Ri is not a subcategory of Ab. In fact, Ob Ri C Ob Ab
is not true, although every ring can also be regarded as an abelian group.
The corresponding abelian groups of two rings may coincide even if the
rings do not coincide. The multiplication may be defined differently.

Let F:4 — € and 9:% — € be two covariant [contravariant]
functors. A natural transformation ¢ : & — % is a family of morphisms
{p(4) : F(A) — 9(A)} for all A € Ob X such that we have o(B)F(f) =
Y(f)e(4) [p(A)F(f) = %(f) ¢(B), respectively] for all morphisms
f:A— Bof .

In the following there will often be equalities between composed
morphisms. The objects which are the domains and the ranges of the
separate morphisms will not appear explicitly. Thus, these equations are
difficult to comprehend. So we take a detailed representation using
arrows, as we already took for single morphisms. This will be called a
diagram.

In the case of a natural transformation between covariant functors, the
defining equation

B) F(f) = 9(]) (4)

may be illustrated by the diagram

A
FA422, 24
.97/1 lfﬁf
@(B)

FB——%B

To follow the arrow ¢(A4) from & 4 to ¥4 and then the arrow ¥f to ¥B
substitutes the arrow 9fp(4) from F A4 to ¥B. Correspondingly,
@(B)Zf runs through % B. The condition that these two morphisms
coincide will be expressed by saying that the diagram is commutative.
A diagram with arbitrarily many objects and arrows is called commutative
if, for any two objects of the diagram, the morphism obtained by following
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a path between the two objects in the direction of the arrows is indepen-
dent of the choice of path.

If there is no ambiguity, we shall often write @A instead of p(A4).
A natural transformation is often called a functorial morphism.

Ifp: % — @ and ¢ : ¥ — S are natural transformations, then so is
Yo with Yp(A4) := Y(A)p(A). We have (o) = p(p) because of the asso-
ciativity of the composition of morphisms. The family {15, : F4 — F 4}
defines a natural transformation idgs: # — &. For all natural trans-
formations ¢ : F — G and ¢ : G — F, we have

idsp =4 and  gidg =@

Here again it seems as if the functors together with the natural
transformations form a category. Here again, set theoretic difficulties
arise from the fact that the functors are generally proper classes and
cannot be collected in a class of objects. If &/ is a small category and #
an arbitrary category, then 7 is a set and % a class. A functor ¥ : &/ — &,
originally defined as a map, is aset by Axiom C4 (Appendix) if it is inter-
preted as a graph. Similarly, a natural transformation between two
functors from & to %, being a family of morphisms with an index set
Ob &7, is a set. The natural transformations between two functors from
& to & are a set, being a subset of the power set of |J ., Morg(F 4, 94)
Therefore, the functors from a small category &/ into a category %,
together with the natural transformations, form a category Funct(sZ, %),
which we call the functor category. If the categories &/ and # are not
explicitly given, the functor is not considered only as a graph. One also
asks that functors between distinct pairs of categories are distinct so
that in this general case a functor may well be a proper class, even if
the domain of the functor is a small category. If o7 is the empty category,
then Funct(«/, &) consists of exactly one functor and exactly one natural
transformation, the identity transformation.

An important example of a natural transformation will be presented
in the following section.

1.3 Representable Functors

Let € be a category. Given 4 € € and f € Morg(B, C), we define a map
Morg(4, f): Morg(A, B) — Morg(4, C)
by Morg(4, f)(g) := fg for all g € Mory(4, B) and a map
Morg(f, A): Morg(C, A) — Morg(B, A)
by Morg( f, A)(h) := hf for all ke Morg(C, A).
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LEMMA. Let € be a category and A€ €. Then Mory(A4A, —): € — S
with
Ob ¥ 3 B> Morg(4, B)e Ob S
Morg(B, C) 3 fr> Morg(4, ) € Morg(Morg(A4, B), Morg(A4, C))
is a covariant functor. Furthermore, Mory(—, A): € — S with

Ob & 3 B+ Morg(B, A)eOb S
Morg(B, C) 3 f+> Morg(f, A) € Morg(Morg(C, A), Morg(B, 4))

is a contravariant functor.

Proof. We prove only the first assertion. The proof of the second
assertion is analogous and may be trivially reduced to the first assertion
by later results on the duality of categories.

Morg(4, 15)(g) = 1¢ = g implies Morg(4, 15) = lyorta,m - Let
/& € € be given such that the domain of f is the range of g. Then fg
exists. For all morphisms %, we have

Morg(4, fg)(h) = (fg) b = f(gh) = Morg(4, f) Morg(4, g)(#)
whenever these expressions are defined.

The functors of this lemma are the most important functors in the
theory of categories. So they get a special name: Morg(4, —) is called
covariant and Morg(—, 4) contravariant representable functor. A is called
the representing object.

Now we want to give an example of a natural transformation. Let 4
and B be two sets. The map

A X Morg(4, B)s(a,f)—f(a)e B

is called the evaluation map. For fixed a € 4, the evaluation map defines
a map from Mor(4, B) to B, the evaluation of each morphism f at the
argument a. Thus we obtain a map 4 — Mor(Mor(4, B), B), labeled
¢o(A4). Mor(—, B) is a contravariant functor from S to S. Then
Mor(Mor(—, B), B), as a composition of two contravariant functors, is
a covariant functor from S to S.

Now we show that ¢ is a natural transformation from Idg to
Mor(Mor(—, B), B). Let g: A — C be an arbitrary map of sets. We have
to check the commutativity of the diagram

A2, Mor(Mor(4, B), B)
El lMor(Mor(g,B),B)

¢ 2, Mor(Mor(C, B), B)
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For ae A both Mor(Mor(g, B), B)p(A4)(a) = ¢(A)(a) Mor(g, B) and
¢(C) g(a) are maps from Mor(C, B) into B. Let fe Mor(C, B). Then

#(A)(a) Mox(g, B)(f) = (A)(a)(fg) = fg(a) = f(&(a)) = #(C)e&(@)(f)

hence, ¢(A4)(a) Mor(g, B) = ¢(C) g(a). So the diagram is commutative.
In linear algebra one finds a corresponding natural transformation
from a vector space to its double dual space.

1.4 Duality

We already noticed for contravariant functors that they exchange the
composition of morphisms in a peculiar way, or, expressed in the
language of diagrams, that the direction of the arrows is reversed after
the application of a contravariant functor. This remark will be used for
the construction of an important functor.

Let us start with an arbitrary category €. From % we construct
another category %° whose class of objects is the class of objects of ¥
whose morphisms are defined by Morge(4, B) := Morg(B, 4), and
whose compositions are defined by

Morg(4, B) X Morg(B, C) 3 (f, &) fg € Mor,(4, C)

with fg to be formed in €. It is easy to verify that this composition in €°
is associative and that the identities of € are also the identities in %°.
The category ¥° is called the dual category of €.

The applications

€34+ Ac?
Mor, (4, B) > f— f € Mor(B, A)

and
€254 Ac¥

Morgo(A4, B) 3 f— f € Mory(B, 4)

define two contravariant functors, the composition of which is the
identity on % and %° respectively. To denote that 4 [ f] is considered
as an object [a morphism] of €° we often write A° [ f°] instead of 4 [or f].
By definition, we have for every category € = (%°)°. The functors
described here will be labeled by Op: € — €° and Op: ¥° — ¥ respec-
tively. Both functors exchange the direction of the morphisms or, in
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diagrams, the direction of the arrows and thereby simultaneously the
order of the composition, no other composition for categories being
defined. In fact we have f%° = (gf)° If we apply this process twice,
we get the identity again.

From this point of view, the second part of the lemma in Section 1.3
could be proved in the following way. Instead of examining the maps
defined by Mory(—, 4): € — S, we examine the maps Morg(4, —):
%° — S. By the first part of the lemma, these maps form a functor.
It is easy to verify that Morg(4, —) Op = Mory(—, 4) considered as
maps from € to S. Consequently, Mory(—, 4)is a contravariant functor.
Instead of proving the assertion for €, we proved the ‘“dual assertion”
for €°, the dual assertion being the assertion with the direction of the
morphisms reversed. Thus, to each assertion about a category, we get
a dual assertion. An assertion is true in a category € if and only if the dual
assertion is true in the category €°.

We want to describe this so-called duality principle in a more exact
way with the set theory presented in the Appendix. Let &%) be a
formula with a free class variable €. § = &(%) is called a theorem on
categories if

(A €)% is a category = F(¥))

is true, that is, if the assertion F(%) is true for all categories €. From §
we derive a new formula §° = F%(Z) with a free class variable & by

FUZ) = (VF)(¥ is a category A €° = D A FF))

that is, FY2) is true for a category Z if and only if F(Z°) is true because
¢° = 2 implies € = 2°. If (%) is a theorem on categories, we get

FU¥) from F(¥) by reversing the directions of all morphisms appearing

in F%). This corresponds exactly to the construction of F(%°). F° is

called the dual formula to §. Thus we get the following duality principle:

Let & be a theorem on categories. Then §°, the dual formula to §,
is also a theorem on categories, the so-called dual theorem to §.

In fact, if (%) is true for all categories €, then F(%°) is true for all
categories % and consequently also (%).

When we apply this duality principle, we have to bear in mind that
we dualize not only the claims of the theorems on categories but also
the hypotheses. When we introduce new abbreviating notions, we have
to define the corresponding dual notions also.
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1.5 Monomorphisms, Epimorphisms, and Isomorphisms

In the theory of categories, one tries to generalize as many notions as
possible from special categories, for example the category of sets, to
arbitrary categories. An appropriate means of comparison with S are
the morphism sets, or more precisely, the covariant representable functors
from an arbitrary category % into S. So the property € could be assigned
to an object 4 €% [a morphism fe¥] if A [f] is mapped by each
representable functor Morg(B, —) to a set [a map] in S with the property
€. In order to recover the original definition in the case € = S, we have
to observe further that the property € of a set or map is preserved by
Morg(B, ) and is characterized by this condition.

We find a first application of this principle with the notion of an
injective set map. Let f: C — D be an injective map. Then Mor(B, f):
Mor(B, C)— Mor(B, D) is injective for all B € S. In fact, Mor(B,f)(g) =
Morx(B, f)(h) for all g, h € Mor(B, C) implies fg = fh. So we have
f(g(b)) = f(h(b)) for all b e B. Since f is injective, g(b) = A(b) for all
be B, that is g = h. Consequently, it makes sense to generalize this
notion because the converse follows trivially from B = {g}.

Let € be a category and f a morphism in %. f is called a monomorphism
if the map Morg(B, f) is injective for all B e €.

We define the epimorphism dual to the notion of the monomorphism.
Let € be a category and f a morphism in €. f is called an epimorphism
if the map Morg( f, B) is injective for all B € €.

Lemma 1.

(a) f:A — Bis a monomorphism in € if and only if fg = fh implies
g = h for all C € € and for all g, h € Mory(C, A), that is, if f is
left cancellable.

(b) f: A — B is an epimorphism in € if and only if gf = hf implies
g =h for all C €% and for all g, h € Mory(B, C), that is, if f is
right cancellable.

Proof. (a) and (b) are wvalid because Mor(C,f)(g) = fg and
Mor(f, C)(g) = &f-
The following two examples show that monomorphisms [epimor-

phisms] are not always injective [surjective] maps if the morphisms of the
category in view can be considered as set maps at all.

Examples

1. An abelian group G is called divisible if nG = G for each natural
number 7, that is, if for each g € G and #n there is a g’ € G with ng’ = g.
Let € be the category of divisible abelian groups and group homomor-
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phisms. The residue class homomorphism v : P — P/Z from the rational
numbers to the rational numbers modulo the integers is a monomor-
phism in the category ¥, for if f, g: A — P are two morphisms in ¥
with f # g, then there is an ae€ 4 with f(a) — g(a) = rs~! # 0 and
s # 41. Let b€ A with b = a. Then r( f(b) — g(b)) = f(a) — g(a) =
rs71, so f(b) = g(b) = s~1. Therefore vf (b) 5 vg(b). Thus, v is a mono-
morphism which is not injective as a set map.

2. In the category Ri epimorphisms are not necessarily surjective.
The embedding A:Z — P, for example, is an epimorphism. Let
g, h: P — A be given with gA = hA. Then g(n) = h(n) for all natural
numbers 7 and g(1) = A(1) = 1. Hence g(n) g(1/n) = 1 = h(n) h(1/n).
Thus we get g(1/n) = (g(n))™* = (h(n))™* = h(1/n) and more generally
2(p) = h(p) for all p € P, that is, A is an epimorphism.

3. We give a third topological example. A topological space 4 is called
hausdorff if for any two distinct points a, b € 4 there are two open setsU
and V with ae UC 4 and eV C A4 such that UN V = g. The
hausdorff topological spaces together with the continuous maps form a
subcategory Hd of Top. A continuous map f: 4 — B is called dense if
for every open set U # o in B, there is an a € 4 with f(a) € U. The
embedding P — R, for example, is a dense continuous map. We show
that each dense continuous map in Hd is an epimorphism. Letf: 4 — B
be such a map. Given g: B— C and A: B— C in Hd with g # &
such that g(b) # A(b) for some b € B. Then there are open sets U and V'
with g()e UCC and A(b)e VC C and UNV = @. The sets
g U)C B and A Y(V)C B are open sets with g7}(U) N A~}(V) 2 b,
£ and % being continuous. Furthermore, g=(U) N £7Y(V) is a nonempty
open set so that there is an a € 4 with f(a) € g=(U) N A~Y(V). But then
gf(@)e U and hf(a)e V. UN V = o implies gf(a) # hf(a), that is,
gf # hf. P and R being hausdorff spaces the embedding P — R is an
example of an epimorphism which is not surjective as a set map.

COROLLARY (cube lemma). Let five of the six sides of the cube
4,
l k 4,
4, 1—> A, J
4, 4q
except the top be commutative and let A, — Ag be a monomorphism. Then
the top side is also commutative.
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Proof. All morphisms in the diagram from A4, to Ag are equal, in
particular

A, —A4,—~ A, — A, and Ay— Ay— A, — A, .
Since A, — Ay is a monomorphism, the top side is commutative.

LemMA 2. Let f and g be morphisms in a category which may be com-
posed. Then:

() If fg is a monomorphism, then g is a monomorphism.

(b) If f and g are monomorphisms, then fg is a monomorphism.
(c) If fg is an epimorphism, then f is an epimorphism.

(d) If f and g are epimorphisms, then fg is an epimorphism.

Proof. The assertions (c) and (d) being dual to the assertions (a)
and (b), it is sufficient to prove (a) and (b). Let gh = gk, then fgh = fgk
and A = k. This proves (a). (b) is trivial if we note that monomorphisms
are exactly the left-cancellable morphisms.

Example

Now we want to give an example of a category where the epimorphisms
are exactly the surjective maps, namely the category of finite groups.
The same proof works also for the category Gr. First, each surjective map
in this category is left cancellable as a set map and consequently as a
group homomorphism. So we have to show that each epimorphism
f: G' — G is surjective. We have to show that the subgroup f(G') = H
of G coincides with G. Since f can be decomposed into G' - H — G,
the injective map H — G is an epimorphism [Lemma 2(c)]. We have
to show the surjectivity of this map. Let G/H be the set of left residue
classes gH with g € G. Furthermore, let Perm(G/H U {co}) be the group
of permutations of the union of G/H with a disjoint set of one element.
This group is also finite. Let ¢ be the permutation which exchanges
H e G/H and oo, and leaves fixed all other elements. Then ¢? = id.
Lett: G — Perm(G/H U {o0}) be the map defined by t(g)(g'H) = gg'H
and #(g)(o0) = co. Then ¢t is a group homomorphism. Let s: G —
Perm(G/H U {c0}) be defined by s(g) = ot(g)o. Then s is also a group
homomorphism. One verifies elementwise that ¢(k) = s(k) for all 2 e H.
Since H — G is an epimorphism, we get ¢ = 5. So forallg € G,

gH = 1(g)(H) = s(g)(H) = ot(g) o(H) = ot(g)(w0) = o(0) = H

This proves H = G.
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Let € be again an arbitrary category. A morphism fe Morg(4, B)
is called an isomorphism if there is a morphism g € Morg(B, 4) such that
fg =1z and gf = 1,. Two objects 4, Be ¥ are called isomorphic if
Mor4(A4, B) contains an isomorphism. T'wo morphisms f: 4 — B and
g : A" — B’ are called isomorphic if there are isomorphisms £ : 4 — A’
and k& : B — B’ such that the diagram

4A—.B

") |
4 —>p

is commutative.

The following assertions are immediately clear. If f: 4 — B is an
isomorphism with fg = 1 and gf = 1, then g is also an isomorphism.
We write f~! instead of g because g is uniquely determined by f. The
composition of two isomorphisms is again an isomorphism. The identities
are isomorphisms. So the relation between objects to be isomorphic is an
equivalence relation. Similarly, the relation between morphisms to be
isomorphic is an equivalence relation. Isomorphic objects and morphisms
are denoted by 4 ~ B and f ~ g respectively. Now let # : € — 2 be
a functor and f € % an isomorphism with the inverse isomorphism f 1.
Then F(f)F(f) = F(ff) = #(1) =1 and analogously
F(f) Z(f) = 1. So the fact that f is an isomorphism implies that Zf
is also an isomorphism.

A morphism fe Morg(4, 4) whose domain and range is the same
object is called an endomorphism. Endomorphisms which are also
isomorphisms are called automorphisms.

Lemma 3. If f is an isomorphism, then f is a monomorphism and an
epimorphism.

Proof. Since there is an inverse morphism for f, we get that f is left
and right cancellable.

Note that the converse of this lemma is not true. We saw, for example,
that A : Z — P in Ri is an epimorphism. Since this morphism is injective
as a map and since all morphisms in Ri are maps, A is also left cancellable
and consequently a monomorphism. A is obviously not an isomorphism
because otherwise A would have to remain an isomorphism after the
application of the forgetful functor into S, so A would have to be bijective.
Similarly, v : P — P/Z is a monomorphism and an epimorphism in the
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category of divisible abelian groups, but not an isomorphism. The same
is true in our example of the category of hausdorff topological spaces.

A category € is called balanced if each morphism which is a mono-
morphism and an epimorphism is an isomorphism. Examples are S,
Gr, Ab, and ;Mod.

Let ¢ : & — % be a natural transformation of functors from € to 2.
o is called a matural isomorphism if there is a natural transformation
¢y : 9 — & such that yp = idz and ¢ = idy . Two functors & and ¢
are called isomorphic if there is a natural transformation between them.
Then we write & =~ %. Two categories are called zsomorphic if there are
functors & : € - 2 and ¥ : & — € such that 9% = Idg and F¥ =
Idg . T'wo categories are called equivalent if there are functors & : € — 9
and 9 : Z — ¥ such that 4% ~ Ildy and ¥ =~ Id, . The functors #
and ¢ are called equivalences in this case. If % and ¥ are contravariant,
one often says that € and & are dual to each other.

If @ is a natural isomorphism with the inverse natural transformation i,
then ¢ is also a natural isomorphism and is uniquely determined by ¢.
@ is a natural isomorphism if and only if ¢ is a natural transformation
and if p(A4) is an isomorphism for all 4 € €. In fact the family {(¢(4))~1}
for all 4 € ¥ is again a natural transformation.

We have to distinguish strictly between equivalent and isomorphic
categories. If € and & are isomorphic, then there is a one-one corre-
spondence between Ob % and Ob Z. If € and 2 are only equivalent,
then we have only a one-one correspondence between the isomorphism
classes of objects of € and 2 respectively. It may happen that the iso-
morphism classes of objects in % are very large, possibly even proper
classes, whereas the isomorphism classes of objects in & consist only of
one element each. It is even possible to construct for each category € an
equivalent category & with this property. In order to do this, we use the
axiom of choice in the formulation given in the Appendix. The notion of
isomorphism defines an equivalence relation on the class of objects of .
Let Ob 2 be a complete set of representatives for this equivalence rela-
tion. We complete Ob & to a category & by defining Morg(A4, B) =
Morg(A, B) and by using the same composition of morphisms as in €.
Obviously & becomes a category. Let & : € — 2 assign to each A €€
the corresponding representative % A4 of the isomorphism class of 4.
Let 2 be the isomorphism class of 4 and @ the class of those isomorphisms
which exist between the elements of A with range # 4. Let two iso-
morphisms be equivalent if their domain is the same. Then a complete
set of representatives defines exactly one isomorphism between each
element of A and F 4. This can be done simultaneously in all isomor-
phism classes of objects of €. Now let f: 4 — B be a morphism in €.
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Then we assign to f the morphism Zf : 4 — % B defined by
FA~ALHB~ FB
Because of the commutativity of
A AN B—f .cC
(P
PV RANY 5 RANY 1o
& is a functor from € to 9. 2 being a subcategory of ¥ we define

Y :9 — € as the forgetful functor. Trivially ¥ = Id,. On the
other hand, # %4 = ¥ 4 ~ A for all A € €. The diagram

794>, z9B
Ul , Ul
4 B

is commutative for all morphisms f€ €. Thus € is equivalent to 2. We
call the category & a skeleton of €.

Observe that by our definition the dual category €° of € is dual to &,
but that, conversely, the condition that & is dual to % implies only that &
is equivalent to %°. In this context we also want to mention how contra-
variant functors may be replaced by covariant functors. Thus it suffices
to prove theorems only for covariant functors. As we saw, the isomor-
phism Op : € — %° (because of the contravariance of Op this is also
called antitsomorphism) has the property OpOp =1d. If &# : ¥ - 2
is a contravariant functor, then #Op :%° — £ and Op% : € — 2°
are covariant functors, which may again be transformed into & by
an additional composition with Op. If # and & are contravariant functors
from € to 2 and if ¢ : & — ¥ is a natural transformation, then we get
corresponding natural transformations ¢Op : #Op — ¥Op and Opeg :
Op¥% — Op#, as is easily verified. Let € be a small category, and let us
denote the category of contravariant functors from % to 2 by Funct(%,2),
then the described applications between co- and contravariant functors
define isomorphisms of categories

Funct(¥, 2) o~ Funct(%°, 2) and Funct(¥, 2) ~ Funct(¥, 2°)°

We leave the verification of the particular properties to the reader.
In particular, we get Funct(%, 2) ~ Funct(%?, 2°)°.
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1.6 Subobjects and Quotient Objects

Let € be a category. Let MM be the class of monomorphisms of ¥.
We define an equivalence relation on 9 by the following condition. Two
monomorphisms f: 4 — B and g: C — D are equivalent if B = D
and if there are two morphisms # : 4 — C and k : C — A such that the
diagrams

A C
N AN
h B and k B

A
C A

are commutative. Obviously this is an equivalence relation on 9. Let U
be a complete set of representatives for this equivalence relation. U exists
by the axiom of choice. Let f and g be equivalent. Then f = gh and
g = fk, hence f1, = f = fkhand gl = g = ghk. Since f and g are left
cancellable, we get 1, = kh and 1, = hk, thus 4 o~ C.

Let Be%. A subobject of B is a monomorphism in U with range B.
A subobject f of B is said to be smaller than a subobject g of B if there
is a morphism % € € such that f = gh. By Section 1.5, Lemma 2(a) and
since g is cancellable, % is a uniquely determined monomorphism.

LemmA 1. The subobjects of an object B € € form an ordered class.

Proof. Let f < g and g < h be subobjects of B. Then f = gk and
g = hk', hence f = hk'k, that is, f << h. Furthermore, we get f < f
by f = f1, if A is the domain of f. Finally, if f < g and g < f, then f
and g are equivalent, so f = g.

Instead of the monomorphism which is a subobject we shall often give
only its domain and call the domain a subobject. Thus we can again
interpret a subobject as an object in %, tacitly assuming that the corre-
sponding monomorphism is known. Observe that a monomorphism is
not uniquely determined by the specification of the domain and the
range so that an object may be a subobject of another object in different
ways. In S, for example, there are two different monomorphisms from
a one point set into a two point set. If f < g for subobjects f: 4 — C
and g : B — C, then we often write 4 C-B C C.
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The ordered class of the subobjects of an object B € € is called the
power class of B. If the power class of each object of a category ¥ is a set,
then & is called a locally small category. Then the power classes are also
called power sets.

Let € be a locally small category. Let U be a subset of the power set
of the subobjects of B € €. A subobject 4 € U is said to be minimal in U
if A'€ U and 4’ C 4 always implies A" = A. The power set of the
subobjects of B € € is called artinian if, in each nonempty subset of the
power set of the subobjects of B, there is a minimal subobject. A sub-
object 4 € U is said to be maximal in U if A€ U and A C A4’ always
implies A" = A. The power set of the subobjects of Be % is called
noetherian if, in each nonempty subset of the power set of the subobjects
of B, there is a maximal subobject. If the power set is artinian or
noetherian, then we also call B an artinian or noetherian object respectiv-
ely. If all objects of € are artinian or noetherian, then the category %
is said to be artinian or noetherian respectively. A subset K of the power
set of B is called a chain if for any two subobjects 4, A’ € K we always
have A C 4’ or A’ C A. We say that B € ¥ complies with the minimum
condition [maximum condition] for chains if each nonempty chain in the
power set of B contains a minimal [maximal] element.

LemMMA 2. An object B € € complies with the minimum condition [maxi-
mum condition) for chains if and only if B is artinian [noetherian).

Proof. If B is artinian, then in particular B complies with the
minimum condition for chains. Let B comply with the minimum condi-
tion for chains and let U be a subset of the power set of B which does not
contain a minimal subobject. Then to each subobject 4; € U there is a
subobject 4,,, € U with 4,,; C A4, and 4,,, # A, . This will also be
written as A, ., C 4, . So we get a chain K with no minimal element in
contradiction to the hypothesis. Thus B is artinian. The equivalence of
the maximum condition for chains with the condition that B is noetherian
may be shown analogously.

One easily shows that the subobjects in S, Gr, Ab, or Ri are the sub-
sets, subgroups, abelian subgroups or subrings with the same unit
together with the natural inclusions. In Top the subsets of a topological
space equipped with a topology in such a way that the inclusion maps
are continuous are the subobjects of the topological space. The so-
called subspaces of a topological space have additional properties and
will be discussed in Section 1.9.

By dualizing we obtain the notion of the quotient object, the copower
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class and the locally cosmall category. The discussed properties may be
dualized similarly.

The property of being a subobject is transitive in S, Gr, Ab, Ri,
Top, S*, and Top*; that is, if 4 is a subobject of B and if B is a subobject
of C, then A4 is a subobject of C. This, however, is not the case if one
considers quotient objects, for example, in Ab, since the quotient object
of a quotient object has as elements residue classes of residue classes
whereas a quotient object has as elements residue classes (of the original
object). So this transitivity cannot be expected in a general form and,
in fact, is not implied by our definition of subobjects and quotient objects.

1.7 Zero Objects and Zero Morphisms

An object A4 in a category ¥ is called an initial object if Mory(A, B)
consists of exactly one element for all B € ¢. The notion dual to initial
object is final object. An object is called a zero object if it is an initial and a
final object.

Lemwma 1. Al initial objects are isomorphic.

Proof. Let A and B be initial objects. Then there is exactly one
morphism f : 4 — B and exactly one morphism g : B — A. The compo-
sition fg [gf] is the unique morphism 1, [1,] which exists in Morg(B, B)
[Morg(A, A)]. Thus f and g are isomorphisms.

Lemma 2. A zero object O of a category € is in a unique way a subobject
of each object B € € up to isomorphisms of zero objects.

Proof. Since Morg(C, 0) consists of exactly one element for all C € %,
the unique morphism f:0 — B is a monomorphism for all B, for
Mory(C, f) : Morg(C, 0) — Morg(C, B) is always injective. The sub-
object of B which represents f must have as domain a zero object iso-
morphic to 0.

A morphism f: A — B in C is called a left zero morphism if fg = fh
for all g, h € Morg(C, A) and all C € €. Dually we define a right zero
morphism. f is called a zero morphism if f is a right and left zero morphism.

Lemma 3.

(a) If f is a right zero morphism and g is a left zero morphism and if
fg is defined, then fg is a zero morphism.
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(b) Let A be an initial object. Then f: A — B is always a right zero
morphism.

(c) Let O be a zero object. Then f:0— B and g: C — 0 and con-
sequently also fg : C — B are zero morphisms.

Proof. 'The assertions are direct consequences of the definitions of the
particular notions.

A category € is called a category with zero morphisms if there is a
family

{045 € Morg(4, B) forall A,Be%}
with
fOu.» = 0,0 and 0.0 = Ot

for all 4, B, Ce¥ and all fe Morg(B, C) and g€ Morg(4, B). The
O(4,5 are zero morphisms because fO(, 5 = Os,c) = #0(,,5 , and
correspondingly for the other side. The family {O(, 5} of these zero
morphisms is uniquely determined. For if {0, 5} is another family of
zero morphisms, then

0. = 0045004, ) = Oy,»y  forall A,Be¥®

LEMMA 4. A4 category with a zero object is a category with zero morphisms.

Proof. The zero morphisms O, z are constructed as in Lemma 3(c).
The rest of the assertion is proved by the commutativity of the diagrams

4 0¢4.B) B f C 4 LA O5.c) C
\ T / e \ l /
0 0

The category % is a category with zero morphisms if and only if the
sets Morg(4, B) are pointed sets and the maps Morg(f,—) and
Morg(—, g) are pointed maps (in the sense of Section 1.1, Example 3).
Thus % is said to be a pointed category. In € the distinguished points of
Morg(A, B) are uniquely determined by the condition that Morg( f, —)
and Morg(—, g) are pointed set maps.

In the category S an initial object is @ and a final object is {@}. Zero
objects do not exist. The only zero morphisms have the form @ — 4.
In the category S* each set with one point is a zero object. Thus there
are zero morphisms between all objects. Similarly, the set with one point
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with the corresponding structure is a zero object in the categories Gr,
Ab, and Top*. In Top an initial object is @ and a final object is {&}.
In Ri an initial object is Z, and the set with one point and the trivial ring
structure, the so-called zero ring, is a final object. The mono- and epi-
morphism A :Z — P, known from previous examples, is a right zero
morphism but not a left zero morphism.

1.8 Diagrams

In this section we want to make precise the notion of a diagram
introduced in Section 1.2. Thus a diagram in a category % will be a
functor from a diagram scheme 2, that is, from a small category 2
(see Section 1.1), into the category %. If the diagram scheme is finite,
one says that the diagram is finite, and one illustrates the functor by
its image. In this case we write down the objects in the image of the
functor & and the morphisms as arrows between the objects. We omit
the identities and often also morphisms which arise from other morphisms
by composition. The commutativities which shall hold for all diagrams
over the diagram scheme & are expressed by equality of morphisms in 2.
Certainly, for certain diagrams additional parts may become commutative
because of the particular properties of the objects and morphisms in the
image of #.

Observe that the image of a functor, that is, the image of the map of
objects and the maps of morphisms, does not form a category in general.
In fact it is not necessary that all possible compositions of morphisms
in the image are again in the image. For example, let &# : 2 — € be a
functor with # 4 = % B for two different objects 4, B € @. Then two
morphisms f: C — A4 and g : B— D cannot be composed in & but

FCEZLFA=FB-Z% ZD

and thus FgZf is not necessarily contained in the image of &. The
image of a functor &, however, is a category if & is an injective map
on the class of objects.

As in Section 2.1 we can form the category Funct(Z, €). The objects
of this category are diagrams. One also calls this category the diagram
category. We observe that only the point of view differs from the one
in Section 1.2. The category certainly is a functor category. It is interest-
ing to know how the morphisms between two diagrams can be illustrated.
Let us clarify this with an example.
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Let 2 be a category with three objects X, Y, Z and six morphisms
Iy,1y, 1, : X—> Y, y:Y—>Z andz=yx : X > Z. Let % and
% be two diagrams and let ¢ : & — ¥ be a morphism of diagrams.
Then we can present all these data with the diagram

FX oX @x
NA
Gz
72 FY-—2 | gy
A A
FZ i A

where all four quadrangles are commutative because ¢ is a natural
transformation. The category constructed here is also called the category
of commutative triangles in €. The morphisms between diagrams are
also families of morphisms, one for each pair of corresponding objects
in two diagrams, such that these morphisms commute with the mor-
phisms in the particular diagrams.

Now let us take a fixed diagram in the sense of Section 1.2, which
consists of a set of objects and morphisms, and let us ask the question
whether this can be considered a diagram in the sense defined above.
For that purpose, we form the subcategory & of ¢ with the same objects
as given in the diagram and with all morphisms of ¥ between them.
4% is a small category. Now let {&7 },, be a family of small subcategories
of %4, then (\;e; &;, defined as the intersection of the corresponding
sets of objects together with the intersection of the sets of morphisms,
is a small subcategory of #. The composition is the one induced by .
Let us choose for the 7 only those subcategories that contain all objects
and morphisms of the given diagram. Then () % is the smallest subcate-
gory of € which contains all objects and all morphisms of the diagram.
Thereby the given diagram is completed by additional morphisms
which occur as compositions of given morphisms or as identities. The
small category we obtained in this way will be considered as the diagram
scheme for our diagram.

If the diagram scheme consists of two objects X and Y and of three
morphisms 1y, 1y, and x : X — ¥, then we call this category 2. The
diagrams of Funct(2, %) are in one-one correspondence to the morphisms
of €. Thus one calls Funct(2, ¥) the morphism category of €. A mor-
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phism in Funct(2, €) between two morphismsf: 4 — Bandg : C — D
is a commutative diagram

A——C

q L

B——D

1.9 Difference Kernels and Difference Cokernels

As in Section 1.5, we want to generalize again a notion from S to
arbitrary categories. For this purpose, let f: 4 —~ B and g: 4 — B be
two set maps in S. Then for f and g we can define a set C by

C={clced and f(c) = g(c)}
For an arbitrary object D € S we consider

or ] or(D.f
Mor®D | Mor(D, Ay ——— Sl Mor(D, B)
Mor(D,g)

Mor(D, C)

where 7 : C — A is the inclusion. By fi = g7, we also have

Mor(D, f) Mor(D, i) = Mox(D, g) Mor(D, i).

Conversely, if 2 € Mor(D, A) with Mor(D, f)(h) = Mor(D, g)(k), that is,
fh = gh, then f(h(d)) = g(h(d)) for all de D. Thus all elements of the
form h(d) are already in C, that is,

h=(DX-C->4) or h= Mor(D,i)k)

Since 7 is injective and also Mor(D, 7), we can use Mor(D, 7) to identify
Mor(D, C) with the set of morphisms in Mor(D, 4) which are mapped
onto the same morphism by Mor(D, f) and Mor(D, g). We shall prove
in a more general form that this property determines the set C and the
injection 7 uniquely up to an isomorphism, as required for the generaliza-
tion. We want to reformulate the conditions for the morphism sets. For
each pair of morphisms ( f, g) from 4 to B, we constructed a morphism
i:C — A which satisfies the following condition: If DeS and
he Mor(D, A) and if fh = gh, then there is exactly one morphism
#' € Mor(D, C) such that & = h'.

Let ¥ be a category. Let f: A — B and g: 4 — B be morphisms
in ¢. A morphism 7 : C — A is called a difference kernel of the pair ( f, g)
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if fi = gi and if to each object D € € and to each morphisms 2 : D — 4
with fh = gh, there is exactly one morphism 4’ : D — C with & = ih'.
The morphisms considered form the following diagram:

.
h
c—s4—B

4

LemMa 1. Each difference kernel is a monomorphism.

Proof. Let ¢ be a difference kernel of ( f, g). Let &, k : D — C be given
with 7h = tk. Then f(ih) = g(ih). Also by definition there is exactly one
morphism %' : D — C with (¢h) = ¢/’. But & as well as & comply with
this condition. By uniqueness we get # = k.

Lemmva 2. If i:C— A and i’ : C' — A are difference kernels of the
pair (f, g), then there is a uniquely determined isomorphism k : C — C’
such that i = i'k.

Proof. Let us apply the fact that 7 is a difference kernel to the morphism
¢'; then we obtain exactly one &’ : C’ — C withz’ = ik’. Correspondingly,
one obtains exactly one k : C — C’ with 7 = ¢’k. Thus the uniqueness
of k is already proved. Furthermore, both assertions together imply
i = tk'k and 7" = 7'kk’. Since 7 and 7’ are monomorphisms by Lemma 1,
we get K’k = 1cand kR = 1o .

In the special case of S, this lemma proves also that if a morphism
i": C"— A with fi’ = gi’ complies with the conditions on the diagram
of the morphism sets, then 7’ can be composed with an isomorphism
such that the composite is the morphism 7. Thus we get from the generali-
zation of the notion given in the beginning only isomorphic sets with
uniquely determined isomorphisms. Apart from that, the notion is
preserved.

Here we meet for the first time an example of the so-called universal
problem. In the class of morphisms % with fA = gh the difference kernel
is universal in the sense that each % of this class may be factored through
i:h =1k

A category ¥ is said to have difference kernels if there is a difference
kernel to each pair of morphisms in ¥ with common domain and range.
We call € a category with difference kernels. Instead of calling the mor-
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phism 7 a difference kernel, we often only call its domain C a difference
kernel assuming that the corresponding morphism is known. We acted
similarly in the case of subobjects. Since a difference kernel is a mono-
morphism, there is an equivalent monomorphism which is a subobject.
This again is a difference kernel of the same pair of morphisms. Sub-
objects which are simultaneously a difference kernel of a pair of mor-
phisms are called difference subobjects.

Let € be a category with zero morphisms. Let f: 4 — B be a mor-
phism in €. A morphism g : C — A4 is called a kernel of f if fg = O(c p)
and if to each morphism % : D — A with fh = O, p) there is exactly
one morphism k: D — C with h = gh.x

LemmA 3. Let g be a kernel of f. Then g is a difference kernel of ( f, 0¢4 p))-

Proof. By the properties of the zero morphisms in %, we have that
fh = O p) implies fh = f0(, , and conversely. Thus the claim follows
directly from the definition.

In particular, kernels are uniquely determined up to an isomorphism,
and they form difference subobjects. Since the notions of a kernel and a
difference kernel are different notions in general, the kernels which
appear as subobjects get the name normal subobjects.

Dually to the notions defined in this section we define difference
cokernels, categories with difference cokernels, difference quotient objects,
cokernels, and normal quotient objects. For all theorems proved above,
there are dual theorems.

The difference kernel of a pair of morphisms (f, g) is denoted by
Ker( f, g) and the difference cokernel by Cok( f, g). The kernel and co-
kernel of a morphism f will be denoted by Ker(f) and Cok(f) respect-
ively. In all cases, we consider the given notations as objects in the given
category and assume that the corresponding morphisms are known.

Categories with difference kernels and difference cokernels are S,
S*, Top, Top*, Gr, Ab, Ri, and ;Mod. We want to give the construction
of a difference cokernel in S. Let two maps f,g: A — B be given.
Take the smallest equivalence relation on the set B under which f(a)
and g(a) are equivalent for all a € 4. The equivalence classes of this
equivalence relation form a set C, onto which B is mapped in the obvious
way. This map is a difference cokernel of (f, g), as may easily be
verified. Compare Problem 1.6 for the properties of Top. The properties
of Top* arise analogously from the properties of S*. In Chapter 3 we
shall deal with S*, Gr, Ab, Ri, and ;Mod in more detail.
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1.10 Sections and Retractions

A morphism f: 4 — B in a category % is called a section if there is
a morphism g in & such that gf = 1, . fis called a retraction if there is a
morphism g in % such that fg = 1,. If f is a section with gf = 1,
then, by definition, g is a retraction and conversely. In general each
section determines several retractions, and conversely. The notions
section and retraction are dual to each other.

LemMa 1. Each section is a difference kernel.

Proof. Letf: A — B be asection and g be a corresponding retraction.
We show that f is a difference kernel of (fg, 15). First, fof = f = 1, f.
Let £ : C — B be given with fgh = 1o = h. Then by & = f(gh) the
morphism £ may be factored through f. If & = fh’, then gh = gfh’ = I/,
that is, the factorization is unique.

Lemma 2. Let F : € — 2D be a functor and f be a section in €. Then Ff
is a section in 9.

Proof. Let g be a retraction for f. Then gf = 15, so FgFf = lzp.

Lemma 3. f: A— B is a section in the category € if and only if
Morg( f, C) : Morg(B, C) — Morg(A4, C) is surjective for all C€ €.

Proof. Let f be a section with a corresponding retraction g, and let
h e Mor(A4, C). Then h = h(gf) = (hg) f = Mor( f, C)(hg). Conversely,
let Mor( f, C) be surjective for all C € €. For C = A4, there is a
g € Mor(B, A) with Mor( f, A)(g) = 1,, consequently fg =1,

The assertion of this lemma is of special interest in view of the defini- |
tion of a monomorphism or an epimorphism. When dualizing theorems
on categories, be careful not to dualize also the notions used in S.

In S all injective maps are sections except the map @ — A with
A # @. All surjective set maps are retractions. In Ab the map Z > n
2n € Z is akernel of the residue class homomorphism Z — Z/2Z; however,
it is not a section. In fact, if g : Z — Z were a corresponding retraction,
then 2g(1) = 1 € Z. But there is no such element g(1) in Z.

1.11 Products and Coproducts

Another important notion in the category of sets is the notion of a
product of two sets 4 and B. The product is the set of pairs

A X B ={a,b)lacd and beB}
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Furthermore, there are maps
patAXB>3(a,b)y—>aci and pg:A X B3(a,b)—>beB

We want to investigate whether this notion can again be generalized in
the desired way to morphism sets. First, one obtains for an arbitrary set C

Mors(C, 4 x B) = Morg(C, 4) x Mors(C, B)

using the following applications. To %2:C — A4 X B one assigns
(p4h, psh) € Mor(C, 4) x Mor(C, B), and to a pair ( f, g) € Mor(C, 4) X
Mor(C, B) one assigns the map C 3 ¢ — (f(c), g(c)) € A X B. Further-
more, there are maps Mor(C, 4 X B)s k> p,he Mor(C, 4) and
Mor(C, A X B) > h > pgh e Mor(C, B), which are transferred by the
bijection given above into the maps

Mor(C, A) x Mor(C, B) 3 (f, g) ~ f € Mor(C, A)

and
Mor(C, A) x Mor(C, B) 3 (f, g) — g € Mor(C, B)

In this way the product and the corresponding maps p, and pp are
transferred to the morphism sets up to isomorphisms. We shall prove in
a more general context that this property characterizes products in S.

The isomorphism of the morphism sets found above may be also
expressed in the following way: To each pair of maps f: C — 4 and
g : C — B, there is exactly one map 2 : C — A X B such that f = pk
and g = gph.

Let € be a category, and let 4, B € € be given. A triple (4 X B, p,, ps)
with 4 X B an object in € and

pa:AXB—~>4 and pp:4 XxB—>B

morphisms in % is said to be a product of A and B in ¥ if to each object
C € % and to each pair ( f, g) of morphisms withf: C — Aandg:C— B,
there is exactly one morphism % : C — 4 X B such that f = p h and
g = pgh. Then the morphisms form the following commutative diagram
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The morphisms p, and pj are called projections. Often we write ( f, g)
instead of 2. If C = 4 X B, then (p,, p5) = 1,45 by the uniqueness of
( pA ) PB)

We generalize the notion of a product to an arbitrary family {4,};.; of
objects in € where I is a set. An object [T,., 4; together with a family
{p; : T1ser A; = A}ier of morphisms is called a product of the A, if to
each object C €% and to each family {f; : C — 4,;};; of morphisms
there is exactly one morphism % : C — [],;; 4; such that f, = p,h for
all e l. The morphisms p, are called projections again, and instead of
h, we often write ( f;). As above we have ( p,) = lp,, . If I is a finite set,
then we also write 4; X -+ X A4, instead of [1;; 4; and (f;,..., f»)
instead of ( f;). If I = @, then to each object C € € there must be exactly
one morphism % from C into the empty product E. In this case, the
conditions on the morphisms f; are empty. Thus this requirement says
that E is a final object. Conversely each final object is also a product on
an empty set of objects.

Lemma 1. Let (4, {p;}) and (B, {q;}) be products of the family {A};,
in €. Then there is a uniquely determined isomorphism k : A — B such

Proof. 1In the commutative diagram (for all 7 € I)

4 * .p—* L4t B
N ‘M
4,

there is a unique &, because (B, {g;}) is a product, and a unique A, because
(4, { ps}) is a product. 2k as well as 1, make both left triangles commu-
tative. (4, { p;}) being a product, this morphism must be unique; thus
hk = 1, . Correspondingly, one has from both right triangles k2 = 15.

This shows that the product in S is already uniquely determined up
to an isomorphism by the condition on the morphism sets. Here we have
another universal problem. For all families of morphisms into the partic-
ular factors with common domain, the product has the property that
these families may be factored through the product with a uniquely
determined morphism. Often we call product only the corresponding
object of a product and assume that the projections are known. If each
[finite, nonempty] family of objects in € has a product, then we call € a
category, with [ finite, nonempty] products. If (4, { p,}) is a product of a
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family of objects {4,};c; in € and if 2 : B — A4 is an isomorphism, then
(B, { p;h}) is another product for the 4, .

LemMa 2. Assume that in the category € there is a product for each pair
of objects. Then € is a category with finite, nonempty products.

Proof. Let A4,,..., A, be a family of objects in €. We show that
(- (A, X 45) X -++) X A4, is a product of the A;. For an induction,
it is sufficient to prove that (4, X - X 4,_,) X 4, is a product of the
A;. Let p, : (4A; X =+ X A,;) X A, - 4, and

g: (4, X XA, ) X Ap—>A; X o+ X Ay,

be the projections of the outer product and p; (i = 1,..., # — 1) be the
projections of the inner product. Let { f;} be a family of morphisms with
common domain B and ranges A;. Then there is exactly one
h:B— A; X -+ X A,_, through which the f; (i = 1,..., » — 1) may be
factored. For £ and f, , there is exactly one k: B — (4; X X 4, _;) X 4,
withgk = hand p,k = f,. Thenp,k=f,and pgk =f;,, i =1,..,n— 1.
The p14,---» Pn_19> P» are the projections. & is uniquely determined by the
given properties of the factorization.

Similarly to the proof given above, one can also break up infinite pro-
ducts; specifically, one can split off a single factor by
[T4ie 4, x[[4: with JU{j}=1I and j¢]
iel eJ
Thus, the product is independent of the order of the factors up to an
isomorphism and is associative.

Lemma 3. Let {A;};e; be a family of objects in a category €, and let
there be a product (A, { p;}) for this family. p; is a retraction if and only if
Morg(4; , A;) # @ foralliel andi # j.

Proof. Assume Morg(4;, A;) # @. Then there is a family of mor-
phisms f;: 4; — A; for all iel with f; =1, . The corresponding
morphism f: 4; — A has the property p; f = 1, . Conversely, let p;
be a retraction with a section f: 4; — A. Then p, fe€ Morg(4;, 4,)
for all zel.

The last lemma shows in particular that in a category with zero
morphisms the projections of a product are always retractions. In S
the product of a nonempty set A with @ is the empty set. Thus
p4: @ — A cannot be a retraction. One easily shows that p, is not even
an epimorphism.
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Let {A4;};c; be a family of objects in a category € with 4; = 4 for all
i€ I. Let B be the product of the 4; with the projections p, . The iden-
tities 1, : A — A4, induce a morphism 4 : 4 — B called the diagonal.
A well-known example for this map is Raxi>(x,x)eR X R in S.

The notions dual to the notions introduced up to now are coproduct
with the corresponding injections, category with [finite, nonempty]
coproducts, and codiagonal. The coproduct of a family {4}, will be
denoted by ] 4; . The product has been defined in such a way that

1_[ MOI‘(g(B, At) = MOI‘@(B, ]__[ Al)
for all B € €. Correspondingly, we have for coproducts
[ ] Morg(4; , B) =~ Morg(] | 4:, B)

for all Be¥. In a more general context in Chapter 2, we shall study
further properties of products and coproducts.

The categories S, S*, Top, Top*, Gr, Ab, Ri, and Mod are cate-
gories with products and coproducts. In all these categories the products
coincide with the set-theoretic products with the appropriate structure.
The coproduct in S and Top is the disjoint union, in S* and Top* it is
the union with identification of the distinguished points. In Ab and in
zMod the finite coproducts coincide with the finite products. (Certainly
this is only true for the corresponding objects. The injections are different
from the projections, of course.) In Gr the coproducts are also called
“free products.” The coproducts in Gr and Ri will be discussed in
Chapter 3. We give another example from Chapter 3 without going into
details about the definition. Let C be a commutative, associative,
unitary ring. Let (Al be the category of commutative, associative, unitary
C algebras. In Al the coproduct is the tensor product of algebras.

1.12 Intersections and Unions

Let B be an object of a category ¥, and let f; : A; — B be a set of
subobjects of B. A subobject f: A — B which is smaller than the
subobjects A, is called the intersection of the A; if for each C € € and
each morphism g:C — B which may be factored through all A4,
(g = f:h;) there is a morphism & : C — A with g = fh. h is uniquely
determined because f is a monomorphism. The intersection of the 4,
will be denoted by () 4; . Let f’ : A" — B be a subobject which is larger
than the subobjects 4; . Let C €%, let g : B — C be a morphism in €,
and let & : C' — C be a subobject such that g restricted to all the 4; may
be factored through k(gf; = kh;). If these data always imply that the
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morphism g restricted to 4’ may be factored through % (gf’ = kh),
thenf’ : A" — Bis called the union of the A, . Since k is a monomorphism,
h is uniquely determined. The union of the 4; will also be denoted by
U4,

The intersection and the union of the A, are uniquely determined
" because the morphisms % in the definition of the intersection and the
union are unique. This may be shown similarly to the proof of the
uniqueness of the products up to an isomorphism in Section 1.11,
Lemma 1. One has to use two subobjects which fulfill the conditions
given above, and one has to compare them by the unique factorizations.
As subobjects they are not only isomorphic but equal. Since the subob-
jects form an ordered class, it is easy to show that the intersections as
well as the unions are associative, if one observes that the intersection of
a subfamily of subobjects is larger than the intersection of the whole
family, and that the union of a subfamily is smaller than the union of the
whole family. Observe that in the definition all objects of the category €
are admitted as test objects, not only the subobjects of B. It may well be
that B does not have sufficiently many subobjects to test whether another
subobject is an intersection or union.

If there is an intersection or a union for each [finite, nonempty] family
of subobjects of each object, we call the category € a category with [ finite,
nonempty] intersections or unions respectively. If € is a locally small
category with finite intersections and unions, then the set of subobjects
of each object in & is a lattice. If there are arbitrary intersections and
unions in %, then the subobjects of an object form a complete lattice.
In Chapter 2 we shall give more criteria for determining whether a
category has intersections and unions; thus we do not give any examples
here.

Note that the notions intersection and union are not dual to each other.
The corresponding dual notions are cointersection and counion. However,
we shall not use these notions.

1.13 Images, Coimages, and Counterimages

Let f: A — B be a morphism in a category €. The image of f is the
smallest subobject g : B’ — B of B to which there exists a morphism
h:A— B with gh = f. Since g is a monomorphism, % is uniquely
determined. If 4 is an epimorphism, then % is called the epimorphic image
of f. The image of f is often denoted by Im( f), where we assume that
the morphism g is known and consider Im( f) as an object. If there are
[epimorphic] images for all morphisms in %, then we call € a category
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with [epimorphic] tmages. Dually, we define [monomorphic] coimages and
denote them by Coim( f). If 4’ is a subobject of A4, then we denote the
image of the morphism 4° — 4 — B by f(4').

Lemma 1. If € is a locally small category with intersections, then € is a
category with images.

Proof. Form the intersection of all those subobjects of B through
which f: 4 — B may be factored. This intersection exists and is the
smallest subobject with the property that f may be factored through it.

LemMa 2. If € is a category with images and difference kernels then all
images in € are epimorphic images.

Proof. Let A% Im(f) <> B be a factorization of f through its image,
and let &, & :Im(f) — C be given with k2 = k’A. Then % may be
factored as 4 — Ker(k, ') - Im( f). Since Ker(k, ') > Im(f) — B
is a monomorphism and Im(f) is minimal Ker(k, &) = Im( f), thus
k = k' and % is an epimorphism.

Let f: A — B be a morphism in % and g : B’ — B be a subobject
of B. A subobject A" — 4 of A is called a counterimage of B’ under f
if there is a morphism ' : A" — B’ such that the diagram

4L, p

bk

A—f>B

is commutative and if for each commutative diagram
C—B
L
A—L.B
there is exactly one morphism 4 : C — A’ such that the diagram
C

N

A ——>B

bl

4-7.8B
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is commutative. This condition asks for more than that 4’ be only the
largest subobject of 4 which may be transferred by f into B’. But the
condition implies this assertion. Thus the counterimage is also uniquely
determined. For the counterimage of B’ under f, we also write f~1(B’),
neglecting the monomorphism f~(B’) — A.

Now we want to know which of the relations valid for the notions f(4)
and f~1(4) in S may be generalized. We collect the most important
relations in the following theorem.

THEOREM. Let f: A— B and g:B — C be morphisms in €. Let
A, CA,C Aand B, C B, C B and C; C C be subobjects of A, B, and C,
respectively. Then we have

(a) f(A4y) C f(4,) if both sides are defined.

(b) f~YB,) C fYB,) if both sides are defined.

(c) A, CfY(A,) if the right side is defined.

(d) ff~YBy) C B, if the left side is defined.

(e) fNB,) = W(B,) if f is an isomorphism with the inverse morphism h.

(f) fYgUCY)) = (gf )UCy,) tf both sides are defined.

(8) &(f(4) = (8f )(A4,) #f both sides are defined, if f (A,) and g( f (44))
are epimorphic images, and if € is balanced.

() £() = FF7 (A if ff (Ay) s defned.

() F(By) = fYfHBy) if ffHBy) is defined.

(j) For each family of subobjects {A;};c; of A we have \)f(4;) =
(U 4,) if U A, is defined and € is a category with images and
coimages.

(k) For each family of subobjects {B;};c; of B we have (\f~YB;) =
FYN By) if the right side is defined.

Proof. The assertions (a)—(e) arise directly from the corresponding
definitions.

(f) We start with a commutative diagram

g™ (Cy) g Cy) G
N,
(&) (Cy)

/

h, exists because (gf)~Y(C,) is a counterimage. &, exists because g(C;)
is a counterimage. Finally, A, exists because f~1(g71(C,)) is a counter-

A f B—%.,cC
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image of g!(C;). The monomorphisms from (gf)~}(C,) and from
fY g (Cy)) into A4 are equivalent, thus the corresponding subobjects
are equal.

(g) We start with the commutative diagram

f(4y) &(f(4y)
\K J
(gf)(4y)
TN

A—7L B ¢ c

h is a monomorphism because (gf )(4,) and g( f(A4,)) are subobjects of C.
h is an epimorphism because f(A4,) and g( f(4,)) are epimorphic images.
Thus £ is an isomorphism, since % is balanced.

(h) We have the commutative diagram
A —— f(4)

e

77 (4y)

f

A———> B
f(4,) fulfills the property of an image for 4, . Consequently, it fullfills
this property also for f~1(4,).
(i) is proved similarly to (h).
(j) We start with the commutative diagram
4;—f (Az)

l
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We want to prove that f({J 4;) is the union of f(4,). Let there be a
morphism 4,; for each 7 € I. Because of the property of a counterimage
of g7Y(C,), there is a morphism A,; for all 7. Then %, exists because | 4,
is a union. A, exists because f(|) 4;) is an image. Thus we have a mor-
phism f (U 4;) — C,, fulfilling the conditions of a union.

(k) We start with the commutative diagram

fHN B) — N B

T

¢S 7-uB) —— B,

N\ |

A— 7' B

b, exists uniquely because () is an intersection. %, exists uniquely such
that the diagram becomes commutative, because f ~}(( B;) is a counter-
image. Thus the f~(( B,) is the intersection of the f ~1(B;).

We give some examples of categories satisfying all conditions of this
theorem. However, we shall not verify these conditions, since they are
implied by later investigations. The categories S, S*, Gr, Ab, ;Mod,
Top, Top*, and Ri have epimorphic images, monomorphic coimages,
counterimages, intersections, and unions. Except for Top, Top*, and Ri,
they are all balanced.

Lemma 3. Let € be a category with epimorphic images. € is balanced if
and only if € has monomorphic coimages and if these coimages coincide
up to an isomorphism with the images of the corresponding morphisms.

Proof. Let € be balanced. Let
(4-1>B) = (4 -2 Im(f) %> B) = (4-%> C-%> B)

with an epimorphism 4. We split 4 in (C 2> Im(#’) £ B). Then k' is
a monomorphism, through which f may be factored. Thus, there is a
morphismf’ : Im( f) — Im(#') withg’ = k’f’.Sincef = g'g = k/f'g =
k’kh, we also have f'g = kh, for k' is a monomorphism. Since k4 is an
epimorphism, f’ is an epimorphism. Furthermore, fis a monomorphism,
because g’ is a monomorphism. Since % is balanced, f’ is anisomorphism
with inverse morphism f *. Thus, g = f *kh, that is, the quotient object
of 4, equivalent to Im( f), is a coimage of f, and the corresponding
morphism into B is a monomorphism.
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Conversely, let € be a category with monomorphic coimages which
coincide up to an isomorphism with the images, and let f: A — B be
a monomorphism and an epimorphism. Then 4 is an image of f up to
an isomorphism, and B is a coimage of f up to an isomorphism. Thus,
f 1s an isomorphism.

1.14 Multifunctors

After having investigated the essential properties of objects and mor-
phisms, we now have to deal with functors and natural transformations.
First, let us take three categories &7, %, and %. The product category
o X Z is defined by Ob(/ X #) = Ob(«) x Ob(#) and

Mot ya((4, B), (4', B')) = Mor (A, A’) X Morg(B, B')

and the compositions induced by &/ and 4. Correspondingly, we define
the product of 7 categories. It is easy to verify the axioms for a category.
A functor from a product category of two [n] categories into a category
€ is called bifunctor [multifunctor]. Special bifunctors , : o X B — A
are defined by Z (4, B) = A and Z(f, g) = f, and correspondingly
for 4. They are called projection functors. For n-fold products, they
are defined correspondingly.

Lemva 1. Let Fy: A — € and G, : B — € be functors for all A € o
and B € #. If we have

F(d) = G4B) and  Fp(f) Gu(8) = Yu(8) F(f)

for all A, A' € o/, B, B' € # and all morphisms f: A — A',g: B — B,
then there is exactly ome bifunctor H# : A X B — € with H (A, B)=
G4B) and #(f,8) = Fp(f) Y4(8)

Proof. We define # by the conditions for 5 given in the lemma. Then
one checks at once that H#(1,,1;) = 1y s and H(f'f, g8 =

H(f', &) H(] 8-

If a bifunctor & : & X # — € is given, then Fp(A) = H#(A4, B)
and F( f) = ([, 1;)is a functor from & into %, and correspondingly,
we can define a functor ¢, from # into €. For these functors, the
equations of Lemma 1 are satisfied.
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CoROLLARY. Let 5 and 5#' be bifunctors from & X % into €. A family
of morphisms

o(4, B) : #(4, B)— #'(A,B), Aesl, BcH

is a natural tranformation if and only if it is a natural transformation in
each variable, that is, if o(—, B) and o(A, —) are natural transformations.

Proof. 1f we write S#(f, B) instead of J(f, 15), then we get the
following commutative diagram

(4,B)

#(A, B) #'(4, B)
\<(:,n) x'(:.y
#.0) #(A4', B) "2, a4, B) #4.0)
l A'.g) amk l
H#(A', B) A B #'(4', B)
LemMMA 2. For each category Morg(—, —) : €° X € — S is a bifunctor.
gory

Proof. In the lemma of Section 1.3, we proved that Morg(4, —) : € —S
and Morg(—, B) : ¥° — S are covariant functors. Furthermore, because
of the associativity of the composition of morphisms, we have

Morg(f, B") Morg(4, g) = Morg(A’, g) Morg(f, B) = : Morg(f, g)

In particular, we have Morg( f, g)(h) = ghf, if the right side is defined.
Thus by Lemma 1, Morg(—, —) is a bifunctor.

If we do not pass over the dual category %° in the first argument of
Morg(—, —), then Morg(—, —) is contravariant in the first argument
and covariant in the second argument. We denote the representable
functor Morg(A4, —) by A4 and the representable functor Morg(—, B)
by kg . Because of the commutativity

Morg(f, B') Morg(A4, g) = Morg(A', g) Morg(f, B)
we have natural transformations

Morg(f, —) : Morg(A, —) — Morg(4', —)
and
Morg(—, g) : Morg(—, B) — Morg(—, B')
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We denote Morg( f, —) by #/ and Morg(—, g) by 4, . These considerations
lead to the following lemma.

LemMa 3. Let &/, & be small categories and € be an arbitrary category.
Then we have

Funct(/ x %, €) ~ Funct(«Z, Funct(#, ¥)) =~ Funct(%, Funct(«Z, ¥))

Proof. Obviously & X # o~ # X &. Thus it suffices to prove the
first isomorphism. If one transfers the considerations on natural trans-
formations made above to the general case of a bifunctor, then the
application for the functors is described by Lemma 1. The natural
transformations are transferred in accordance with the corollary. For the
applications described above, it is easy to verify the properties of a functor
and the reversibility.

1.15 The Yoneda Lemma

In this section we want to discuss one of the most important observa-
tions on categories. Several times we shall meet set-theoretic difficulties
of the kind that one wants to collect proper classes to a set which is not
admissible according to the axioms of set theory (see Appendix). Since
these classes are not disjoint, we cannot even fall back on a system of
representatives. This is true in particular for the natural transformations
between two functors & : ¥ — 2 and 9 : ¥ — &. We agree on the
following abbreviation: for “p : % — & is a natural transformation”
we also write “p € Mor(F, 9)” or “Mor/(F, ¢) 5 ¢.” Here we do not
think of Mor/(#, %) as of a set or class. If € is a small category, however,
then the natural transformations from & to ¢ form a set, denoted by
Mor (%, 9), by the considerations of Section 1.2. In this case, the abbre-
viation introduced above has the further meaning “g is an element of the
set Mor(#, ¢).” The condition that % is a small category prevents
these set theoretic difficulties. Also, for further constructions, we shall
generalize the usual notation, and we shall explain in each case the
meaning which we attribute to the notation. The notation

“r:Mor#,¥9)sp>xeX”

shall mean that to each natural transformation from & into ¢ there is an
element in X, a set or a class, uniquely determined by an instruction
explicitly given and denoted by . We assign a corresponding meaning to
“o: Xsx— e Mor(F,¥9).” By “Mor(#, ¥) =~ X’ we mean that
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the application 7 is unique and invertible. With these conventions we can
carry on the following considerations as if € were a small category.

THEOREM (Yoneda lemma). Let € be a category. Let & : € — S be
a covariant functor, and A € C be an object. Then the application

7 Mory(ht, F) 3 p > p(A)(1,) € F(4)
is unique and invertible. The tnverse of this application is
+1: F(A4) 3 ar> h € Mor,(hA, F)
where h*(B)(f) = #( )(a).

Proof. 1If one notes that ¢(4) : k4(A) = Morg(A4, A) — F(A), then
it is clear that 7 is uniquely defined. For v—1, we have to check that 4% is
a natural transformation. Later on we shall discuss the connection with
the symbol 4/, defined for representable functors

Given f: B — Cin %. Then the diagram

Mor(4,f)
——

Morg(4, B) Morg(4, C)

ha(B) l lh“(C)

#gB)—22 )

is commutative, for A%(C) Mor(4, f)(g) = A4(C) fg) = F(fg)a) =
F(f)F(g)a) = F(f)h(B)(a) for all ge Mory(A4, B). Thus =71 is
uniquely defined.

Let ¢ = A2 Then h%(A4)(1,) = F(1,)(a) = a. Let a = ¢(A)(1,).
Then h(B)(f) — #(f)(@) — F(f )o(A)1,)) — 9(B) Mor(4, f)(1) =
o(B)(f), thus A* = ¢. This proves the theorem.

Let & = h€ be a representable functor. Then for fe %(4) =
h¢(A) = Mor(C, A) we have the equation

H(B)(g) = F(g)(f) = fg = Mor(f, B)(g)

that is, the definition for #/ given in the Yoneda lemma coincides in the
special case of a representable functor & with the definition in Section
1.14.

Now we want to investigate what happens with the application 7 if we
change the functor & and the representable functor 24. The commutative
diagrams used in the following lemma are to be interpreted in such a way
that the given applications coincide.



1.15 THE YONEDA LEMMA 43

LEMMA 1. Let & and % be functors from € into S, and let ¢ : F — &
be a natural tranformation. Let f: A — B be a morphism in €. Then
the following diagrams are commutative:

Mor(h4, F) —— F(4)
Mor,(hA,w)l v1‘1’(‘4)
Mor (4, ¥) —— %(A)
Mor, (1, F) —— F(A)
Mo, (H! %) l l?(f)
Mor(h?, F) —— F(B)
where Mor (h*, )() = @b and Mor,(hf, F)() = JH'.
Proof. Lety : h4 — % be given. Then
™ Mor,(h*, @)(h) = 7(p¥) = (p)N(AX1) = 9(4) $(A)(14) = ¢(A4) 7(¥)
Furthermore, we have
™ Mory(h, F)() = (yp#') = (W) B)(15) = $(BXS)
= $(B) Mor(4, f)(Ly) = F(f) Y(A)(14) = F(f) 7(¢)
CoROLLARY 1. Let € be a small category. Then
Mory(h~, —) : € X Funct(¥, S)— S and @:¥¢ X Funct(%, S)— S
with
Mor,(k-, —)(4, F) = Mor,(h4, F),  Mor,(h-, —)(f, ¢) = Mor (I, )
and
A4, F) =F(4), N, ) =eB) Z(f) = 9f) #(4)
are bifunctors. The application 7 is a natural isomorphism of these bifunctors.

Proof. This assertion follows from the preceeding one and from
Section 1.14.

The functor in Corollary 1 denoted by @ will be called the evaluation
functor. Now we want to apply the new results for representable functors.
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COROLLARY 2. Let A, Be¥. Then:

(a) Morg(A4, B) s f > W € Mor(h®, h*) is a bijection.

(b) The bijection of (a) induces a bijection between the isomorphisms in
Morg(A, B) and the natural isomorphisms in Mor(h5, h*).

(c) For contravariant functors & : € — S, we have Mor,(h, , F) =~
ZF(4).

(d) Morg(A4, B)s fr> h;€ Mor(h,, hg) is a bijection, inducing a
bijection between the isomorphisms in Morg(A, B) and the natural
isomorphisms in Mor,(h, , k).

Proof. (a) is the assertion of the Yoneda Lemma for & = #4. (c) and
(d) arise from dualization. (b) By A/h¢ = h9/, isomorphisms are carried
over the natural isomorphisms. Conversely, let 4/ : A2 — A# and A9 :
h* — h® be inverse natural isomorphisms. Then 49 = id,4 and A7 =
id,s . We also have #'4 = id,4 and 415 = id;s, thusgf = 1, and fg = 15.

The properties of 2 we used in the preceeding proof show that for a
small category %, the application 4+ k4, f+> k' is a contravariant
functor A~ : € — Funct(%, S). We call 4~ the contravariant representa-
tion functor. Correspondingly, h_: % — Funct(%°, S) is the covariant
_ representation functor. Both functors have the property that the induced
maps on the morphism sets are bijective. A full functor is a functor
which induces surjective maps on the morphism sets. A faithful functor
is a functor which induces injective maps on the morphism sets. A
faithful functor is sometimes called an embedding. Thus the representa-
tion functors are full and faithful.

Already in Section 1.8 we realized that the image of a functor is not
necessarily a category. This, however, is the case if the functor & : ¥ — 2
is full and faithful. Obviously we only have to check whether for
f:A—> Bandg:C — D in % with B = % (C the morphism Fg%f
appears in the image of #. Since Morgy(Z B, # C) =~ Morg(B, C) and
Morg(# C, # B) =~ Morg(C, B), there are : B— C and k:C — B
with Fh = lzp and Fk = lzp. Since F(hk) = lgp = F 1 and
F(kh) = 1gp = Fly, we get bk = Icand kb = 1. Thus FpFf =
F()lss?(f) = F(FWF(f) = F(ghf).

The full and faithful functors are most important, as we want to show
with the following example. Let &# : € — 2 be full and faithful. Let

Cl_f’ C,

e

Gy
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be a diagram in € which is carried over by % into the diagram

¢, 7,

wl A

FC,

except for the morphism /4. Assume that there is a morphism % in &
making the diagram commutative. The question is, if there is also a
morphism A’ : Cy — C, making the diagram in ¥ commutative. & being
full and faithful, we may take the counterimage 4’ of 4 for this morphism.
Thus we decided the question for the existence of morphisms in €
with particular properties in the category 2.

LeEmMA 2. Let & : € — 2 be a full and faithful functor. Let o/ and %
be diagram schemes and 4 : o/ — € and 9’ : B — Z be diagrams. Let
& : A — R be a functor which is bijective on the objects such that the diagram

.27—6—»93

gi,@

is commutative. Then there is exactly one diagram H° : % — € such that
FH =% and HE = 9.

Proof. We define 5£ on the objects of # by ¥, since & is bijective on
the objects. For the morphisms of & we define 5# by the maps induced
by ¥’ and & -'. Here we use that & is full and faithful. With this
definition of the map J# one verifies easily that 5 is a functor and that 5#
satisfies the required commutativities.

Let € be a small category. Let .# be a small full subcategory of S
containing the images of all representable functors from % to S. In this
case we can also talk about the representation functor 4: ¥ — Funct(%, .#).
Correspondingly, we define a representation functor H from Funct(¥,.#)
which is again a small category, into Funct(Funct(%, .#), S). Both
functors are full and faithful. The composition of H and % gives a
functor, which is isomorphic to the evaluation functor

@ : € — Funct(Funct(¥, #), S)

which is defined according to the evaluation functor

®: % x Funct(¥, #)— S
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This is implied by Corollary 1. Thus the evaluation functor
@ : € — Funct(Funct(¥, #), S)

1s full and faithful.

Now we want to generalize the assertions of the Yoneda Lemma to
functors. We consider functors &, 9 : % — Z. With Morg(¥# —, —)
we denote the composed bifunctor from € X 2 into S with

Morg(# —, —)(C, D) = Morg(#C, D)
and
Morg(# --, —-)f, §) = Morg(#/, g)

For a natural transformation ¢ : & — 9, let
Morg(p—, —) : Morg(9%—, —) — Morg(# —, —)

denote the natural transformation which is defined by Morg(eC, D)(f) =
fo(C), where fe Morg(%C, D). With these notations we obtain the
following lemma.

Lemma 3. The application
MOI‘,(./’(’—, ‘(4) Sp— MOI‘g((p—, _) € MOY,(MOF@(g—, _)7 Mor@('g:—v _))

1s bijective. It induces a bijection between the natural isomorphisms from F
to 9 and the natural isomorphisms from Morg(¥9 —, —) to Morg(% —, —).

Proof. A natural transformation ¢ : Morg(9—, —) — Morg(# —, —) is
a family of natural transformations (C) : Morg(9C, —) — Morg(Z C, —)
which is natural in C for all D € & (Section 1.14, Corollary). The natural
transformations (C) may be represented as Morg(pC, —) with mor-
phisms ¢C : #C — ¥C by the Yoneda lemma. Thus it suffices to prove
that @C is natural in C, if Morg(eC, D) is natural in C for all D e 2.
One direction may be seen if one replaces D by ¥C in the diagram

Morg(9C, D) —2r¢/D)

Mor(q:C,D)l lMor(qaC',D)

Morp(#C, D) 222D Norg(# ¢, D)

Morg(4C', D)

and if one computes the image of 1g4.. The converse is trivial. The
assertion on the natural isomorphisms follows from the considerations
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in Section 1.5—the isomorphism has to be tested only argumentwise—
and from Corollary 2(b).

We define an equivalence relation on the class of objects in the follow-
ing way. T'wo objects are called equivalent if the representable functors,
represented by these objects, are isomorphic. By the Yoneda lemma this
is the same equivalence relation as the one defined by isomorphisms of
objects. Since in categories one considers only the exterior properties of
objects, which are, of course, carried over to isomorphic objects, it makes
sense to generalize the notion of a representable functor. A functor
& : % — S is called representable, if there is a C €% and a natural
isomorphism & = hC. Here the representing object C is only defined up
to an isomorphism. This generalized notion leads to the following
lemma.

LevMMA 4. Let & : € X & — S be a bifunctor such that for all C€ ¥
the functor F(C, —) : & — S is representable. Then there is a contravariant
functor G : € — 2, such that F ~ Morg(9—, —).

Proof. Let &' be a skeleton of 2. To each C € % there exists exactly
one D e @' with #(C, —) =~ Morg(D, —). Let us denote D by %(C).
The natural isomorphisms % (C, —) =~ Morg(D, —) are in one-one
correspondence with the elements of a subset #'(C, D) of #(C, D) by
the Yoneda lemma. For each C € %, this subset #'(C, D) is uniquely
determined. By the axiom of choice, we may assume that to each Ce %
there is exactly one element ¢ € #'(C, D). (With the formulation of the
axiom of choice we use, one has to form a disjoint union of the sets
&'(C, D) with the equivalence relation ¢ ~¢’ <=\ C with ¢, ¢’ e #'(C, D).)
Thus, for each C € € there is a natural isomorphism #° : Morg(D, —) —
F(C,—). Letf: C— C’ beamorphism in €. Then by the Yoneda lemma
there is exactly one morphism ¥f: 4(C’)y - ¢(C) in & making the
diagram

Morg/(#(C), —) —— #(C, —)
Mor_@(g’f,-—)l lf(f,-)
Morg(#(C"), —) —— F(C', —)
commutative. This uniqueness and the property of a functor of % imply

that ¥fg = Yg%9f and 91, = lg( . Thus  is a contravariant functor
from % to & with the required properties.
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1.16 Categories as Classes

In Section 1.2 we mentioned that a category may be considered as a
special class. Now we want to specify this. First, we deal with the
definition of a category that describes only the properties of the mor-
phisms, but does not define the objects. This definition will be slightly
narrower than the one given before. First we want to give the definition;
then we want to investigate the connection with the definition given in
Section 1.1.

A category is a class # together with a subclass ¥ C .# X .4 and a
map
¥ 3(a, byr>abe M
such that

(1) For all a, b, c € A the following are equivalent
(i) (a, b),(b,c)e?
(ii) (a, b), (ab,c)e V"
(i) (a, bc), (b, c)e ¥
(iv) (a, b), (b, ¢), (a, bc), (ab,c) € ¥~ and (ab)c = a(bc)

(2) For each a € A there are ¢, , e, € A such that (e;, a), (a,¢,) ¥
and

eb=0>b, be ="V, ec=c¢, (e =c

for all (e, b), (0, e), (e,,¢), (¢',e)e ¥V
Then ¢, and e, are called units.

(3) Lete, ¢’ be units. Then

{al(e,a), (a,¢)elV}

is a set.

It is easy to verify that the morphisms of a category (in the sense of
Section 1.1) satisfy this definition. Conversely, one can get the objects
of a category out of the class of morphisms if one assigns to each identity
an element, called an object. This, however, does not determine the class
of objects uniquely. In this sense the definition given here is narrower.
Now we have to prove that each class satisfying the present definition
occurs as a class of morphisms in a category (in the old sense).

Let A, v satisfy the given definition. We form a crtegory € (in the
old sense) with the units e € /# as objects. Furthermore, we define

Morg(e', €) :={a| (e, a), (a,€)e?}
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These morphism sets are disjoint. In fact, if

a € Morg(e', €) N Morg(e**, e*)

then (e, a), (e*, a), (e, e*a), (¢, e*) € ¥ thus e = ee* = e*. Similarly, we
get ¢/ = e**. For a € Morg(e', e), b € Morg(e**, e*) we have (a, b) e ¥~
if and only if (ae’, e*b), (a,ce’), (e*, b), (¢',e*)e ¥ if and only if
(¢', e*)ye ¥ if and only if ¢ = e*. In this case we have (e, ab),
(ab, e**ye ¥", thus ab e Morg(e**, ¢). Now it is easy to verify the
associativity and the properties of the identities.

To get the connection with set theory as discussed in the appendix,
we now define the category as a special class. A class Z is called a category
if it satisfies the following axioms:

(a) 2CuUuxUuUxU

(b) D(Z) CW(2) X W(2)

(c) 2 isamap

(d) Forll =W(Z), v = DY) and P :¥ — A theaxioms
(1), (2), and (3) given above are satisfied.

Obviously this definition is equivalent to the definition of a category
given above.

Problems

1.1. Covariant representable functors from S to S preserve surjective maps.

1.2. Check whether monomorphisms [epimorphisms] in Ab and Top are injective
[surjective] maps.

1.3. In Hd each epimorphisms f : A — B is a dense map. (Hint: Use as a test object
the cofiberproduct of B with itself over A (see Section 2.6).)

1.4. Show:If% : ¥ — 2 is an equivalence of categories and f € € is a monomorphism,
then ¥f is a monomorphism.

1.5. Let f: A — B be an epimorphism and a right zero morphism. How many
elements are there in Morg(B, C)? Compute Morg;(P, P).

1.6. Let A be a subset of a topological space (B, Op).
(X|IX=ANY;, Ye0Og

defines a topology on 4, the induced topology. 4 C B, provided with the induced topology,
is called a topological subspace of (B, @g). The topological subspaces of a topological
spaces are (up to equivalence of monomorphisms) exactly the difference subobjects in
Top. Dualize this assertion. To this end, define for a surjective map f : B — C a quotient
topology on C by

{(Z1ZCC; f~H(2)ebg)}
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1.7. A subgroup H of a group G is a subset of G which forms a group with the
multiplication of G. A subgroup H of G is called a normal subgroup if gHg* = H for
all g € G. Show that the subgroups [normal subgroups] of G are, up to equivalence of
monomorphisms, exactly the difference subobjects [normal subobjects] of G in Gr.

1.8. If fis an isomorphism, then f is a retraction. The composition of two retractions
is a retraction. If fg is a retraction, then f is a retraction.

1.9. If € is a category with zero morphisms, then the kernel of a monomorphism
in € is a zero morphism.

1.10. Let % be a category with a zero object 0. Let 4 € €, then (4, 14, 0w4.0) is
a product of 4 and 0.

1.11. The diagonal is a monomorphism.
1.12. If both sides are defined, then
f(A) C g (ef )
1.13. Let Z:S — S be defined by
P(A) ={X|XCA} and P(f}X)=[fNX)

then 2 is a representable, contravariant functor, the contravariant power set functor.

1.14. Let 2:S — S be defined by

24) ={X1XCA4} and 2(f)X) = f(X)

then 2 is a covariant functor, the covariant power set functor. Is 2 representable ?

1.15. If & :S — S is a contravariant functor and f: #({@}) — 4 is an arbitrary
map, then there is exactly one natural transformation ¢ : % — Morg(—, 4) with
o({2}) = f. (Observe that Morg(B, #({2})) = (F{ 2 )E.)

1.16. Let & : S — S be a faithful contravariant functor; then there is an element b
in #(2), which is mapped into two different elements of #(1) by the two maps #(2) —
Z(1). Here let 1 be a set with one element and 2 be a set with two elements.

1.17. (Pultr) Let & : S — S be a faithful contravariant functor, then there is a
retraction p : F — £, where £ is the contravariant powerset functor. (By the Yoneda
lemma, it is sufficient to prove that there exists a b € #(2) for which p(2)(b) is the identity
on 2. Use problems 13, 15, and 16.)

1.18. In the category of Section 1.1, Example 14, the greatest common divisor of
two numbers is the product, and the least common multiple of two numbers is the
coproduct.

1.19. Which of the following relations are valid in general, if they are defined?

fJ4) <
U4y U4

F(N4) 2 () f(4)
N4y 2 N f(4)
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Adjoint Functors and Limits

One of the most important notions in the entire theory of categories
and functors is the notion of the adjoint functor. Therefore, we shall
consider it from different points of view: as a universal problem, as a
monad, and as a reflexive or coreflexive subcategory. The limits and co-
limits and many of their properties will be derived from the theorems
which we shall prove for adjoint functors. This procedure was introduced
by D. N. Kan. The paragraph on monads should be considered prepara-
tion for the third chapter. In this field there is still fast development.
With the means given here, the interested reader will be able to follow
future publications easily.

2.1 Adjoint Functors

In Section 1.15, Lemma 3 we dealt with the question of what the
isomorphism Morg(# —, —) =~ Morg(%—, —) means for two functors
& and ¥. Now we want to investigate under which circumstances there
is a natural isomorphism Morg(# —, —) =~ Morg(—, ¥—). First,
F € —> 2 and ¥ : 2 — € must be functors. Two such functors are
called a pair of adjoint functors; & is called left adjoint to ¥ and ¥ is
called right adjoint to % if there is a natural isomorphism of the
bifunctors Morg(# —, —) =~ Morg(—, ¥—) from €° X 2 into S.

ProPOSITION 1. Let the functor & : € — 2 be left adjoint to the functor
Y : D — €. Then F is determined by 9 uniquely up to a natural isomor-
phism.

Proof. Let &% and &' be left adjoint to ¥, then there is a natural
isomorphism Morg(# —, —) o~ Morg(#'—, —). Thus, by Section 1.15,
Lemma 3 we have % ~ %'.

If there is a left adjoint functor to ¢ which is uniquely determined
up to an isomorphism, it will also be denoted by *%. If we pass over

51
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to the dual categories ¥° and 2°, then we get, from the considerations
of Section 1.4, functors OpFOp = F°:%° — 2° and Op¥Op =
G0 : P° — ¥°, and we have Morg(%°—, —) =~ Morgo—, F°—). Thus
%0 is left adjoint to #° and is uniquely determined up to an isomorphism
by #°. Since ¥ = %%, ¢ also is uniquely determined by & up to an
isomorphism. Thus the properties of left adjoint functors are transferred
to right adjoint functors by dualization. If there is a right adjoint functor
to & which is uniquely determined up to an isomorphism, then it will
also be denoted by & *.

COROLLARY 1. Let the functors &, : € — D be left adjoint to the functors
YD —>C fori=1,2. Let ¢ : 9, — Y, be a natural transformation.
Then there is exactly one natural transformation *¢ : &, — F, , such that
the diagram

Morg(—, 9; —) =~ Morg(#; —, —)
Mor%;(—,q)—)l lMor_@(w—,—)
Morg(—, 9, —) =~ Morg(%F, —, —)

is commutative. If ¢ = idg , then *¢ = idg . For the composition of
natural transformations, we have *(p) = **o.

Proof. The first assertion is implied by Section 1.15, Lemma 3. The
other assertions follow trivially.

COROLLARY 2. Let € and & be small categories. The category Functy(¥,2)
of functors from € into D which have right adjoint functors is dual to the
category Funct (2, €) of the functors from 2 into €, which have left
adjoint functors.

ProposITION 2. A functor & : 9 — € has left adjoint functor if and only
if all functors Mory(C, ¥—) are representable for all C € €.

Proof. 'This is implied by Section 1.15 Lemma 4.

Now we have to deal in more detail with the natural isomorphisms
@ : Morg(# —, —) > Morg(—, ¥—) used in the definition of the
adjoint functors. First we assume that ¢ is an arbitrary natural transfor-
mation. Let objects C € € and D € & be given. Then

@(C, D) : Morg(# C, D) — Mory(C, 9D).
If we choose in particular D = % C, then we get a morphism

@(C, FCY1z¢): C—GFC
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for all Ce¥. These morphisms form a natural transformation @ :
Idy — 9% . In fact, if f: C — C’ is a morphism in €, then the diagram

Mor(#C, & ~ Mor(Ff,FC’
Mor(#C, FC) TN | Ny e, F7) LEHTED

Mor(#C", FC')
o(C,ZC) (D(C..?C’)l qJ(C',fC')l
Mor(C, 97 C) 297N | Moe, 95 ¢y 227D Moy, 97 C)
is commutative. Thus
®(C')f = Mot(f, 9FC’) o(C', FC')15¢) = $(C, FC') Mor(Ff, FC')15¢")
= @(C, FCNF[) = ¢(C, FC') Mor(FC, Ff)15¢)
= Mox(C, $71) 9(C, FCX15c) = $FF8(C)

Conversely, if @ :Idy — %% is a natural transformation, then we
define a map

@ : Morg(# C, D) 3 fr> GfD(C) € Morg(C, 4D)
It is natural in C and D because it is a composite of the maps

G : Morg(# C, D) > Morg(9% C, 4D)
and
Mor(®PC, ¥D) : Morg(9% C, ¥D) — Morg(C, 9D)

But both maps are natural in C and D.

LemMA. Let F : € — D and 9 : D — € be functors. The application
Mor(Idy , ¥F) 3 ®+> ¥-®- € Mor,(Morg(F —, —), Morg(—, ¥—))

1s bijective. The inverse of this application is

Mor,(Morg(# —, ), Morg(—, ¥—)) 3 pi>p(—, F —)(15_) € Mor,(Id¢ , ¥F)

Proof. Let @ be given, then 9(lz) D(C) = 9F(1c) D(C) = P(C).
Let ¢ be given, then

Yf(9(C, FC)15¢)) = Morg(C, ¥f) o(C, FC)15¢)
= @(C, D) Morg(#C, f)1zc) = ¢(C, DXf)

Dual to the lemma one proves that

Mor(F ¥, 1dg) = Mor,(Morg(—, ¥—), Morg(F —, —))
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With the same notations as before, we have the following theorem.

THEOREM 1. Let ¢ : Morg(# —, —) — Mory(—, ¥—) and
¢+ Morg(—, 9—) — Morg(# —, —)

be natural transformations, and let ® :1dy — 9F and ¥ : FY — 1d,
be the natural transformations constructed from ¢ and y. Then we have

o = idygor(_ g 1f and only if
@2l 979 2% ) — idy

Furthermore, we have yp = idy,(#— ) if and only if

F

F 22 go7 X 7) = idy

Proof.
GV (D) 9Y9(D) = Y¥(D) (49D, F4D)1zap)
= Morg(¥9D, 9¥(D)) (%D, F9D)154p)
— §(@D, D) Morg(#4D, ¥(D))(155p)
= ¢(¥D, D)Y(¥(D))
= (%D, D) (%D, D)1gp)
= e(¥D, D)(1gp)

Similarly, one gets

e(C, DY(f) = ¢(C, D) ¥(C, D)(f)
= 9(¥(D) Z(f)) 9(C)
= 9¥(D) 97 (f) #(C)
= G¥(D) YD) f

This proves the assertion.

CoroLLARY 3. The functor F : € — D if left adjoint to ¥ :2 — €
if and only if there are natural transformations @ :1ldy — 9% and
¥Y: 79 — 1dy with (V) PY) = idy and (PF)F D) = idg .

COROLLARY 4. Let & be left adjoint to 9, then the maps
G : Morg(#C, D) — Morg(9F C, ¥D)

are injective for all C € € and D e .
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Proof. By the considerations preceeding the lemma, the isomorphism
Morg(# —, —) =~ Moryg(—, ¥—) is composed of the morphisms

G : Morg(# —, —) = Mor(9% —, 9—)
and
Mor((9F —, ¥—) — Morg(—, % —).

COROLLARY 5. Let the categories € and & be equivalent by F : € — D
and 9.9 — €, P:1dy >~ 9% and ¥V : F G ~1d,, then F is left
adjoint and right adjoint to 9.

Proof. ®% and 9Y¥ are isomorphisms. Consequently, (9¥)(9¥) and
(PF)F D) are also isomorphisms. Thus, p and ¢y are isomorphisms
and also ¢ and 4.

ProposiTION 3. A functor F : € — 2 is an equivalence if and only if &
is full and faithful and if to each D € 2 thereis a C € € such that ¥ C ~ D.

Proof. The conditions are easy to verify if & is an equivalence. Now
let # be full and faithful and let there be a C € % to each D € & such
that #C ~ 2. We consider the functors # : ¢’ - ¥ and 9 : 2 — &'
which are equivalences between % and £ and the corresponding
skeletons €’ and &’ respectively. Obviously, & is an equivalence if and
only if ¥F# : €' — 2’ is an equivalence. 9% ¢ is full and faithful
and all objects of &’ appear already in the image of ¥% ¢, since any
two isomorphic objects in &’ are already equal. The considerations on
the image of a full and faithful functor in Section 1.15 show that different
objects of €’ are mapped to different objects by ¥ #. Thus YFH is
bijective on the class of objects and on the morphism. Thus the inverse
map is a functor and 9% 5 is an isomorphism between €’ and Z'.

In Corollary 3 we developed a first criterion for adjoint functors.
Before we develop further criteria and investigate in more detail the
properties of adjoint functors, we want to give some examples of adjoint
functors.

Examples

1. Let 4 €S. Forming the product with 4 defines a functor 4 X — :
S — S. There is a natural isomorphism (natural in B, C € S)

Morg(A x B, C) = Morg(B, Mors(4, C))

2. Let Mo be the category of monoids, of sets H with a multiplication
H x H— H, such that (hh,) hy = hy(hsh,) and such that there is a
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neutral element ee H with ek = h = he for all h € H, together with
those maps f with f(hhy) = f(k,) f(hs) and f(e) = e. Given a monoid H,
we define a unitary, associative ring by

Z(H) ={f|fe Morg(H,Z) and f(h) = 0 for all but a finite number of 2 € H}

We define (f + f') (k) = f(k) + f'(k). Then Z(H) becomes an abelian
group. The product is defined by (ff')(k) = X f(k')f'(h") where the
sum is to be taken over those pairs &', A" € H with A'A" = h. Since H
is a monoid, we get a unitary, associative ring Z(H). Furthermore,
Z(—) : Mo — Riis a covariant functer. Now let R € Ri and let R’ be the
monoid defined by the multiplication on R, then also —’ : Ri — Mo
is a covariant functor. There is a natural isomorphism

Morgi(Z(—), —) == Morye(—, —')

that is, the functors constructed above are adjoint to each other. This
and other functors will be investigated in more detail in Chapter 3.

3. The following is one of the best known examples which, in fact, led
to the development of the theory of adjoint functors. Let R and S be
unitary, associative rings. Let 4 be an R-S-bimodule, that is, and R-left-
module and an S-right-module such that 7(as) = (ra)sforallr e R, s € S,
and a € A. The set Morg(4, C) with an R-module C is an S-left-module
by (sf)(a@) = f(as). Morg(A4, —): xkMod — sMod is even a functor.
To this functor there is a left adjoint functor 4 ®s — : jMod — ;Mod
called the tensor product. Thus there is an isomorphism

MOI‘R(A ®S B’ C) = MOI‘S(B, MOI‘R(A, C))

which is natural in B and C. Actually this isomorphism is also natural in

A.

2.2 Universal Problems

Let us consider again Section 2.1, Example 2. For each monoid H
the natural tranformation Idy, — (Z(—))" induces a homomorphism
of monoids p : H — (Z(H)) which assigns to each 2 € H the map with
f(h') = 1forh = h and f(h') = Ofor h # h'. Let us denote this map by
fo. Now if g : H— R is a map with g(k,h,) = g(h;) g(hy) and g(e) =
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1 €.R, then there is exactly one homomorphism of (unitary) rings
g% 1. Z(H) — R such that the diagram

H-—2> 7(H)

N

R

is commutative. In this diagram we have morphisms of two different
cateegories. In fact, p and g are in Mo and g* is in Ri. Correspondingly,
Z(H) and R are objects in Mo and also objects in Ri. Furthermore, we
composed a homomorphism of rings g* with a homomorphism of
momoids p to a homomorphism of monoids g. We want to give a structure
in which these constructions are possible.

Let € and 2 be categories. Let a family of sets

{Mory(4,B)| Ac¥, Be%)

be given together with two families of maps

Morg(A4, A') X Mory(4', By — Mory(4, B), A, A" €€, Be2P
Mory(A4, B') X Morg(B', B)— Mory(4,B), A€¥%,B, Be2P

As usual we write these maps as compositions, that is, if f € Morg(4, 4'),
v € Mory(4’, B), v'€ Mor,(4, B’), and ge Morg(B’, B), then we
denote the images of ( f, v) and (v, g) by of and gv’ respectively.

Lemma 1. The disjoint union of the classes of objects of € and 2 together
with the family

{Morg(A4, A’), Mory (4, B), Morg(B, B') | 4, A'€¥, B, B €}

of sets, which we consider as disjoint, and together with the compositions of €
and of 9 and the above defined compositions form a category ¥ (%, D),
if the following hold for all A, A', A" €€, B,B',B" €2 and for all
feMorg(A', A), f' € Morg(A", A'), v € Mory (A4, B), g € Morg(N, B'),
and g' € Morg(B’, B")

(1) (@) f" = o(ff")
(2) (g'g)v = v'(gv)
(3) (&v)f = &(f)

4) lgv=90v=n09l,



58 2. ADJOINT FUNCTORS AND LIMITS

Proof. It is trivial to verify both axioms for categories if we set
Mory ¢ 9B, 4) = .

If Lemma 1 holds, then we call the category ¥ (¥, 92) directly connected

category. The family of sets Mory (4, B) is called a connection from €
to 2.

If we want to express our example with this structure, then we first
have to define a connection from Mo to Ri. For H € Mo and R € Rj,
we define Mor,(H, R) = Mory,(H, R’), where R’ is the multiplicative
monoid of R. By using indices we can make Mor,(H, R) disjoint to all
morphism sets of Mo. The compositions are defined by the composition
of the underlying set maps. Thus we get a directly connected category
¥ (Mo, Ri). Now to each H € Mo there is a morphism p : H — Z(H)
such that to each morphism g : H — R for R € Ri, there is exactly one
morphism g* : Z(H) — R making the diagram

H-L> 7(H)

S

R

commutative.

In the general case, a directly connected category gives rise to the
following universal problem. Let A € €. Is there an object U(A4) € @ and
a morphism p, : 4 — U(A), such that to each morphism g : 4 — B for
B € 2 there is exactly one morphism g* : U(4) — B making the diagram

A -4 UA)

S

B

commutative ? A pair (U(A4), p,) satisfying the above condition is called
a universal solution of the universal problem.

Levmma 2. Let ¥(€, D) be a directly connected category. The universal
problem defined by A € € has a universal solution if and only if the functor
Mor, (A4, —) : 2 — S is representable.

Proof. 1f (U(A),p,) is a universal solution, then by definition
Morx(p, , B) : Morg(U(A4), B) =~ Mor,(A4, B). Furthermore, by the
Yoneda lemma,

Mor(ps , —) : Mory(,9)(U(4), —) = Mory (¢,9)(4, —)
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is a natural transformation. Conversely, if
P MO[@(U(A)! _) = MOI‘«//(A, _)a

then again by the Yoneda lemma @ = Mor(@(U(4))(1y), —) since
U(A) € £. But this means that the natural transformation

Morg(U(A4), —) == Mory(4, —)

maps the morphisms of Morg(U(4), B) into Mory(A4, B) by composi-
tion with @(U(A))1yw). Thus (U(A), D(U(4))(1ye)) is a universal
solution of the problem.

This lemma implies immediately that a universal solution of a universal
problem is uniquely determined up to an isomorphism. A directly
connected category ¥ (%, 9) is called universally directly connected if the
corresponding universal problem has a universal solution for all 4 € %.

Often the connection for a directly connected category is given by a
functor as

Mory(A4, B) := Morg(A4, 9B)

Then we also write ¥ 4(%, Z). Because of the functor property of ¥
each covariant functor ¢ defines a connection. Similarly, each functor
F € — 2 defines a connection by

Mory (4, B) := Morg(# 4, B)

Lemma 3. The directly connected category ¥ (€,2) is universally
directly connected if and only if there is functor F : € — D such that there
exists a natural isomorphism Mory(—, —) o2 Morg(F —, —).

Proof. The lemma follows immediately from Lemma 2 and Section
1.15, Lemma 4.

THEOREM 1. Let 9 : D — € be a covariant functor. The following are
equivalent:

(1) % has a left adjoint functor F : € — 2.
(2) The directly connected category V o(€, D) is universally directly
connected.

In this special case we want to reformulate the universal problem using
the definition of the connection. Let ¢ : 2 — € be a functor. Let A € €.
We want to find an object #4 € 2 and a morphism p,: 4 - 9F A4
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such that to each morphism g : 4 — ¥B for each B € 2 there is exactly
one morphism g* : % 4 — B which makes the diagram

AL 974 FA

N

¥B B

commutative. Here it becomes clear that not g* is composed with p,
but ¥g*. The example with which we started at the beginning of this
section has exactly this form.

Let two categories € and & be given. Let a connection

{Mory(B, ) | B€ 9, A %}

be given such that ¥ (2, ¥) is a directly connected category. We also
denote this category by ¥7'(¥, 2) and call it universely connected category.
Observe that now Mory ¢ o,(B, 4) is not empty in general, but that
Mory . ¢.a(4, B) = o.

Let ¥7'(¢, 2) be an inversely connected category. Here again we
define a universal problem. Let A € €. Is there an object U(4) € & and a
morphism p, : U(4A) > A such that for each morphism g:B — 4
for all B € 2 there is exactly one morphism g* : B — U(A) making the

diagram
"l \

U(4)—> 4

commutative ? A pair (U(4), p,) satisfying the above condition is called
a universal solution of the universal problem. If the universal problem in
V"'(€, 2) has a universal solution for all 4 € €, then ¥7'(¥, D) is called
universally inversely connected. Thus we get a new characterization for
pairs of adjoint functors & : ¥ > Zand ¥ : 9 — ¥.

THEOREM 2. Let categories € and 2 and a connection be given such that
V' (€, D) is directly connected and V"'(D, €) is inversely connected with the
given connection. Then the following are equivalent:

(1) (%, D) is universally directly connected and V"'(D, €) is univer-
sally inversely connected.
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(2) The morphism sets of the connection are induced by a pair of adjoint
Sfunctors F and 9 as

Mory(—, —) a2 Morg(# —, —) = Morg(—, ¥—)

Proof. This assertion is implied by Lemma 3 and the dual of Theorem 1.

2.3 Monads

Let &, #, ¥, and & be categories, &, ¥' : A -~ %, 9, 9', 9" :
B —C,and H#,H' : € — D be functors,and ¢ : F - F ',y : 9>,
W 9 — %", and p : # — ' be natural transformations. In Section
2.1 we saw that also & : 9% — G'F and HY : Y — #F with
(SF)A) = Y(F(A4)) and (H#Y)(B) = H#(J(B)) are natural transforma-
tions. With this definition one easily verifies the following equations:

(#%) g = #(%p) (1)
WIF) = (09) F @)
() F = HGF) 3)
HYN) F = (BY F\HF) @)
WF ') Fe) = (FP)F) )

where the last equation follows from the fact that ¢ is a natural transfor-
mation.

Nowlet F : ¥ — 2 and ¢ : & — € be a pair of adjoint functors with
the natural transformations @ : Idy - 4% and ¥ : %9 — Id, satis-
fying the conditions of Section 2.1, Theorem 1. We abbreviate the functor
YF by # = 9% . Then we have natural tranformations

e=0:1ldg—>HF and pw=9GYF . HH > H

With these notations we obtain the following lemma.
LemMma 1. The following diagrams are commutative:

#—" v www -

o N

HH —L s o —L o
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Proof. We use Section 2.1, Theorem 1 and obtain from the definitions
WeH) = (F¥YF ) PIF) = (9¥) FN(PY) &)
= (9P) DY) F = ideF = idy
W) — (GPFNGFP) — (9(FF)(9(F D))
= Y(PF)FOD) = ¥ idy = idy
p(uit) = (9PFNNWFGF) = YPYWPF ) F = YU FIY)F
= (GVF\GFGYF) = w(Hp)

A functor J# : € — € whose domain and range categories coincide
is called an endofunctor. An endofunctor S# together with natural
transformations € : Idy — 5 and p : #H# — S is called a monad if
Lemma 1 holds for (5, ¢, n). Other terms are triple or dual standard
construction. The dual terms are comonad or cotriple or standard
construction.

To explain the name, one notes that a monoid is a set H together with
twomaps e: {@}— Handm: H X H— H such that the diagrams

ex h

H HxH HxHxH' HxH

W N L.

HxH—" H Hx H - H

are commutative, where we identified {@} X H with H. Observe,
however, that in the definition of the product we did not use the product
of the endofunctors but their composition. The term monad was proposed
by S. Eilenberg because of this similarity.

Now we want to deal with the problem of whether all monads are
induced by pairs of adjoint functors in the way we proved in Lemma 1.
We shall see that this is the case, but that the inducing pairs of adjoint
functors are not uniquely determined by the monads. There are,
however, two essentially different pairs of adjoint functors satisfying
this condition and having certain additional universal properties. These
pairs were found by Eilenberg, Moore, and Kleisli. We shall use both
constructions with only minimal changes.

THEOREM 1. Let (3, €, n) be a monad over the category €. There exist
pairs of adjoint functors Sy : € —C 5o, T : € o — € and F* : € — €%,
T* €% — % inducing the given monad. If ¥ :€ - 9D, 4:9 — €
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1s another pair of adjoint functors inducing the given monad, then there are
uniquely determined functors A and £ making the diagram

>

€
FH T

&€
y’#l 2 A T&*”

Cp—2E gL gk

commutative.

Proof. First we give the construction of ¥y, , 74, and €, . The objects
of €, are the same as the objects of €. Let 4, B € ¥. The morphisms
from A to B in €, are the morphisms f: # A — H# B for which the
diagram

##Ad " wowB

rwA l luB

#4— B

is commutative. By using indices we can determine that the morphism
sets in % 4 are disjoint. The compositions are defined as in €. Then €4
is a category because 5 is a functor.

We define the functors Py and T by Fpd = A, Ly f = H#f and
TwA = HA, Tuf=f Trvially, T, is a functor. The functor
properties of £ are implied by the fact that u is a natural transformation.
Furthermore, we have ¥ = J,% .

To show that Fy, is left adjoint to J, we use Section 2.1, Corollary 3.
Let @ = ¢:1dy — 5. Define ‘P:.S”Mf”—»Idg# by Y4 = p4d:
HHA— A A considered as a morphism from #A4 to 4 in €.
¥4 is a morphism in €, because of u(Hu) = w(us’). ¥ is a natural
transformation because of the hypotheses on the morphisms in %, .

Then we have for objects 4 € € and A € €, , respectively,

(P PNA) = (VLWL P(A)) = (A) He(A) = 1ipa = Lo pa
and
(T#¥NPT 5 )(A) = (T#V(ANPT #(A)) = W(A) e (4) = lps = L7 4

Since u = T 4¥ &, the monad (), ¢, u) is induced by the pair of
adjoint functors % and 7, . T is faithful by Section 2.1, Corollary 4,
since all objects of €, are in the image of &, . This also follows directly
from the definition.
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Now we give €%, #*, and I *. The objects of €% are pairs (4, «)

where A4 is an object in € and « : A — A4 is a morphism in € such
that the diagrams

4 HHA T w4

N I

#A"5 4 HA—— A4

are commutative. The morphisms from (4, «) to (B, §) are morphisms
f: A — Bin % with the diagram

#4 - B

al , lﬂ

A——B

commutative. The compositions are defined as in €. Then €% is a
category.

The functors &* and I % are defined by ¥4 = (#A4, p4),
F*f = #fand T¥*(4, «) = A, T*f = f. Trivially, 7% is a functor.
(# A4, pA) is an object of ¥* because (#, ¢, n) is a monad. H#f is a
morphism in ¥ because p is a natural transformation. Furthermore,
H = T*S*”.

We use again Section 2.1, Corollary 3 to show that &% is left adjoint
to 7%. Let ® = ¢ : Idy — . For each object (4, «) in €%, we define
a morphism ¥(4, o) : $*¥T#(4, «) > (4, x) by o : # A — A. P(4, «)
is a2 morphism in ¥ because of the second condition for objects in €*
and because F*T *(4, o) = (# 4, pA). ¥ is a natural transformation.
In fact, we get a commutative diagram

HB

HHB #B
'er 7
A w4
uB ud l ld B
HA—" > 4
| 4 N
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where f is a morphism from (4, «) to (B, B). For objects 4 €% and
(4, ) in €* we get

(PN S H*DYA) = (PLH(ANFL*D(A)) = w(A) #e(A) = ly,=1lgx,
and
(THON BT *)( 4, o) = (THH(A, ) PT *#(4, ) = ac(A) = 1, = Ly,

Then we have T *WF*(A) = THY(H A, pAd) = T*(nd) = w(4),
thus the monad (5, ¢, ) is induced by the pair of adjoint functors ¥
and J *. By definition J ¥ is faithful.

Now let # : € — 2 be left adjoint to ¥ : & — € with the natural
transformations @' : Idy — 9% and ¥': £9 — Id, constructed in
Section 2.1, Theorem 1. Let # = 9%, e = @', and p = $¥V'Z,
that is, let the monad (5%, ¢, 1) be induced by the pair & and 4. We
define the functor X : €, > 2 by XA = FA. Let f: #A — H#B
be a morphism of objects 4 and B in €, . Then we set

Hf = (V' FBYFf FD A).

By the definition of f we have f(uB) = (uA)(5f). Using the definition of
u, we get (FINFYGVY'FA) = (FIV'FB(FYFf), thus Ff =
(FINFGVYFAFGFDA) = (FEGVY'FB(FEGFfN(FYGF D' A)
FGAf. Since ¥’ is a natural transformation, we get (¥'& B)(Zf) =
(P'FBYFGCAS) = (Af)V'F A). Now let g : FB — FC be another
morphism in €, . Then

[l

(ANAS) = (X' FBAFINFP'A) = (V'FOAFNFNFP'A) =Agf

Thus we get that " is a functor. We have X" Fy(4) = F(4) for Ae¥
and

H Iw(f) = H(Hf) = WFBY\FGF[)FP'A)
= (V'FB(FD'B)Ff) = Ff
for fe €. Thus we get X%, = %. Furthermore, 94 A = $F A =
HA =T 4A and
GAH[ = GV FBYHS AV A) = (uBYHS)HeA)
=f(pA)HeA) = f = Tf

hence 94 = T, .
To prove the uniqueness of ", we assume that there is another functor
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A" €p—>2 which has the same factorization properties. Then
H'A=FA = AHA because < is the identity on the objects. Let
f:# A — B beamorphism of objects 4 and Bin ¥ 4 . Then ¥4 f =
T wf = GX'f. In particular FGH f = FGA"'f. Thus we get a commu-
tative diagram

F9F4 22", z9FB
w4 i i?"FB
FA ¢ FB

as well for g = Xf as for g = A7'f. ¥'# A being a retraction we get
Af = A"fthus X = A"

Now we want to construct the functor &£. Let D € & be given. Then
we have a morphism 9¥'D : %D — 4D. Now (9D, 9¥'D) is an
object in €% because the diagrams

%D

NN

#9022, gp

and
##9D 272, wyD
n%D l l gv'D

#gp — 2" . 4p

are commutative, the first diagram because ¢ = @', the second diagram
because # = 9% and VP'(W'FY) = V'(FZY¥'). Thus we define
FD = (9D, 9¥Y’'D). Let f: D — D’ be a morphism in £. Then the
diagram
790 2, gz 9D
gw'ol l(w'n

gp— " ,gp

is commutative. Consequently, ¢f is a morphism in €*. We define
Lf = 9f. Then £ is a functor and we have LF 4 = (A4, pd) and
FLFf = Hf. Furthermore, we have

THLD = TH(GD,9¥'D) and T*Lf = f

Hence, % = S* and T*¥¥ = ¥.
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We remark that because of

HAWA = Hpd = (V' FA(FGY'FANFOGF A)

= (V'FANF(GY)NOYG) FA) =VFA=VHA
and

Y¥#D =¥Y(9D,9¥'D) = 9¥'D = LY¥Y'D

we have X'V = ¥’ and ¥Y.¥ = LY, where ¥ is the morphism from
ST w 10 1dg , and from F*T % to Idg.r respectively.

To prove the uniqueness of & let ¥’ : 2 — %4 be another functor
with the required factorization properties. To prove that % and %’
coincide on the objects, we first show that ¥.¥’' = £'¥’, which at any
rate is true for .%. For this reason, we consider the two commutative
diagrams

v F9g9p 227, 979D
Z'??W'Dl l.?'&“’D
79D 22, op
and
grgxy Fep X7, pzep
y”y*sz"w'ul lg'w'u
yrgrep 2P op

Because of 'Y = S*Y = S*T* % the objects and the vertical
morphisms in both diagrams are the same. Furthermore,

THEPH — = GUF — THLVF
Since 7 ¥ is faithful, we also have
VPF =V = PVF and VYL FEYGYD = LV'FYGD

that is, the upper horizontal morphisms in both diagrams coincide too.
But since #¥’D is a retraction, and retractions are preserved by functors,
we also get L'V'D = Y¥'D, hence L'V’ = ¥YZ'.

Let De 2 and ¥'D = (4,«). Then 4 = T*(4,0) = T*L'D =
%D and

o=T %0 =T YA, o) =T *¥VYL'D =T *¥L'V'D =%¥Y'D
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hence #'D = ¥D. Now let f: D — D’ in @ be given, then 7 *¥f =
Yf = T*L'f. Since T ¥ is faithful, we get Zf = L'f; thus, ¥ = &',
This proves the theorem.

The objects of the category € are called # algebras and the objects
of the form S*(A) are called free 5# algebras.

CoROLLARY. In the diagram of Theorem 1 the functors T , T %, and A

are faithful. If one of the functors #, Sy , %, or F is faithful, then all
these functors are faithful.

Proof. The constructions of the proof of Theorem 1 imply that
and J ¥ are faithful. Because I, = A", A is also faithful. If # is
faithful, then & is faithful, because s# = %%. Now assume that &
is faithful, then by Section 2.1, Corollary 4 the functor J# = 9% is
faithful. Replacing & by the functors & and S respectively, in both
conclusions completes the proof.

LemMa 2. Let (5, €, n) be a monad over the category €, and let (4, «)
be an H algebra. Then there is a free H algebra (B, B) and a retraction
f: B — Ain ¥, which is a morphism of S algebras.

Proof. By
4

HA—5 A4

a:H# A — A is a retraction. Furthermore, p : #H# A — H' A is a free
H algebra. By

#HA - w4
Ak
HA—— 4
o 1s a2 morphism of S algebras.
It is especially interesting to know under which circumstances the
functor £ : 2 — €% constructed in Theorem 1 is an isomorphism of

categories. In this case one can consider 2 as the category of J# algebras.
A functor ¥ : 9 — € will be called monadic if ¥ has a left adjoint
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functor & such that the functor & : 2 — ¥* defined by the monad
YF = 5 is an isomorphism of categories.

Before we start to investigate this question in more detail, we need
some further notions. First we want to make an assertion on the way
functors behave relative to diagrams. Let ¥ : 2 — € be a covariant
functor. Let € be a categorical property of diagrams (e.g., f: 4 — B is
a monomorphism, D is a commutative diagram, B — D is a product of
the diagram D). Assume that with each diagram D in € with property €,
the diagram %(D) in & also has property €. In this case one says that ¥
preserves property €. Assume that each diagram D in € for which the
diagram ¥%(D) in 2 has property € has itself property €, then we say
that & reflects property €. Let D be a diagram in € with property € and
with the additional property that there is an extension D" in & of the
diagram %(D) with the property €*. If under these conditions, there is
exactly one diagram extension D’ of D in ¥, with 4(D') = D", and if
this extension has property €*, then we say that & creates the property
(G

A simple example for the last definition is the assertion that the functor
G creates isomorphisms. This assertion means that to each object C e ¥
and to each isomorphism f” : #(C) — C” in 2 there is exactly one mor-
phism f': C — C’ in € with %(f’') = f" and ¥9(C’) = C”, and that
then this morphism f” is even an isomorphism. The property € says only
that the diagram D is a diagram with one single object and one morphism.
The property €* says that the only morphism of the diagram with two
objects, which is not the identity, is an isomorphism. The functor €
of Section 2.4, Theorem 2 is an example of a functor which creates
isomorphisms. In this simple case one even omits the specification of
property €.

A pair of morphisms f;, f; : A — B is called contractible if there is
a morphism g : B — A4 such that fyg = 1, and figf, = figfs -

Let & : B — C be a difference cokernel of a contractible pair f , f; :
A — B, then there is exactly one morphism k: C — B with hk = 1,
and kh = f,g. For fig: B — B we have (f,8)f, = (f18)f1. Since k
is a difference cokernel of ( f;, f;), there is exactly one k : C — B with
kh = f,g. Furthermore, we have hkh = hf,g = hfyg = hly = 1ch, and
thus 2k = 1. because 4 is an epimorphism.

Conversely, let f,, f, : A — B be a contractible pair with the mor-
phism g:B— A4. If h: B— C and k: C — B are morphisms with
hfy = hfy, hk = 1., and kh = f,g, then k is a difference cokernel of
(fo,f1)- In fact, if x: B— U is a morphism with xf, = xf,;, then
x = xfyg = xfig = xkh. If x = yh, then xk = y. Thus, a difference
cokernel of a contractible pair is a commutative diagram
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B
—
=
>

This implies the following lemma.

LemMa 3. Each functor preserves difference cokernels of contractible
pairs.

Recalling the definition of an J# algebra for a monad (5%, €, n), we see
immediately that (4, «) is an S algebra if and only if the diagram

HA

l#A f
>N A

HHA

A

3 l)f« @

HA
7N
)
Ly

A— = > 4

is commutative, that is, if o is a difference cokernel of the contractible
pair (ud, #a).

Let  : 2 — % be a functor. A pair of morphismfy,f,: 4 - Bin 2
is said to be F-contractible if (9f,, %f,) is contractible in €. ¥ creates
difference cokernels of 9-contractible pairs if to each %-contractible pair
fo,fi: A— B in @ for which (9f,, %f,) has a difference cokernel
K : 9B — C'in %, there is exactly one morphism 4 : B — C in & with
@h = k', and if this morphism 4 is a difference cokernel of ( f; , f;).

LevMa 4. Let 9 : @ — € be a monadic functor. Then 9 creates difference
cokernels of 4-contractible pairs.
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Proof. For a monad (J, ¢, u) we can assume @ = €* and ¥ = T ¥,
Letfy, fy : (4, «) — (B, B) be a 7 *-contractible pair, and letg : B — A4
be the corresponding morphism. Assume that there is a difference
cokernel h: B — C of fo,f,: A— B (f; = T *f,). Then also #%h is
a difference cokernel of (#f; , 5f;). Thus, we get a commutative diagram

£
A ° B h c
f
#fo Hh
14 HA —_|—>#B — #C
Hfy
/ , / . /
fo h
A B— 5 C

h

where y : #C — C is determined by the factorization property of the
difference cokernel. Thus the first condition for an J# algebra holds
for (C, y).

Since p : S H# — S is a natural transformation, uC : FH#C — HC
is uniquely determined by u4 : #H# A — # Aand uB : X H#B — HB
as a morphism between the difference cokernels. The commutative
diagrams

HHAZS 4

) J

HA—— A4

and

##B 22, B

| Js

8
#B — B
induce a commutative diagram

#HC 2 wC

| J»

#C—L ¢



72 2. ADJOINT FUNCTORS AND LIMITS

using f , f; together with the usual conclusions for difference cokernels.
Thus (C, y) is an # algebra.

Since J ¥ is faithful, the morphism % in ¥* is uniquely determined
by the morphism % in €. Furthermore, % is a morphism of J# algebras
with Af, = hf; . Now let k: (B, B) — (D, 8) be another morphism of
H# algebras with kfy = kf;; then there exists exactly one morphism
x:C — Din € with k = xh. Thus Sk = Hx5#h. But since A is a
difference cokernel of 5£f, and J#f, , we get again, with the usual con-
clusions for difference cokernels, that $5#x = xy. Thus, x is a morphism
of # algebras. This proves that % :(B,B) — (C,y) is a difference
cokernel in €%,

THEOREM 2 (Beck). A functor 9 : 9 — € is monadic if and only if 4
has a left adjoint functor &, and if G creates difference cokernels of G-con-
tractible parrs.

Proof. Because of Lemma 4, it is sufficient to prove that a functor ¢,
which has a left adjoint functor &, and which creates difference cokernels
of @-contractible pairs, is monadic. Here it suffices to construct an
inverse functor for the functor % of Theorem 1. Let (4, ) be an
H algebra with # = 9. Then pd, Ho: HHA— HA is a con-
tractible pair with the difference cokernel o : 4 — 4. Since (V'F 4) =
pA and 9(Fa) = Ho, the pair VFA4, Foa: FHA—>FA is a
%-contractable pair which has a difference cokernel in €. The hypothesis
implies that there is exactly one difference cokernel ¢ : #4 — C in &
with a = o and ¥C = A. We define ¥’'(4, «) = C.

Iff: (4, «) —> (B, B) is a morphism of 5 algebras, and if (B, B) = D
and b : #B — D is the difference cokernel of (¥'% B, #B), then the
commutative diagram

V' FA a
FIFA——FA—"C
ym
.9"(9‘7[1 lﬂ'f lg
¥Y'FB b
FYFB_—— FB———>D
FB

implies the existence and the uniqueness of the morphism g with
Y(g) = f. Let Z’(f) = g. Since g is defined as a morphism between
difference cokernels, £’ is a functor.

Now we verify that ¥ = Idy# and F'¥ = Id,. We have
LL'(A, o) =(9C, 9¥Y'C) = (4, 9¥’'C). Since ¥’ is a natural trans-
formation, the diagram
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#HAZ w4
(5'}".97,41 lgw'c
HA—" > 4

with « = %a and 4 = C is commutative. ¥¥'F4 = uA and
(9Y'C) (# o) = o(ud) = «(H o) and the fact that S« is an epimor-
phism as a difference cokernel imply o = ¥¥’'C. Furthermore, we
have PZ'(f) = ZL(g) = %(g) = f, where g is chosen as above.
Then 'L (C) = Z'(9C, ¥¥'C). Since 9¥'C is a difference cokernel
of the contractible pair

GY'FYIC, 9FGY'C : 9FH#GC - GF4C

(the corresponding morphism is @' #°%C), the morphism Y'C : #4C —
C is a difference cokernel of (Y'#%C, F%¥'C) because of the hypo-
thesis on 4. Thus, &' #C = C. Furthermore, X' £f = £'%f. Since
the diagram

Foc S, ¢

»or| Is

Fep—2,p

is commutative, and since f is a morphism between difference cokernels,

we have L'9f = f.

LeMMA 5. Let 9 : 9 — ¥ be a functor which creates difference cokernels
of Y-contractible pairs. Then G creates isomorphisms.

Proof. Let g:C — D be an isomorphism in & and let C = 94
with 4€2. Then 1,,1,: 44— A is a -contractible pair with the
difference cokernel g : C — D in %. Thus there is exactly one f: 4 — B
with ¥f = g. Furthermore, f is a difference cokernelof 1,,,1,: 4 — A.
But also 1, : 4 — A is a difference cokernel of this pair, consequently f
is an isomorphism in Z.

2.4 Reflexive Subcategories
Let 9 be a category and € a subcategory of 9. Let 6§ : € — 2 be

the embedding defined by the subcategory. € is called a reflexive sub-
category, if there is a left adjoint functor Z : & — € to &. The functor #
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is called the reflector and the object ZD € ¥, assigned to an object D € 9,
is called the reflection of D.

Since € is a subcategory of 2, the universal problem corresponding to
a reflexive subcategory is easily represented. Let Ce ¥ and De 2.
There exists a morphism f: D — £D in & induced by the natural
transformation Idy, — £%. If g : D — C is another morphism in 2,
then there exists exactly one morphism % in the subcategory ¥ which
makes the diagram

DD

W

commutative.

Dual to the notions defined above, a subcategory & : € — 2 is called
a coreflexive subcategory, if & has a right adjoint functor Z: 2 — %.
Correspondingly, £ is called the coreflector and #D the coreflection of
the object D e 2.

We give some examples for which the reader who is familiar with the
corresponding fields will easily verify that they define reflexive or
coreflexive subcategories. Some of the examples will be dealt with in
more detail in later sections. Reflexive subcategories include (1) the full
subcategory of the topological T;-spaces ( = 0, 1, 2, 3) in Top, (2) the
full subcategory of the regular spaces in Top, (3) the full subcategory of
the totally disconnected spaces in Top, (4) the full subcategory of the
compact hausdorff spaces in the full subcategory of the normal hausdorff
spaces of Top, (5) the full subcategory of the torsion free groups in Ab,
(6) Ab in Gr, and (7) the full subcategory of the commutative, associative,
unitary rings in Ri. The full subcategory of the torsion groups in Ab
gives an example of a coreflexive subcategory. Other examples for
coreflexive subcategories are the full subcategory of locally connected
spaces in Top, and the full subcategory of locally arcwise connected
spaces in Top.

Lemma. Let € be a full, reflexive subcategory of the category 2 with
reflector A. Then the restriction of X to the subcategory € is isomorphic to
Idg.

Proof. Since % is a full subcategory, we get for each C e % that the
morphism 1. : C — C is a universal solution for the universal problem
defined by & : ¥ — 2. By the uniqueness of the universal solution
AC ~ Cisnaturalin Cforall Ce ¥.
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In the case of a reflexive subcategory we have a simple presentation
of the universal problem defined by the adjoint functors; thus it is
interesting to know when a pair of adjoint functors induces a reflexive
subcategory. The following theorem gives a sufficient condition.

THEOREM 1. Let the functor & : € — 2 be left adjoint to the functor
Y : D — € and let G be injective on the objects. Then (D) is a reflexive
subcategory of € with reflector YF .

Proof. The image of ¥ is a subcategory of € be a remark at the begin-
ning of Section 1.8. We define factorizations of the functors by the
following commutative diagram of categories:

¢ .4

A

D—F
g
where €' = 9(2). By Section 2.1, Corollary 4 we have that

G : Morg(% —, —) — Mor((9F —, 9—)

is injective. Thus, %' : Morg(F —, —) > More(9'F —, 9'—) is a
natural isomorphism by the definition of ’. We get

Morg(9'F —, &' —) o Morg(F —, —) o Morg(—, ¥—) = Morg(—, £9'—)

Since each object in ¥’ may uniquely be represented as ¥'D, and since
@' is full, we get Morg(# ' —, —) =~ Mory(—, &—). F' and 9F
coincide up to the embedding of ¢ into %.

ProposITION. Let €' be a reflexive subcategory of € with reflector A.
For all A%’ the morphism f: A — RA defined by the corresponding
universal problem is a section in €.

Proof. Let & : %" — € be the embedding. By Section 2.1, Theorem 1
we have (& 2% €6 2> ) = idg, thus (4 1> 24 £ 4) = 1,
for all 4 € C’. Observe that f is a morphism in C, whereas ¥4 is even
in%’.

THEOREM 2. Let & : € — D be a full, reflexive subcategory. If for each
Ce ¥ also each De @ with C >~ D in 2 is an object in €, then & is a
monadic functor.
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Proof. Let# = & and Z be the reflector to &, then ¢(D) : D — EAD
is the universal solution of the universal problem defined by &. Let
8 : D — D be a £ morphism, such that

D

Ip
e(D)l \

#D—5D

is commutative. Then (D) 8¢(D) = €(D). Since & is full, we get (D)8 ==
&(f) with f: ZD -> #D. By the universal property of ¢(D) and the
commutativity of

D2, eaD

2\4 lem

ERD

we get f= lg,, thus «D)8 = 1,,. This proves that ¢(D) — s#D
is an isomorphism and D € . Furthermore, because (YZD)(%#e(D)) =
lgp = (#8)(#e(D)), we also have YZD = A8, thus u(D) = H#6.
This implies that

##D 22 #D
w(D) l l 8
#D—> D

is commutative, and (D, 8) is an J# algebra.

If D € €, then there exists exactly one & : #D — D with 8¢(D) = 1,,
because €(D) is a universal solution.

Let f: D — D’ be a morphism and D, D' € €. Let (D, 8) and (D', §')
be the corresponding s#-algebras. Then

D2 . p_°,D

lf léff lf

D’ 8
D (D)

HD' —— D'

is commutative, thus f is a morphism of #-algebras. Hence & : ¢ — 2%
is an isomorphism of categories.
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2.5 Limits and Colimits

Let & be a diagram scheme, % a category and Funct(Z, ¥) be the
diagram category introduced in Section 1.8. We define a functor
A : € — Funct(, €) by X (CYA) = C, A (C)f) = lcand A (g)(4) =
gforall Ce¥, Aes/, fesZ, and g €€, and we call X the constant
functor. In the inversely connected category ¥ y(Funct(«Z, %), %),
with the connection Mory(C, &) = Mor(X C, &), the functor X%
defines a universal problem for each diagram % € Funct(«Z, €). We
want to find an object U(#) in € and a morphism pz : U(F) —> &,
such that to each morphism ¢ : C — & there is exactly one morphism
¢* : C — U(F) with pgo* = .

If o7 is the empty category, then Funct(/, €) consists of one object
and one morphism. /" maps all objects of € to the object of Funct(Z, ¥)
and all morphisms to the morphism of Funct(/, €). Since Mor/(# C, &)
has one element, the object U(%) must satisfy the condition that from
each object C € ¥ there is exactly one morphism into U(%). Thus, U(F)
is a final object.

We formulate the universal problem more explicitly. First, a morphism
@ € Mory(C, #) = Mor(A'C, ) is a family of morphisms ¢(4) :
C — F 4, such that for each morphism f: 4 — A4’ in o the diagram

c2, 74

FA

is commutative. In particular pz is such a family of morphisms
pz(4) : U(ZF) —>F A, to make the corresponding diagrams commutative.
This family of morphisms has to have the property that to each family
@ € Mor(A°C, &) there is exactly one morphism ¢* : C — U(#) such
that the diagram

“

C

tp(A)
w*

U(F)—> FA

g (A)

is commutative for all 4 € «.
If there is a.universal solution for the universal problem defined by
&, then this universal solution is called the limit of the diagram % and
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is denoted by lim #. The morphisms pz(4) : lim # — Z A are called
projections and are deno‘ed by p, = ps (A) If the diagram & is given as
a set of objects C; and of morphisms in %, then we often write lim C;
instead of lim &

Since thé notions introduced here are very important, we also define
the dual notion explicitly. The constant functor 2" defines a directly
connected category ¥(Funct(2Z, ¥), ¥) with the connection

Mory(F, C) = Mor(F, #°C).

The universal problem which belongs to a diagram &% may be explicitly
expressed in the following way. Each morphism ¢ € Mor, (&%, C) =
Mor/{%#, A°C) is a family of morphisms ¢(4): FA4 —> C, such that
to each morphism f: A — A’ in &7 the diagram

o(4)
—

F4 C

ﬁfl 4)

FA

is commutative. Then in particular pz is such a family of morphisms
p#(A) : FA— U(F), which makes the corresponding diagrams
commutative. We require that this family of morphisms has the property
that to each ¢ € Mor(#, #'C) there is exactly one morphism ¢*
U(#) — C such that for all 4 € o the diagram

F4 pz(A)

u#)

*
ml"

c
is commutative.

If there is a universal solution for the universal problem defined by &,
then this solution is called the colimit of the diagram % and is denoted
by lim #. The morphlsms ps(A4) : FA— lim F are called injections.
If the diagram & is given as a set of objects C; and a set of morphisms
in €, then we often write lim C; instead of lim #.

If there is a limit [cohml_j for cach F eFunct(«/, %), then % is called a
category with &/ -limits [/ -colimits]. If there are limits [colimits] in € for
all diagrams & over all diagram schemes &7, then ¥ is called complete
[cocomplete]. Correspondingly, we define a finitely complete [respectively,
cocomplete] category, if there are limits [colimits] in € for all diagrams
over finite diagram schemes 7.
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Lemma 1. Let & : o/ — € be a diagram. If the limit or colimit exists,
then it, respectively, is uniquely determined up to an isomorphism.

Proof. Limits and colimits are unique up to an isomorphism because
they are a universal solution.

LemMa 2. A category € is a category with &/ -limits [/ -colimits] if and
only if the constant functor A : € — Funct(eZ, €) has a right adjoint
[left adjoint] functor.

Proof. Since the limits are universal solutions, the lemma is implied
by Section 2.2, Theorem 1.

The explicit formulation of the universal problem defining a limit
allows us also to define a limit for functors & : # — % with an arbitrary
category Z. But limits of these large diagrams will not always exist, even
if € is complete. Compare the examples at the end of this section.

Now we want to collect all diagrams over a category € (not only those
with a fixed diagram scheme) to a category. We have two interesting
possibilities for this. The category to be constructed will be called the
large diagram category, and we denote it by Dg(€). The objects of Dg(%)
are pairs (&, &), where & is a diagram scheme and & : &/ — € is a
diagram. The morphisms between two objects (&, #) and (&', F')
are pairs (¥, ), where ¥ : &/ — &' is a functor and ¢ : F — F'%
is a natural transformation. Now, if morphisms (¥, ¢): (&, %) —
(&', F') and (¥, ¢') : (&', F') —> (", F") are given, then let the
composition of these two morphisms be (9’9, (p'%)p). With this
definition, Dg(¥) forms a category.

We also construct another large diagram category Dg'(%) with the
same objects as in Dg(¥), in which, however, a morphism from (&7, &)
to (&', ') is a pair (¥, p) with a functor & : &/ — &/’ and a natural
transformation ¢ : #'% — %. The composition in Dg'(¥) is

(&, 9NG, 9) = (99, 9(¢'Y))-

For each diagram scheme &, the category Funct(s/, €) is a sub-
category of Dg(%) with the application & + (&, F) and ¢ — (Id, , ).
Similarly, Funct(%/, €)° is a subcategory of Dg’(%). Both subcategories
are not full because there may be other endofunctors of &/ than Id, .

Let @ be a discrete category with only one object. The composition
of the constant functor £ :% — Funct(0, ¥) with the embedding
Funct(0, €) — Dg(%) will also be called the constant functor and will be
denoted by K:% — Dg(¥). Similarly, we get a constant functor
KR : € — Dg'(%).
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PropositTiON 1. The category € is cocomplete if and only if the constant
Sfunctor & : € — Dg(¥) has a left adjoint functor.

Proof. Let us denote Morg,q (7, ), RC) by Mor((<, #), KC).
£ has a left adjoint functor if and only if Mor((«7,.%), &) is representable
for all (&7, #) (Section 1.15, Lemma 4). Let (¢, ¢) € Mor((«Z, #), KC),
then ¥ : & — 0 is uniquely determined, and we have a natural trans-
formation ¢ : & — H,C, where XA, : ¥ — Funct(=, ¥) is the con-
stant functor. The functor corresponding to RC composed with & assigns
to each object in &7 the object C € € and to each morphism in &/ the
morphism 1. € €. Thus Mor((«Z, %), RC) =~ Mor(&#, A _,C). It is easy
to verify that this isomorphism is natural in C; Mor((«/, &), R —) =~
Mor(#, #,,—). The functor Mor(%#, A ,,—) is representable for
all (<7, &) if and only if € is cocomplete (Lemma 2).

ProposiTiON 2. The category € is complete if and only if the constant
Junctor & : €° — Dg'(¥) has a left adjoint functor.

Proof. This proposition is implied by Proposition 1 if one replaces ¥
by #°. In fact, Dg(%°) =~ Dg'(%).

In particular, the following notations make sense. Let &% : &/ — % and
¥ . of — ¥ be functors, and let ¢ : & — ¥ be a natural transformation.
Then let lim ¢ = lim(Id,, , ¢) and lim ¢ = lim(Id,, <p) where lim
and lim denote the Teft adjoint functor for & with values in % of Propo-
sition 1 and Proposition 2 respectively (also in the case of Proposition 2).
We write also

lime : lim % — lim 4 and limg: lim % — lim &
— — — -— -— -~

Let F:Ff >€,%:% — €, and F : o — % be functors, such that
the diagram

#
A B
A
%
is commutative. We assume that here both 7 and % are small categories.

Then we define li_r)néf:lﬁ)nﬁ—»li_r)n? and l(iln%”:l(iinfalgn.‘f
by lim & = lim(5#, idz) and lim 5 = lim(3#, idz) respectively.
— — «— —
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Now we want to investigate when a small category 7 is complete.
Let Mor (A4, B) be a morphism set with more than one element. Let I
be a set which has larger cardinality than the set of morphism of A4.
Finally, let [1,.; B; = C with B; = B for all € I. Then the cardinality
of Mor (A4, C) is larger than the cardinality of the set of all morphisms
of /. Thus each morphism set Mor (A4, B) can have at most one element.
A similar argument holds for a cocomplete small category. Now let us
define 4 < B if and only if Mor (A4, B) # &, then this is a reflexive
and transitive relation on the set of objects of &7. Such a category is also
called pre-ordered set.

Often a limit is also called an inverse limit, projective limit, infimum,
or left root. Correspondingly, a colimit is often called a direct limit,
inductive limit, supremum, or right root. We shall use these notations
with a somewhat different meaning.

2.6 Special Limits and Colimits

In this section we shall investigate special diagram schemes &/ and the
limits and colimits they define. Some of these examples are already known
from Chapter 1. Let &/ be the category

that is, a category with two objects 4 and B and four morphisms
ly,,1,f:A— B, and g: A — B; let & : o/ — % be a covariant
functor, then lim # = Ker(#/, /g) In fact, let us recall the exphcnt
definition of the limit. A natural transformation ¢ : A C — F is a pair
of morphisms ¢(4): C—FA and ¢(B): C— B, such that
F(f)e(4) = o(B) = F(g) p(4). This is equivalent to giving a mor-
phism % : C — % A4 with the property #( f ) = F(g)h. The difference
kernel of (Ff, #Zg) is a morphism 7 : Ker(#f, ¥g) — F A with the
property that to each morphism % : C — % A with this property, there
is exactly one morphism 4 : C — Ker(J 7 f, Jg) with & = ¢h’. This is
exactly the definition of the limit of &. Here 7 is the projection. Dually,
llm./ = Cok(#f, Fg).

TLet o7 be a discrete category, which we may consider as a set I by
Section 1.1. Then a diagram % over &/ is a family of objects {C}},; in €.
The conditions for the limit lim # of # coincide with the conditions
for the product [, C; of the objects C; . The projections of the product
into each single factor coincide with the projections of the limit into the
objects # (i) = C; . Correspondingly, the colimit of & is the coproduct
of the C;.
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Another important example of a special limit is defined by the diagram
scheme

_

that is, by a small category &/ with three objects 4, B, C, and five
morphisms 1,,15,1¢,f: 4 — C, and g : B— C. A natural transfor-
mation ¢ : A D — & for an object D € ¥ and a diagram % is completely
described by the specification of two morphisms %2:D — %A and
k:D — FBwith F(f)h = F(g)k. Thelimit of # consists of an object

FA4 X B
sc
and two morphisms

P FA X FB>FA and py: FA X FB—FB
FC FC

with F(f)p, = Z(g) pp, such that to each triple (D, k, k) with
F(f)h = F(g)k there is exactly one morphism

1:D>ZFA4A X B
Zc

FAx FB— 3 FB

such that the diagram

FC
h
lp‘,{ Fe
ZF
FA !, zc

is commutative. This limit will be called fiber product of ¥ A and B
over & C. Other names are cartesian square and pullback.

Let o7 be dual to the diagram used for the definition of the fiber
product; thus let o/ be of the form

. > .

l
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Let & be a diagram over &7 in ¥. The colimit lun & will be called a
cofiber product. Other names are cocartesian square, pushout, fiber sum,
and amalgamated sum.

PROPOSITION 1. Let € be a category with finite products. € has difference
kernels if and only if € has fiber products.

Proof. Let € have difference kernels. In the diagram

A

SN

foa
K214 XB3C

&bp

W

B

let (A X B, p,, pp) beaproduct of 4 and B, and let (K, ¢) be a difference
kernel of ( fp, , gpp). Furthermore, let g, = p g and ¢ = ppq. Then the
diagram is commutative, except for the pair of morphisms ( fp,, gp5).
We claim that (K, g, , ¢5) is a fiber product of 4 and B over C. In fact we
have fg, = gq5. If h: D — A4 and k: D — B is a pair of morphisms
of € with fh = gk, then there is exactly one morphism (2, k) : D—> A4 X B
with & = p(h, k) and k = pg(h, k). Hence, fp (h, k) = gpg(h, k). So
there exists exactly one morphism /: D — K with ¢/ = (k, k), and we
have ¢,/ = h and ¢zl = k. The diagram extended by %2 : D — A and
k:D — B becomes commutative if we add /:D — K (except for
fP.4» gPs); this implies that / is uniquely determined.
Let € have fiber products. In the commutative diagram

K—“——»A

wgl l(f.y)

B-2.BxB

let B x B be the product of B with itself, 4, the diagonal, (f, g) the
morphism uniquely determined by two morphisms f: 4 — B and
g:A— B,andlet (K, p,, pp) be a fiber product. We claim that (K, p,)
is a difference kernel of the pair of morphisms ( f, g). (Distinguish between
the pair of morphisms (f, g) and the morphism (f, g)). Now let g, :
B X B— B and ¢,: B X B — B be the projections of the product.
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Then we have (f, g) p, = 45 Py, thus

Jou =/, 8) pa = 01 45P5 = 15D
= ¢ 4578 = 9/, 8) P4 = 8P4

Let & : D — A with fh = gh be given. Then fh : D — B and ¢4, fh =
I3fh = qi(f, g)hand g5 fh = 15 fh = 1588 = g5 f, g)h, thus 4, fh =
(f, &)h. Consequently, there exists a unique morphism & : D — K with
psk = h and pgk = fh(= gh). But this is the condition for a difference
kernel.

Difference kernels may also be represented in a different form as fiber
products. This will be shown by the following corollary.

CorOLLARY 1. Let f,g: A — B be morphisms in €. The commutative
diagram

K—2 .4

» l(lA.f)

4842 4« B

is a fiber product if and only if (K, p) is a difference kernel of the pair ( f, g).

Proof. The hypothesis that both projections K — A4 of the fiber product
coincide is no restriction, since if 4, k : C — A are two morphisms with
(14, f)r = (1, g)k, then by composition with the projection 4 X B— 4
we get the equations 2 = k and fh = gh. Thus the claim follows directly
from the definition of the fiber product and the difference kernel.

Lemma 1. Let € have fiber products and a final object. Then € is a
category with finite products.

Proof. Let E be a final object in €. Let 4 and B be objects in €. Then
there is exactly one morphism 4 — E and exactly one morphism B — E.
Assume that the commutative diagram

K—A4

Lo

B—E

is a fiber product. Then K is a product of 4 and B. The requirement
that the square be commutative is vacuous because there is only one
morphism from each object into E.
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PROPOSITION 2. Let € be a category with (finite) products and difference
kernels. Then € is (finitely) complete.

Proof. Let &7 be a diagram scheme and & : &/ — € be a diagram.
Let P = [Tyew F A. Let O = Te.r F R(f) where R(f) is the range
of f. For each object # R( f ), we get two morphisms from P into & R( f),
namely for f: 4 — A’ we get the projection p, : P — % A4’ and the
morphism F(f)p,: P—> FA—~ FA'. This defines two morphisms
p:P—>Qand qg: P— Q. Let K = Ker(p,q). Let ¢ : X'C — % be a
natural transformation. Then for all 4 €4/ there are morphisms
¢(A4) : C — F A4 with the property that

A
c*, 74

Ff
@(4’)

FA

is commutative for all f € /. Thus the compositions

?»
C—>P—0
q

are equal, that is, there is exactly one morphism ¢* : C — K such that

1s commutative. Thus, K is a limit of %,

COROLLARY 2. The categories S and Top are complete and cocomplete.
Proof. By Sections 1.9 and 1.11 both categories have difference kernels

and cokernels, products and coproducts. Proposition 2 and the dual of
Proposition 2 give the result.

CoROLLARY 3. A4 category with fiber products and a final object is finitely
complete.

The proof is implied by Proposition 1, Lemma 1, and Proposition 2.
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CoROLLARY 4. Let € be a complete category and let G : € — 2 be a
functor which preserves difference kernels and products. Then & preserves
limats.

Proof. By Proposition 2, a limit is composed of two products and a
difference kernel. These products and difference kernels in % are trans-
ferred by ¥ into corresponding products and difference kernels in 2.
Thus they also form a limit in & of the diagram which has been trans-
ferred by ¢ into 2.

A functor preserving limits [colimits] is called continuous [cocontinuous].
In particular, such a functor preserves final and initial objects as limits
and colimits respectively of empty diagrams.

A special fiber product is the kernel pair of a morphism. Letp : B— C
be a morphism. An ordered pair of morphisms

(fo:A—B, f: A— B)
is called a kernel pair of p if (1) pf, = pf, and (2) for each ordered pair
(hy: X— B, hy : X — B)

with phy, = ph, , there is exactly one morphism g : X — A with ky = f g
and h; = fig:
X

&g
hoj Jhl

fo »

o

——B

1

(fo» /1) is a kernel pair of p if and only if 4 is a fiber product of B

over C with itself:
\\
fo
A————3B
hl
lfl ll’

B—2 ¢

X
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If there are fiber products in %, then there are also kernel pairs of arbitrary
morphisms in %.

LemMma 2. g : A — B is a monomorphism if and only if (1,,1,) is a
kernel pair of g.

Proof. Let hy, hy : X — A be given with ghy = gh, . In such a case g
is a monomorphism if and only if we always have 4, = h; . This is true
if and only if there is a morphism f: X — A with 1, f = hyand 1 ,f = h, .

COROLLARY 5. If a functor preserves kernel pairs, them it preserves
monomorphisms.

LemMA 3. In the commutative diagram

4-2.p % ¢

bl
AI _i__) Bl —f-_> Cl
let the right square be a fiber product. (A, f, a) is a fiber product of B and A’
over B’ if and only if (4, gf, a) is a fiber product of C and A’ over C'.

Proof. Let (A4, gf, a) be a fiber product. Leth: D — Bandk: D — 4’
-be morphisms with b2 = f'k. Then we get for gh: D — C and for
k : D — A’ the equation ¢gh = g'f’k. Thus there is exactlyone x : D — 4
with gfx = gh and ax = k. We show fx = A. In fact, then (4, f, a) is
a fiber product of B and A’ over B’. We have gh = gh and bh = f'k.
Furthermore, we have gfx = gh and bfx = f’ax = f'k. Since the square
is a fiber product, the equation fx = 4 is implied by the uniqueness of
the factorization. o

Let (A, f, @) be a fiber product. Let #: D — C and k: D — A’ be
morphisms with ¢k = g’f’k. Because of ch = g'(f’k), there is exactly
one x : D — B with bx = f'k and gx = h. Because of bx = f'k, there
is exactly one y : D — 4 with fy = x and ay = k. Then the uniqueness
of y with gfy = h and ay = k follows trivially.

A small category & is called filtered if:

(1) for any two objects 4, B € o/ there is always an object C e o
together with morphisms 4 — C and B — C, and

(2) for any two morphisms f, g : A — B there is always a morphism
h:B — C with hf = hg.
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A small category o7 is called directed if it is filtered and if each mor-
phism set Mor(A4, B) has at most one element. Let &# : &/ — % be
a covariant functor. If &7 is filtered, then lim & is called a filtered co-
limit. If o is directed, then lim & is called a adirect limit. Let F : 40— %

be a covariant functor. If o7 is filtered, then lim & is called a filtered
- limit. If o is directed, then lim & is called an inverse limit. These special
limits and colimits will be very important for abelian categories discussed
in Section 4.7

Now we give some examples of finitely complete categories, without
proving this property in each particular case: the categories of finite sets,
of finite groups, and of unitary noetherian modules over a unitary
associative ring. Furthermore, we observe that in S, Gr, Ab, and ;Mod
each subobject appears as a difference kernel. In Hd exactly the closed
subspaces are difference kernels, in Top all subspaces are difference
kernels. This may be proved easily with the dual of the following lemma.

LemMA 4. Let € be a category with kernel pairs and difference cokernels.

(a) f is a difference cokernel if and only if f is a difference cokernel
of its kernel pair.

(b) hy, hy: A — B is a kernel pair if and only if it is a kernel pair
of its difference cokernel.

Proof. We use the diagram

A—IB > C
o}
kl/
D

(a) Let f be a difference cokernel of (g, , g;), and let (ky, &;) be a
kernel pair of f. If khy, = kh, , then kg, = kg,; thus there is exactly one y
with yf = k.

(b) Let (ky, k) be a kernel pair of k and let f be a difference cokernel
of (kg , k). Then there is exactly one y with & = yf. If g, g, are given
with fg, = fg;, then kg, = kg, , thus there is exactly one x with z,x = g;
fori =0, 1.
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2.7 Diagram Categories

In this section we discuss mainly preservation properties of adjoint
functors, limits, and colimits. For this purpose, we need assertions on the
behavior of limits and colimits in diagram categories.

THEOREM 1. Let &7 be a diagram scheme and € be a (finitely) complete
category. Then Funct(Z, ¥) is (finitely) complete, and the limits of functors
in Funct(oZ, €) are formed argumentwise.

Proof. Let % be another diagram scheme. Let " : € — Funct(%, %)
and X' : Funct(sZ, ¥) — Funct(#, Funct(«/, €)) be constant functors.
Let o € Funct(«/, €) and 4 € Funct(«/, Funct(Z%, €)). Let A be
the composition of functors, and let ¢ : A # — & be a natural
transformation. Then to each ¢(4) € Mor(A 54 (A4), 9(A)) thereis a ¢'(4)
€ Mor(s#(4), Lim(%(A4))) such that the following diagram is commutative:

Mor(o #(4), 9(4)) =~ Mor(#(A), im(%(A))
lMor(Jf#(A),g(f)) lMor(Jf’(A).Liin(Q’(f)))

Mor( #/(A), $(A")) ~ Mor(#(4), lim(%(4")
TMor(f-*’(f),?(A')) TMor(f(f),lj_r_n(g(A')))

Mor( #(4), 9(4) = Mor(A#(4), lim(%(4)

wheref: A — A'. (A).?ﬁ%”(f) = 9(f) (4) implies ¢'(4")H(f) =
im(%(f)) ¢'(4), that is, ¢’ : # — lim(¥(—)) is a natural transforma-
tion. So we have Mor(A #, ) ~ Mor/(éé” lim ). We define

Funct(e/, ") : Funct(s/, €) — Funct(s/, Funct(%, €))
by Funct(eZ, XN H) = A A and Funct(eZ, X )p) = A p and ana-
logously

Funct(.Z, lif_n) : Funct(7, Funct(#, €)) — Funct(sZ, €)

Then Funct(sZ, #7) is left adjoint to Funct(sZ, lim). If we compose
Funct(sZ, ") with the isomorphism

Funct(sZ, Funct(%, €)) o~ Funct(%, Funct(«Z, ¥))

we get the functor ', which has a left adjoint functor

lir_n’ : Funct(4, Funct(oZ, €)) — Funct(eZ, ¥)
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Here lim’(%)(A4) = lim(%(A4)), which means that the limit is formed
— o . .
argumentwise. Observe that we identified the functor

% € Funct(«Z, Funct(%, €))

with the corresponding functor in Funct(%, Funct(<Z, €)).

Dualization of &/ and % implies the dual assertion that, with €,
Funct(«Z, €) is also (finitely) cocomplete and that the colimits are formed
argumentwise. For this purpose, use Funct(«/, ¥) =~ Funct(2/°, €°)°
of Section 1.5.

THEOREM 2. Let &/ be a diagram scheme, & : &/ — € a diagram in G,
and Ce¥. If lim % or lim & exist, then there are, respectively,
isomorphisms

lim Mor(C, ) =~ Mor(C, lim &)
<« -«
lim Mor(#, C) 2 Mor(lim #, C)

which are natural in & and C.

Proof. Let &, = Funct(«Z, %), § = Funct(#,S), Fe§,, Ce¥,
and X € S. Then

Morg (# X, Morg(F —, C)) = Mors(X, Morg (&, #C))

natural in &%, C, and X. In fact, let fe Morg (# X, Mor((# —, C)),
then f is uniquely determined by f(A4)(x) : #A — C for all x € X and
natural in 4 € /. We assign g(x)(4) = f(4)(x) : FA4 — C to f. Then
g € Morg(X, Morg (¥, #°C)). This application is bijective and natural
in #, C, and X. Thus, by changing to the functor which is adjoint to ¢
we obtain

Morg(X, lim Morg(#, C)) = Mors(X, Morg(lim &, C))

and thus lim Morg(#, C) = Mor¢(lim &, C). We obtain the other
assertion dually.

Here again the consideration preceeding Section 1.5 on the generaliza-
tion of notions in S to arbitrary categories with representable functors
are valid. In particular, this theorem generalizes the remark at the end
of Section 1.11.

CoROLLARY 1. Let & : o/ — € be a diagram. Let Cc €. Then the
limit of the diagram h¢% : o/ — S is the set Mor/ (A C, F).
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Proof. In the proof of Theorem 2 there is an isomorphism
Mors(X, lim Morg(, C)) = Morg(X, Mor/(%, #°C))
which implies lim Morg(#, C) = Mor(#, #°C). The assertion of the

corollary is dual. Observe that we do not need the existence of lim &
for this proof.

THEOREM 3. Left adjoint functors preserve colimits; right adjoint functors
preserve limits.

Proof. Let & : % — 2 be left adjoint to ¥ : 2 — €. Then we have
for a diagram & : & — 2 and an object C € ¥

Mor(C, % lim 5#) o~ Mor(%C, lim #) ~ lim Mor(FC, #)
« “«— < :

o ligl Mor(C, 95#) ~ Mor(C, lir_n GH)
This implies & lim 5 =~ lim %5#. One gets the second assertion dually.
«— «—

LemMa 1. Let & : o X B — € be a diagram over the diagram scheme
& X B. Let there be a limit of (A, —) : B — € for all A e L. There
s a limit of F : A X B — € if and only if there is a imit of F : o —
Funct(%, €). If these limits exist, then we have

lim lim & ~ lim &
« “—
2 A xB

]

Proof. To explain over which diagram the limit is to be formed, we
wrote the corresponding diagram schemes under the limits. Corre-
sponding functors in Funct(e/ x B, ¥), Funct(&, Funct(%#, %)), or
Funct(%, Funct(«/, €)) will be denoted by no prime, one prime, or
a double prime respectively. Since limg(F (4, —)) exists for all 4 € ,
limy(F") also exists. Then we have

Mor¢(C, im(F)) o Mor(H sy 5C, F) = Mor,(HzH,C)', F")
oD
o Mor(#,,C, lim #") = Morg(C, lim lim #")
B g B

natural in Ce¥. Here H,.4:% — Funct(&f/ X %,%), HAy:%€ —
Funct(«, ¥), and Ag: Funct(, ¥) — Funct(#, Funct(«/, €)) are
constant functors.
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COROLLARY 2. Limits commute with limits and colimits commute with
colimits.

Proof. Obviously

IXRB Bxsd
thus,
lim lim &% ~ lim lim &
<« -« <
oz B B o

CoroLLARY 3. The constant functor XA :%€ — Funct(&Z, €) preserves
limits and colimits.

Proof. We have

Mor(F, A lim @) o lim Mor(Z, lim %)
«— -« -«

2] P ]
=~ lim lim Mor(#, ¢) o~ Mor(#, lim %)
«— «—
B o 2

where & . o/ - € and 4 : 4 — €.

LevMa 2. Let & be a small category, € an arbitrary category,
F, Y . oA — F functors, and ¢ : F — & a natural transformation. If pA
1s a monomorphism for all A € o7, then ¢ is a monomorphism in Funct(<Z, €).
Let € be finitely complete and ¢ be a monomorphism, then ¢ A is a mono-
morphism for all A € <.

Proof. Two natural transformations ¢ and p coincide if and only if
they coincide pointwise (¢4 = pA). Thus the first assertion is clear.
For the second assertion, we consider the commutative diagram in
Funct(«Z, ¥)

F Y5 7

ol b

F1,.q

which is a fiber product by Section 2.6, Lemma 2. By Theorem 1, this
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is a fiber product argumentwise for each 4 € /. Then again by Section
2.6, Lemma 2 we get that ¢4 is a monomorphism for all 4 € 7.

COROLLARY 4. Let o/ be a diagram scheme and € be a finitely complete,
locally small category. Then Funct(sZ, ) is locally small.

Proof. By Lemma 2, monomorphisms in Funct(</, ¥) are formed
argumentwise. Similarly, the equivalence of monomorphisms holds
argumentwise. In fact, if two natural monomorphisms in Funct(.eZ, €) are
equivalent for each argument A4 €./, then the family of uniquely
determined isomorphisms of the equivalences defines a natural iso-
morphism which induces the equivalence between the two given natural
monomorphisms. Now since &7 is a small category and since % is locally
small, there can only be a set of subobjects for an object in Funct(sZ, ).

COROLLARY 5. Let
P24

WL

B, C

be a fiber product and let f be a monomorphism. Then p, is also a mono-
morphism.

Proof. The commutative diagram

B—% ¢ B—% 3cC
g
Ic
1g lC

is a morphism between two fiber products. Since f, 1., and 1, are
monomorphisms, the corresponding natural transformation is a mono-
morphism, thus by Corollary 2 and Section 2.6, Corollary 5 the morphism
P 1s also.
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LEmMa 3.

(a) Right adjoint functors preserve monomorphisms. Left adjoint
Sfunctors preserve epimorphisms.

(b) Let #,9% : o — € be diagrams in € and let ¢ : F — G be a
morphism of diagrams with monomorphisms oA : F A — GA.
If lim g : lim & — lim & exists, then lim ¢ is a monomorphism.

Proof. (a) 1s implied by Theorem 3 and Section 2.6, Corollary 5.
(b) is implied by Lemma 2, Corollary 2, and Section 2.6, Lemma 2.

THEorREM 4 (Kan). Let o/ and & be small categories and let € be a
cocomplete category. Let & : B — & be a functor. Then Funct(F, ) :
Funct(«Z, €) — Funct(#, €) has a left adjoint functor.

Proof. First we introduce the following small category. Let 4 e 7.
Then define [#, 4] with the objects (B, f) withBe#Z and f: FB — A
in /. A morphism in [#, 4] is a triple ( f, f', u) : (B, f) — (B', f’) with
u:B— B and f'#u = f. A functor ¥ (4) : [#, A] — £ is defined by
VY (A)B,f) = Band ¥ (A) f,f',u) = u

Let g: A — A’ be given. We define a functor [#,¢]:[#, 4] —
[#, 4'] by [ﬁz',g](B,f) = (B’gf) and [#, g](f’f/> u) = (gfugfl’ u).
Thus in particular, ¥ (4) = ¥ (4')[Z, g]-

Define a functor ¥ : Funct(#, ¥) — Funct(«Z, ¥) by 9(#)(A4) =
lim #7°(4), 9(H)(g) = im[F, g] : lim H#V(A) — lim #¥(4"), and
g(a)(A) = lim(o¥"(4)). We want to show that & is left adjomt to
Funct(#, %) Let 5 € Funct(%, ¥) and % € Funct(«Z, €) be given.
We show

Mor(%(H#), &) = Mor(#, LF)
If p : 9(o#) — £ is a natural transformation, then

¢(F B) : lim #¥ (FB)— LFB.

Since (B, 1z;) € [#, & B], there is an injection ¢ : #'B — lim HV (F B).
Set (B) = ¢(&F B)i. This defines a family of morphlsms

W(B) : #B — LFB.

Letk : B — B’ be a morphism in B. Then we get [#, #h] : [#, # B] —
[#, #B'], thus lim[#, #}] : lim #Y (¥ B) — lim AV (¥ B’). Since
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@ is a natural transformation and because of the properties of the colimit,
the diagram

H(B) u(B) LF(B)

N Jiem

lim #¥(FB) = 4(#)(FB)

(k) J'lin[g’ 1 LFh)
lim #¥ (FB)) = 4(H)FB)
/ o(FB’)
|
H(B) — SF(B)

i1s commutative and thus ¢ is a natural transformation.
Lety : # — FLF be given. Let 4 € &. To each pair (B, f) € [#, 4]
we get a morphism

#B) 22, 27 B) -2, #4)

If (f,f', u) € [#, A], then

H(u)

NS

Z(4)

#(B) #(B')

is commutative; thus there is exactly one morphism ¢(4) : lim #7"(4) —
Z(A) such that the diagram

#B "2, v7(B)
;l ls’(/)
. y o(4)
lim o#¥°(4) "2 £(4)

is commutative. Because of the properties of the colimit, the following
diagram with g : 4 — A’ is also commutative
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#B) 2 _, v7B
il l-?(f)

lim 5#7(4) 2 2(4)
1i_f:\[?.£]l l-‘l’(g)

lim £ (4') =2 2(4)

Thus ¢ is a natural transformation. Because of the uniqueness of ¢ the
application ¢ +> ¢ > @ is the identity. Furthermore, one checks easily
that iy > @ > ¢ is the identity. Thus, Mor(%(s#), £) o~ Mor(#’, LF).

The given applications imply that this isomorphism is natural in #
and %. This proves the theorem.

COROLLARY 6. Let ¥ be cocomplete and F : B — o be a functor of small
categories. Then Funct(F, €): Funct(Z, €) — Funct(%, €) preserves
limits and colimits.

Proof. Funct(F, %) is a right adjoint functor; consequently it preserves
limits. Since in Funct(«Z, €) and in Funct(%, €) there exist colimits that
are formed argumentwise (Theorem 2), we get for a diagram s# : 9 —
Funct(«, %)

lim Funct(%, ) #/(B) = lim #F(B) = Funct(F, %) lim #(B)
CorOLLARY 7. Let &/ and 7 be small categories and € a complete
category. Let F : B — < be a functor. Then

Funct(#, %) : Funct{(/, €) — Funct(%4, €)
has a right adjoint functor.

Proof. Dualize &7, %, and %.

ProPoSITION 1. Let &7 and & be small categories and € be an arbitrary
category. Let & : % — o be a functor, which has a right adjoint functor.
Then Funct(#, %) : Funct(«Z, €) — Funct(%#, €) has a left adjoint
Sfunctor.

Proof. Let 9 : o/ — % be right adjoint to & and let @ : Idy — 4F
and ¥ : Y — 1d,, with (9¥)(P¥Y) = idy and (PF)FP) = ids be
given.
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Then we have

Funct(®, €) : Funct(ldg , ¥) — Funct(49%, €)
and

Funct(¥, €) : Funct(# 9, €) — Funct(ld,, , %)
with

(Funct(¥, €) Funcy(¥, €))(Funct(¥9, €) Funct(®, €)) = idrunct(#.9)
(Funct(Z, €) Funct(¥, €))(Funct(®, €) Funct(#, €)) = idrunct(#.9)

2.8 Constructions with Limits

We want to investigate the behavior of the notions intersection and
union introduced in Chapter 1 with respect to limits.

PropPoSITION 1. Let € be a category with fiber products. Then € is a
category with finite intersections. If € is a category with finite intersections
and finite products, then € is finitely complete.

Proof. Letf:A — Candg: B — C be subobjects of C. We form the
fiber product

AxB— 4

c
?p l
B—*% ¢
By Section 2.7, Corollary 5, the morphism p, is a monomorphism.
Thus, fp,: A X B — Cis equivalent to a subobject of C and hence up
to equivalence the intersection of 4 and B.

Given the morphisms f, g : A — B. As in Section 2.6, Corollary 1 the
difference kernel of f and g is the fiber product of (1,,f): 4 — A4 X B
and (1,,g) : 4 > A x B. Both morphisms are sections with the retrac-
tion p, and hence monomorphisms. This means that we may replace
the fiber product by the intersection of the corresponding subobjects.

Consequently € has difference kernels. By Section 2.6, Proposition 2,
we get that € is finitely complete.

PROPOSITION 2. Let € be a category with fiber products. Then there exist
counterimages in €.
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Proof. Let f: A — C be a morphism and g : B— C be a subobject
of C. Then the fiber product of 4 and B over C is a counterimage of B
under f (up to equivalence of monomorphisms), for p,: 4 X B— 4
is a monomorphism by Section 2.7, Corollary 5.

Since we now may interpret counterimages and intersections as limits,
we get again the commutativity of counterimages with intersections as in
Section 1.13, Theorem 1. In fact, arbitrary intersections are the limit
over all occurring monomorphisms.

LemMa 1. Let € be a category with difference kernels and intersections.
Given f,g,h : A — B. Then Ker(f, g) N Ker(g, k) C Ker( f, h).

Proof. Consider the commutative diagram

Ker(f, g) —2—— 4
q / \/ \\
/
Ker(f, g) N Ker(g, ) — Ker(f, h) _
N /
Ker(g, h)

Then aqg = ¢q’ implies faq = gaq = gcq’ = heq’ = haq. Thus ag may
be factored uniquely through Ker( f, ). Since ag is a monomorphism,
we get Ker( f, g) N Ker(g, &) C Ker( f, k).

LemMa 2. Let € be a category with fiber products and images. Let C C A,
DCB,andf: A— Bbegiven.Let g : C — f(C) be the morphism induced
by f. Then we have g=Y(f(C) N D) = C N f~YD).

Proof. In the diagram

CNfHAEO)ND)—fH ()N D)—f(C)N D

! ! !

c A / B

the outer rectangle is a fiber product because the two inner ones are.
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Hence
CAfA(f(C) N D)—f(C) N D

! !

4

C—— f(O)
is a fiber product. Consequently

CnfD) = CnfY(C)nfHD)
= CnfHf(C)N D) =g (f(C)N D)

We shall use these lemmas in Chapter 4.

In S the difference cokernel g: B — C of two morphisms £, k, :
X — B is a set of equivalence classes in B. In the corresponding kernel
pair f , f; : A — B the set 4 consists of the pairs of elements in B which
are equivalent, or more precisely of the graph R of the equivalence
relation in B X B. f, and f; are, respectively, the projections

R>(a,b)+>acB and R>(a, b)+beB

In general we define an equivalence relation in a category € as a pair of
morphisms f, , f; : A — B such that for all X € €, the image of the map

(Morg(X, f,), Morg(X, f;)) : Morg(X, A) — Morg(X, B) X Morg(X, B)

is an equlvalence relation for the set Morg(X, B). If (Morg (X, fo)
Mory (X, £,)) is injective for all X € %, then the equivalence relation is
called a monomorphic equivalence relation.

If € has products, then we may use a morphism (f,, f;) : 4 — B X B
instead of the pair f, , f; : A — B, because of

Morg(X, B) X Morg(X, B) = Morg(X, B X B)

The pair f,, f; : A — B is a monomorphic equivalence relation if and
only if it is an equivalence relation and the morphism ( f; , f;) is a mono-
morphism.

Let f,, f, : A — B be a kernel pair of a morphism p : B — C. Let

D-,4

Pol lfo (1)

4-. B
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be a fiber product. Then we get a commutative diagram

D. A
pol $ Jfo
f
4
A B
%o
fol lp
ze—2 ¢

»
—_—
1

@

where m is uniquely determined by f,p,: D — B and f,p, : D — B

with pfo po = pf1Po = pfo 1 = PfLp1- Thus

fom = fopo s fim = fip

)

Furthermore, by Section 2.6, Lemma 3, all quadrangles of the diagram

are fiber products. In particular

p—A4-.B

b

and

pD—> a4 fi.p
—

?
are kernel pairs. The diagrams

B

lf.,

B—C

4
\\ \\
A——>B A
1 fi and
B f
?»

fo
B
f1
lfo JP
B—? ,¢



2.8 CONSTRUCTIONS WITH LIMITS 101

determine in a unique way morphisms e: B — 4 and s: 4 — A with

foe = fie = 1p “4)
and with

fos =fl ) fls =f01 and 2= 1, (5)

This follows from fs? = f, and f;s* = f; because the lower squares are
fiber products.
Thus we have obtained a diagram

Do fo
—_— —
DA< B

Plts)fl

with the properties (1), (3), (4), and (5). Such a diagram is called a
groupoid or preequivalence relation.

The same construction works also if f,,f, : 4 — B is not a kernel
pair but a monomorphic equivalence relation. In this case one carries
out the construction in S for

Morg(X, fi), Morg(X, f;) : Morg(X, A) — Morg(X, B)

for all X € €. In fact, there is a difference cokernel to each equivalence
relation in S, namely the set of equivalence classes. Since we consider a
monomorphic equivalence relation, Morg(X, f,), Mor(X, f;) is a kernel
pair for the difference cokernel. Then it is easy to verify that my, ey, sy
depend naturally on X together with the conditions (2), (3), and (4),
so that this defines again a groupoid by the Yoneda lemma. Thus we
get part (a) of the following lemma.

Lemma 3.

(a) Each kernel pair and each monomorphic equivalence relation is a
preequivalence relation.

(b) Each preequivalence relation with a monomorphism ( f,, f,): A —
B X B is an equivalence relation.

Proof. (b) We may identify Mor(X, A) with the image of (Mor(X, f,),
Mor(X, f1)) in Mor(X, B X B) =~ Mor(X, B) X Mor(X, B). For each
b € Mor(X, B) the pair (b, b) is in Mor(X, A), since if eb = (', b"), then
fo(8', ") = foeb == b and fy(b', b") = fieb = b, hence eb = (b, ). If
(b, b') € Mor(X, A4), then (b',b6) in Mor(X, 4). In fact, fs(b,d’) =
fi(b, b)) = b" and fis(b, b') = fy(b, b') = b, hence s(b, &) = (¥, b).
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Finally, with (&, ") and (&', ") in Mor(X, 4), also (&, ") in Mor(X, A4).
In fact,

(6, ), (5", b)) € Mor(X, D) = Mor(X, A) _ x  Mor(X, )
(0)

(X,

holds because f,p,((, &), (8, 8")) = fo(b', 8"} = &' and
S12o((5, 8), (', 87)) = fi(b, &) = ¥".

But then fym(, ), (&', ")) = fopo((8, &), (¥', ")) = fy(b, ') = b and
Fim((5, ), (8, 8") = fipa((b, ), (8, 8") = fu(¥', ") = &, and thus
m((b, b), (', 8")) = (b, b") € Mor(X, A).

Lemma 4. Let f,,f,: A — B be a monomorphic equivalence relation.
For the corresponding groupoid, the following diagrams are commutative:

1
E (1,m) D

o) r @

D -7, A

Y (efol4) D Y (Lg,ef1) D

\IA\ l"‘ \\ 1"' »
Ny

A A

4449 4.9 p
fol lm f,l l (iii)

B— 4 B—° .4

Proof. First we define E, (1, m), and (m, 1). Let all squares of the
commutative diagram be fiber products.

E-2.p- ", 4

W e

D4 N B

) |

45,
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Then also each rectangle is a fiber product. Define (1, 7) by the commu-
tative diagram

ty
o)

>

(-1

B
«—

3

—

~

5

(1,m)
4 f
21 A
14
Pol 1 Vlfo
f

Correspondingly, define (m, 1) by

E—D2" 4

then by (2)

fim(1,m) = fopo(l,m) = Fopogo = fomgo = fopolm, 1) = fom(m, 1)
and

fim(1,m) = fupr(1,m) = fymgy = fupsgy = fupa(m, 1) = fym(m, 1)
Thus (fy,f) m(1, m) = (fy,f) m(m, 1). Since (fy,f:) is a mono-

morphism, the first diagram in Lemma 4 is commutative. For (ii) we use
the commutative diagrams
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A
\ 14 \ efy
(efo,1) (1,efy)
D A D———A4
b b4
efo lA
l?o lfo lpo 1)‘0

4—" . p 4—" .

Then
fom(efo, 1) = fopolefo, 1) = foefo = fo  and  fim(efo, 1) = fip:(efol) = frs

hence ( fy , f1) m(efy , 1) = ( fo , f1) implies again m(ef, , 1) = 1, . Corre-
spondingly, one shows m(1, ef}) = 1,.
For (iii) we use the commutative diagrams

A A
s 14
(1,s) (s,1)
D—s 4 D——4
14 j 2 and s ) 21
lﬁo lfo lpo lfo
f;

A—' B A———B

Then fon(1, s) = fopo(l, s} = fo = foefo and fim(l,5) = fipi(1, 5) =
fis = fo = frefo . Because of (fy, 1) m(1,5) = (fo /1) efp, we also get

m(l, s) = ef, . Again one shows m(s, 1) = ef; correspondingly.

Thus for a monomorphic equivalence relation there is a partially defined
composition (on D C 4 X A) on A which is associative (i), with neutral
elements (ii), and invertible (iii). This is a generalization of Section 1.1,
Example 16 to arbitrary categories. Compositions, that is, morphisms
from a product 4 X A4 into an object A which have these and similar
properties will be dealt with in more detail in Chapter 3. It is because
of the properties proved in Lemma 4, that we use the name groupoid.
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2.9 The Adjoint Functor Theorem

PROPOSITION 1. Let o be a small category. Each functor # € Funct(«, &)
is a colimit of the representable functors over F .

Proof. We consider the following category: The objects are the repre-
sentable functors over &, that is, the pairs (k4, p) with a natural trans-
formation ¢ : A4 — % . The morphisms are commutative diagrams

M—"

where f : B— A. There is a forgetful functor (k4, @) > k4, (K7, @, ) > b/
from this category into Funct(2Z, S), which we consider as a diagram.
This diagram has a colimit by Section 2.7, Theorem 1, which is formed
argumentwise and which is denoted by lim A“. Furthermore, each
:h* — &% may be factored through lim A4 as A4 —lim At — Z.
We show that the morphism 7(B) : lim hA(B) F(B) is bgectlve for
each Be .

Let x € #(B). Then by the Yoneda lemma there is an A% : A2 — %
with #%(15) = x. Thus 7(B) is surjective.

Let u, v € lim h4(B) with 7(B)(u) = 7(B)(v). Then there are C, D € &/
and y € h%(B) and z € hP(B) with y - u under f : h%(B) — lim k#(B) and
z > v under g : AP(B) — lim h4(B) by the construction of the colimit
in S. Let ¢ : B¢ — % and ¢ : k> — % be the corresponding morphisms
into &. Then ¢(B)(y) = ¥(B)(2). Thus by the Yoneda lemma, we get
ohv = Yh* : h®? — Z, that is, h® is over & with this morphism, and we
get fh¥(B)(15) = u and gh*(B)(13) = v. Hence, # = v and +(B) is
injective.

If there are no natural transformations ¢ : A4 — %, then F(4) = &

for all 4 € €. But we also have lim 24(B) = ¢ as a colimit over an empty
diagram. Thus we have also in n this case F o = lim A4

COROLLARY 1. Let & be a small, finitely complete, artinian category. Let
F 1 — S be a covariant functor which preserves finite limits. Then F
is a direct limit of representable subfunctors.

Proof. We show that ¢ : -4 — % may be factored through a represent-
able subfunctor of #. Let f : B — A be minimal in the set of subobjects
of A4 such that there exists a commutative diagram
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M2,z

| &

hB

Then ¢ is a natural transformation. It is sufficient to show that
$(C) : k3(C) — F(C) is injective for all C € . Let x, y € h¥(C) be given
with $(C)(x) = $(C)(y). Let D be a difference kernel of (x, y). Since #
preserves difference kernels, there is a commutative diagram
KC LN WB s hD
hY
o
F

by the Yoneda lemma. Since D is a subobject of 4 up to equivalence of
monomorphisms and because of the minimality of B, we get D ~ B
thus x = y. This implies that ¢ : A2 — & is a subfunctor and that the
element which corresponds to ¢ : A4 — &% in F(A4) is in the image of
Y(4). Consequently lim A2 = & if one admits for the A® only repre-
sentable subfunctors of & and if the colimit is directed.

To prove that this colimit is directed let (74, ¢) and (4%, ) be repre-
sentable subfunctors of F. Since #(4 X B) =~ F(4) x #(B), we get

Mor,(hAXB, F) o~ Mor,(h4, F) x Mor,(h?, F)

Thus there is exactly one p : 24X — % such that

hA — hAXB  __}B

AN

F

is commutative. p may be factored through a representable subfunctor
h€ of &.

Let & : € — 2 be a functor. Let De &. A set 2, of objects in €
is called a solution set of D with respect to & if to each C € € and to each
morphism D — &% C there is an object C’ € 2, and morphisms f: C' — C
and D — £ C’ such that the diagram

D—FC

T

FC
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is commutative. If each D € & has a solution set, then we say that % has
solution sets.

COROLLARY 2. Let € be a finitely complete category. Let # : € — S be
a functor which preserves finite limits. Assume that there is a solution set
for the one point set {@} = E with respect to & . Then F is a colimit of
representable functors.

Proof. Let = £, be the solution set of E. Let £ be the full subcate-
gory of € with the set of objects £. By Proposition 1, the restriction of &
to £ is a colimit of representable functors on %, that is lim 24(B) = #(B)
for 4, Be #. We want to prove that this equation holds for all Be %
where the left side is argumentwise a colimit.

First we reformulate the condition about the solution set. For each
C € € and for each x € #(C), thereisan A€ % and an f: 4 — C and
ayeFA with Ff(y) = x, expressed differently: for each C €% and
for each A% :h¢ — &, there is an A€ % and an f: 4 — C and an
hY : k4 — % with h* = hvK/. This is a consequence of the Yoneda
lemma.

Since all the A4 are over & and since lim 24(—) is a functor, we get a
natural transformation 7 : lim A%(—) — T through which the natural
transformations A4 — &% may be factored. Furthermore, 7(B) is an
isomorphism for all Be #. We want to prove this for all Be%. Let
x € & B. Then there is an 4’ € ¥, a morphism 4’ — B, and aye F 4’
which is mapped onto x by # A’ — & B. Since the diagram

lim h4(4") —> lim h4(B)

! !

FA4 — FB

is commutative and since lim 24(4") = # A’, the morphism lim 44(B) —
& B 1s an epimorphism.

Let x, y € lim %(B) be such that they have the same image in F#B.
Then there are A', A€ ¥ with h* (B)>u > x€lim A4(B) and
h*’(B) 3 v > y € lim h4(B) and the images of u and v in F " ZB coincide.
Thus,

h* ,
BB s

hul l

M — F
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is commutative. Let C be a fiber productof u : A" — Band v : 4" — B.
Then #C is a fiber product of #u and #v. Consequently, the diagram
may be completed in two steps to the commutative diagram

hB ., pA

b

h4" —— pC

N

ht

F

where 44" — Z is the factorization of ¢ — & with A* e &, which
exists by the solution set condition. Thus the images of # and v are
already equal in A4°(B) and consequently also in lim 24(B). Hence,
7(B) is an isomorphism.

We observe that #C = g for all C € € if and only if the solution set
for E is empty. In fact, the colimit over an empty diagram is an initial
object. If € is empty, then the assertion of the corollary is empty, since
then & is a colimit over an empty diagram of representable functors,
that is, an initial object in Funct(%, S).

CoroLLARY 3 (Kan). Let & be a small category, € a cocomplete cate-
gory, and & : o — € a functor. Then there is a functor
% : Funct(/°, S) > €

which is uniquely determined up to an isomorphism such that

h l X
Funct(«/°, S) —2> %

is commutative up to an isomorphism, that is, Yh ~ %, and such that G
preserves colimits. 9 is left adjoint to the functor

Morg(# —, —) : € — Funct(«/, S)

with Mory(# —, —)(C)(A) = Morg(F A, C) and an analogous formula
for the morphisms.
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Proof. By the required properties of ¥ we get for a functor
# € Func(«/°, S) with # = lim h, (by Proposition 1)

Y(H#) = G(lim h,) = lim Gh, = lim F 4

But ¢(H) = lim & A defines a functor with the required properties, as is
easy to check. Then

Morg(9(52), C) = Mor(g(li_ril FA,C)~ lig Morg(# 4, C) = lir_n heF(4)
o~ lir_n Mory(h, , heF) =~ Mor,(li_rP hy s heF)
= Mor/(s#, Moro(# —, —)(C))

shows the adjointness of ¢ and Morg (% —, —).

THEOREM 1 (representable functor theorem) Let € be a complete
nonempty category. A functor F : € — S is representable if and only if

(1) & preserves limits
(2) thereis a solution set for {@} = E with respect to F .

Proof. Since & preserves empty limits, & preserves final objects.
Thus thereisa C € € with #C # .

By the preceeding corollary we know that & is a colimit of the repre-
sentable functors over & where the representing objects are in the solu-
tion set 8. Let ¥ : &/ — % be the functor which defines the diagram
of the representing objects. Let B = lim ¥” and o : #'B — 7" be the
natural transformation of the pro_]ectlons By the Yoneda lemma, a

diagram
M2

is commutative if and only if Zf () = .

Let f: A" — A be a morphism in the diagram defined by #". Let
o(4): B— A and o(4’): B— A’ be the corresponding projection
morphisms. Then we get two commutative diagrams

W RA hA " hA’

h\A % and h"‘A\‘ A’

F

h4
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Since & is (argumentwise) a colimit of these representable functors,
there is exactly one morphism 7 : & — h® with nh® = h°4), We want
to show that there is also exactly one natural transformation % : A8 — %

with Aehot4) = he, Since & preserves limits, & B is a limit in the commu-
tative diagram
ZB
%V \f:(j)
7
g4 —2 74

For the elements ¢ € # 4 and s € # A’ used above, we get Ff () = ¢.
Thus there is exactly one p € #B with Fo(A4)(p) = ¢. Consequently,
there is also exactly one /¢ : h® — % with hehe'9 = h®. We only used
that & preserves limits, which is also true for A2 Thus 4* and 7 are
inverse to each other and # is representable. Conversely, if % ~ k%,
then (2) is satisfied by B. (1) holds because of Theorem 2 of Section 2.7.

THEOREM 2 (adjoint functor theorem). Let € be a complete, nonempty
category. Let F : € — D be a covariant functor. F has a left adjoint
Sfunctor if and only if

(1) & preserves limits, and
(2) & has solution sets.

Proof. By Section 2.1, Proposition 2 & has a left adjoint functor if and
only if Morg(C, & —) is representable for all D e &. But for a fixed
D e 2 conditions (1) and (2) coincide with conditions (1) and (2) of
Theorem 1 if we consider the reformulation of the solution set of E in
Corollary 2. Thus, Theorem 1| implies this theorem.

2.10 Generators and Cogenerators

For further applications of the adjoint functor theorem, we want to
introduce special objects in the categories under consideration.
A family {G,},, of objects (with a set I) in a category € is called a set of
generators if for each pair of different morphisms f,g: 4 — B in ¥
there is a G; and a morphism % : G; — A with fh # gh. If the sets
Morg(G; , A) are nonempty for all 7 € I and all 4 € € then this definition
is equivalent to the condition that the functor

[1 Morg(G;, —): ¢ — S

el
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is faithful. If the set of generators consists of exactly one element G,
then G is called a generator. G is a generator if and only if Morg(G, —)
is faithful functor. If € is a cocomplete category with a set of generators
{G;};e; and if all the sets Mory(G;, 4) are nonempty, then by
IT Morg(G;, —) = Morg(I1 G;, —) the coproduct of the G; is a
generator.

LemMMA 1. Let € be a category with a generator. Then the difference
subobjects of each object form a set.

Proof. Let B and B’ be two proper difference subobjects of 4. In the
diagram

G—1-5p

AR

A""_’C

let (B, ¢) be a difference kernel of (a, ). Let @’ = ad and b’ = bd.
Now let d - Mor(G, B') = ¢ - Mor (G, B) as subsets of Mor(G, 4).
For each f: G — B/, there is a g : G — B with ¢g = df; hence a'f =
adf = acg = bcg = bdf = b’f. This is true for each choice of
f€ Morg(G, B’); hence a’ = b'. Consequently, there is exactly one
h : B' — B with ch = d. Analogously, one shows the unique existence
of a morphism & : B — B’ with dk = ¢. Thus ¢ and d are equivalent
monomorphisms defining the same difference subobject. Hence, the set
of difference subobject has a smaller cardinality than the power set of
Morg(G, 4), for different subobjects (B, ¢) and (B’, d) must lead to
different sets d - Mor (G, B’) ## ¢ - Mor (G, B).

LemMMA 2. Let € be a category with coproducts. An object G in € is a

generator if and only if to each object A in € there is an epimorphism
f:1I1G — A.

Proof. Here we also admit a coproduct with an empty index set, which
is an initial object. Let Morg(G, 4A) = I. We form a coproduct of G
with itself over the index set I. We define f : || G — A4 as the morphism
with ith component 7 € Morg(G, 4). Then f is an epimorphism if G
is a generator. Conversely, if for each A4 there is an epimorphism f, then
different morphisms g, 2 : A — B stay different after the composition
with f. But then for some injection G — [ G the composed morphisms
must be different from each other.
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LeMMA 3. Let € be a balanced category with finite intersections and a set
of generators. Then € is locally small.

Proof. Asin Lemma 1 we shall show that different subobjects B and B’
of A4 define different subsets of Mor,(G;, 4) for some 7, where {G;} is a
set of generators. Assume B and B’ different. Since % is balanced, not
both morphisms B N B’ — B and B N B’ — B’ can be epimorphisms
because in this case both would be isomorphisms compatible with the
morphisms into 4 thus B = B’ as subobjects. Suppose B " B’ — B
is not an epimorphism. Then there exist two different morphisms
f, g : B— C, such that

(BANB —-B%C)=(BNB —B%C()

Let 2:G,— B be given with fh # gh. Then h cannot be factored
through B N B’. Since B N B’ is a fiber product, there is also no
morphism G, — B’ with

(Gi— B'— 4) = (G;*> B— 4)

Thus the maps defined by B — 4 and B — A4 map Morg(G;, B’) and
Mor4(G;, B) onto different subsets of Morg(G;, A) respectively.

" Lemma 4. Let o be a small category. Then Funct(«Z, S) has a set of
generators.

Proof. We show that {s* | A € &/} is a set of generatars. Let ¢, : F — &
be two different morphisms in Funct(Z, S). Then there is at least one
A e o/ with o(A) # J(A). Thus by the Yoneda lemma, Mor (%4, ¢) #
Mor(h4, i), so there exists a p € Mor (4, &) with @p # p.

A cogenerator is defined dually. In S each nonempty set is a generator
and each set with at least two elements is a generator. In Top each
discrete, nonempty topological space is a generator and each topological
space X with at least two elements and { &, X} as the set of open sets is
a cogenerator. One also says that X has the coarsest topology: In S*
each set with at least two elements is a generator and a cogenerator.
In Top* each discrete topological space with at least two elements is
a generator and each topological space with the coarsest topology and
at least two elements is a cogenerator. We shall show more about the

categories Ab, ;Mod, Gr, and Ri in Chapters 3 and 4.
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2.11 Special Cases of the Adjoint Functor Theorem

LemMMA. Let € be a complete, locally small category and let the functor
F € — S preserve limits. For each element x e FC, there exists a
minimal subobject C' C C with an element y € & C’ which is mapped onto x
by the induced morphism FC' — FC.

Proof. Since & preserves limits, the induced morphisms #C' — FC
are monomorphisms by Section 2.6, Corollary 5. Thus the element
y€ &' is uniquely determined. We consider the category of the sub-
objects B of C for which there exists a (uniquely determined) y € #B
which is mapped onto x by #B — £ C. The limit (intersection) C’ of
these subobjects has the same property because & preserves limits, and
because the existence of y € # C’ with this property is equivalent to the
property that there exists a map {@} — & C’ which together with the
map % C’' — % C has the element x as an image. But this holds for the
objects B in the above defined diagram.

THEOREM 1. Let € be a complete, locally small category with a cogenerator
G. A functor & : € — S is representable if and only if F preserves limits.

Proof. To use Section 2.9, Theorem 1 we have to define a solution set
for E. Let x € #C and let C coincide with the minimal subobject C’ as
constructed in the lemma. Let y € #G. If there is an f: C — G with
ZFf(x) = y, then f is uniquely determined. In fact, if two morphisms
have this property, then let D — C be the difference kernel of these
two morphisms. Since & preserves difference kernels, there is an
x' € #D which is mapped onto y by FD — ZG. Since C is minimal
(in the sense of the lemma), we get D = C, that is, both morphisms
coincide. Thus we may consider Morg(C, G) as a subset of # G. By the
dual of Section 2.10, Lemma 2, C — T] G is a monomorphism, where the
product is formed over the index set Morg(C, G) and where the com-
ponents of this morphism are all morphisms of Morg(C, G). Then also
C — I1 G is a2 monomorphism where the product is formed over the
index set # G and where we use for the additional factors of the product
arbitrary morphisms of Mory(C, G) as additional components. Thus C
is a subobject of [Jx; G = D up to equivalence of monomorphisms.
This holds for all such minimal objects C. Since € is locally small,
these objects form a set, a solution set for E with respect to &.

THEOREM 2. Let % be a complete, locally small category with a cogenerator.
Let F : € — D be a covariant functor. F has a left adjoint functor if and
only if & preserves limits.
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Proof. This is shown in a way similar to the proof that Theorem 1
implies Theorem 2 in Section 2.9.

COROLLARY. Let € be a complete, locally small category with a cogenerator.
Then € is cocomplete.

Proof. Let &/ be a diagram scheme. The constant functor % : ¥ —
Funct(«Z, €) preserves limits. By Theorem 2, /" has a left adjoint
functor lim. This holds for all diagram schemes &/.

We now discuss an example for Theorem 2, where we refer the reader
to textbooks on topology for the particular notions and theorems. The
full subcategory of compact hausdorff spaces in Top is a reflexive sub-
category of the full subcategory of normal hausdorff spaces in Top.
Urysohn’s lemma guarantees that the interval [0, 1] is a cogenerator.
The closed subspaces of compact hausdorff spaces are again compact and
represent the difference subobjects. By the theorem of Tychonof, the
products are also compact. Thus there is a left adjoint functor for the
embedding functor. This left adjoint functor is called the Stone-Cech
compactification.

THEOREM 3. Let € be a full reflexive subcategory of a cocomplete category
2. Then € is cocomplete.

Proof. Let & : %€ — 2 be the embedding. Let &7 be a diagram scheme
and & : &/ — € be a diagram. Let # : 2 — € be the reflector for &.
Since & is full and faithful, we get Mor (%, #') = Mor (6%, EF") for
F, F' € Funct(«/, €) which is natural in # and &’. This may be shown
similarly to the isomorphism Mor(X'#, ¥) >~ Mor/(s#, lim ) in
Section 2.7, Theorem 1. Then the isomorphisms

Mor(F, # C) = Mor (8F, EAC) =~ Mor(EZF, #EC)
=~ Morg(lim &%, £C) =~ Morg(Z lim 6%, C)
— —

are natural in & and C. Thus € has colimits.

THEOREM 4. Let € be a full subcategory of a complete, locally small and
locally cosmall category 2. Let € be closed with respect to products and
subobjects in 2. Then € is a reflexive subcategory of 9.

Proof. Since € is closed with respect to forming products and sub-
objects in &, in particular with respect to difference subobjects, ¥ is also
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closed with respect to forming limits in & (of diagrams in %). Thus €
is complete and the embedding functor preserves limits. Thus we have
to find only a solution set. Since the embedding functor preserves
limits, it preserves subobjects. Hence % is locally small. Given a mor-
phism D — C. Since the functor Morg(D, —) : € — S preserves limits,
it preserves, by Lemma 1, a minimal subobject C’ of C which may be
factored through D — C. Let f,g: C' — D’ in & be given such that
fh = gh, where h : D — C’ is the factorization morphism. Then % may
be factored through the difference kernel of ( f, g). Since C’ was minimal,
we get f = g and that % is an epimorphism. Consequently, the set of
quotient objects of D is a solution set.

Observe that we used in the proof only that € is closed with respect
to forming difference subobjects instead of all subobjects. This, however,
is often more difficult to check if one does not know exactly what the
difference subobjects are.

Some examples are that the full subcategory of commutative rings is
a reflexive subcategory of Ri. Similarly, the full subcategory of hausdorff
spaces in Top is reflexive. We also observe that the full subcategory of
integral domains is not reflexive in Ri, for if it were it would have to be
closed with respect to forming products in Ri. But the product of Z
with itself is not an integral domain.

2.12 Full and Faithful Functors

LevmMa 1. Let & : € — 2 be a faithful functor. Then & reflects mono-
morphisms and epimorphisms.

Proof. Given f, g, he € with fg = fh. Then FfFg = FfFh. If Ff
is a monomorphism, then Fg = Fh. Since F is faithful we get g = h.
By dualizing, we get the assertion for epimorphisms.

ProPOSITION 1. Let & : € — D be a full and faithful functor. Then &
reflects limits and colimits.

Proof. Let¥% : o/ — € be given. ¢ has a limit if and only if the functor
Mor(# —, 9) : €° — S is representable. Given C € € with
Mor/(A —, %) =~ Morg(—, FC). Then Mor(FH —, FY) =~
Mor (& —, # C) as functors from %° into S. Since & is full and faithful,

we get Mor (A —, ) =~ Morg(—, C). Dually, one shows that &
reflects colimits.
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ProposITION 2. Let o be a small category. The covariant representation

Sfunctor h: o — Funct(, S) reflects limits and colimits and preserves
limits.

Proof. We know from Section 1.15 that % is full and faithful. Thus

Proposition 1 holds. The last assertion is implied by Section 2.7,
Theorem 2.

Observe that # does not necessarily preserve colimits. In fact, let &/
be a skeleton of the full subcategory of the finitely generated abelian
groups in Ab. Then & is small. We may assume that Z and Z/nZ are
in & for some #n > 1. Then Z/nZ is a cokernel of n : Z — Z, the multi-
plication with #. But Mor (—, Z/nZ) is not a cokernel of Mor(—, n) :
Mor ,(—, Z) — Mor ,(—, Z) because this does not hold argumentwise,
for example for the argument Z/nZ.

PrOPOSITION 3. Let F : 6 — 2 be left adjoint to 9 :29 — €. Let
¢ : Mory(—, 9—) =~ Morgy(F —, —) be the corresponding natural iso-
morphism and let ¥V : G — 1d, be the natural transformation constructed
in Section 2.1. Then the following are equivalent:

(1) & is faithful.

(2) 9 reflects epimorphisms.

(3) Ifg:C — 9D is an epimorphism, then also y(g) is an epimorphism.
(4) YD :%9D — D is an epimorphism for all D € D.

Proof. That (1) = (2) is implied by the lemma. (2) = (3): By the
remark after Section 2.2, Theorem 1, ¥g* = %(J(g)) is an epimorphism
if g is an epimorphism. Then by (2), ¢(g) is also an epimorphism.
(3) = (4) holds if one sets for g the identity 14, . (4) = (1): The map
G : Morg(D, D') — Morg(¥D, GD') is by definition of ¥ : ¥ — Id,
composed by Morg(D, D') — Mory(F %D, D') >~ Morg(¥9D, 4D'). If
YD is an epimorphism, then this map is injective.

LEMMA 2. With the notations of Proposition 3, 9 is full if and only if the
morphisms YD : F4D — D are sections.

Proof. We use Section 1.10, Lemma 3 and the fact that the map
G : Morg(D, D'y — Morg(¥9D, ¥D’) is composed of

Morg(D, D) — Moro(F¥D, D) =~ Morg(¥D, ¥D')
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COROLLARY. With the notations of Proposition 3, 4 is full and faithful
if and only if the morphisms YD : 9D — D are isomorphisms.

Proof. This corollary is implied by Proposition 3 and Lemma 2
because the isomorphism between Morg(D, D) and Morg(# 9D, D)
for all D’ (natural) implies the isomorphism between D and & %D.

ProposITION 4. With the notations of Proposition 3, let % be full and
faithful. Let 3 : o — 2 be a diagram. Let € be a limit or a colimit of
GH. Then F C is a limit or, respectively, a colimit of 3. If € is (finitely)
complete or cocomplete, then 2 is also (finitely) complete or cocomplete
respectively.

Proof. Since in the case of the colimit, Morg(C, —) == Mor(%#°, # —),
we get

Morg(Z C, —) o Morg(C, ¥—) o Mor(93, Y4 —) =~ Mor(#, A —)

We prove the second assertion in the inversely connected category
v (Funct(«Z, €), €), where we get a commutative diagram

c—2% ,g7zc—" ,C

! ! |

g 22" gzox 7, gw

The morphism (F¥#)(DPF#) is the identity. Since C is a limit, there
is a uniquely determined morphism p, and p(PC) is also the identity.
Thus p is a retraction. Since @ : Idy — & is a natural transformation,
and since YF P = OYF by (YVYFNGF D) = (YVYF)DPYF), the
square

YFC (&
‘?9(@0)1 ld)C
GFo
GFYGFC ——YGFC

is commutative. Since (9% p)(9% (PC)) is the identity, p is an isomor-
phism, hence also @C. Since ¥¥5# is an isomorphism, also PZH is an
isomorphism. Thus ¥% Cis a limit of ¥% ¥#. 4, being full and faithful,
reflects limits. Thus &#C is a limit of #%#. This proves the second
assertion of the proposition.
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Problems

2.1. Let % :Gr — S be the forgetful functor which assigns to each group the under-
lying set. Formulate the universal problem in ?%(S, Gr) for 4 €S and determine
whether a universal solution exists. Does ¢ have a left adjoint functor ? Formulate the
universal problem in ¥g(Gr, S). How does the universal solution change if one replaces
Gr by Ab?

2.2, If

B C
is a fiber product, then f is a monomorphism.
2.3, A full faithful functor & defines an equivalence with the image of .
2.4. If & : ¥ — S has a left adjoint functor, then & is representable.

2.5. Prove (without using Section 2.8, Lemma 3) that each kernel pair is a mono-
morphic equivalence relation.

2.6. (Ehrbar) Let 2 and & be subcategories of a category ¥. We say that 2 and &
decompose the category € if all objects and all isomorphisms of € are in £ as well as in &,
if there is a 2-%-decomposition for each f € €, that is, if to each f € € there is a pair
(g,5) € 2 x & with f = sq, and if to any two 2-%-decompositions (g, s) and (¢’, s") of
the same morphism f € € there is exactly one h € € with hg = ¢’ and s = s'A.

Show that 4 is an isomorphism.

If bg = sa with g€ 2 and s € &, then there is exactly one morphism d € € such that
the diagram

4A—- B

d

a 1 / lb
cC——D
is commutative.

Let fe¥ and A€ ¥. f is called an epimorphic relative to A if Morg(f, A) is an
injective map.

Let € be a category with nonempty products and assume that € is decomposed by
the subcategories 2 and &. Let U be a class of objects in € with the property that all
g € 2 are epimorphic relative to all 4 € A. Let A* be the full subcategory of ¥ with the
objects A* € ¥ for which there is a family {4};c; € 4 and a morphism s : 4* — [T A
with s € &. UA* is a reflexive subcategory of ¥ if and only if to each object B € ¥ there
exists a nonempty set L of morphisms f € € with B the domain of f and with the range
of f in A* and with the property that to each g € € with B the domain of g and the range
of g in U there is an f€L and an k€ ¥ with g = Af. (Hint: Since & contains products
of morphisms, A* contains products. Furthermore, all g € 2 are epimorphic relative to
all A* € U*. If L is as above, and if & : B — [Isez R(f) (with R(f) the range of f) is the
morphism with pz = f for all f€L, and if (g, s) is a 2-%-decomposition of f, then ¢ is
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the adjunction ®(B) with @ :Idg — #Z where Z is the reflector we wanted to find
(Section 2.1, Theorem 1 and 2 and Section 2.4).)

€ = Top, 2 the category of continuous, dense maps in ¥, and & the category of
injective, closed, continuous maps define the Stone-Cech compactification with

A = {[0, 11}.
2.7. Use the construction in the proof of Section 2.6, Proposition 2 to show
(a) that for a diagram & : & — S the limit of & is

lim & =

(*4)scer € n FA|(Ff)xq) = xp forall f: 4 —> Bin &
Acd

(b) that for a diagram & : & — S the colimit of & is

lim & = ?equivalence classes in ( ’ Z A (disjoint union) with
—
Ac

x4 ~(Ff)xg) forall f:A—>Bin&F; x4eFA; xBe.?Bi

(c) that for a directed diagram scheme & and a diagram & : &/ — S with &f sur-
jective for all f € &7 the direct limit is

lim & =
—_—

aaeg € [| FAI(Ff)xg) = x5 forall f:4—~Bin dz
Acsd



3
Universal Algebra

The theory of equationally defined algebras is one of the nicest
applications of the theory of categories and functors. Many of the well-
known universal constructions, for example, group-ring, symmetric and
exterior algebras, and their properties can be treated simultaneously.
The introduction into this theory in the first two sections originates
from the dissertation of Lawvere. The method of Section 3.3 leads to
Linton’s notion of a varietal category, which, however, will not be expli-
citely formulated. In the fourth section we shall use the techniques of
monads or—as they are called in Zirich—triples. Theorem 4 in the
last section is essentially a result of Hilton.

3.1 Algebraic Theories

Let N be the full subcategory of S with finite sets as objects, where for
each finite cardinal there is exactly one set of this cardinality in N. In
particular, let @ be in N. We denote the objects of N by small Latin
letters (n € N). In special cases we shall also use the cardinals of the
corresponding sets as objects of N (0, 1, 2, 3,... € N).

Let ne N. Then #n is an n-fold coproduct (disjoint union) of 1 with
itself. 0 (= @) is an initial object in N (empty union). Consequently, we
get Mory(m, n) =~ Mory(1, n)™ (m-fold product). Since each morphism
1 — » is an injection into the coproduct #, all morphisms in N are
m-tuples of injections into coproducts. N is a category with finite co-
products.

Let N° be the dual category of N. The objects will be denoted just as
in N. Each object n € N° is an n-fold product of 1 with itself. 0 is a final
object. Each morphism is an n-tuple of projections from products.
In particular, we identify Moryo(m, #) = Morye(m, 1)* (n-fold product).
NO is a category with finite products.

A covariant functor A: N® — 2 which is bijective on the object classes

120



3.1 ALGEBRAIC THEORIES 121

and which preserves finite products is called an algebraic theory. In
particular, A preserves the final object.

Since A is bijective on the objects, we denote the corresponding objects
in A and in N°® with the same signs, that is, with small Latin letters or
the corresponding cardinals. p, : # — 1 denotes the 7th projection from
n to 1 in N° as well as in 2. We shall often talk about an algebraic theory
A without explicitly giving the corresponding functor A since this functor
may be easily found from the notation used.

Let A: N°— U and B : N° — B be algebraic theories. A morphism
of algebraic theories is a functor ¥ : A — B such that YA = B holds.
Thus the algebraic theories form a category Alt.

An algebraic theory A : N® — U is called consistent if A is faithful.

Let A4 be a discrete category with a countable set of objects denoted
by 0, 1, 2, 3,... . Let B : Alt — Funct(A4", S) be a functor defined by

B(A, A)(n) = Mory(n, 1)
B(Y)(n) = (¥ : Mory(n, 1) — Morg(n, 1))

THEOREM. B has a left adjoint functor & : Funct(A/, S) — Alt.

Proof. We construct § explicitly. Given H : 4" — S. We construct
sets M(r, s) for r, s € & in the following way. First let

M(r, 0) = {w,}
M(r, 1) = H(r) U Mory(r, 1) with a disjoint union
M(r, s) = My(r, 1)¢ for s>1

We denote the s-tuples also by (o4 ,..., o). Then define
M (r,s) = {[o, 7] | o€ M,(t,s), 7€ Myr,t), te N} U Mr,s)

In contrast to the s-tuples in M,(r, s) we write the pairs [o, 7] with
brackets.
If the sets M,_,(r, s) and M;_y(, s) are already known, then let
M(r, 0) = M, 4(r, 0)
My(r, 1) = M{_\(r, 1)
M(r,s) = Myr, 1)* U M{_\(r,s) for s>1
M/(r,s) = {[o, 7] | o€ M(t,s), 7€ Mfr,t), teN}U Mr,s)
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Then
{w,} C My(r, 0) C My/(r, 0) C My(r, 0) C M,(r, 0) C -
H(r) U Mory(r, 1) C My(r, 1) C My'(r, 1) C My(r, 1) C My(r, 1) C -
My(r, ) € My(r, ) € Myfr, 5) C My'(r, ) C -~

hold. So we define M(r, s) = () M(r, s).
The following assertions hold:

(a) {w,} C M(r,0) forallr > 0.
(b) H(r) U Morye(r, 1) C M(r, 1).

(¢) If o,e M(r,1) for ¢ =1,..,s with s > 1, then the s-tuple
(04 yeeey 05) € M(r, s) for all 7 > 0.

(d) If oeM(t,s) and 7€ M(r, t), then [o, 7] € M(r, s) for all 7, s,
t > 0.

On the sets M(r, s) let R be the equivalence relation induced by the
following conditions:

(1) If o, 7€ M(r,0), then (o, 7) € R.
(2) If o€ M(r, 1) for j = 1,..., s, then ([p, (oy ..., 04)], 6;) € R for

i=1,.,s
(3) If o € M(r, s), then (([ps, o],..., [25 o), o) € R.
@) If o € M(r, 5), then
((Pdroonr ps), 0l )R and ([0, (P £,7)]s 0) € R,
(5) If o€ M(r, s), =€ M(s, t), and p € M(t, ), then
(lle, 71, o], [ps [y 0]} € R
(6) Ifo,,r,€ M(r,1)and (o;, 7;) € Rfori = 1,..., s, then
(01 1orns 3), (71 3oy 7)) € R,

(7) If o, o’ € M(r, t) and =, 7" € M(t, 5) and (o, o'), (7, 7') € R, then
([7, o), [*', o']) e R.

Observe that two elements are equivalent only if they are in the same
set M(r,s). Thus we define Morgy(r, s) = M(r, s)/R as the set of
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equivalence classes defined by R. Let ¢ € Morgy(7, s) and @ € Morgy(s, t)
with the representatives 7 € M(r, s) and o € M (s, t) which is possible
by a sufficiently large choice of 7. Then let the composition ¢y of ¢ with
¢ be the equivalence class of [o, 7] € M, (7, t) C M(r, t). By (7), this
class is independent of the choice of the representatives of ¢ and .
By (5), this composition is associative. By (4), the equivalence class of
(..., p,7) is the identity for the composition. Thus §H is a category
with the objects 0, 1, 2,..., and the morphism sets Morg(7, s).

0 is a final object in H by (1). Conditions (2), (3), and (6) imply
Morgy(7, s) = Morgy(r, 1)*. In fact, (6) implies that for morphisms
@; € Morgy(r, 1) with representatives o, € M(r, 1) for = 1,.,s
the morphism (g, ,..., ps) € Morgy(r, s) with the representative
(01 ...y 05) € M(r, 5) is independent of the choice of the representatives
o; . (2) implies the existence of a factorization morphism ¢ such that
Prle = @;, namely ¢ = (¢, ,..., ;) and (3) implies the uniqueness of
such a factorization morphism. Thus the object se FH is an s-fold
product of 1 with itself.

Obviously s s and p;*+— p,* induces a product-preserving functor
NO — §H, called the free algebraic theory generated by H.

Let H, H' € Funct(A", S) and let f : H — H’ be a natural transforma-
tion. Since A is discrete, the maps f(r) : H(r) > H'(r) may be chosen
arbitrarily. Define §f by

&f () =f(p) for @peH(n)
& (2 = 2 for p,te MorNO(r! 1)

& (P15 @5) = (Ff (@) Tf (90))
& (o) = &f () Ff (¥)

Then §f maps the equivalence relation R into R'. Hence, §fis a morphism

of free algebraic theories §f : FH — FH'. One easily verifies F(fg) =

&(f) &(g) and 1 = Idgy . Thus & : Funct(A4”, S) — Alt is a functor.
It remains to show that

Morp(FH, (A, A)) = Mor,(H, B(A, A))

holds naturally in H and (A, ). Let f : H — B(A, «A) be given, that is,
for each 7 let f(r) : H(r) — Mory(r, 1) be given. We define a morphism
g : &H — (A, U) of algebraic theories in the following way.
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First let
g(w,) € Mory(r,0)  for w,eM(r,0)
g(0) = f(o) forall oc H(r)

&(pi) = pit
8((oy ...y 05)) = x € Mory(r, $) forall o;e M(r,1), i=1,.,s5
andall re A

where «x corresponds to the element (g(oy),..., g(og)) under
Mory(r, s) = Mory(r, 1)%, and

&([o, 7]) = g(o) g(7)

for all 0 € M(t,s), e M(r,t) and all 7, 5, t € A",

Thus g: M(r, s) > Mory(r, s) is defined. Since U is an algebraic
theory, R-equivalent elements in M(r, s) are mapped into the same
morphisms in Morg(r, s). Thus we get a functor g : FH — (A, ™) which
is a morphism of algebraic theories because of g( ;') = p;*. If, conversely,
g : &¥H — (A, ) is given, then we get a family of maps f(r) : H(r) —
Morgy(r, 1) — Mory(r, 1). These two applications are inverse to each
other and compatible with the composition with morphisms H — H’
and (A, ) — (B, B), hence natural in H and (A, U).

Let two morphisms of free algebraic theories p; , p, : L — FH be
given. If one extends the equivalence relation R which we used for the
construction of §H by the condition

(8) If p € Morg,(r, 5), then (py(9), Po(¢)) € R

then the equivalence classes for this new equivalence relation form
again an algebraic theory. This may be seen in the same way as in the
construction of free algebraic theories.

Conversely, let A be an algebraic theory and ¥ : FB(A) — A be the
adjunction morphism of Section 2.1, Theorem I.

L(n) = {(p, ¥) | @, ¥ € Morggan(n, 1), ¥(p) = ¥(¥)}
and
qy: L(”) 3 (‘P’ ‘/‘) —>gp€ Mori’y%(‘ll)(”» 1)

g5 : L(n) 3 (@, $) — ¢ € Morggp@)(n, 1)
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define morphisms ¢; : L — BFB(A). Since § is left adjoint to B, we
get morphisms p; : FL — FB(A). Since B(¥) ¢; = B(¥) g, holds for

L -2 8B 24, ()
the equation ¥p, = ¥p, holds for
FL 2> FBEA) LA

Because Morgy(r, s) =~ Mory(7, 1)%, the functor ¥ is surjective on the
morphism sets. If ¥(¢) = ¥(¢), then

@, ¥ € Morgg (7, 5) = Morgau(7, 1)°

and hence p¥(p) = p S ¥(P). But then p o, p € Morggy(r, 1) with
Y(pip) = Y(pp). Consequently, plp and pif are equivalent for
i = 1,.., s with respect to the equivalence relation extended by (8).
Also ¢ and ¢ are equivalent by (2) and (6). Thus this new equivalence
relation defines an algebraic theory isomorphic to 2.

Thus each algebraic theory may be represented by giving H,
L € Funct(4", S), and two morphisms ¢,, ¢, : L — BFH (instead of
p1» P2 L — FH). One may choose L(n) as above as pairs of elements
in BFH(n), such that ¢,(n) and g,(r) may be defined as projections onto
the particular components. In the following we shall always proceed in
this way.

The elements of H(n) are called n-ary operations, the elements of
L(n) identities of nth order. Obviously one can use different n-ary opera-
tions and identities of nth order for the representation of the same
algebraic theory. Thus also the elements of BU(n) are called n-ary
operations.

Example

An important example is the following representation. The represented
algebraic theory is called the algebraic theory of groups.

n H(n) L(n)

0 {e} 1]

1 {s} {(m(1y, s); €0y), (m(1,, €0y); 1)}

2 {m} %}

3 2 {(m(m(ps*, ps®), ps%); m(ps', m(ps?, ps®))}

H(n)=Ln) = @ for n>4
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Explicitly this scheme for the algebraic theory of groups means that
there exist morphisms ¢ : 0 — 1, s: 1 — 1, and m : 2 — 1 such that the
following diagrams are commutative:

(Ix;‘)
——

1 I x1

[1ocm n

I x1—"2 51

where 0, : | — 0 is the morphism from 1 into the final object 0 and
where 1; X m = (ps, m(ps®, p5®)) and m X 1, = (m(ps', ps®), Ps®):

If one interprets e as the neutral element, s as forming inverses, and m
as multiplication, then the diagrams represent the group axioms.

3.2 Algebraic Categories

Let U be an algebraic theory. A product-preserving functor 4 : qA — S
is called an -algebra. A natural transformation f : 4 — B between two
A-algebras A and B is called an W-algebra homomorphism or simply an
A-homomorphism. The full subcategory of Funct(%, S) of product-
preserving functors is denoted by Funct, (2, S) and is called the algebraic
category for the algebraic theory 2. An A-algebra 4 is called canonical if
A(n) = A(1) x -+ x A(1), where the right product is the set of n-tuples
with elements of A(1), and if 4(p,%)(x, ,..., x,) = ¥, for all n and 7.

Let the algebraic theory 2 be represented by H and L, and let 4 be a
canonical A-algebra. Then A induces a product-preserving functor
B: §H — A — S which is a canonical FH-algebra. Let ¢ be an n-ary
operation of H(n), and let A(1) = B(1) = X. Then the map

Bp): X X X X—> X
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is an n-ary operation on the set X in the sense of algebra. Let (g, ) € L(n)
be an identity of nth order. Then the two operations B(p) and B(y)
coincide on the set X, though the n-ary operations ¢ and ¢ in FH may
be different. Thus an identity (or equation) for the operations on the
set X is given. The A-algebra A4 is called an equationally defined algebra.

If A is the algebraic theory of groups and 4 a canonical A-algebra, then
4 is a group. The maps

A(e) 1 {o}— A1), A(s): A(1)— A(l), and A(m): A1) x A(1)— AQ)

interpreted as neutral element, inverse map, and multiplication respec-
tively make the following diagrams commutative

(14¢1),4(s))
—_

A(1) A(1) x A1)
lA(Ol) lA(rn)
©) - AQ)

A1)

(La(1),4(0,)) A1) x A(1)

1401) A(m)

A(1)
A(1) x A(1) x A(1) 22200 401y x A(1)
llAu) X A(m) lA(m)
A(1) x A(1) s 4Q)

since 4 is a functor. Hence A(1) is a group. Conversely, if G is a group
with the multiplication u: G X G — G, the neutral elemente: {@g} — G,
and the inverse o: G — G, then we define A(n) = G X - X G
(n times), A(m) = u, A(e) = ¢, and A(s) = o. If we represent the
algebraic theory U of groups as in Section 3.1, then these data suffice
to define uniquely a canonical FH-algebra A: FH — S. Since G is
a group, all the identities of L hold for this §H-algebra. So this defines,
in fact, a canonical -algebra. This implies the following lemma.

LEMMA 1. There is a bijection between the class of all groups and the
class of all canonical N-algebras, where W is the algebraic theory of groups.
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Let f: A— B be an A-homomorphism of canonical A-algebras. Let
@ : n— 1 be an n-ary operation in UA. Then the following diagram is
commutative:

A(l) X - X A(I)MB(I) x - x B(1)

lA(w) lB(w)

A1) 0 B(1)

In fact, one easily verifies with the operations p,%,..., p,,® that f(n) =
f(1) x -+ x f(1). If fis a map from A(1) to B(l) such that the above
diagram is commutative for all » and all n-ary operations ¢, then f is an
A-homomorphism. Thus the A-homomorphisms are homomorphisms in
the sense of algebra, compatible with the operations. So it suffices to give
a map f: A(1) — B(1) compatible with the n-ary operations in H(n) for
all n, if one defines f(n) = f X - X f. Then f is already an A-homo-
morphism. This follows directly from the definition of FH.

For the example of the algebraic theory of groups, this means that the
group homomorphisms may be bijectively mapped onto the 2-homo-
morphisms of the corresponding W-algebras and, consequently, that the
category of groups is isomorphic to the full subcategory of the canonical
A-algebras of Funct, (A, S).

LeMMA 2. Let U be an algebraic theory. Then each W-algebra A is iso-
morphic to a canonical N-algebra B in Funct, (YU, S).

Proof. Let B(1) := A(1) and B(n) := B(1) x --- X B(1). Let B(p,%)
be the projection onto the sth component of the n-tuples in
B(1) x -+ x B(1). Then B(n) is an n-fold product of B(l) with
itself. Thus there exist uniquely determined isomorphisms 4(n) =~ B(n),
such that for all projections the diagram

A(n) =~ B(n)
A(Dn‘)l lB(Pn‘)
A(1) = B(1)

is commutative. Let ¢ : #— 1 be an arbitrary n-ary operation in 2.
Then B(p) is uniquely determined by the commutativity of

A(n) =~ B(n)

Ae) l lB(¢)

AQ1) = B(1)
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It is easy to verify that B is a canonical U-algebra, which then by con-
struction is isomorphic to 4.
Using Section 2.1, Proposition 3 we obtain the following corollary.

CoROLLARY 1. Let A be the algebraic theory of groups. Then Funct, (4, S)
is equivalent to the category of groups. The full subcategory of canonical
W-algebras is isomorphic to the category of groups.

Thus far we have discussed only the example of groups in detail.
But similar considerations hold for each category of equationally
defined algebras in the sense of (universal) algebra, in particular the
categories S, S*, Ab, xMod, and Ri. For Ri choose for a representation
of the corresponding algebraic theory the

0-ary operations: 0, 1
l-ary operation: —
2-ary operations: -,

The identities are, apart from the group properties with respect to -+,
the associativity and the distributivity of the multiplication, the
commutativity of the addition, and the property of 1 as the neutral
element of the multiplication. The reader can construct the corresponding
diagrams easily.

Sisdefined by H = @ andL = &. Thus the corresponding algebraic
theory is N°.

Another interesting example is ;Mod. Here the operations are e, s,
and m for the group property and, in addition, all elements of R
considered as unary operations. Hence this is an example where H(1)
may be infinite. The identities arise as in the above example for rings
from the defining equations for R-modules.

Let Funct, (2, S) be an algebraic category. The evaluation on 1€ U
defines a functor B : Funct (A, S)— S with B(4) = A(l) and
B( f) = f(1). This functor will be called the forgetful functor. The set
B(A) = A(1) is called the underlying set of the A-algebra 4.

THEOREM. Let U be an algebraic theory. The algebraic category
Funct, (U, S) is complete, the limits are formed argumentwise, and the
forgetful functor into the category of sets preserves limits and is faithful.

Proof. By Section 2.7, Theorem 1 Funct(2, S) is complete and the
limits are formed argumentwise. Since limits commute with products, a
limit of product-preserving functors is again product preserving. Since
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the forgetful functor is the evaluation on 1€ A4 and since limits are
formed argumentwise, B preserves limits. Let f, g: A — B be two
A-homomorphisms and let f(1) = g(1), then f(n) = g(n) for all n e N,
since all diagrams

A(n) 225 B(n)

A(Pn‘)l lB(Pn‘)
A1) =2 B()
are commutative. Consequently, B is faithful.

CoroLLARY 2. Let f: A— B be an U-homomorphism of W-algebras.
[ is a monomorphism in Funct (U, S) if and only if f (1) is injective.

Proof. B, being faithful, reflects monomorphisms (Section 2.12,
Lemma 1). B, preserving limits, preserves monomorphisms (Section 2.6,
Corollary 5).

A subobject f: 4 — B is called a subalgebra. The corollary implies
that Funct, (2, S) is locally small since 9 is faithful and S is locally small.

The Theorem and Corollary 2 are generalizations of some assertions
we made in Chapter 1 for S, S*, Gr, Ab, Ri, and ;Mod.

The example Z — P in Ri of Section 1.5 shows that epimorphisms in
Funct, (%, S) are not necessarily surjective maps (after the application
of the forgetful functor). So the example in Section 1.5, which shows that
in Gr (and also in Ab) the epimorphisms are exactly the surjective maps,
becomes all the more interesting.

3.3 Free Algebras

Let A:N°— U be an algebraic theory. We construct a product-
preserving functor A, : S® — U, which is bijective on the object classes,
and a full faithful functor 7, : A — A, such that the diagram

Ne -2, 9

l |5

S0 22, 91,

is commutative where N°— SO is the natural embedding. We may
identify the objects of U, with the objects in S For two sets X and ¥,
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we define Mory (X, ¥) = Mory (X, 1)¥. Then A, will become a
product-preserving functor.

For the definition of Mory (X, 1) let X* be the set of triples (f, 7, g)
where f : X — n is a morphism in S° and where g : # — 1 is a morphism
in A. Here n is a finite set in N°% We call two elements (f, n, g) and
(f',n',g’) in X* equivalent if there is a finite set #” in N° and if there
are morphisms X — n", n" — n’, and n” — n in S° such that the diagrams

/
X —n" in 8¢

R €—3—> I

RN
N

Ve

’

3(——3-—>§

are commutative.

This relation is an equivalence relation. We only have to show the
transitivity. Let (f,n,g) ~ (f',n',g") and (f', 7', g) ~(f",n",g")
and let n* and n** be elements which induce the equivalences. Let m be
the fiber product of n* — n’ with n** — »’. Then the diagram

2N
/

N\

3*/
ZN
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is commutative. (Compare the morphisms in the corresponding cate-
gories.) Let Mory_(X, 1) be the set of equivalence classes.

Lemma 1. U, is a category.

Proof. Let (f, n, g) be a representative of an element in Mory (X, 1).
Then f° is a map from 7 into X in the category S. Let #’ be the image
of n under this map. Then we may decompose f: X —n as follows
X L' —n. Obviously then (f',n’,gh) is equivalent to (f,n, 2).
Furthermore, »n' is (up to equivalence of monomorphisms) a finite
subset of X. Such a representative will be called reduced.

Let ((f;s7,8iey): X—Y and (f',n,g):Y—>1 be reduced
representatives of morphisms in U, . Let r = 3 ., 7; (disjoint union or
coproduct in N). Then by the product property of 7 in S°, the following
morphisms are defined: f: X — 7 by the f; and g:r —n’ by the g;.
Then let the composition of the given morphisms be (f, 7, g’g). This
composition still depends on the choice of the representatives. Let
(f",n", g") be reduced and equivalent to (f', n’, g'). Without loss of
generality we may assume that ' C#” C Y in S and that Af” = f’ and
gh=g"forh:n"—ninS°% Letr = Y.~ n,;, then

r/ n”

A N

X 1

N

r ————n'

is commutative. Similarly one shows that the composition does not
depend on the choice of the representatives of the (f;, n;, g;).

Let p,: X — 1 be the projections from X into 1 in S° Then
((pz» 1, 11)4ex) is the identity on X in U, . In fact, given (f, 7, g) : X — 1,
then (f’ n, g)((pa: ’ 1’ ll)xeX) = (f) n, g)' Given ((fz » Mg ’gi)iex) : Y_>X’

then (p,, 1, L)((fis 755 8)iex) = (S Mz 5 £2)-
To prove the associativity let ((f, , 7, , &)yer) : X = Y,

((fermes £2)eez) : Y — 2, and (f,n,g):Z—1

be reduced representatives of morphisms in %, . It is easy to see that

Y Y, =3%n with r=>n

zen yen, yer zen

implies that the composition is associative.
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CorOLLARY. There exists a product-preserving functor A, : S°— U,
which 1is bijective on the classes of objects and a full faithful functor
I+ W — U, such that

No 2, 9

| |

Ax
S — A,
is commutative.

Proof. It suffices to define A, on the projections p,: X — 1. Let
AL(pz) = (P, 1, 1;). Then it is clear that A, preserves products. Let
Iy(n) =n and L (g) = (1,,n,g) for g:n—1 in A. Since we have
(I,,n,8) ~ (g1, 1,) for g : n— 1 in N9, the square is commutative.

We still have to show that .7, is full and faithful. Given f, g : n — 1
in A. Let (1,,n,f)~(1,,n g in A, . Then there exist »’ and
[:n— n' with a commutative diagram

\\/

Hence #/ = 1,, and &kl = 1, . Furthermore, f2 = gk. By composition
with 1 we then get f = g. Thus .Z, is faithful. Now let 2’ 5>z 2> 1 in 9,

be given. Then (f,n,g) ~(1,-,7',gf) and S (gf) = (lynf , 1, gf).
Hence £, is full and faithful.

Lemma 2. Let A: U — S be a product-preserving functor. Then there
exists up to an isomorphism exactly ome product-preserving functor

A Uy, — S with A'S, = A.

Proof. In order that A'%, = 4 and that A4’ preserves products,
we must have A'(X) =~ A'(1)*¥ and A'(1) = A(l). Furthermore,
A'(py, 1, 1,) == A(1)?= and 4A'(1, , n, g = A(g) must hold. By compo-
sition A'(f, n, g) =~ A(g) A(1)’ must hold. With these definitions,
A’ is a product-preserving functor and, in fact, 4’4, = 4 holds.
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Levmma 3. Let A, B : A — S be product-preserving functors and A’, B’
be the extensions to AU, as constructed in Lemma 2. Let ¢ : A — B be a
natural transformation. Then there is exactly one natural transformation
¢ : A — B with ¢' £, = ¢.

Proof. We define ¢'(X) =~ ¢(1)¥ : A(1)* — B(1)*. Obviously this is
the only possibility for a definition of ¢’ because the functors 4’ and B’
preserve products. At the same time it is clear that ¢’ behaves naturally
with respect to all projections between the products. But ¢’ is natural
also with respect to the morphisms in 2, since we only have to consider
the restriction ¢'.%, = ¢.

THEOREM 1. Let U be an algebraic theory. The forgetful functor
¥" : Funct, (¥, S) — S s monadic.

Proof. We define a functor & : S — Funct (U, S) by F(X)(-) =
Mory (X, -). Then

Mors(X, ¥"4) o Mors(X, A(1)) =~ A(1)* =~ 4'(X)

& Mor,(Mor,_(X, —), 4') = Mor(F(X), 4)

holds naturally for X € S and 4 € Funct, (%, S) where we used the last
two lemmas.

Now we use Section 2.3, Theorem 2. Let f,, f,: A — B be a ¥"-
contractible pair in Funct, (%, S). Since there are difference cokernels
in S we get a commutative diagram in S:

B(l)——2®_, B(1)
oA
A(1)
h(1) lfx h(1)
B(1)
s

)——F—— <

where we wrote f; instead of f,(1). If we form the n-fold product of all
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objects and morphisms of this diagram, we get again a corresponding
diagram. In particular

fo(ﬂ) n
Am) = Bn) =2, cqayr

fl(n)

is a difference cokernel. Given ¢ : # — 1 we get a commutative diagram

A(n) —= B(n) — C(1)"
lA(tr) lB(tr) lC(w)
A(1) = B(1) — (1)

where C(p) is uniquely determined by the property of the difference
cokernel. Thus C: A — S with C(n) := C(1)" is a product-preserving
functor and %: B— C a natural transformation which is uniquely
determined by #(1) : B(1) — C(1). Since C(n) is a difference cokernel
for all e A, C is a difference cokernel of (f,, f;) in Funct (%, S).

This theorem shows that the -algebras and A-homomorphisms are
exactly the ¥ % -algebras and ¥"%-homomorphisms in the sense of
Section 2.3. Thus the free ¥"% -algebras are also called free A-algebras.
F(X) is called free U-algebra freely generated by the set X.

PROPOSITION. Let 3 be the monad defined by ¥~ and F . Then there exists
an isomorphism between (S 4 )° (in the sense of Section 2.3) and W, such that

SO
7N

(Sxr)

Ay
is commutative.

Proof. The correspondence for the objects is clear because (&)° and
A, are bijective for the object classes. For the morphisms

Mory (X, Y) = Mory(Mory_ (Y, —), Mory_(X, —))

holds naturally in the objects X and Y in U, by the Yoneda lemma. By
definition, the morphisms between the objects X and Y in S, are
exactly the morphisms of the s#-algebras (#°X, uX) and (#°Y, uY) and
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hence the morphisms of the free U-algebras F(X) = Mory (X, —)
and F(Y) = Mory (Y, —). By definition

Mors (Y, X) = Mor/(Mory_ (Y, —), Mory_(X, —))

is natural in the %,-objects (= S,-objects). Hence Mory (X, V) =~
Morgo( X, Y) with € =S,. Let f: X— X and g: Y — Y be
morphisms in A, and let f’ and g’ be the corresponding morphisms in
(S»)% then the Yoneda lemma implies that

Mor‘l[oo(Xlx YI) = Mor@O(Xlr YI)
Morg[w(f’g)l lMorgo(f',g')

Moryo(X, Y) == Morg(X, Y)

is commutative. So the compositions under this application of morphisms
coincide.

This clarifies the significance of the construction of Kleisli in
Section 2.3, Theorem 1. Conversely, we now have a method at hand
to reconstruct the algebraic theory from an algebraic category
Funct, (%, S) and the corresponding forgetful functor. One has to restrict
(L%)° : S® — (S,.)° only to the full subcategory N° of S°.

With these means we can also show the significance of consistent
algebraic theories.

THEOREM 2. Let A : N°— U be an algebraic theory, Funct, (U, S) the
corresponding algebraic theory and H the monad defined by the monadic
forgetful functor ¥~ : Funct (U, S) — S. Then the following are equivalent:

(1) A : N°— U is consistent.

(2) There exists an W-algebra A whose underlying set has more than
one element.

(3) The natural transformation € : 1dg — S is argumentwise a mono-
morphism.

4y o :S—S is faithful.

Proof. (1) = (2): Since A is faithful, Mory(n, 1) has at least z elements,
the projections. But Mory(n, —) is the free algebra generated by #.
(2) = (3): Let (4, «) be an s#-algebra and let 4 have more than
one element. Let X be an arbitrary set. Then there is an injective map
1: X — A*. Since ae(A): A — H# A — A is the identity on 4 the map
€(4) is injective and hence also €(A4):. Since ¢ is a natural transformation
we get e(A) = H(I) «(X). Thus ¢(X) : X — #(X) is a monomorphism.
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(3) > (4): Let f, g: X— Y be two maps in S with J#f = H#pg.
Since €(Y) is a monomorphism and €(Y)f = #fe(X), we get f =g
Hence, 57 is faithful.

(4) = (1): L is faithful because S is (Section 2.3, Corollary). So
(&)° restricted to NO is faithful and consequently A also is.

3.4 Algebraic Functors

Let U be an algebraic theory, ¥” : Funct, (¥, S) — S the corresponding
forgetful functor, and 5# the corresponding monad.

Lemma 1. Let f: (A4, o) — (B, B) be a morphism of S -algebras. Then
on the set f(A) = C there exists exactly ome H-algebra structure
y: H#C—C, such that the factorization morphisms g: A— C and
h: C — B of f are morphisms of H# -algebras.

Proof. We use the following commutative diagram:
g g

#42 wc 2 wB

s

where hg = f, g is a surjective map, and % is an injective map, that is
the factorization of f through the image of f. Since g is a retraction and A
is a section (in S), H#'g and Sk is a factorization of J#f through the
image of J#f. Let x and y be the factorization of B#f = fa through
the image. Then there are maps y; and y, making the above diagram
commutative. But y = y,y, is the only morphism making both squares
in the diagram commutative, since % is a monomorphism and 5#g is an
epimorphism. If one uses the fact that g, 5#£g, and #°#g are retractions,
then the axioms for an algebra are easy to verify.

B

4=t B

CoroLLARY 1. Funct (W, S) has epimorphic images. The resulting
epimorphisms are surjective on the underlying sets.
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Proof. The corollary is implied by Lemma 1 of this section, Corollary 2
of Section 3.2, and Section 3.3, Theorem 1.

Although Funct, (%, S) has epimorphic images, the example of Ri
shows that Funct, (2, S) is not balanced in general. On the other hand,
a bijective morphism of S#-algebras is an isomorphism because #
preserves isomorphisms.

Let (4, «) be an s -algebra and X a subset of 4. This defines a
morphism F#(X) — (4, «). Let (B, B) be the image of this morphism.
Then X C B C 4 and (B, B) is the smallest subalgebra of (4, «) contain-
ing X. In fact, there is an s#-homomorphism from ¥*(X) into each
subalgebra of (4, «) containing X. (B, B) is called the subalgebra of
(4, o) generated by X. An S -algebra (A4, «) is generated by the set X if
X C A4 and if (4, o) coincides with the subalgebra of (4, «) generated
by X. If X is finite, then (A4, o) is said to be finitely generated.

LemMa 2. There is only a set of nomisomorphic S -algebras generated
by X.

Proof. Let XC A4 and f: s##X — A be a surjective map. Then on 4
there is at most one J#-algebra structure a:# A4 — A such that
f: &*(X)— (4, «) is a homomorphism of algebras. In fact, in the
diagram

wx 2 wa

w| s

#x—' .4

Hf is a surjective map. There is an s#-algebra structure on 4 if and
only if (4, «) is generated by X. Since there is only a set of noniso-
morphic surjective maps with domain 5# X the lemma is proved.

CoRrOLLARY 2. There is only a set of nonisomorphic -algebras
generated by epimorphic images of X.

Proof. X has only a set of nonisomorphic epimorphic images.

Let ¥ : A — B be a morphism of algebraic theories. By composition
% induces a functor

Funct, (%, S) : Funct, (B, S) — Funct, (U, S)
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called the algebraic functor. Furthermore, the diagram

Funct, (B, S) — > Funct (%, S)
N A
S

is commutative, where J = Funct, (%, S) and where the ¥/ are the
forgetful functors.

LemMa 3. Let A € Funct, (U, S) and B € Funct, (B, S).Letf: A—> I B
be an U-homomorphism. Then there exists a minimal B-subalgebra B’ of B
such that there is an W-homomorphism g : A — T B’ making the diagram

ALt .TP

N

I B
commutative.

Proof. Let & = Funct (%, S). The functor Mor(4, 7 —):
Funct,(B, S) - S preserves limits and Funct,(B, S) is locally small
and complete. By the Lemma of Section 2.11, to each f : 4 — 7 Bthereis
a minimal subobject B’ C B and a morphism g : 4 — 7 B’ such that
the diagram becomes commutative.

THEOREM 1. Each algebraic functor is monadic.

Proof. Let 9, ¥,, and ¥, be as in Lemma 3. Let f,, f,: A— B in
Funct,(B, S) be J -contractlble Then f,, f, is ¥;-contractible too
because of ¥] = ¥37 . There exists a difference cokernel g:9B—~C
of If,, 7, f1 in Funct, (U, S) if and only if there exists a difference
cokernel h: ¥, — X of ¥,7f,, ¥»7 f, in S. Then there exists also
a difference cokernel 2 : B — D of f,, f; in Funct,(B, S) and ¥,k =

Vik = h = ¥,g. Since ¥, generates the difference cokernels under
cons1derat10n we get Tk = g. k is uniquely determined by ¥,¢ = A
since ¥; is monadic. Hence J generates difference cokernels of J -
contractible pairs.

By Section 2.3, Lemma 5 the functor ¥, generates isomorphisms.
There is a uniquely determined morphism f: 7 lim % —1lim 7% in
Funct (¥, S) for a diagram 2 in Funct, (8, S) which is determined by
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the universal property of the limit. But ¥, f is an isomorphism since
¥, = V57 preserves limits. Hence f is an isomorphism. Consequently,
T preserves limits.

By Section 2.9, Theorem 2, it is sufficient to find solution sets for .
Let A € Funct,(A, S) and f: 4 —> B be an A-homomorphism. By
Lemma 3, the set given in Corollary 2 is a solution set of 4 with respect
to J.

THEOREM 2. Let U be an algebraic theory. Then the functor
Funct, (¥, S) — Funct(A, S) defined by the embedding is monadic.

Proof. Itissufficient to show that Funct, (%, S) is a reflexive subcategory
of Funct(¥, S) (Section 2.4, Theorem 2). By the construction of the
limits in both categories (argumentwise) the embedding preserves limits.
Let A4 € Funct(, S) and B € Funct, (%, S). Let f: 4 — B be a natural
transformation. Let B’ C B be the U-subalgebra of B generated by
f(A(1)). Let ¢ : n— 1 be an n-ary operation in . Then the following
diagram is commutative:

f(n)

Ale) B'(n) B(#)

A(m) B(n)

B'(e)

(1)

A

B(1)

A() B(1)

Here k(n) is uniquely defined by the fact that B’(n) is an n-fold product
of B'(1) with itself. For ¢ = p,? the diagram is commutative by defini-
tion. In the general case we only have to prove the commutativity
B'(¢) k(n) = k(1) A(p). But this holds because #(1) is an injective
morphism. Thus, by Corollary 2 a solution set is given.

CoroLLaRY 3. Funct, (U, S) is cocomplete.

Proof. Section 2.11, Theorem 3 and the dual of Section 2.7, Theorem 1
imply the corollary.
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Let J : ¥ — 2 be a functor. A morphism f: 4 — B is called a
relatively split epimorphism if f is an epimorphism and 7 f is a retraction.
Dually, one defines a relatively split monomorphism. An object Pe € is
said to be relatively projective (relatively injective) if for all relatively split
epimorphisms (monomorphisms) fin € the map Mory(P, f) (Mor4(f, P))
is surjective. If J is the identity functor, then all objects are relatively
projective and relatively injective (Section 1.10, Lemma 3). If 9 has
a left adjoint functor &, then D is relatively projective for all D € 2.
In fact, Mor( (¥ D, f) ~ Morgy(D, 7f) is surjective.

Let 4 be an algebraic functor with the left adjoint functor <. We
say that the objects D are relatively free. Then each relatively free
object is relatively projective. Since ¥” : Funct, (2, S) — S is also an
algebraic functor, namely the functor induced by A : N® — 9, each free
A-algebra is relatively projective with respect to the surjective U-
hemomorphisms. In this case we say the relatively projective objects
are also 2A-projective.

TueOREM 3. Let U be an algebraic theory. Then there exists a finitely
generated, -projective generator in Funct, (A, S).

Proof. The free A-algebra Mory(1, —) has this property. The only
thing to show is that Mory(1, —) is a generator. This assertion follows
from Mor(Morg(1, —), A) =~ #°(4) and from the fact that ¥ is faithful.

Let (A4, «) be an -algebra. A congruence on (A, «) is a kernel pair
x%,y:p—A4 in S such that (x,y):p—> A X A defines a subalgebra
(p, ) of (4, a) X (4, «). Clearly, (x,y):p—> A X A4 is injective since
(%, y)h = (x, y)k implies xh = xk and yh = yk and thus & = k by the
uniqueness of the factorization morphism. Furthermore, = is uniquely
determined by the algebra structure on 4 X A4.

Lemma 4. Let (4, «) be an N-algebra. x, y : p — A is a congruence on
(4, ) if and only if there is an algebra structure = : H'p —p on p such
that x,y : (p, ) — (4, ) is a kernel pair in Funct, (4, S).

Proof. Let x,y be a kernel pair in Funct,(2,S). Since ¥": Funct,(2,S) - S
preserves limits x, ¥ is a kernel pair in S. Furthermore, (x, y) : (p, 7) —
(4, o) X (4, «) is a subalgebra since Funct, (2, S) is complete.

Now let x, y : p— A be a congruence. Since (x, y) is an 2-homo-
morphism, also x = p,(x, ¥) and y = py(x, y) are A-homomorphisms.
Now let # : A — C be a difference cokernel for x, y in S. Then there is a
k:C— A with hk = 1.. Then hl, = h = hkh for the pair of mor-
phisms 1,, k2 : A — A. Thus there exists exactly one g : 4 — B with
x¢g = 1, and yg = kh and hence ygx = khx = khy = ygy. So
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x, y:(p,7) —> (4, «) is a ¥ -contractible pair. Consequently, there is
an A-algebra structure on C such that (C, y) is a difference cokernel of
x, vy in Funct (%, S) (Section 2.3, Lemma 4 and Section 3.3, Theorem 1).
By Section 2.6, Lemma 4, a kernel pair in Funct (2, S) of (4, o) — (C, y)
has p as underlying set up to an isomorphism. However, the -algebra
structure on p is uniquely determined by the injective morphism
(%, ) :p—> A xX A. Hence %, y: (p, 7) > (4, a) is a kernel pair in
Funct (%, S).

We denote the difference cokernel of a congruence x, y : (p, 7) = (4, )
by (A4/p, o) or simply by A/p since the corresponding A-algebra structure
is uniquely determined. A% = 4 X 4 and A with the morphisms
Py PoiAX A—>Aand 1,, 1,: A— A are always congruences on

(4, o).

CoroLLARY 4. An U-homomorphism [ : (4, ) — (C, y) is a difference
cokernel in Funct, (U, S) if and only if f : A — C is surjective.

Proof. 'The proof of Lemma 4 implies that differences cokernels are
surjective maps. Now let f: (4, «) > (C, y) be an A-homomorphism
with a surjective map f: 4 — C. Let &%, y : (p, ) — (4, o) be a kernel
pair of f. Then x, y : p — A is a kernel pair of fin S. Since f: 4 — C'is
a difference cokernel for x, y in S we get that f: (4, o) > (B, B) is a
difference cokernel for x, y in Funct, (Y, S) as in the proof of Lemma 4.

THEOREM 4 (homomorphism theorem). Let x, y:p—>A and «/,
y" i p" — A be congruences on (4, ). Let @ : p — p’ be given with x'¢ = x
and y'p =y (p Cp’). Let g: (A, ) — Alp be a difference cokernel of
x,y and h: (A4, «) — Afp’ be a difference cokernel of x', y'. Then there is
exactly one N-homomorphism f: Alp — Afp’ such that

(4, o) o Afp
Alp’

is commutative and f is surjective (as a set map).

Proof. We have (x', y')p = (x, y) in S. Since (x’, ¥’) is injective
'y y)om = (x', y') 7'# o implies om = 7' H ¢, that is, ¢ is an U-
homomorphism. Then the existence of f follows from the properties
of the difference cokernels. f is surjective because % is surjective.
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CoROLLARY 5. Let f: (4, a) — (B, B) be an W-homomorphism and let
x, ¥ 1 (p, m) — (4, «) be a kernel pair of f. Then Alp ~1Im( f) as -algebras.

Proof. The morphism (4, o) — Im( f) is surjective (Corollary 1) hence,
a difference cokernel of its kernel pair (Corollary 4 and Section 2.6,
Lemma 4). Since the kernel pairs of (4, o) —Im(f)and f: (4, «) — (B, B)
coincide on the underlying sets, they coincide in Funct,(4, S). This
implies the assertion.

Lemma 5. Let A be a fiber product of B and B’ over C and let D be a fiber
product of E and E' over F. Let a morphism of diagrams (B, B’, C) —
(E, E', F) be given such that C — F is a monomorphism. Then
Bx B —EXE and D— E X E' are uniquely defined and A is
a fiber product of B x B’ and D over E X E'.

Proof. Given X —B X B'and X > Dwith (X >B X B —E X E') =
(X —- D — E X E); then

(X>BXB —>B—>C—F)=(X—>BXB —B —C-—F)

Since C — F is a monomorphism, we get (X —>B X B'—>B— () =
(X — B X B"— B'— C). Thus there exists exactly one morphism
X—A4 with ( X>A—->BXxB)=(X—>BXxB) (X—>E->F)=
(X — E' - F) implies that there is exactly one morphism X — D
with (XD —>E)=(X—E) and (X—>D—E') = (X— E’). But
both the original morphism X — D and X — 4 — D have this property.
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Thus (X - D) = (X— A -—> D) and 4 is a fiber product of B x B’
and D over E X E'.

THEOREM 5 (first isomorphism theorem). Let (4, «) be an W-algebra.
Let i: (B, B) — (4, o) be an U-subalgebra and let x, y : (p, ) — (4, )
be a congruence on A. Let h: (A4, a)-— Afp be a difference cokernel of
%, y. Let p(B) = h~'(hi(B)) in S. Then

(1) p(B) is a subalgebra of (4, «);

(2) p N B%is a congruence on B;

(3) B/p N B? ~ p(B)/p as U-algebras.
Proof. hi(B) is an A-algebra as the image of 4 (Lemma 1 and
Corollary 1). p(B) = h~Y(hi(B)) is an A-algebra as a limit of A-algebras
(Section 3.2, Theorem). p " B2 = p N (B X B) is a kernel pair of
hi: (B, B)— (4, o) — Alp, for

ol hi
(b B2 7)== (B, ) — Ao

LT
(P, ").? (4, 0)— AJp

is a special case of Lemma 5. Similarly, p N p(B?) is a kernel pair of
p(B) — (4, o) = Afp. Thus,

Blp N B® = hi(B) = h(h~}(ki(B)) = p(B)/p N p(B)*
If a € p(B) and if a is p-equivalent to b, then also b € p(B), since a and b

are mapped onto the same element in A/p. Thus, p(B) is saturated with
respect to p. So we write p(B)/p instead of p(B)/p N p(B)2.

THEOREM 6 (second isomorphism theorem). Let q Cp (C A x A) be
congruences on A. Let p[q be the image of p > A4 X A— Alq X A|q.
Then p/q is a congruence on A|q and

Alp = (A/a)/(»/q)

Proof. Let r be the kernel pair of 4/q — Afp. Then Afp =~ (4/q)/x
by Corollary 4 and Theorem 4. 4 — A/p and 4/q— A/p induce a
morphism of kernel pairs p — r. By Lemma 5,

p——> AX A4

! ls

v > 4jq x Alq
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is a fiber product in Funct, (2, S) and in S. Since the set-theoretic fiber
product is {(a,b)er X A X A |f(a) = g(b)} and since g is surjective,
p — 1 is also surjective. Hence, p — r — A/q X A/q is a decomposition
ofp—>A X A— A|q X A/q through the image, thus r = p/q.

3.5 Examples of Algebraic Theories and Functors

We know already some examples of algebraic categories namely S,
S* Gr, Ab, ;Mod and Ri. To give more examples in a convenient
manner we shall partly use the usual symbols (4, -, [,], etc.) for the
definition of the operations, and we shall represent the identities as
equations between the elements of Mory(#n, 1). The reader will easily
translate these data into the general formalism, if he compares them with
the example of the algebraic theory of groups.

Examples
1.  M-(multiplicative) object: The algebraic theory of M-objects is
defined by
(1) a multiplication p:2—1
(2) without identities
2. Semigroup:
(1) p:2—-1 with  u(x, y) = xy
2) (x)z = x(y2)
3. Monoid:
(1) p:2—1; e: 01 with  u(x, y) = xy; e(w,) =0
(2) Ox =x =a0; (xy)z = x(y2)
4. H-(Hopf)object:

1)y p:2—1;
2) 0x =« =

e:0—1 with pu(x, y) = xy; e(lw) =0
x0
5. Quasigroup:
1) a«a:2—>1; B:2—>1; y:2—1 with
ofx, y) = xy; Px,y) = x/y; v(xy) = *\y
(2) (y)y == =x=\y) =y 2Nx) =y (@)y==x
These equations mean that the equation xy = z is uniquely solvable
with respect to each of the three elements.
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10.

11.

12.

13.

14.
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Loop:
(1) Quasigroup together with e:0—1 and e(w,) =0
2) 0x=x=x0
Here the operations and the identities of the quasigroup shall hold.
Group:
1y p:2—1; s:1—>1; e:0—>1 with  u(x, y) = xy;
s(x) = x71; e(w,) =1
2) lx=2x xx=1; (xy)z = x(y2)
Ring:
(1) Group (p, s, ) together with »:2— 1 with
px,y) = x +y; s(x) = —x; elwy) = 0; v(x,y) = xy
2 x+y=y+x x(y+2= @)+ (x2); (*x+yz=
(x2) + (y%2)
Unitary ring:
(1) Ringtogether with ¢ :0—1 with  €'(w,) = 1
2) lx=x=xl
Associative ring:
(1) Ring together with
(2) (x)z = x(y2)
Commutative ring:
(1) Ring together with
(2) xy =y«
Anticommutative ring:
(1) Ring together with
2) x=x=0
This identity implies xy = —yx. The converse does not hold in
general.
Radical ring:
(1) Associative ring together with g:1—1 with g(x) =«
2 x4+x4+xx=x+2F+xx=0
Lie ring:

(1) Anticommutative ring (where we write »(x,y) = [x, y]
instead of »(x, y) = xy)

(2) [x’ [.y9 z]] + [y) [z) x]] + [z’ [x’ y]] =0
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16.

17.

18.

19.

20.

21.

22.

23.

24.
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Jordan ring:
(1) Commutative ring together with
(2) ((xx)y)x = (xx)(x)
Alternative ring:
(1) Ring together with
(2) (x)y = x(xy); 2(yy) = ()y
R-module (for an associative ring):

(1) Commutative group together with r:1—1 forall reR
2) ¢+rym=rm~+rm; rim+ m')=rm+ rm';

r(r’'m) = (rr')m

Unitary R-module (for a unitary, associative ring R):

(1) R-module together with
2) Im=m

Lie module (for a Lie ring R):
(1) Commutative group together with 7:1—1 forall reR
2) ¢+ 7)m = (rm) + (r'm); [r,7']m = (r('m)) — (r'(rm));
r(m 4+ m') = (rm) + (rm’)
Jordan module (for a Jordan ring R):
(1) Commutative group together with r:1—1 forall reR
2) (r + 7 Yym = (rm) + (r'm); r(m 4+ m') = (rm) + (rm’);
r(r'((rm) + (rm))) = (r7")((rm) + (rm)); r((r)m) = (rr)(rm)
S-right-module (for an associative ring S)
like an S-module, but (ss")m = s’(sm) holds instead of (ss"ym = s(s'm)

R-S-bimodule: ,
(1) R-module and S-module with the same commutative group
with
(2) r(sm) = s(rm) forall reR and seS
k-algebra (with an associative, commutative, unitary ring k):
(1) Ring together with 7:1—1 forallrek
(2) (+ 7= (rx) + (r'x); 7(x +y) = (r2) + (r9); (17')x =
r(r'z); le = x; r(xy) = (rx)y = x(ry)
k-Lie-algebra, k- Jordan-algebra, and alternative k-algebra arise from

Example 23 if we replace “ring” by “Lie ring,” “Jordan ring,” or
““alternative ring,” respectively.
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25. Nilalgegra of degree n:

(1) k-algebra together with
2) a»n=0

26. Nilpotent algebra of degree n:

(1) k-algebra together with
(2) %%y (- wp) ) =0

It is interesting to know which algebraic structures are not equationally
defined. In special cases it is easy to find properties of algebraic categories
which do not hold in these cases. For example, the fields (with unitary
ring homomorphisms) do not form an algebraic category because not
each set-theoretic product of two fields can be considered as a field
again (Section 3.2, Theorem). For the same reason, integral domains
(with unitary ring homomorphisms) do not form an algebraic category
(example of Section 2.12). The divisible abelian groups do not form an
algebraic category because the monomorphisms are not always injective
maps (Section 3.2, Corollary 2 and Section 1.5, Example 1).

Morphisms of algebraic theories always define algebraic functors.
Many universal constructions in algebra are left adjoint functors of
algebraic functors. Most morphisms of algebraic theories are defined by
adding operations and (or) identities, as we found already in the examples
of algebraic theories. In the following examples we shall not give special
explanations if we use the above mentioned construction.

Examples

27. U (= algebraic theory of groups) — B (= algebraic theory of
commutative groups) induces an algebraic functor

Funct, (B, S) — Funct (%, S)
The left adjoint functor is called the commutator factor group.

28. A (= k-module) > B (= associative, unitary k-algebra) defines
(as in Example 27) the functor tensor algebra.

29. A (= k-module) — B (= associative, commutative, unitary
k-algebra) defines the functor symmetric algebra.

30. A (= k-module) — B (= associative, anticommutative k-algebra)
defines the functor exterior algebra.

31. U (= associative ring) — B (= associative, unitary ring) defines
the functor adjunction of a unit.
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32. U (= k-Lie-algebra) — B (= unitary, associative k-algebra), where
the Lie-multiplication [,] is mapped into the operation xy — yx
with the associative multiplication, defines the functor umiversal
enveloping algebra of a Lie algebra.

33. A (= k-Jordan-algebra) — B (= unitary, associative k-algebra),
where the Jordan multiplication is mapped into the operation
xy + yx with the associative multiplication, defines the functor
universal enveloping algebra of a Jordan-algebra.

34. A (= monoid) — B (= unitary, associative ring) defines the
functor monoid ring.

35. Let f: k— k' be a unitary ring homomorphism of commutative,
unitary, associative rings.
A (= k-module or k-algebra) — B (= k'-module or k’-algebra
respectively) defines the functor base (-ring) extension.

36. U (= N° — B (= unitary, associative (commutative) k-algebra)
defines the functor (commutative) polynomial algebra.

3.6 Algebras in Arbitrary Categories

Let € be an arbitrary category and A an algebraic theory. An
U-object in € is an object A € ¥ together with a functor
&7 : €° — Funct, (U, S), such that

%° —Z» Funct (21, S)
WA
S

is commutative with &, = Mor(—, 4). This means that each set
Morg(C, A) carries the structure of an A-algebra and that each morphism
f: C— C’" induces an A-homomorphism Morg(C’, A) — Mory(C, A).
Here we meet again the common principle (see Section 1.5): Generalize
notions from the category S to the category € with the help of the
bifunctor Morg(—, —) in the covariant argument.

One wants to carry out many computations and definitions for
A-objects as for W-algebras. But A-objects (4, &) have no elements
in general. As a substitute we have the elements of the -algebras
Mor4(C, A4), often denoted by A(C) (or better &/(C)). Then one has to
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check in addition that the computations and definitions behave naturally
with respect to C.

An U-morphism f: (4, &) — (B, #) is a natural transformation
f: A— B. This defines a natural transformation ¥°f : A, — hp, which
again defines a morphism f*: 44— B by the Yoneda lemma. The
category of -objects and A-morphisms will be denoted by €™ and
will be called category of N-objects in €.

If 4 : A — B is a morphism of algebraic theories, then this induces a
functor ¥ : g% — g,

THEOREM 1. Let € be a category with finite products. Then there is an
equivalence €™ ~ Funct (U, ¥) such that, for all morphisms % : B — A
of algebraic theories, the diagram

€N ~ Funkt (A, ¥)
vl%l lFunktn(fi,Z’)

%® ~ Funkt (B, %)

is commutative.

Proof. Let (A, &) be an A-object. Then we can regard o7 as a bifunctor
& 6% X S with

S(C, ) 2= (C, 1) = Morg(C, A)" = Mor(C, 4")
and
2(C, p) == Morg(C, A®) : Morg(C, A™) — Morg(C, A%)

where A7 : A" — A" exists by the Yonéda lemma.

Let f : (4, &/) — (B, #) be an A-morphism and let f*: 4 — B be
induced by f. Then, f(C, n) >~ Morg(C, (f *)*). These applications
define a functor €™ — Funct,(, %).

Let 2" € Funct (2, €). Then 4 = Z'(1) and /(C, n) = Mor4(C, 4™)
define an object in ™. In fact, let ¢ : # — 1 be an n-ary operation in 9,
then we get Z(p): A — A, hence H(C, ) = Morg(C, Z(p)) :
Morg(C, A™) — Morg(C, A).

Given x : £ —> 2" in Funct, (U, ¥) we obtain

Morg(—, x(—)) : Morg(—, X(—)) = Morg(—, X'(—))

and hence a morphism &/ — &7’ where &7’ is determined by Z”. This
defines a functor Funct,(, ¥) — €™. These two functors are, by
construction, inverse to each other.
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With this construction it is easy to verify that ¢ : 8 — A defines the
commutative diagram in Theorem 1.

A forgetful functor Z from €™ to ¥ is defined by (4,7) > A and
f+— f*; then this forgetful functor, composed with the equivalence
constructed in the proof, is the evaluation on the object 1, hence
¥ : Funct (¥, ¥) - €.

Now we show that product-preserving functors preserve -objects
and A-morphisms. This is stated more preciselyin the following corollary.

COROLLARY 1. Let € and & be categories with finite products. Let
F :€—>Z be a product-preserving functor. Then there is a functor
G . €N — D such that the diagram

g _2, g

%l l%
-2 9

is commutative.

Proof. Let 9’ = Funct (%, #). Then the diagram

M ~ Funke, (A, €) —> Funkt (U, D) o~ PV

LA Nk

€ 9

is commutative for FY¥(X) = FX(1) = ¥V 9 (Z) and F¥(x) =
Fx(1) = V9 (x).

In particular each representable functor Morg(C, —):% — S
preserves products, hence 2-objects and A-morphisms. But this was the
way U-objects and A-morphisms were defined.

A co-A-object in € is an A-object in F°. A co-U-morphism in € is an
A-morphism in %°.

THEOREM 2. Let U be an algebraic theory. Then the free N-algebras in
Funct (A, S) are co-U-objects and the free WA-homomorphisms are
co-N-morphisms.

Proof. Let XeS and A4eFunct (U, S). Then Mor(F X, 4) =~
Morg(X, " 4) natural in X and 4. But since 4 is an U-algebra,
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Morg(X, ¥"A) carries the structure of an A-algebra (namely the structure
of A%). This again is natural in X and 4. Thus

Mor/{(# X, —) : Funct, (U, S) — Funct (2, S)

that is, # X is a co-U-object in Funct,(2A, S). Similarly, one proves the
assertion for the co-2[-morphisms.

By a result of Kan, the free €-algebras and 2[-homomorphisms coincide
with the co-2-objects and co-U-morphisms in Funct, (U, S) in the case
of the algebraic theory of groups . This assertion, however, does not
hold for arbitrary algebraic theories.

Let A: N°— 2 and B : N°— B be algebraic theories. We define a
tensor product A @ B of algebraic theories:

H(n) = Mory(n, 1) U Morg(n, 1)
L(n) = Ly(n) U La(n) Y {(A(."), B(pa"))}

U A{(ds(pa X 0 X @a)y pals X 0 X Yp))}
where Ly(n) and Ly(n) are the identities occurring in the representation
of A and B by FB(A) and FV(B) respectively, and where
@4 € Mory(m, 1), € Morg(r, 1), ¢p X -+ X ¢z € Mory(n, m), and
@, X ** X @4 € Morg(n, 7). All unions are disjoint unions. Then, in

particular, morphisms A —>AKRXB and B> AR B of algebraic
theories are given.

THEOREM 3. Let € be a category with finite products. Then there is an
isomorphism

Funct (A ® B, €) ~ Funct, (2, Funct,(B, ¥))

Proof. By Section [.14, Lemma 3 we have

Funct(A x B, €) =~ Funct(A, Funct(B, ¥))

Thereby, Funct,(2, Funct,(8,%)) is carried over into Funct, (A x B,%),
the category of those bifunctors that preserve products in each argument
separately. We define an isomorphism

Funct (% ® B, ¥) ~ Funct, (A x B, %)
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Given F e Funct, (A X B, %) and G € Funct, (A Q B, ¢). Then F
and ¥ are determined by the following properties:

F(@,j) = F(1, 1)Y
F (s p) = F(™ 1) F(1y, p") = F(11, ) F(W, 1)
Y(n) = G(1)
Y(r) = 91y
We define
F)m) = Z(1, 1)
HF)Npa) = Flear 1), P(F)gs) = F(11, 95)
(@)1 )) = 9(3)
(D) (s p) = F(up®) = F(p"W)
with (u, p) : (7, j) > (k, m). Here ¢, means ¢ € Im(A — A Q B) and

similarly for ¢ . The projections are assumed in Im(% — A Q B).
We define, for natural transformation o : %, > %,and 8: 9, - 9,,

Bla)(n) = o1, 1)* : AL, 1)" > F(1, 1)
H(B)&j) = B(H) : Zu(H) — Za(d)

Thus, @ and ¥ are functors.
Furthermore, we have

YO(F)i,j) = DF)NG) = F(u.))
FO(F )1y p) = P(F)Yu"p’) = F(1, p)
PO()(7, J) = D)) = ofi, ])
PY(D)(n) = P(Z)(1, 1)* = F(n)
DY (9)(pa) = V(D) pa» 1) = Fpa)
Y () ps) = P(9)11, v8) = ¥(ps)
PY(B)n) = Y(B)(1, 1)* = B(n)

Hence @ and ¥ are isomorphisms.

CoROLLARY 2. The tensor product of algebraic theories is commutative
and assoctative up to isomorphisms.
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Proof. The algebraic theory is uniquely determined, up to iso-
morphisms, by the corresponding algebraic category and its forgetful
functor. Since

Funct, (A X B, S) =~ Funct, (B x U, S)

we also have Funct, (¥ ® B, S) =~ Funct, (B ® A, S) and this iso-
morphism is compatible with the forgetful functors. Hence, A Q B =~
B @ U. The assertion about the associativity may be proved analogously.

LevMMa. Let o : 0— 1 (iel)in Wand B; : 0 —1 (j€ J) in B be given,
and let I ard | be nonempty sets. Then the images of the o;’s and B;’s in
A Q B are all equal.

Proof. This is a consequence of yzp,” = @by for r = m = 0.

THEOREM 4. Given algebraic theories N with « : 0 — 1, p:2—1 and
w0y, 1) =1, = w(l;,e0,) and B with B:0—1, v:2—1 and
v(B0,, 1;) = 1; = v(1,, BO,). Then we get for the induced multiplications
w* and v* in A Q B:

(1) p*=»*
(2) wpX(psd, pot) = p*, thatis p* is commutative
(3) w*(ly X p*) = p¥(p* X 1y), thatis p* is associative

Proof. Consider the commutative square

v

X

I

1 1
X X
1 1

Here the object in the left upper corner of the square is the object
4=1x1x1x1inUAQB. Then the square

Mor(n, 1) X Mor(n, 1) X Mor(n, 1)

X X — X
Mor(n, 1) X Mor(n, 1) Mor(n, 1)

| |+

Mor(n, 1) X Mor(n, 1) —— Mor(n, 1)
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is also commutative, where ' = Mor(zn, p*) and »' = Mor(n, v*). Let
w X
G 2
be an element in Mor(#, 4) and let p'(w, y) = w * y and v'(w, x) = w * x.
Then for all w, x, y, and 2 we have (w - y) * (x - 2) = (w *x x) - (¥ * 2).

Since o* = B*, let (n —> 0 —"» 1) = 0 be the neutral element with
respect to p’ and also »'. Then we get

wx2=(w-0)*x(0-2)=(wx0)-0*x2)=w-2 )
yx=0-)x0=0"2(y0)=x-y @
we(x-2)=(w-0) - (x2) =@ x)(0-2)=(w-x) 2 3)

CoROLLARY 3. Let U be the algebraic theory of groups and B the algebraic
theory of commutative groups. Then B ~ U Q) - Q U (n times) for n = 2.

Proof. U @ A has exactly one neutral element and exactly one multi-
plication which is commutative. Thus at most the commutative groups
may be group objects in Funct, (%, S). But all commutative groups are
group objects in Funct (¥, S), because Morg,(4, B) is a group, in case B
is a commutative group. Hence,

Funct, (B, S) =~ Funct,(A, Funct, (A, S))

The assertion for # > 2 may be shown analogously.

CorROLLARY 4. The only group object in Ri is the zero ring { & }.

a group objectin Riwe get0 = 1land0=0-a=1-a=aforalla
of the group object.

Let U be the algebraic theory of groups. If € is the category Top,
then Funct, (2, %) is called the category of topological groups. If € is
the category of analytic varieties, then Funct (U, %) is called the category
of analytic groups. If €° is the category of finitely generated, unitary,
associative, commutative k-algebras and % a field, then Funct (¥, €) is
called the category of affine algebraic groups. Let S™ be the n-sphere in
Htp* = €. The homotopy groups of a pointed topological space T
are defined by m,(7T) := Morg(S™, T'). These sets have a group structure
which is natural in 7. Thus the n-spheres are co-group-objects in Htp*.
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Problems

3.1. Show that the following categories are not algebraic categories:

(a) the torsionfree abelian groups (an abelian group G is called torsionfree, if ng = 0
impliesn = QO or g = 0 for all z € w and g € G);
(b) the finite abelian groups.

3.2. Let U be an algebraic theory. Let X €S and A4 € Funct, (U, S). Let 4 be
generated by X and let f: X — A(1) be an arbitrary map. If f can be extended to an
A-homomorphism g : 4 — A, then g is uniquely determined by f.

3.3. Let A be an algebraic theory. Then there is an U-algebra A for which A(1)
consists of exactly one element. All f-algebras with cne element are isomorphic.

3.4. Under with conditions on the algebraic theory U does there exist an empty
U-algebra ?

3.,5. Let A - B be a morphism of algebraic theories, < : Funct, (B, S) —
Funct, (U, S) the corresponding algebraic functor, and & : Funct (%, S) — Funct,(B, S)
the left adjoint functor of 7. Let X € 8, # X the U-algebras freely generated by X, and
B € Funct, (B, S). The coproduct By(X) of 7 B and Z X is called a generalized polynomial
algebra of B with the variables X. We have X C By(X)(1). Each map f : X — B(l) may
uniquely be extended to an A-homomorphism By(X) — Z (B) such that the restriction
to J B is the identity and to X is the map f. This morphism is called the insertion homo-
morphism. Let A be the algebraic theory of unitary, associative rings, B the algebraic
theory of unitary, associative, commutative rings. Describe the insertion homomorphism.

3.6. Let R and S be in Ri. Let f: R — S be a unitary ring homomorphism. Show
that f induces a morphism from the algebraic theory of unitary R-modules to the algebraic
theory of unitary S-modules. Describe the corresponding algebraic functor J and its
left adjoint functor. What is the meaning of the assertion that the corresponding algebraic
functor J is monadic [Section 2.3, Theorem 2] ? Has . a right adjoint functor ?

3.7. Show that polynomial algebras, tensor algebras, and symmetric algebras are
co-monoid-objects in the category of associative, unitary (commutative) k-algebras
(see Section 3.5).

3.8. Let k& be a field. The polynomial algebra 2[.X] in one variable (generated by one
element) and the monoid algebra k[Z] generated by the additive group of integers 7
(Section 3.5, Example 34 for algebraic functors) are cocommutative co-group-objects
(co-U-objects with the algebraic theory A of commutative groups) in the category of
unitary, associative, commutative k-algebras. The coproduct in this category is the
tensor product. Describe the comultiplications A[X]— k[X] ® k[X] and k[Z] —
K[Z] ® k[Z]. (Determine the value of @ € X = {2} and of 1 € Z under these maps.)

3.9. Let % be a category with finite products, 2 an algebraic theory, and & a small
category. Characterize the U-objects in Funct(%, €) as “pointwise’” A-objects in € such
that morphisms in # induce U-homomorphisms.

3.10. Use Section 2.11, Theorem 4, Section 2.4, Theorem 2, Section 2.3, Theorem 2,
the proposition of Section 3.3, and the following remarks to prove the following theorem
of Birkhoff:
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Let € be a full subcategory of Funct (%, S) with

(1) € contains a nonempty U-algebra;

(2) € is closed with respect to subalgebras;

(3) € is closed with respect to products;

(4) € is closed with respect to images of A-homomorphisms with domain in €.

Then € is an algebraic category.



4
Abelian Categories

Up to now the theory of abelian categories is by far the best developed.
The notion stems from a paper of Grothendieck in 1957. Many important
theorems, which may be found for module categories in many textbooks,
will be proved here more generally for abelian categories. A great deal
may be represented in a much nicer and simpler way by these means—
for example, the theorems on simple and semisimple rings, where we
shall use the Morita theorems. The desire to preserve also the computa-
tions with elements (similar to the computations for modules) leads to
the embedding theorems. The proof of these theorems uses mainly
methods developed by Gabriel. For example, the construction of the
Oth right-derived functor originates from the paper of Gabriel listed in
the bibliography.

4.1 Additive Categories

Let € be a category with a zero object, finite coproducts, and finite
products. We saw in Chapter 1 that % is a category with zero morphisms
which are uniquely determined.

Let finite index sets / and J and objects A; with el and B; with
j € Jin € be given. Furthermore, let a family f;; : A; — B, of morphisms
in ¥ for all el and je J be given. The coproduct of the 4; will be
denoted by ][] 4; and the injections by ¢, : 4; — [ 4, . Similarly, we
denote the product of the B; by [] B; and the projections by
p;: I1Bj— B;. Then there are uniquely determined morphisms
fi: A;— T1 B; with p,f; = f;; and a uniquely determined morphism
f: 10 4;— TI1 B; with p;fe; = fy; -

If, in particular, the morphisms 8,; : 4; — A; are given for all 7, jel
with §;; = 1, and §;; = 0 for ¢ 5 j, then the morphisms uniquely
determined hereby will be denoted by 8,: 1] 4;— [T A4,;. Corre-
spondingly, we define 85 : [[ B; = [1 B; .

For a family of morphisms g; : 4; — B; for all 7 € I there exists exactly

158
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one morphism [Jg;: I 4; — LI B; with 1] g:9: = qugy for all kel
Furthermore, there is exactly one morphism [] g, : IT 4; — I B; with
P I18; = gips, for all k e I. But then the square

14,25 1] B,
BAl 551
I1 4, 22517 B,

is commutative because the morphism from [] 4, to [ B, is induced by
the morphisms
& i =k
®TO if j£k

In fact, fir = pidp 11 £:q; = Pr T18:0.49; -

Let 4,: A—T] A, with 4, = 4 and p, 4, = 1, be the diagonal
and let V,:]] 4,— A4 with V_ g, = 1, be the codiagonal (see
Section 1.11). Now assume that § is an isomorphism for all finite products
or coproducts respectively. Then we take for the products—for example,
of the (A4,);e/—the coproducts, that is, [] 4,; the projections
arise from the composition of the original projections with &, that is,

8,: 11 A; — A;. Thus we get § = 1, that is, we may identify finite
products and finite coproducts. The coproduct of finitely many 4, will
then also be denoted by @A, or by 4, D 4, ® -~ @ 4,, and will be
called a direct sum. We shall treat the morphisms similarly. In fact, by
the above considerations finite products and finite coproducts of
morphisms also coincide.

A category ¥ is called additive category if

(1) there exists a zero object in %,

(2) there exist finite products and finite coproducts in %,

(3) the morphism & from finite coproducts to finite products is an
isomorphism, and

(4) to each object 4 in € there exists a morphism s, : 4 — 4 such
that the diagram

1A®SA

A®A 4 494

W

A——4

is commutative.
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Let € be an additive category. On the morphism sets Morg(4, B) we
define a composition written as addition by

fH+e:=Va(fDg) 4,

for all f, g € Morg(A4, B). Furthermore, we define a morphism

ty:ADA—>ADADbYpitygy = Potage = 0and pit,gs = potagy = 1,.
Then t,4, = 4, by definition of the diagonal and dually Vi, = V,.
Thus we get

fHe=Ve(f@g) 4, = Vpts(fDg) tds = V(g Df) 4y =g+ f

that is, the addition is commutative. The associativity of the addition
follows from the commutativity of the diagram

A0AYS 404 BoB ®BYS BOB

7 N
A N Il B

RN A

A9ACHAQUOAHT">BOEBOB)"FBOE

in fact (4, @ 1) 4, as well as (1 @ 4,) 4, is the diagonal. One verifies
componentwise (f @ 0)q, = (f @ 0)4, and dually py(f @ 0) =
V,(f @ 0), hence f + 0 = py(f @ O)g, — /. Because of (f @ g)(h B k) =
(fh @ gh)and 4h = (h D h) 4, we get

(f+ &) h=Ve(fDg) duh = Vs(fh D gh) 44 = fh + gh

Dually we get A(f 4+ g) = hf + hg. These equations together with the
forth condition for additive categories show that the sets Mory (4, B)
with the given addition form abelian groups and that the composition of
morphisms is bilinear with respect to this addition.

THEOREM. € is an additive category if and only if there exists a zero object
in €, if there exist finite coproducts in € and if each of the morphisms sets
Mory(A, B) carries the structure of an abelian group such that the composi-
tion of morphisms is bilinear with respect to the addition of these groups.

Proof. We saw already in the preceeding considerations that an additive
category % has the properties given in the theorem.
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Now assume that these properties hold for €. First we show that the
finite coproducts are also finite products. Let 4, ,..., 4,, be objects in ¥
and let [T 4; be their coproduct. The morphisms §;; : 4; — A; with
8;; = 1,,and &;; = 0 for 7 # j define for each j exactly one morphism
p; 11 A; — A; with

Pi9: = 8y (1)

Furthermore, we get from

(z Qz'Pi) q = Z 985 = ¢; = 111495

for all j = 1,..., n the relation

Z%‘Pi = ly1a, ()

Here we used that the zero morphism is the neutral element for the group
structure of Morg(4, B).In fact0 = 0(1, + 1,)=01,+01,=0+0.
Now let morphisms f;: C — A; be given. Then Y ¢,f;: C—11 4;
is the desired morphism into the product for p; 3 ¢;f; = f;. If
g: C—11 4, is another morphism with p;g = f;, then

pile—Taf) =0
Then by (2) we have

ZQiPi(g_Z‘Iifa‘) =0=g_29iff

that is, [] 4; together with the projections p; is a product of the 4;.

The morphism 8 : [] A; — [1 4; is defined by p;8¢g; = §;;. But
since p;ly1,9; = 8; by (2), we get & = Iy, . Thus also point (3) of the
definition of additive categories holds.

As in the beginning of this section, a finite family of morphisms
fi; + A;— B; defines exactly one morphism f: @4, — @B; with
p;fq; = fi; - We also write the morphism f as a matrix f = (f;;). Let
another family of morphisms g;;, : B; — C;, be given. Let & = (g;,)(f:;)-
Then

bihg: = pilgix) 2 9;0(fi5) s = Z &inlii
2 7
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Hence the composition of morphisms between direct sums is similar to
the multiplication of matrices:

(& )(fa) = (z nfo) 3)

Using this matrix notation we get

— (la). _ . _(f o
4, = (1,,)’ V= (s, Loy f@g =] g)
Hence f + g = V(f @ g) 4., . In particular we get 4 (1, Ds, )4, =0
for s, = —1,. This completes the proof.

CoOROLLARY 1. Let € be an additive category. Then there is exactly one
way to define an abelian group structure on the morphism sets such that the
composition of morphisms in € is bilinear.

Proof. We saw that f 4+ g = Vy(f @ g) 4, must hold. Thus the addi-
tion can only depend on the choice of the representatives of the direct
sums. The universality of the definition of Vg, f @ g, and 4, shows that
the addition is unique.

The assertion made in Corollary 1 is the main reason for the fact that
we did not use the properties that are characteristic for an additive
category by the theorem for the definition of an additive category. If
we consider Mory (4, B) as an abelian group in the following, then we
shall also write Homg(4, B).

COROLLARY 2. Let € be an additive category. Let A, ,..., A, and S be
objects in € and let q;: A;— S and p,: S— A; for i = 1,...,n be
morphisms in €. The following are equivalent:

(a) Sisadirect sum of the A; with the injections g, and the projections p,.
(b) piq; = Oy foralliandjand 3 q;p; = 15.

Proof. If S is a direct sum of the 4,, then (b) holds because of (1)
and (2).

Assume that (b) holds. As in the proof of the theorem we then see that
S together with the projections p; is a product of the 4; . Dually, we get
that S is a coproduct of the 4; with the injections g; .

Observe that the dual of an additive category is again an additive
category because all four properties used in the definition are self-dual.



4.2 ABELIAN CATEGORIES 163

In an additive category € the endomorphisms of an object A4, that is,
the elements of Homgy(A4, 4), form an associative ring with unit, the
so-called endomorphism ring.

Example 1

The category Ab of abelian groups is an additive category. In Chapter 1
we saw that Ab has a zero object and products. Let f, g € Mor,,(4, B).

Then (f + g)(a) := f(a) + g(a) defines a group structure on
Mor (A4, B) which satisfies the conditions of the theorem.

Example 2

The category of divisible abelian groups with all group homomorphisms
as the morphisms is an additive category. Here we define the addition of
morphisms as in Example 1. The only thing to show is that there are
finite coproducts. It is sufficient to show that finite coproducts in Ab of
divisible abelian groups are again divisible. Let 4 and B be divisible,
thatis,n4d = AandnB = Bforallne N, thenn(4 @ B) =n4A @ nB =
4 @ B.

4.2 Abelian Categories

In this section let € be an additive category. Furthermore, assume that
each morphism in € has a kernel and a cokernel. Let two morphisms
f, & € Homy(A4, B) be given, and let 2 = f — g. We want to show that
the kernel of % coincides with the difference kernel of f and g. Given
c: C— A with fc = gc, then hc = fc — gc = 0; thus there exists
exactly one d : C — Ker(h) with ¢ = (C — Ker(h) — A4). Furthermore,

(Ker(h) > A 1> B) = (Ker(h) > A %> B)

Dually, the cokernel of % also coincides with the difference cokernel of f
and g. Thus there are difference kernels and difference cokernels in €.

LemMA 1. Let € be an additive category with kernels. Then € is a category
with finite limits.

Proof. Since % is a category with difference kernels and finite products,
we can apply Section 2.6, Proposition 2.
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Let f: A — B be a morphism in €. In the diagram

e
Ker(p') —> B2 Cok(f)

there is exactly one morphism g with ¢'g = f because p’f = 0. We denote
Ker(p’) also by KerCok( f). Dually, f may be uniquely factored through
CokKer( f).

Both assertions may be combined in the commutative diagram

Ker(f) —— 4 —2> CokKer(f)

Vo

Cok(f) «2— B« KerCok(f)

where % is uniquely determined by f. In fact the morphism g may uniquely
be factored through CokKer(f) because of 0 = fg = ¢'gq, hence
g9 = 0. By Section 1.9, Lemma 1 both ¢ and ¢’ are monomorphisms
and p and p’ are epimorphisms. If 4’ instead of % also makes the diagram
commutative, then ¢'4p = ¢'h’p, hence h = h'.

An additive category with kernels and cokernels, where for each
morphism f the uniquely determined morphism A : CokKer( f) —
KerCok( f) is an isomorphism, is called an abelian category.

Example

An important and well-known example for an abelian category is the
category ,Mod of unitary R-modules. As in Section 4.1, Example 1,
one shows that ;Mod is an additive category. In the theorem of Section
3.2 and in Section 3.4, Corollary 3 we saw that there are kernels and
cokernels in fMod. The assertion that %4 : CokKer(f)— KerCok(f)
is an isomorphism is nothing else than the homomorphism theorem for
R-modules.

One of the aims of the theory of abelian categories is to generalize
theorems known for Mod to abelian categories. This will be done in
the following sections. Since there are no elements in the objects of a
category, the proof will often be more difficult and different from the
proofs for ;Mod. To prevent these difficulties we shall prove meta-
theorems at the end of this chapter which transfer certain theorems
known for ;,Mod without any further proof to arbitrary abelian categories.
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Now let € be an abelian category for the rest of this chapter unless we
ask explicitly for other properties for €.

LEMMA 2.

(a) Each monomorphism in € is a kernel of its cokernel.

(b) Each epimorphism in € is a cokernel of its kernel.

(c) A morphism f in € is an isomorphism if and only if f is a monomor-
phism and an epimorphism.

Proof. (a) Let f be a monomorphism and let fg = 0. Then g = 0.
Thus g may uniquely be factored through 0 — D(f) (= domain( 1)),
i.e., Ker(f) = 0. The cokernel of this zero morphismis 1 : D(f)— D(f).
The commutative diagram

0 — D(f) — D(f)

bk

Cok(f) «— R(f) «— KerCok(f)

implies that D(f) and KerCok(f) are equivalent subobjects of
R(f) (= range(f)).

(b) follows from (a) because the definition of an abelian category is
self-dual.

(¢) In (a) we saw that the kernel of a monomorphism is zero.
Similarly, the cokernel of an epimorphism is zero. Then (c) follows from
the commutative diagram

0 — D(f) — D(f)

bk

0 «— R(f) «<— R(f)

Lemma 3. For each morphism f in € the image of f is KerCok( f ) and the
coimage of f is CokKer( f).

Proof. A morphism f may be factored through KerCok( f). Since there
are fiber products in €, € is a category with finite intersections. Let 4
be a subobject of R( f) through which f may be factored, then f may be
factored through A4 N KerCok( f). Since D(f)— KerCok(f) is an
epimorphism, A N KerCok( f) — KerCok(f) is an epimorphism and
a monomorphism, hence an isomorphism by Lemma 2. Thus D(f) — 4
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may also be factored through KerCok( f). Dually, one gets the proof for
the coimage.

Because of Lemma 3, we shall always write Im(f) instead of
KerCok( f) and Coim( f) instead of CokKer( f).

CoroLLARY. A morphism f: A— B is an epimorphism if and only if
Im(f) = B.

Proof. By Lemma 2, fis an epimorphism if and only if B = CokKer(f).
By CokKer(f) =~ KerCok(f) = Im(f), the morphism f is an epi-
morphism if and only if the subobject Im( f) of B coincides with B.

4.3 Exact Sequences
A sequence (f;, f,) of two morphisms in an abelian category ¥
A, 4,5 4,
is called exact or exact in A, if Ker(f,) = Im(f;) as subobjects of 4, .
A sequence
fi fin1

Ay Ay > Ay

of morphisms in % is called exact if it is exact in each of the 4;,, , that
is, if Ker(f;,;) = Im(f;) as subobjects of 4, . If the sequence is finite
to the left side or to the right side, then this condition is empty for the
last object.

An exact sequence of the form

0—-A4A—-B—->C—0

1s called a short exact sequence.
Let f: A— B be a morphism in ¥. Then B — Cok(f) is an epi-
morphism. By Section 4.2, Lemma 2 we then get

(B — Cok(f)) = (B — CokKerCok(f))

If Ker(f;,1) = Im(f), then Cok(f;) = CokKerCok(f;) = CokIm(f;) =
CokKer(f;,,) = Coim(f;,,). Hence the definition of exactness is self-dual.

LemMa 1. The sequence A L B % C is exact if and only if we have
for the morphisms (A — B — C) = 0 and (Ker(g) — B — Cok(f)) = 0.
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Proof. Let A— B — C be exact. Then we have trivially
A—-B—->C)=0

that is, Im(f) C Ker(g). Furthermore, we obtain an epimorphism
Coim(g) — Cok( f) through which B — Cok( f) may be factored. But
(Ker(g) - B — Coim(g)) = 0.

If A—>B—C)=0, then Im(f)C Ker(g). If, furthermore,
(Ker(g) > B— Cok(f)) =0, then Ker(g) > B may be factored
through KerCok( f) = Im(f), hence Ker(g) C Im(f).

A sequence

f fiva

Ay Ay > Ay

with f;,,f; = O for all 7 is called a complex. Obviously this notion is self-
dual.

LEMMA 2.

(a) 0— A — B is exact if and only if A— B is a monomorphism.

(b) 0— A — B— C is exact if and only if A — B is the kernel of
B—C.

(¢) 0—A— B—C—0is exact if and only if A — B is the kernel
of B— C and if B — C is an epimorphism.

Proof. (a) By the corollary of Section 4.2, 4 — B is a monomorphism
if and only if Coim(4 — B) = 4 = Cok(0 — 4).

(b) If A— B is the kernel of B— C, then Im(4 — B) =
ImKer(B — C) = Ker(B — C). Furthermore, 4 — B is a mono-
morphism. The converse is trivial.

(c) arises from (b) and the assertion dual to (a).

Lemma 3. Let % be an abelian ca‘tegory. Let A, , A, , and S be objects in €
and let q;: A;— S and p;: S — A; (i = 1, 2) be morphisms in €. The
following are equivalent:

(1) S is a direct sum of the A, with the injections q; and the projec-
tions p; .
(2)  pigs = 1, for i = 1, 2 and the sequences
0— 4,252 4,—0
and
0— 4,282 4, —0

are exact.
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(3) ¢, and q, are monomorphisms, p, and p, are epimorphisms, and

we have ¢, p1 + gaps = 15 and (q191)* = 191 -

Proof. (1) = (2): By Section 4.1, Corollary 2 it is sufficient to show the
exactness of

0—4,—-S—>A4,—>0

po is an epimorphism because of p,g, = 1. Given f: B— S with
Pof =0, then f = (q191 + ¢2P2)f = @171/, ie., f may be factored

through ¢; . This factorization is unique since ¢, is a monomorphism.

(2) = (1): Let f;: B— A4; be given. Let f = ¢,f; + ¢.f. Then
p:f = f; - If a morphism g : B— S satisfies the condition p;g = f;,
then p(g — f) = 0. Hence g — f may be factored through A,, that

i, 8 —f = qh. Then g — f = qip1gsh = 1p1(g — f) = 0.
(1) = (3): By Section 4.1, Corollary 2, assertion (3) is trivially

implied by (1). If (3) holds, then ¢;p:¢:p1 = 11 = @114, P1- By
cancellation of the monomorphism ¢, and the epimorphism p, we

obtain pg; = 1, . (1 —¢;:91)> =1 — ¢, p, implies (g:05)* = @275,
hence pyg, = 1,, . Furthermore, we have

D192 = P19191920292 = P11 P)(1 — @181) 42 = Pi(@1 1 — (91£1)%) 42 = O

and analogously p,g; = 0. Then (1) holds by Section 4.1, Corollary 2.
Let f be an endomorphism of S with f2 = f. fmay be factored through
the image of f. Let p, : S —1Im(f) and ¢, : Im(f) — S. If we factor
1 —f= gsps, then S =Im(f) P Im(l — f). But by (2) we get
Im(1 — f) = Ker(f) and hence, S = Im(f) @ Ker(f).
Lemma 4.
(a) The commutative diagram
P4
bl cl
B¢
is a fiber product if and only if the sequence
0>PLA®BLC
with
F=() wmd g=(-a

is exact.
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(b) Let the commutative diagram in (a) be a fiber product. The morphism
¢ : A — Cis a monomorphism if and only if b : P — B is a mono-
morphism.

(c) Let the commutative diagram in (a) be a fiber product. If ¢ : A — C
is an epimorphism, then the diagram is also a cofiber product and
b: P— B is an epimorphism.

Proof. (a) We define

f= (‘;) and = (c, —d)

The minus sign, of course, could stand before any of the other morphisms
a, b, or ¢ because the only reason for it is to achieve gf = 0. If the diagram
in (a) is a fiber product and 4 : D — A @ B is given with gh = 0, then

h= (Z’;) and chy = dhg
Thus there exists exactly one morphism e : D — P with ae = k, and
be = hy, that is, with fe = h. Conversely, each pair of morphisms
hy:D—A and hy:D— B with ch, = dhy hence with gh =0,
defines exactly one morphism e : D — P with fe = b, i.e., with ae = h,
and be = h,.

(b) Ifc: A — Cisamonomorphism, then by Section 2.7, Corollary 5
b: P— B is also a monomorphism. Now let 4 : P — B be a monomor-
phism. Let (D—> A4 — C) = 0. If we set (D— B) = 0 then there
exists exactly one morphism D — P with (D — 4) = (D — P — A) and
(D—P—B)=0. Since P— B is a monomorphism, we get
(D — P) = 0 and hence (D — A4) = 0. This means that 4 — C is a
monomorphism.

(¢) If c: A— C is an epimorphism, then ¢ = (4> A4 @ B— C)
is an epimorphism, hence also 4 @ B — C. By Lemma 2, the sequence
0—>P—>APB—C—0 is exact. By (a) the diagram in (a) is a
cofiber product. The assertion dual to (b) implies (c).

In the following we shall denote the cokernel of a monomorphism by
B/A. This corresponds to the usual notation for R-modules. In the dual
case we shall not introduce any particular notation for the kernel of an
epimorphism. The applications which assign to each subobject of an
object B a quotient object and to each quotient object a subobject are
inverse to each other. Furthermore, they invert the order if, in the class
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of subobjects, we set 4 << A4’ if and only if there is a morphism a such that

A

\

|

A'
is commutative, and if, in the class of quotient objects, we set C << C’
if and only if there is a morphism ¢ such that

C/

/

B ¢

\

C

is commutative. This follows from the commutative diagram with
exact rows
0 4 B (o4 0
bl

0 A B c 0

where a exists if and only if ¢ exists.

Lemma 5. In an abelian category € there exist finite intersections and
finite unions of subobjects. The lattice of subobjects is antiisomorphic to
the lattice of quotient objects of an object.

Proof. Since % has fiber products, there exist finite intersections in %.
Let A and B be subobjects of C. Then we define 4 UB =
Im(4A @ B — C). In fact, let D be a subobject of C’ and let morphisms
C— C’, A— D, and B — D be given such that the diagrams

A—-C B—C

ol

D—(C D—s(C
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are commutative. Then there exists a morphism 4 @ B — D such that

A®B—>C—>C)=(A@®B—D—C)

Hence, Im(4 @ B— C)— C — C’ may be factored through D — C".
Thus the class of subobjects of ¥ is a lattice. The preceeding considera-
tions imply immediately the second assertion of the Lemma.

COROLLARY. If there exist infinite products in the abelian category €, then
there exist arbitrary intersections of subobjects in the category €. If there
exist infinite coproducts in €, then there exist arbitrary unions of subobjects
in the category €.

Proof. If € has infinite products, then % is complete and thus there
exist arbitrary intersections of subobjects. If € has infinite coproducts,
then the proof of Lemma 5 may be repeated verbally for infinitely many
subobjects.

LeEMMA 6.

(a) Letf: A— Bandg: B— C be morphisms in an abelian category
€. Then Im(gf) C Im(g).

(b) Let f, g : A— B be morphisms in €. Then
Im(f + £) € Im(f) U Im(g).
Proof. (a) The diagram

4 f B $ c
-
N4
Im(f) —————Im(g)

N

Im(h)

is commutative, 4 — Im( f ) — Im(%) is an epimorphism, and Im(%) —
Im(g) — B is a monomorphism. Hence Im(%) = Im(gf) C Im(g).

(b) We have
f+g=A5ADA-In(f) ®Im(g) > B @B B)

By definition, Im(f) U Im(g) = Im(Vb). Hence, by (a), we get
Im(f + £) C Im(f) U Im(g).
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4.4 Isomorphism Theorems

THEOREM (3 X 3 lemma). Let the diagram

o
D
T

T

be commutative with exact rows and columns. Then there are uniquely
defined morphisms C;— C, and Cy— C; making the above diagram
commutative. Furthermore, the sequence 0 — C; — Cy — C; — 0 is exact.

Proof. The existence and uniqueness of C; — C, and C,— C; is
implied by the facts that C; = Cok(4, — B,) and (4, — C,) = 0 and,
respectively, Cy = Cok(4, — B,) and (4, — C;) = 0.

Furthermore, C, — C; is an epimorphism because

(By— Cy— C;) = (By—~> By~ ()
is an epimorphism. If we omit in the diagram the object C; and the

morphisms B; — C; and C; — C,, then the remaining diagram is self-
dual. Furthermore, the sequence

0—-4,—-B,—Cy,—>Cy3—0 (1)
is exact. For reasons of duality, it is sufficient to prove the exactness of

0— 4,— B, — C,, that is, 4, = Ker(B, —» C,). Let D — B; with
(D — B, — C,) = 0 be given. Then there exists D — 4, with

(Df’Bl_’Bz) = (D— 4, — By)
Since (D — B;) =0 and A;— B; is a monomorphism, we have

(D —- A4, — A4;) = 0, hence there is a morphism D — 4, with
(D — 4,) = (D — A, — A,). Since B, — B, is a monomorphism and

(D— B, — By) = (D—> A, — B, — B,)
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we have (D — B;) = (D — A, — B;). The uniqueness of this
factorization follows from the fact that 4; — B; is a monomorphism.

We have Ker(B,— C,) = 4, and Cok(B,—~ C,) = Cy. Thus
C, = Coim(B, — C,) = Im(B, — C,) = Ker(C, — C,) as subobjects
of C, and C, — Cj is an epimorphism.

CoRoOLLARY 1 (first isomorphism theorem). Given subobjects A C B C C.
Then we have B|A C C|A and (C|A)/(BJA) =~ C|B.

Proof. Apply the 3 X 3 lemma to the diagram

Lo }
Lol
0 B c C/B—>0
b
B/[A C/A C/B
oo

0 0 0

CoroLLARY 2 (second isomorphism theorem). Given subobjects A C C
and B C C. Then we have (A U B)|B =~ A|(A N B), that is, the diagram

0 0 0
J ! J |
0——> ANB B BJ(A N B)—>0
) J !
0 A AUB —— (AU B)JA—>0

! !

)

0—> Aj(A N B)—> (AU B)/B 0
l J J

0

0 0

is commutative with exact rows and columns.
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Proof. 'To apply the 3 X 3 lemma we have to show that B/(4 N B) —
(A U B)/B is a monomorphism. Let D — B with

(D—>B—>AUB—(AUB)4) =0
be given. Then there is exactly one morphism D — 4 with
(D—A—>AUB)=(D—>B-—>AU B)
Thus there is exactly one D — 4 N B with
(D—+B)=(D—>ANB—>B) and (D—A)=(D—>ANB-A)
that is, A N B is the kernel of B — (4 U B)/A. But the morphism
CokKer(B — (4 U B)/A4) — (4 L B)|4

is always a monomorphism.
Now let us apply the 3 X 3 lemma to show that

C; = ((4 v B)[A)/(B[(A N B))

vanishes. We have (4 >4 U B— C;) = 0and (B— AU B—C,) = 0.
Thus by the definition of a union (4 U B — C,;) = 0. The diagram
implies that 4 U B — Cj is an epimorphism. Hence, C; = 0.

CoroLLARY 3. Let C = AU B and AN B = 0. Then C is the direct
sum of A and B with injections the embeddings of A and B into C.

Proof. Insert AN B =0 into the diagram of Corollary 2. Then
A—A[(AN B)—(AVY B)/B and B— B|(AN B)— (AU B)/A are
isomorphisms. If we take as projections for the direct sum the inverses of
these isomorphisms composed with 4 U B— (4 U B)/Band AU B —
(4 U B)/A, then we can easily apply Section 4.3, Lemma 3.

4.5 The Jordan-Hé6lder Theorem

An object 4 £ 0 in an abelian category ¥ is called simple if for each
subobject B of 4 either B = 0 or B = 4 holds.

Let 0 = B,CB,C--CB, = A be a sequence of subobjects of A4
which are all different. Such a sequence is called a composition series if the
objects B;/B;_, are simple for all 7 = 1,..., n. The objects B,/B,_, are
called factors of the composition series and 7 is called length of the
composition series.
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Lemma 1. Let AC C and B C C be nonequivalent subobjects of C. Let
C|A and C|B be simple. Then C = A U B.

Proof. ACAUB and BC AU B imply that at least one of the
subobjects, for example B, is different from 4 U B. By the 3 X 3 lemma
there is a commutative diagram with exact rows and columns

! ! |
! | l

0——> AUB —— C —> C[(AUB)—>0

! ! !

0— (AU B)/B—> C/B—> C(AU B)—0

! } !

0 0 0

By hypothesis, we have (4 U B)/B # 0 and (4 U B)/B C C/B. Since
C/B is simple, we get C/(A U B) = 0 hence C = 4 U B.

Lemma 2. LetQ0 = B, C - C B, = A be a composition series. Let C C A
and let A|C be simple. Then there exists a composition series of A through C
of length n:

0=C,C+CC,,CCCA

Proof. The proof is by complete induction with respect ton. Forn = 1,
the only composition series of 4 (up to equivalence of subobjects) is
0 C A. Assume that the lemma holds for composition series of length
n — 1. Consider the diagram

- CAB,,—>C
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where we may assume that C and B,_, are nonequivalent subobjects
of A, since otherwise there exists already a composition series through C.
Thus by Lemma 1 we have 4 = C U B,,_, . By the second isomorphism
theorem B,_,/(C N B,,_;) = A/C is simple. Since B,,_, has a composition
series of length » — 1, there exists a composition series of B,_; through
Cn B,_, of length n — 1. Hence, C N B,,_, has a composition series of
length n — 2. This may be extended through C and 4, for
C/(Cn B,_,) = 4/B,_, and 4/C are simple.

THeoreM 1 (Jordan-Héolder). Assume that the object A in € has a
composition series. Then all composition series of A have the same length
and isomorphic factors up to the order.

Proof. By complete induction with respect to the length of a composi-
tion series of minimal length of 4. For n = 1, there exists only one
composition series of 4, as above. Assume that the theorem is already
proved for all 4 with composition series of length <{m — 1. Let two
composition series 0 = ByC---CB, = Aand0 = C,C---CC,, = 4
be given. We form

" Bpg————— B,

- Bn_lﬂC,,,_l/ \A
NS

o Cm—2 ? m-1

Since, by the second isomorphism theorem, all factors of the diagram
are simple

A/Bn—l = Cm—l/(Bn—l N Cm—l) and A/Cm—l = Bn—l/(Bn—l N Cm—l)

all sequences in the above diagram are composition series because the
theorem holds already for B,,_; . Here we used that B,_; and C,,_, are
nonequivalent subobjects, for otherwise the assertion may be reduced to
B,_,. Since B,_, and C,,_; have composition series of equal length,
namely through B, ; N C,,_, , we get m = n. The factors of the compo-
sition series of B, , and C,,_; differ only in B, _,/(B,_, N C,,_,) and
C,_1/(B,_y N C,,_,). But both factors appear in the composition series
of A through B,_; N C,,_,. Hence both given compostion series of 4
have the same length and isomorphic factors up to the order.

If A has a composition series of length z, then we also say that the
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object A has length n. If A has a composition series, which by definition
is finite, then we also say that A is an object of finite length.

PROPOSITION 1. Let A be an object of finite length and let C be a subobject
of A. Then there exists a composition series of A in which C appears as an
element.

Proof. Let 0 = B,C---CB, = A4 be a composition series of A.
We form the sequences

0=CNnB,C-CCNB,=C

and
C=CuB,C--CCUB,=4

As in the proof of the second isomorphism theorem, one shows with the
3 X 3 lemma that the diagram

0 0 0

! ! !

0——>CNB,y——— CAB; ——> CNAB,JCAB,_, —>0

l l !

0 B, B, BB,y ——0

l ! !

0—>B;,,/CNB,_,—>B,/CNB,—> CUB,/CUB, ;,—>0

} ! |

0 0 0

is commutative with exact rows and columns. In fact, we have
CnNnB,_, =(Cn B)) " B,_,. Furthermore, using both isomorphism
theorems we obtain

CU B;/CU By, = (CVU B/C)(C U B;,/C) = (B;/C N By)[(B;/C N Byy)

Since B,/B,_, is simple, each factor object of B;/B;_, is either simple or 0,
since the kernel of the morphism into the factor object is either
0 or simple. Hence just one of the objects C N B;/C N B,_, or
C U B,/C UB,_, is simple and the other one is 0. If one connects the
sequences given above, and if one drops all of the members which appear
several times, except one, then this new sequence is a composition series

through C.
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An object of finite length may well have infinitely many nonequivalent
subobjects (see Problem 8). But by Proposition 1 each proper subobject
has a length smaller than the length of the object. Hence in each set of
proper subobjects of an object of finite length, the subobjects of maximal
length are maximal, and the subobjects of minimal length are minimal,
and such subobjects always exist if the given set is nonempty.

COROLLARY 1. An object has finite length if and only if it is artinian and
noetherian.

Proof. The only thing we have to prove is that each artinian and
noetherian object 4 has finite length. In the class of subobjects of A4,
which are not equivalent to A4, there is a maximal subobject B, . Since B,
is again artinian and noetherian, we may construct B,, B, ,..., in the
same way. This defines a descending sequence of subobjects of 4. Since
A is artinian, this sequence stops after finitely many steps. Furthermore,
the factors of this sequence are simple by construction, hence this is a
composition series of 4.

COROLLARY 2. Let B be an object of finite length, and let the sequence
0—A—B— C— 0 beexact. Then A and C are objects of finite length,
and we have

length(B) = length(4) + length(C)

In particular, an epimorphism between objects of equal length is an isomor-
phism.

Proof. Let 0 = B,C---CB,=AC---CB, = B be a composition
series of B through A. Then (B,/4)/(B)._1/4) =~ B,/B,_, is simple for
all ¢ <k <n Hence, 0 = B,/AC---CB,/A = C is a composition
series of length # — 7. Furthermore, 4 has length ¢. The second assertion
follows from the fact that the kernel of the epimorphism has length O,
and that each object of length 0 is a zero object.

4.6 Additive Functors

The facts that the morphism sets of an additive category % are additive
groups and that the composition of morphisms is bilinear correspond
to the condition for the functors & : € — & between additive categories
that for all 4, B € ¥ the maps

F(A, B) : Homg(4, B) — Homo(F 4, FB) )
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are group homomorphisms. A functor & which satisfies condition (1)
is called an additive functor. Of course, there are also other functors
between additive categories which are not necessarily additive.

Because of the bilinearity of the composition of morphisms in an
additive category %, the representable functor represented by any
object 4 in % is additive where we mean the functor Homg(4, —) with
values in Ab.

THEOREM 1. A functor F : € — 2 between additive categories is
additive if and only if F preserves finite direct sums with the corresponding
injections and projections.

Proof. If & is additive, then & preserves condition (2) of Section 4.2,
Corollary 2 for direct sums. If & preserves finite direct sums with their
injections and projections then F(f + g) = F(f) + #(g). In fact,
let objects 4, B, C, D in ¥ and morphisms f: 4 — Band g : B— D be
given, then f @ g is uniquely determined by (f @ g) g, = ¢qof and
(f @ g) g5 = gpg- These conditions are preserved by & . Furthermore,
& preserves diagonals and codiagonals of finite direct sums. Hence by
Section 4.1, Corollary 1 we have

F(f+8) = F (Vo) F(f D) F(da) = V&p(Ff © Fg) A5y = Ff + F¢

For an abelian category we can also ask for the preservation of certain
exact sequences by the functor &. In the diagram

NN
VAN

the sequence of the f; is exact if and only if the sequences 0 — B, ; —
A;— B; — 0 are exact where B, = Im(f;). Then this is equivalent to
B, , = Ker(f;). If & preserves short exact sequences, then F also
preserves arbitrary exact sequences. Thus we call & an exact functor if
& preserves short exact sequences. If & preserves exact sequence of the
form

0—-A—>B—->C or A—-B—-C—0
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then & is called left or right exact respectively. If for each exact sequence
0—>A—>B— C—0 the sequence 4 - FB — FC is exact, then
& is called a half-exact functor.

Be careful not to confuse the condition for a half-exact functor with
the condition that for each exact sequence 4 — B — C, the sequence
FA—->FB— FC is also exact, since in this case & is exact. A functor
& is left or right exact if and only if & preserves kernels or cokernels
respectively. Obviously, each exact functor is left exact and right exact,
and each left or right exact functor is half exact. Furthermore, a functor
which is left and right exact is exact, as one can easily see by Section 4.3,
Lemma 2.

ProposiTiON 1. A half-exact functor & :€ — 2D between abelian
categories 1s additive.

Proof. By Theorem 1 we only have to show that & preserves direct
sums of two objects with the corresponding injections and projections.
If we characterize these by Sections 4.3, Lemma 3, then we obtain by
the half exactness of & that #p,#¢q; = 15, , and we obtain the exact-
ness of the sequences

F4, 2% g5 7, F4,

o, g5 I, g4,

F A4,
From the first condition, we may already conclude that the Fp, are
epimorphisms and the & ¢; are monomorphisms. Thus the sequences

0>FA4, 22 787" 74, 50
0—FA, 22 78I, 74,50

are exact by Section 4.3, Lemma 2. This proves the proposition by
Section 4.3, Lemma 3.

An example of a left-exact functor from an abelian category % into
the category Ab is again the functor Homg(A —) % — Ab represented
by an object 4 € €. In fact, if0>BL CS Disexactand h: A— B
is a morphism with Homg(4, f)(£) = 0, then fh = 0. Since f is a
monomorphism, we have 2 = 0; hence Hom(4,f) is a monomorphism.
If #¥: A— C is a morphism with Homg(4, g)(#') = gh’ = 0, then
there exists a morphism % : 4 — B with fA = &’ because f: B— C is
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the kernel of g. Consequently, Homg(4, f)(k) = k'. Together with
Homy(4, g) Homy(A4, f) = 0, this implies the exactness of the sequence

Home(4.f) Home(4.9)
e, e,

0 — Homg(4, B) Homg(4, C) Homg(4, D)

4.7 Grothendieck Categories

Let & be a small category. Then the functors from & into the abelian
category € together with the natural transformations form a category
Funct(&, %).

ProrositioN 1. Funct(&, €) is an abelian category.

Proof. By Section 2.7, Theorem 1, Funct(&, %) is finitely complete and
cocomplete. Furthermore, the functor @ : & — % with O(E) = 0 for
all E € & is a zero object for Funct(&, €). As in Section 4.1, we can define
a morphism & from the coproducts into the products. Then for the
functors &; € Funct(&, €) the morphism 84(E) : [ F(E)— [1 F(E)
coincides with 8z , that is, 6 is formed argumentwise. Hence by
Section 1.5, 8 is an isomorphism in Funct(&, ¥). Correspondingly, 4
and V have to be formed argumentwise. Furthermore, the morphisms
S# (g are natural transformations satisfying condition (4) for additive
categories. The natural transformation % of Section 4.2 from the coimage
into the image of a morphism in Funct(&, ¥) is also formed
argumentwise. Thus % is always an isomorphism and Funct(&, %) is
an abelian category.

Since by Section 2.7, Corollary 2 the colimits commute with coproducts
and cokernels, we obtain the following corollary.

CoroLLarY 1. The functor lim : Funct(&, €) — € s right exact if it
exists.

In the following let € be an abelian cocomplete category. Furthermore,
we require that a certain condition holds in € which holds in all module
categories. For each subobject B C A and each chain of subobjects
{A;} of A4,

(U4)nB=U@nB) ()

holds. This condition is called the Grothendieck condition. Observe that



182 4. ABELIAN CATEGORIES

Equation (1) does not hold for arbitrary sets {4,} of subobjects of 4 in
module categories. An abelian, cocomplete, locally small category with
the Grothendieck condition will be called a Grothendieck category.

In the following we shall need condition (1) not only for chains of
subobjects of 4, but also for directed families of subobjects. Here we
mean by a directed family of subobjects of A a functor & from a directed
small category & into the category %€ such that & (F) is a subobject of 4
for all E€ & and such that for all E— E’ in & the morphisms
F(E) — F(E') together with the monomorphisms into 4 form a com-
mutative diagram

F(E) ——————> F(E)

N

This means that there is a natural transformation p: % — X%, from
the functor % into the constant functor %, : & — % such that
w(E): F(E)— A ,(E) is a monomorphism for all E € &.

Lemma 1. Let B be an ordered set in which for each subset {v} there
exists a supremum \) v; . Let W be a subset of B which is closed with respect
to forming suprema in B of chains in W. Let @ = B' C B. If then
Usew' v ¢ I, then there are already finitely many v, ,...,v, € B’ with
v, U - U, ¢1.

Proof. Let P(B’) be the power set of B'. Each subset of B may be
well-ordered in different ways (independent of the given order in B).
Let Q(B’) be the set of all well-orderings of all subsets of B’. Thus each
element of Q(B’) has an ordinal number. Let Q'(B’) be the subset of those
elements of Q(B’) for whose corresponding set P e P(BV’) we have
Uver v ¢ W. By hypothesis, Q'(B’) is not empty; thus there exists a
0 € Q'(V’) with smallest ordinal number y. Let P € P(B’) be the corre-
sponding subset of B and assume that the elements of P have as subscripts
ordinal numbers smaller than y in the order of the given well-ordering.
Then forall 8 < y we get U, .5 v, €. Hence, Us_y, Uacs % 7 Uncy Vus
because W is closed with respect to suprema of chains. The set of the
Uex<s ¥4 18, in fact, a chain. Hence, y cannot be a limit. If y is infinite, then
there is a bijection between the ordinal numbers smaller than y and the
ordinal numbers smaller than y — 1. This bijection maps y — 1 to 0
and n to #n + 1. This reordering does not change the value of J,p .
This is a contradiction to the minimality of y. Consequently, vy is finite.

LevMa 2. Let € be a Grothendieck category. Let B C A be a subobject of
A € ¥ and let {A,} be a directed family of subobjects of A.
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Then
(U4)nB=U@nB)

Proof. Since A; " B C (Y 4;) N B, we get in general |J (4, N B) C
(U 4;) N B. Let C = \J (4; N B). The set of the subobjects of 4 forms
an ordered set with suprema. We define a subset of the subobjects of 4
by D e if and only if D N B C C. By the Grothendieck condition, 2B
is closed with respect to suprema of chains. Assume that ({J 4;) " B € C.
Then, by Lemma 1, there exist 4, ,..., 4, with (4, U .- U 4,) N B C.
Since the {4,} form a directed family of subobjects, there exists an A4,
with A4; C A4, for j = 1,...,n. Hence, 4; N B¢ C. Obviously, this is
a contradiction. Consequently, (U 4,) " B = {J (4; N B).

After having extended the Grothendieck condition to directed families
of subobjects we now want to discuss the importance for direct limits.
For this purpose, let € be a Grothendieck category, & be a small directed
category, and & : & — € be a functor. We denote the objects in & by
1, J, k,..., and set # (i) = F,. For i < j we denote the morphism from
F; into F; induced by & by f;; : F;— F; . The injection will be denoted
by ¢, : F; —lim &

Lemma 3. Let € be a Grothendieck category and & be a directed small
category. Let & € Funct(&, €). Then we have
Ker(g; : F; —>hm F) = | Ker(fy; : F; > F;)

i<j

Proof. We denote Ker(g;) by K; and Ker(f;;) by K;; . Because of the

commutativity of

11m

for all 7 < j we get K;; C K, hence Vi< K;CK;.
By Section 2.6, Proposmon 2 llr’n & is the cokernel of g: [1i;Fyj—
LI F; where F;; = F, for all 7 < j and where g is defined componentw1se

for the Fy by &y = ¢ — q;fi; - Let A;; = Im(g,;;). Then the sequence
is exact. Let E be a finite subset of the set of pairs (7, j) with 7 < j and
7, j€ & and let

Ag = U Ay

(i,j)eE
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The set of finite sets E defined in this way together with the relation of
containment forms again a directed small category &’. We get

Uisj Aij = Uzres’ 4k -
The diagram
K;

.

(VU 4y)NF—F,

AN

is commutative with exact lower row. Since (K, — [[ F; — lim #) = 0,
there exists exactly one morphism K; — () 4;; with

(Kk"" U Aij_’UFi) = (Ky—>Fr— I_[Fz)

Hence there exists a unique morphism K — (U 4;) NF, with
(Ky — (U 4;5) N F, —F},) = (K, — F}). Conversely, let

(U 45) AP P lim #) =,

then there exists a unique morphism (| 4,;) N F;, — K, with
((U Aii) NF,— K, “’Fk) = ((U Aij) NF; —>Fk)

This implies that () 4;;) N F), = K, as subobjects of [] F; .

For E€ &' let | > j for all j with (¢, j) € E and [ > k. Furthermore,
define morphisms h; : F;—F, by h;; = f;; for ¢ <I, and A,; =0
otherwise. This defines a morphism % : [[ F; — F,. The diagram




4.7 GROTHENDIECK CATEGORIES 185

is commutative and we get (4p — [[F; — F;) = 0 because
(Fjj > 11 F;, > F) = 0 for j </ by definition of 4 Hence,
(Ag N F),—F) = 0. Since K;; = Ker(F, = F;) and 4. NF, is
a subobject of F;, , we have Ay N F; C K, . This proves

K, = (UAij)ka = (U AE)an = @enF)C {J Ky,

Ecé’ Eeé8’ k<l

where we used Lemma 2.

THEOREM 1. Let € be an abelian, cocomplete, locally small category.
The following assertions are equivalent:

(1) Direct limits in € are exact.

(2) For each directed family (A,);c; of subobjects of A € €, the morphism
li_r)n(Ai) — A is a monomorphism.

(3) ¥ is a Grothendieck category.

Proof. (1) = (2): We consider [ as a directed small category and form
the functors & : I — % with % (1) = A, and ¥ : I - € with 9({) = 4
for all 7. The morphisms of I are mapped into the monomorphisms of
the A4; and A4 into A respectively. Since lim & = 4, (1) implies that
lim # — 4 is a monomorphism.

(2) = (3): Let {4,} be a chain of subobjects of 4 and B C 4. By the

second isomorphism theorem, we get a commutative diagram with
exact rows and columns

0 0 0
! l
0——> 4,nB B Bj4;,nB——0
l ! |
0 A4, A;UB——> A4,UBl4;,—>0
} ! |
0——>A,JA,nB—> A, U B|B 0 0
J } J
0 0 0

for all € I. Morphisms A; — A; induce morphisms between the corre-
sponding 3 X 3 diagrams such that all occuring squares are commutative.
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If we apply the functor lim to this chain of 3 X 3 diagrams, then we get
that lim(4; N B) - 4, B— 4, lim 4, — 4, and lim(4; U B) — 4 are
monomorphisms by (2). Since [] 4;— A may be factored through
lim 4; and [J 4; — lim 4; is an epimorphism we may identify lim A4,
- - . . . . -
with ) 4; as subobjects of A. Since lim is right exact and preserves
isomorphisms, the diagram

0 0 0
J ! |

0— U(4; N B) B lim(B/4; " B) — 0
J J J

0 U 4, U(4; v B) —— lim(4; v B/4,) —> 0

l } !

0 — lim(4,/4, " B)—> lim(4; U B/B) 0
) } J
0

0 0

is commutative with exact rows and columns. Now let morphisms
D — B and D — | 4, with

(p>B—UAuB) = (D~>U4->UAUB)

be given.Then (D — lim(B/4; N B)) = 0 and (D — lim(4,/4; N B)) = 0.
Hence, there exist f : D — |J (4; N B) with

(D—»B):(D—’»U(AJ\B)—»B)

and
g:D—{J)(4; N B)

with (D - 4,) = (D% (U (4; N B)— | 4;). However, since
(DL U (4;nB)—> U (4;V B) = (D5 U (4,0 B)— U (4; U B)
and since J (4; N B) — (J (4; U B) is a monomorphism, we get f = g.
Consequently, ) (4; N B) is the fiber product of () 4; and B over
U (4; Y B), hence Y (4; " B) = (U 4;) N B.

(3) = (1): By Corollary 1 and Section 4.3, Lemma 2 it is sufficient to
show that for a directed category & and a natural monomorphism
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p:F —>% also limp:lim% —lim % is a monomorphism. Since
Funct(&, ) is abelian and kernels are formed argumentwise in
Funct(&, €), the morphisms u(z) : # (i) > %(i) are monomorphisms
for all 71 € & We denote #(i) = F; and 9({) = G;. Let K, =
Ker(F; — lim #), L; = Ker(G; — lim 9), 4; = Im(F; — lim #),
B, = Im(G; — li_r’n %), K = Ker(l_igl w), and C be the fiber product of
A, N K with F; over 4;. Then we get a commutative diagram

Ki —_>Li

Lo

C F; G,

oo

A, NK— A, —— B;

ool

00— K— lim&% — lim¥
— —

where the last row is exact. Because of () 4; = lim & and the Grothen-
dieck condition, we get K = (U 4,) N K = U (4; N K), for the 4;
form a directed family of subobjects of lim #. If all A; N K = 0, then
also K = 0 and lim x is 2 monomorphism, which we had to show.
Since F; — A, is an epimorphism, C — 4, N K is an epimorphism
by Section 4.3, Lemma 4. It is sufficient to show that this epimorphism
is a zero morphism. We have (C—lim ) = 0. Since C— G; is a
monomorphism, we get C CL; as subobject of G;. By Lemma 3
L; = Ui<; Ly where Ly = Ker(G;— G,), hence C=CnNL;,=
(ULy) N C = ULy N C). The diagram

L;,NC

o

Kij—>L

oo

Lo

i

is commutative. Since (L; N C— G;) = 0 and F; — G; is a mono-
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morphism, we get (L; N C——»F) =0, hence L; nCCK,;;. Con-
sequently, C = (J(L;NnC)C UK; =K;. Then the preceeding
diagram implies (C —»Fi —A4) = 0. Since A, NK— A, is a mono-
morphism, we get (C— 4, N K) = 0.

COROLLARY 2. Let € be a Grothendieck category; then the morphism
8:11 A; — IT A4; (in Section 4.1) is a monomorphism.

Proof. Let {A4;};; be a set of objects in €. Let E be a finite subset of 1.
We define 4y = @, 4, - Since

(AE_)UAlﬁnAi_)AE) = lAE

i€l iel

we get that Ay is a subobject of [T 4; . The set of these subobjects forms
a directed family of subobjects and we have ) Ay = [] 4;. Hence,
11 A4; = lim Ag. On the other hand, the 4, are also subobjects of
I1 A Thus, hm Ay —T14;is a monomorphlsm

As in the preceeding cases, we used here also a method which is
typical for proofs in Grothendieck categories. We replace an infinite
arbitrary union () 4; = [[ 4; by a union of a directed family of
subobjects which all are finite unions. The corresponding conclusion in
module categories, where the unions are sums (not necessarily direct
sums) and where one can compute with elements, is that for

X € Z Ai (= U A,)
there is a finite index set 7y ,..., 4, with x € 4; + - + 4,

CoOROLLARY 3. Let monomorphisms u;: A; — B; be given and assume
that 11 A;, I1 4; and 11 B;, T1 B, exist in the Grothendieck category €.
Then the morphism u : [ A; — 11 B, induced by the u,; is a monomorphism.

Proof. There is a commutative diagram
oL
H Ai —_— H Bi

as in Section 4.1. By Section 2.6, Corollary 5, products preserve mono-
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morphisms. Since [] 4;—> []A4;—[IB; is a monomorphism,
LI 4; — 1] B; is also a monomorphism.

COROLLARY 4. Let € be a Grothendieck category. Let {A,} be a directed
family of subobjects of A and f : B — A be a morphism in €. Then

U4 =1 (U 4

Proof. LetIm(f) = A’. The commutative diagram

fAA)— 4,0 4 — 4,

! b

B A A

and Section 2.6, Lemma 3 imply that the left square is a fiber product.
By Section 4.3, Lemma 4(c) we get that f~1(4,) = 4, N 4’ is an epimor-
phism. Furthermore, f~1(4;) contains the kernel K of f. With the 3 x 3
lemma we get a commutative diagram with exact rows and columns

0 0 0
| | !

0 K K 0 0
) ! |
0——f(4)) B Blf(4;)——0
| }

0—— A,NA A’ A4, N A —0
} } |
0 0 0

In particular, the morphism B/f ~Y(4,) — A'|A; N A’ induced by the
epimorphism B — A4’ is an isomorphism. Hence, we also have
B/f (U 4,) = 4A'/(U 4;,) N 4’. Since direct limits are exact, we get by
the application of a direct limit to the above diagram again a corre-
sponding commutative diagram with exact rows and columns. This
implies an isomorphism B[ f~1(4,) == A'|U (4; N 4'). By the
Grothendieck condition, we have A'[() (4; N A') = A'|(UA4;) N 4"
Consequently, B f(A4,) = B/ f (U 4;) and U f(A4) = £ (U 4.
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4.8 The Krull-Remak-Schmidt-Azumaya Theorem

In Section 4.5 we investigated the uniqueness of sufficiently fine chains
of subobjects of an object. Each decomposition of an object into a
coproduct induces chains of subobjects in different ways. These,
however, are not fine enough in the general case to allow the application
of the Jordan-Hoélder theorem, even if we make the decomposition as
fine as possible. Thus we shall use different methods to investigate the
uniqueness of sufficiently fine decompositions into coproducts. Here we
shall also admit infinite decompositions.

In this section let € be a Grothendieck category. An object 4 € ¥ is
indecomposable if A = 0 and if, for each decomposition of 4 into a
direct sum 4 = A; @ A,, either A = A, or A = A,. If A is not
indecomposable, then A4 is said to be decomposable.

An element 7 of a unitary associative ring R is called a nonunit, if
Rr # RandrR 3 R. This is equivalent to saying that there is neither an
x€ R with xr = 1 noraye R withry = 1. R % 0 is called a local ring
if each sum of two nonunits in R is again a nonunit. An element » € R
1s called idempotent if r* = r.

Lemma 1. Let r be an idempotent in a local ring R. Then either r = 0 or
r=1.

Proof. We have (1 —7)?=1—7r. Since 1 = (1l —r) +r is not a
nonunit, either » or 1 — 7 is not a nonunit. If 7 is not a nonunit, then
xr = 1, hence r = xr? = x7 = 1. Symmetrically rx = 1 implies r = 1.
Ifx(1 —7)=1land (1 —r)x = 1, thenl — 7 = 1, hence r = 0.

An element r € R is called a unit if there isan x € R with xr = rx = 1.

Lemma 2. Let R be a local ring. Then the nonunits form an ideal N. All
elements in R which are not in N are units.

Proof. Let7 be a nonunit and x € R. We have to show that x7 is a non-
unit. By definition, there cannot exist a y € R with yxr = 1. However, if
xry = 1, then (yxr)( yar) = y(xry) xr = yxr. Since yxr is an idempotent,
we have yar = 1. In factif yxr = 0, then 1 = (xry)(xry) = xr(yxr)y =0,
hence R = 0, a case which we want to exclude. Consequently, N is
closed with respect to addition and multiplication with ring elements
from both sides. If » € R and 7 ¢ N, then there is an x € R with xr = 1
or rx = 1. Assume xr = 1. As above, we get (rx)? = rx, hence rx = 1.
7 is a unit.
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LemMa 3. Let A € € with local endomorphism ring. Then A is indecompos-
able. If A is indecomposable and of finite length, then the endomorphism
ring of A is local.

Proof. Let 4 =B@®C and f=(A—>B—4), where p: A— B
is the projection and ¢ : B — A4 the injection with respect to the decom-
position into the direct sum. Then f2 = ¢gpgp = f = Qor f = 1. Hence,
either B = 0 or B = A. Since the endomorphism ring of 4 is not the
zero ring, we get 4 = 0, hence 4 is indecomposable.

Let 4 be indecomposable and of finite length. Let f : 4 — A4 be given.
Then Ker( f) C Ker(f2) C -+ is an ascending chain of subobjects of 4.
The commutative diagram

0 —— Ker(f?) —— A 2 Im(f2) —— 0

il

0—— Ker(f) —— A —""Im(f) ——0

4

A

with exact rows implies that Im(f) 2 Im(f?) 2 ---, for ¢*¢"p" is the
unique factorization of f2 through Im( f2). Both chains become stable
after n steps, that is, we get Ker(f™) = Ker(f"*") and Im(f") =
Im( fn+7) for all » € N, because 4 is of finite length. Let g = f™. Let
gp = g be the factorization of g through Im(g) and ¢'p’ = g% be the
factorization of g2 through Im(g?). Since Im(g) = Im(g?), we get
g = ¢'. We get a commutative diagram

A—LImg) —2>4
”

X e s

A—2 > Im(gr) 2> 4
In fact, we have ggp = gpg. Since
(Ker(g) — A 2> 4 — Im(g¥) = 0

there exists a unique g’ withg'’p = pg = p'. 98 ‘p = ggp implies g’ = ggq,
since p is an epimorphism. The fact that p’ is an epimorphism implies

that also g’ is an epimorphism. Since Im(g) and Im(g?) have equal length,
g’ 1s an isomorphism with the inverse morphism &.
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Then

(ghp)(qhp) = qh’%¢'paghp = qh®pgghp = qhpqg'hp
= qh*pg = qh’%¢ p = qhp

Hence, ghp is an idempotent with image Im(g). By Section 4.3, Lemma 3,
we get A = Im(g) @ Ker(ghp). Since A is indecomposable, either
Im(g) = A orIm(g) = 0. In the first case, g and also f are isomorphisms
because A4 is of finite length. In the second case f» = 0.

Consequently, in the endomorphism ring Hom(4, 4) each element
J which is not a unit, that is, which is not an isomorphism, is nilpotent,
that is, thereisann € N with f*» = 0. Let fand /' be nonunits. We assume
that f 4+ f’ is not a nonunit. Then there exists an x € Homg(4, 4) with
xf + xf" = 1. Since xf and xf”’ are not units, they are nilpotent. Let ¢
be minimal with (xf)! = 0 and let j be minimal with (xf")? (xf )1 = 0.
7 and j are necessarily different from zero. Then

(af Y = (o Y+ o )af
= G Ve + (Y f) = 0

contradicting the minimality of 7 and j. Hence f 4+ f’ is a nonunit and
Homy(A4, A) is a local ring.

If, in the following, we talk about coproducts of subobjects of an
object in %, then the monomorphisms which belong to the subobjects
are assumed to be the injections of the coproduct. Nonequivalent
subobjects, even if they are isomorphic as objects, will be denoted
differently. The projections into the direct summands, however, may
change without us changing the notation for the object which could be
considered as a quotient object with respect to the projection.

Lemma 4. Let A = 1] A; and let the endomorphism rings Home (A4, , A4;)
be local. Let f and g be endomorphisms of A with f+ g = 1,. Let
E = {1,,..., 1,} be a finite subset of 1. Then there exist subobjects B, ,..., B,,
of A and isomorphisms h; : A; — B; for j = 1,..., n such that for each j
the diagram

h;
Ay —> B;

b

A—h>A
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is commutative for h = for for h = g. Furthermore, there exists a decompo-
sition
4 =Bl@"'@Bn®HAi
i¢E

Proof. The injections and projections of the A; will be denoted by ¢,
and p, respectively. We have p;fq; + p;g9;, = 1, for i€l Since
Homgy(4;, 4,) is a local ring, one of the two summands, e.g., p,fg;,
is an automorphism with the inverse morphism a; A — 4;. Let
i =, eE We factor fg; : A; — A through B Im(fqt) as
f91, = ¢q,'h, withg¢," : B, — A and h 4, — B;. Smce pz g’ phfqzl
isa monomorphism h, is the 1somorphlsm we were lookmg for Further-

more, (¢,'ma; p;)* = ¢1'ma; p; and Im(q,'hya; p;) = B
Ker(g,'ha;, pi,)) = Ker(py) = H A;

i£4,
By Section 4.3, Lemma 3 we have 4 = B; ® [[;.;, 4; - Starting with
this coproduct we now may replace 4; by B, . Then after n steps the
lemma is proved.

THeoReM (Krull-Remak-Schmidt-Azumaya). Let € be a Grothendieck
category and A € €. Let

A=1]]4; with local rings Homg (4, , 4;)

iel
and
A=1]]B;  withindecomposable B

J
jeJ

be given. Then there exists a bijection ¢ : I — ] such that for all i eI we
have Ai o~ qu(z') .

Proof. The injections and projections of the A4; will be denoted by
g; and p; respectively, those of the B; by ¢;" and p,’ respectively. First, we
show that to each B, there exists an isomorphic 4; and that this isomor-
phism is induced by ¢;'p;" : A — A. Then also the endomorphism rings
of the B; are local, the 4; are indecomposable, and the hypotheses of the
theorem are symmetric.

Let f=yg¢/p/ and f'=1—f Then f+f" =1, f?=f and
f'? = f’. Furthermore, Im(f) = Ker(f’) = B; by Section 4.3,
Lemma 3. Let E C I be a finite subset and Ay = @yex 4;. The A4g
form a directed family of subobjects of 4. There exists an E with
AN B; #0, since By = (Ud4g) N B; = U(AgN B;). Let
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= {iy,..., %,}. By Lemma 4, there exist C;, C 4 and isomorphisms
hk A, — Ck , B = 1,...,, n, which are induced by f or by f’. We assume
that all hk are induced by f'. Let Cx = @®}_, C) . Then we get a commu-
tative diagram

AgNB; —> Ap~ Cg

Lo

B, 454

Since f'q;" = 0 and 4z N B; - Ay =~ Cp — A is a monomorphism we
q] . . E ’ E E : p

get a contradiction to 4y N B; # 0. Hence there exists at least one

1, € E such that the square

A; ——»Cko
Lo
41 4

is commutative. By definition of f, we get C;, C B; . But since C is a
direct summand of 4, C, is also a direct summand of B; . B; is indecom-
posable, hence C; = B /4, = 4;'p/'q;, implies k;, = p] g, -

Now let 4; =~ B o We have to compare the number | o ‘of the A;
isomorphic to A i, With the number | 8| of the B; isomorphic to B; .
By symmetry, it is sufficient to show that [« | > | B |. First, assume that
| a | is finite. By the preceeding construction there exists corresponding
to jj€B an i €a such that f; = g; p; induces an isomorphism
A; =~ B; . Furthermore,

A=B,®]] B;=4,,® [] B

iEd, FETN

Now, if we compare the second direct sum with 4 = [];¢; 4; and apply
the same procedure, then we get after n steps

A=B,®@®B,® || B=4,0"®4,® [l B

Here we have to observe again that the injections of the 4; and B;
remain unchanged but that the projections change. The fact that the
injections of the A; remain unchanged also guarantees that the 7, ,..., 7,
are all pairwise distinct because for a decomposition into a direct sum,
no two injections can be equal. 7 ,..., 7, € o implies now | o | = | 8.
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Now let | o | be infinite. Let E C ] be a finite subset, let je Band j ¢ E.
Further, assume that 4; ~ B, by the isomorphism induced by f = ¢,'p,’.
Then the diagram

Ai('\BE—>Aig Bj

Lol

By — A— A4

is commutative where By = @,z B; . We get 4; N By = 0 because
(B —A— A)=0and 4; " B - A; =~ B; — A is a monomorphism.
On the other hand

A,:(U BE)nA,: U (4N B #0

ECJ ECJ

Hence there exists a finite subset E C J with 4; " By # 0. Each je |
which induces an isomorphism A4; ~ B; by ¢;'p;’ for the above deter-
mined ¢ must lie in this E. Hence there are only finitely many such j.
We call this number E(Z). To each j€ B we may construct such an 7.
Hence,

U EG) =8

t€a

This proves |a| = | B 1.

4.9 Injective and Projective Objects and Hulls

Let € be an abelian category. An object P e ¥ is called projective if
the functor Homg(P, —) is exact. Dually, an object O €€ is called
injective if the functor Homg(—, Q) is exact. Since the functor
Homgy(A4, —) is left exact for each 4 € €, P is projective if and only if
Homg(P, —) preserves epimorphisms, that is, if for each exact sequence
A— B —0 and for each morphism f: P— B there is a morphism
g : P— A4 such that the diagram

g9
f
A——>B—0

is commutative. Dually, QO is injective if and only if for each exact
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sequence 0 - 4 — B and each morphism f : A — Q there is a morphism
g : B — O such that the diagram

0——A4A——B

fl /
Y
is commutative.
Since in a module category all epimorphisms are surjective morphisms,
the projective modules in a module category coincide with the relatively

projective modules introduced in Section 3.4 with respect to the forgetful
functor into the category of sets.

LemMa 1. Let P, ¥ and P = [] P; be given. P is projective if and only
if all P; are projective.

Proof. Let 4A— B—0 be exact. Let morphisms f;: P, > B and
f: P— B with ¢q,f = f; be given. We use the diagram

Pii—>P

N
A——>B——0

If P is projective, then there exists P — A with (P — B) = (P— A4 - B).
Hence, for each 7, we obtain (P, — P — A — B) = f, . Since fis uniquely
determined by the f;, all P; are projective.

Let the P; be projective, then there exist P, — A, making the above

diagram commutative. In a unique way, these determine a morphism
P — 4 with (P— 4 — B) = f. Hence, P is projective.

Levmma 2. P is projective if and only if each epimorphism A — P is
a retraction.

Proof. Let P be projective and 4 — P be an epimorphism. Then the
morphism g in

is a section for A -— P.
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Let A— B — 0 be exact and P— B be given. We form the fiber

product
C—P

bl

Since 4 — B is an epimorphism, C — P is an epimorphism, hence a
retraction with section P — C. Consequently,

(P—>B)=(P—>C—A—B)

A monomorphism 4 — B is called an essential extension of A if each
morphism B — C, for which 4 — B— C is a monomorphism, is
a monomorphism itself. A subobject 4 of B is called large if for each
nonzero subobject C of B also 4 N C is nonzero.

LemMma 3. A — B is an essential extension if and only if A is a large
subobject of B.

Proof. We use the commutative diagram with exact rows

0—ANnC—A—A4/ANnC—0

Lo !

0 C B D 0

where, as in the proof of the second isomorphism theorem, the vertical
morphisms are monomorphisms. If 4 — B is an essential extension,
and C # 0, then B — D is not a monomorphism, nor is A — D a
monomorphism. Hence, 4 N C = Ker(4 — D) 5 0 (see Section 4.4(1)).
If 4 is large in B, and B — D’ is not a monomorphism, and D is the
image of B — D’, then C # 0, hence also 4 N C = Ker(4 — D) # 0.

CoRroLLARY 1.

(a) An essential extension of an essential extension is essential.

(b) Let A— B be a monomorphism in a Grothendieck category and
{C} be a chain of subobjects of B, all containing A. If all C; are
essential extensions of A, then also \) C; is an essential extension of A.

Proof. (a)If A C Bislarge, and B C C is large, and 0 5 D C C, then
AAD = AN (BN D)#0.

(b) Let 0#DCUYC;. Then D= (Y Cy)nD={(C;n D).
For some 7, we have C; " D # 0. Hence, AND =ANC,NnD # 0.
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Since in a Grothendieck category lim C; = | C; for a chain {C}}, and
since by Section 4.7, Lemma 3, the morphlsms C; — lim C; are mono-
morphisms, in the preceding corollary the assumption 1 that B exists is
superfluous because B can always be replaced by lim C; .

A monomorphism 4 — Q with an injective Ob_]CCt O is called an
injective extension of A. An injective, essential extension is called an
injective hull (injective envelope). An essential extension 4 — B will be
called maximal if for each essential extension 4 — C, which may be
factored through B

A—->C)=(A—->B—-C)

the morphism B — C is an isomorphism. An essential extension 4 — B
is called a largest essential extension if 4 — B may be factored through
each essential extension 4 — C

(A4—B) = (A— C— B)

An injective extension 4 — B is called minimal if for each factorization
A — C — B of A — B with an injective object C and a monomorphism
C — B the morphism C — B is an isomorphism. An injective extension
A — B is called a smallest injective extension if for each injective exten-
sion 4 — C, there exists a monomorphism B — C with (4 — C) =
(A— B—C).

ProrosiTioN 1. Let A € € and assume that A has an injective hull. The
following are equivalent for a monomorphism A — B:

(1) A — B is an injective hull of A.

(2) A — B is a maximal essential extension of A.
(3) A — B is a largest essential extension of A.
(4) A — B is a minimal injective extension of A.
(5) A — B is a smallest tnjective extension of A.

Proof. We shall use the diagrams

4A—.B 41 .B
|
c c

)] (2)

(1) <= (2): Letfbean injective hull and g an essential extension in (1).
Since f is essential and g is a monomorphism, % is a monomorphism.
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Since B is injective, & is a section: C = B @ D. Since g is essential,
D = 0, hence % is an isomorphism. Conversely, let f be a maximal essen-
tial extension and g be an injective hull of 4 in (1). % exists because C is
injective, and is a monomorphism because g is a monomorphism and f is
essential. Since f is maximal, % is an isomorphism and B is injective.

(1) < (3): Ifin (2), fis an injective hull and g an essential extension,
then there exists /# because B is injective. Conversely, let f be a largest
essential extension of 4 and g be an injective hull of 4 in (2), then 2 is a
monomorphism because g is essential and f is a monomorphism. C being
injective implies that % is a section, hence an isomorphism.

(1) < (4): If in (2), f is an injective hull, g an injective extension,
and % a monomorphism, then % is a section, hence an isomorphism.
Conversely, if in (2), f is a minimal injective extension and g an injective
hull, then there exists a monomorphism /4, which must be an
isomorphism.

(1) <= (5): Ifin (1), fis an injective hull and g an injective extension,
then there exists a monomorphism 4. Conversely, if in (1), f is a smallest
injective extension of 4 and g an injective hull, then there exists a
monomorphism 4, which is a section, hence an isomorphism.

LemMma 4. Let € be a Grothendieck category and Q € €. Assume that Q
has no proper essential extension. Then Q is injective.

Proof. Letf: (O — A be a monomorphism. Let B be the set of subob-
jects B of A withQ N B = 0.If {B,}is a chain in B, then (| B,) N0 =
UB; nQ) =0 implies () B;eB. By Zorn’s lemma there exists a
maximal object B’ in B. We shall show that Q - 4 — A/B’ is an
isomorphism. Then f is a section and Q is injective by the assertion dual
to Lemma 2. Because of Ker(gf) = B'NQ = 0, we get that gf is
a monomorphism. Consider Q as a subobject of 4 and Q' = g(Q) as
a subobject of A/B". Let C C A/B’and Q' N C = 0. ThenQ N g~}(C) C
gHNO' N C)=B andQ Ng(C)CO,henceQ Ng(C)CB'NnQ = 0.
On the other hand, g=}(C) 2 B’, hence we get g7)(C) = B’ because of
the maximality of B’. C = gg=}(C) = 0 because g is an epimorphism,
that is, gf is an essential monomorphism. By hypothesis we get that gf
is an isomorphism.

THEOREM 1. If € is a Grothendieck category with a generator then each
object in € has an injective hull.

Proof. To each object 4 € ¥ we shall construct a maximal essential
extension. By Corollary 1, this will not have a proper essential extension
any more, hence by Lemma 4 it will be injective. Into the class of all
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proper essential monomorphisms in ¥ we introduce an equivalence
relation f ~ g if and only if D(f) = D(g). Then by the strong axiom
of choice we assign to each noninjective object B € ¥ a proper essential
extension. To the injective objects, we assign the identical morphisms,
since they do not possess a proper essential extension by Proposition 1.
Now we construct a sequence of essential extensions

A— B ——>B,—~ B,

for all ordinals «. If the sequence has been constructed up to B, , let
B, — B,., be the essential extension determined above by the strong
axiom of choice. If B is a limit, then we define By = li_r)n B, for all
o < B as in Corollary 1. Then for all «, the monomorphism 4 — B, is
an essential monomorphism.

Now we want to show that this sequence will become constant after
a certain ordinal. Since for noninjective objects B, , the extensions must
be proper by construction, the object B, , from where on the sequence
will be constant, will be injective.

Let G be a generator in € and G’ be an arbitrary subobject of G. Let
a < B be ordinal numbers. We form the set (G’, o, B) of morphisms
f: G'— B, for which there is a morphism g : G — B, such that the
diagram

G —G

o

Ba—>BB

is commutative. Hence, (G, o, 8) C Hom¢(G’, B,). For B < B’, we have
(G, &, B) C(G', o, B'); this sequence must become constant because
Homg(G’, B,) has only a set of subsets. Since G has also only a set of
subobjects G’, there exists even an ordinal a* > « with (G, «, a*) 2
(G', o, B) for all G’ C G and all B > «. Since it is sufficient to show that
a cofinal subsequence becomes constant, we may assume that a* = « + 1.

Let y be the first ordinal which has larger cardinality than the set of
subobjects of G. y is a limit and we have B, = lim B, for all « < y. If
we consider the B, as subobjects of B,,,, then B, = (J,_, B,. Now
f:G—B,,, is a morphism which cannot be factored through B, .
Such a morphisms exists as long as B, # B,_, , which we want to assume
now. We get a chain of subobjects f~1(B,) of G and by Section 4.7,
Corollary 4 we have f~}(B,) = U,.,f (B,). Let

K = (] f(B) S H(Bas)
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and let | K| be the cardinal number of K. Then | K| < |y | by the
assumption on y. Furthermore, | o« | < |y |. By Lemma 2 of the appendix,
there exists a 8 <y with « < for all « € K, that is, for all B’ > B8 we
have f~Y(By) = f~X(By), hence f(B,) — f-X(B;).

Since by our construction B* = 8+ 1 we get (f~YBy), B, y) =
(f~YBs), B,y + 1). The morphism f’:f~(Bg) — Bs induced by f
can already be extended to a morphism g’ : G — B, such that the diagram

[ (Bs) — G

rlel

B;— B,

is commutative. Let g: G -> B,,; be the morphism induced by g’
Then g # f, but (g — f)(f7(B,)) = (& —/)S7(Bs)) = 0.

Since B, is large in B, ., , we have Im(g — f) N B, # 0; hence there
exists a morphism A’ : G — (g — ) (Im(g — f) N B,) such that

(G— (¢ —f)'(Im(g —f)n B,)—>1Im(g —f) " B,) # 0

Let £: G— G be the morphism induced by %#’. Then (g — f)2 # 0
and Im((g — f)k) € B,. Since Im(gh) CIm(g) C B,, we have
Im(fh) C B, , that is, Im(k) C f~%(B,). Then, however, (g —f)h =0
must hold. This is a contradiction to our assumption that B, #* B, .

In this proof we did not use all objects of the category ¥ to test the
maximal essential extension, but only the generator G and the subobjects
of G. Consequently, it is also sufficient to test the injectivity of objects
only for the subobjects of G.

CoroLLARY 2. Let € be a Grothendieck category with a generator G.
Let Q € € be an object such that for all subobjects G' C G the map
Homg(G, Q) = Homy(G’, Q) s surjective, then Q is injective.

Proof. If Q has no proper essential extension, then Q is injective by
Lemma 4. Let QO — A be a proper monomorphism. Then there exists
a morphism f: G — 4 which cannot be factored through Q. We form
the commutative diagram

fHQ—G

A

Q—4
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By hypothesis there exists G — Q with
(FH—0) =)~ G—0)

Let g = (G— QO — A). Then g # f. As in the last paragraph of the
preceeding proof, we then get Im(g — /)N QO = 0. Hence, Q — 4
cannot be an essential monomorphism.

With the present means we can now show that the Krull-Remak-
Schmidt-Azumaya theorem can also be applied to injective objects,
similar to the case of objects of finite length that we proved in Section 4.8,
Lemma 3. In fact, the difficulty is always to show that the endomorphism
ring of certain indecomposable objects is local.

THEOREM 2. Let € be a Grothendieck category with a generator. An
injective object Q € € is indecomposable if and only if Homy(Q, Q) is local.

Proof. By Section 4.8, Lemma 3 we need only show one direction. Let
O be indecomposable and injective. Each monomorphism f:Q —Q
is an isomorphism because f is a section and Q is indecomposable.
Furthermore, each nonzero subobject of Q is large. In fact, let0 = 4 C QO
be given and let Q" be the injective hull of 4. By Theorem 1(5) we get
O’ C Q. Hence we get Q' = Q because Q is indecomposable, that is, O
is an injective hull of 4. The nonunits of Hom(Q, Q) are the morphisms
with kernel different from zero. If f, g€ Homg(Q, Q) with nonzero
kernels are given, then Ker(f 4 g) 2 Ker( f) N Ker(g) # 0 by Section
2.8, Lemma 1 and because all nonzero subobjects of O are large. Hence
f -+ g is a nonunit.

If an injective object is given as a coproduct of indecomposable
objects which then are necessarily also injective because they are all
direct factors, then this representation is unique in the sense of the
Krull-Remak-Schmidt-Azumaya theorem. Conversely, however, not
each coproduct of injective objects is injective. Thus it will be of interest
to know under which conditions we can decompose each injective object
into a coproduct of indecomposable objects and when each coproduct
of indecomposable injective objects is injective.

We observe that each module category is a Grothendieck category and
possesses a generator, namely the ring R. Thus all theorems proved in
this section are also valid in module categories.

Another important application of Theorem 1 will be used later on,
namely the existence of injective cogenerators in a Grothendieck category
with a generator. So we prove now the following more general theorem.
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THEOREM 3. Let € be an abelian category with a generator G in which
to each object there exists an injective extension. If € is complete or cocom-
plete, then there exists an injective cogenerator in €.

Proof. We prove the theorem for the case that € has coproducts. In
case of the existence of products one may replace the coproducts by
products everywhere in the proof.

Since G has only a set of (normal) subobjects (Section 2.10, Lemma 1),
G has only a set of quotient objects G’. Let H be the coproduct of all
these quotient objects and let K be an injective extension of H. We want
to show that K is a cogenerator. Let f : A — B in C be given with f 7 0.
Then there exists a morphism G — 4 such that (G— A4 — B) # 0.
Let G— G’ — B be the factorization of this morphism through the
image. Then G’ # 0 is a quotient object of G. Since the injection
G’ — H is a monomorphism, there exists a monomorphism

(G'—> H—K)#0,

hence also (G— G’ — H — K) # 0. Since K is injective and G’ — B
is a monomorphism, there exists a morphism B — K such that the
diagram

G——>G ——H

NG

A— B — K

is commutative. (G — K) s 0 implies also (4 — K) # 0. This proves
that K is a cogenerator.

COROLLARY 3. Let € be a Grothendieck category with a generator. Then
€ has an injective cogenerator.

Proof. The corollary is implied by Theorems 1 and 3.

CoroLLARY 4. Let ;Mod be a module category and M be the set of
maximal ideals M of R. Then each injective extension of [] prem R/M and
T T s R/ M respectively is an injective cogenerator.

Proof. If we observe that R is a generator in ;Mod, then in comparison
with the construction of the injective cogenerator in the proof of
Theorem 3, we see that in the coproduct and product there are fewer
factors. But since in a ring R each ideal ] is contained in a maximal ideal
M (see Appendix, Zorn’s lemma), each nonzero quotient module of R
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may be epimorphically mapped onto a module of the form R/M. Hence,
we extend the diagram in the proof of Theorem 3 to a commutative
diagram

R—>R —>RM——H

Lo !

A4 B K

where H is the coproduct or the product of the R/M and K is an
injective extension of H. The morphism R — K is different from zero,
thus the proof of Theorem 3 can be transferred to this case.

CoroLLARY 5 (Watts). Let Mod and sMod be module categories. Let
T : RMod — ;Mod be a functor. T preserves limits if and only if there
exists an R-S-bimodule pAg such that I ~ ¢Homp(zA4s, —), that is,
if T is representable.

Proof. 1f 7 is representable, then the assertion is clear. Assume that 7~
preserves limits. By Corollary 4 and Section 2.11, Theorem 2 J has a
left adjoint functor *7. Then J B o~ Hom(S, 9 B) =~ Homy(*7 S, B)
natural in B, hence J is representable. Here *7° S has by definition
the structure of an R-left-module. For s € S the right multiplication
of S with s is an S-left-homomorphism 7(s). Hence *.7 (r(s)) defines
the structure of an R-S-bimodule on *7°S.

4.10 Finitely Generated Objects

Let € be a category with unions. An object 4 € ¥ is called finitely
generated if for each chain of proper subobjects {4;} of 4 also U 4,
is a proper subobject of 4. An object A € € is called compact if for each
family of subobjects {4,} of 4 with ) 4; = A, there is a finite number
A4, ,..., 4, of subobjects in this family such that 4, U .- U 4, = 4.

THEOREM 1. An object A€ ¥ is finitely generated if and only if it is
compact.

Proof. Let A be compact. Let {4;} be a chain of subobjects of 4,
with (J 4; = 4. Then there exist 4,,..., 4, in this chain with
A,V - U A4, = A. One of these, e.g., 4,, is the largest. Hence
A = A4,, and 4 is finitely generated.

Let A4 be finitely generated. Let B be a set of subobjects of 4 that is
closed with respect to unions, and which contains 4. Let 2 be a subset
of B that contains all elements except 4. Since A is finitely generated,
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B and W fulfill the hypotheses of Section 4.7, Lemma 1. If () 4, = 4
for objects A, € B, then there exist finitely many 4,,..., 4, with
A, v v 4, = A4, that is, 4 is compact.

With this theorem an algebraic notion (finitely generated) and a
topological notion (compact) are set in relation with each other. Here we
have to remark that the usual definition in algebra of finitely generated
objects is given with elements (Section 3.4 and Exercise 14), but that for
proofs only the condition of the definition given here is used. This
condition also admits easily the application of the Grothendieck condi-
tion.

CoROLLARY 1. Let A be a module over a ring R. A is finitely generated
in the algebraic sense if and only if A is finitely generated in the categorical
sense.

Proof. If A = Ra, + Ra, + -+ 4+ Ra, , that is, if A is finitely gener-
ated in the algebraic sense, and if {4,} is a chain of submodules of 4 with
U 4; = A, then, for each g;, there exists an 4, with a;€ 4, . Let
! = max(k), then a;€ 4, for all j = 1,...,,n, hence 4 = 4,.

Now let 4 be finitely generated in the categorical sense, then A4 is
compact. Let {a;} be a generating system for 4, that is, 4 = {J Ra;,
then 4 = Ra, U --- U Ra,, for suitable a4, ,..., a, . Hence, 4 is finitely
generated in the algebraic sense.

Let € be again an abelian cocomplete category.

LemMA 1. Let f: A— B be an epimorphism in €. If A is finitely
generated, then B is also finitely generated.

Proof. Let {B;} be a chain of subobjects of B with () B; = B. Let
A; = f7(By). Then f(U 4;) = f(US7(By)) = U B; = B. Since f is
an epimorphism and the kernel of f is contained in () A4;, we get
U 4; = A, which may easily be seen by the 3 X 3 lemma. Furthermore,
B, C B; implies A, C A;, that is, {4,} is a chain of subobjects of 4.
Since A4 is finitely generated, we get A; = A for some 7. But
B; = f(4;) = f(4) = B, hence B is finitely generated.

An object A € € is said to be transfinitely generated if there is a set of
finitely generated subobjects 4, in 4 such that {) 4, = 4.

Levmma 2. If € has a finitely-generated generator, then each object is
transfinitely generated.

Proof. Let A€ %. Since by Section 2.10, Lemma 2 for each proper
subobject 4" C A4 there is a morphism G — 4, which cannot be factored



206 4, ABELIAN CATEGORIES

through 4’, the morphism ]| G -> 4 which is induced by all morphisms
of Homy(G, 4) is an epimorphism, where we use in the coproduct as
many objects as Hom (G, A) has elements. In fact, the image must
coincide with 4. Hence 4 = () A’ where the A’ are the images of the
morphisms G — 4. Since G is finitely generated, also the 4’ are finitely
generated by Lemma 1. Hence, 4 is transfinitely generated.

THEOREM 2. Let € be a Grothendieck category. Let A € € be transfinitely
generated. Then A is a direct limit of finitely generated subobjects.

Proof. We shall show that the union of finitely many finitely generated
subobjects of A4 is again finitely generated. If then 4 = (J A4, and for
each finite subset E of the index set Ay = {J;ex 4, then these (finitely
generated) A form a directed family of subobjects of 4 and we have
4=\ A4;:.

Let B and C be finitely generated subobjects of 4. Let {D,} be a chain
of subobjects of B U C with () D; = B U C. Then we have

(Up)nc=c and (UD)nB=38

By the Grothendieck condition, we then get ) (D; N C) = C and
U (D; " B) = B. Since B and C are finitely generated there is a j with
D;NC = C and D; B = B, that 1s, D; 2 B and D;2 C. Hence,
D; = BU C and B U C is finitely generated. By induction one shows
that all finite unions of finitely generated subobjects are finitely generated.

Lemma 3. Let € be a Grothendieck category and A €€ be finitely
generated. Let f: A— 1] B; be a morphism in €. Then there exist
B, ,..., B, such that f may be factored through B, ® -+ ® B, — 11 B; .

Proof. Let B = [] B, and let for each finite subset E of the index set
By = @, B; . Then the B form a directed family of subobjects of B
and we have B = U Bg. Let Ay = f~}(Bg). Then 4 = f~YB) =
S UBg) = Uf(Bg) = UAg. Since A is compact, we get
A= Ag Y-V g . Hence,

f4) =f(Ag) Y - U f(Ag)C Bg U - UB,, CBp =B, @ @B,

If we compare the definition of a noetherian object with the definition
of a finitely generated object, then it becomes clear that each noetherian
object must be finitely generated. The converse does not necessarily
hold. A Grothendieck category with a noetherian generator will be called
locally noetherian. A module category over a noetherian ring R (that is, R
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is noetherian in zMod) is locally noetherian. We want to investigate some
of the properties of the locally noetherian categories.

THEOREM 3.

(a) In a locally noetherian category the coproduct of injective objects is
injective.

(b) Let € be a Grothendieck category in which all objects are transfinitely
generated and in which each coproduct of injective objects is injective.
Then each finitely generated object is noetherian.

Proof. (a) Let G € € be a noetherian generator and let {Q,} be a family
of injective objects in €. Let G’ C G be a subobject of G. Since G is
noetherian, G’ is noetherian, hence finitely generated. Let a morphism
f: G — 1] O; be given which we want to extend to G. Then f may be
factored through O, @ -+ @0, by Lemma 3. This direct sum is
injective as a product of injective objects. Hence the morphism
G —Q, @D - @0, may be extended to G. Thus also f may be extended
to G. Hence by Section 4.9, Corollary 2, T Q; is injective.

(b) Let B be a finitely generated object in €. To prove that B is
noetherian it is sufficient to show that each ascending chain 4, C 4, C ---
of subobjects of B becomes constant. Let 4 = (J 4; and O, be an
injective hull of 4/A4;. The morphisms 4 — A/A; — Q; define a mor-
phism A4 — [1Q;. Since A is transfinitely generated, 4 = () C;
with finitely generated subobjects C;. We have C; = (U4;)nC; =
U (4; n C;). Since C; is ﬁmtely generated we get C;, =4, NC; for
some 7 . Hence C,; C A for all ¢ > 4, , that is, (C; — A —>Q,) = 0 for
all 7 = 4,. Thus Cj — A - J1Q; may be factored through
0, @ -+ @ Oy, - Hence each morphism C; — 4 — [] O, may be factored
through [T O, . Since 4 = | C;, the morphism A4 — [TQ; may be
factored through [JQ;. By hypothesis []Q; is injective. Hence,
A — T10Q,; may be extended to B:

A——B

|/

HQi‘—’HQi

Since B is finitely generated, B — [[ Q; may be factored through a
direct sum Q; @ - @ Q,, . Then the same also holds for 4 and we get

(4-T10) = (4>, @ ®0.~T12))
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Thus, for almost all 7, the morphism (4 — Q,) = (A —>T10Q0; —>0;) = 0.
This means that, for almost all 7, we have 4 = A4, .

COROLLARY 2. In a locally noetherian category all finitely generated
objects are noetherian.

Proof. By Lemma 2, all objects in % are transfinitely generated.

CoOROLLARY 3. Let R be aring. R is noetherian if and only if the coproduct
of injective modules in (Mod is injective.

Proof. If R is noetherian, then Mod is locally noetherian. If,
conversely, each coproduct of injective modules is injective, then R is
noetherian as a finitely generated object.

LemMA 4. Let € be a locally noetherian category. Then each injective
object contains an indecomposable injective subobject.

Proof. An object A €% is called coirreducible if for subobjects B,
CC A with BN C =0 we always have B=0or C = 0. If 4 is
coirreducible then the injective hull Q(4) is indecomposable. In fact, let
04) =0 @Q" then O'NQO" =0 = (0" NnA)N(Q" N A4). Hence,
ONA=00rQ"Nn A =0.Since 4 is large in Q(A4), we get Q" = 0 or
0" =0.

Let Q € € be an injective object and let O 5 0. Since Q is transfinitely
generated, O contains a nonzero finitely generated subobject A. Since ¥
is locally noetherian, A is noetherian. If 4 is not coirreducible, then
there exist nonzero subobjects 4, and B, of A with 4, " B, = 0. If
A, is not coirreducible, then there exist nonzero subobjects 4, and B,
of A, with A, N B, = 0. By continuing this process we get an ascending
chain B; CB; @® B, C -+ of subobjects of A. This sequence must
become constant since 4 is noetherian. Hence, by this construction after
finitely many steps, we must get a nonzero coirredicible subobject A4’
of Q. The injective hull of A’ is again a subobject of O and is
indecomposable by the above remarks.

With these means and the Krull-Remak-Schmidt-Azumaya theorem
we now can make assertions about the structure of injective objects in
locally noetherian categories. Here we refer again to Section 4.9, Theorem
2 and the remarks we made after this theorem.

TueorReM 4 (Matlis). Let € be a locally noetherian category. Each
injective object Q in € may be decomposed into a coproduct of indecomposable
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injective objects Q = [1;; Q- If QO = 11, O, is another decomposition
into indecomposable injective objects Q,, then there exists a bijection
@ : I — ] such that Q; =~ Q) for all i e 1.

Proof. Tt is sufficient to show the first assertion. The second assertion is
implied by the theorem of Section 4.8, and Theorem 2 of Section 4.9.
Since there is a generator in %, O has only a set of subobjects. We consider
families {Q;} of indecomposable injective subobjects of Q with the
property that (J O, = [1 O, as subobjects of Q. By Zorn’s lemma, there
exists a maximal family {Q,}. Let Q' = [T O, . Since Q' is an injective
subobject of O, by Theorem 3 we have Q = Q" @ Q". If Q" is nonzero,
then Q" contains an indecomposable injective subobject Q* and
{0} U {O*} fulfills the conditions for the families of subobjects defined
above in contradiction to the maximality of {Q;}. Hence,Q = Q" =[] 0O; .

THEOREM 5 (exchange theorem). Let € be a locally noetherian category,
{O}icr a family of indecomposable injective objects in € and Q' an injective
subobject of Q = [10Q;. Then there is a subset K C I such that
[Lex Qs @ Q" = 0.

Proof. Consider the subset J C I with the property that Q' N [[;.,0; = 0.
Among these there is a maximal subset K by Zorn’s lemma. Then
Q" = Q" @ Llsex O; is an injective subobject of Q. So for all O, , we have
0" N Q, # 0. Since the Q; are indecomposable injectives, they are the
injective hull of 4; = Q0" N O, . We want to show that Q is the injective
hull of O” and hence Q = Q".

First O; @ O,, is an essential extension of 4; U A4, . In fact, if
B 3£ 0 is a subobject, then the image of B under f: Q; @ Q;, — 0y
or g:Q; @O, — O, is different from zero. Let B’ # 0 ‘be the i image
of Bin(Q; . Then B’ N A; # 0.InSection 2.8, Lemma 2 the morphism
g and hence also f —l(D) N C—f(C)N D are epimorphisms. Thus
B, = BnfY(4;) # 0. If g(B,) # 0, then By N g7(A4;) # 0. Then
Bn (4, Y A4;))=BnNnfYA4,)N g (4,) # O. But it g(B,) =0,
then B, C O, and B; N 4; # 0. Hence

BN (A, U 4,)2QBNfYA,) N A, #0

By induction one shows that direct sums Qp of indecomposable injective
objects O, are an essential extension of a finite union 4y of the A, with
the same index set. The A4; and the Qp form directed families of
subobjects of Q. We have Q" = 0" N (U0,)20(Q"NnQ,) = U 4; =
U 4g . Let C # 0 be a subobject of Q = U Qs . Then (UQg) N C =
U Qg N C) = C,hence Qg N C 5~ 0 for some E. Sowe get A, N C # 0,
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ButQ" N C2 (U 4g) N C = U (4 N C) ## 0 means that Q" is a large
subobject of Q.

By Corollary 2 the last two theorems hold in each module category
over a noetherian ring.

4.11 Module Categories

In this section we want to characterize the abelian categories equivalent
to module categories. Since we shall determine simultaneously the equiv-
alences between module categories, we shall obtain a general view of
these equivalences. In this connection we shall prove the Morita
theorems, which we shall apply in the next section for the discussion of
the Wedderburn theorems for semisimple and simple rings.

A projective object P in an abelian category is called finite if the functor
Homy(P, —) preserves coproducts.

Levma 1.  Each finite projective object P in € is finitely generated. If
€ is a Grothendieck category, then each finitely generated projective object
1s finite.

Proof. Let {P;} be a chain of subobjects of P with () P, = P. Then
I[I P, > P is an epimorphism, hence there exists a morphism
p:P—]] P;with(P—]] P;— P) = 1,.But pe Homy(P, [ P;) =~
I Homy(P, P;) has the form p = p, + - + p, . Thus we have also
(PP, ®  @®P,—P)=1,.Thus ;; P, = P.Since the P, form
a chain, we get P = P, for some 7.

Let € be a Grothendieck category. Then each morphism f: P — [ ] 4,
may be factored through a finite subsum 4, @ - @ 4,, by Section 4.10,
Lemma 3 because P is finitely generated and projective. f induces a
morphism g : P — [T A4; in Homg(P, ] 4;) = Il Homg(P, 4;). Since
% is a Grothendieck category, the morphisms [] 4; — [T 4; and
Homg(P, [ 4;) — Homy(P, TT 4;) are monomorphisms. Because
Homgy(P, TT 4;) =~ [1 Hom(P, 4,), we may regard f as an element of
I'T Homy(P, 4;). Since f can be factored through A4, ® - @ 4,,
p:g: P— A, is nonzero only for finitely many 7, that is, f has in
I'T Hom(P, A4,) only finitely many nonzero components. Thus f lies in
the subgroup I] Homg(P, 4;) of TT Homy(P, A;). Conversely, each
element of [J] Homg(P, 4;) considered as a morphism from P into
IT A; may be factored through a direct sum of (finitely many) 4s,
hence lies in Homg(P, [T 4;). This proves that the isomorphism
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[T Homy(P, A;) =~ Homy(P, T 4;) induces an isomorphism of the
subgroups [ [ Home(P, 4;) =~ Homy(P, [ 4,)-

A finite projective generator is called a progenerator. Now we can
characterize the module categories among the abelian categories (up to
equivalence).

THEOREM 1. Let € be an abelian category. There exists an equivalence
F : € — Mod between € and a category of right modules if and only if €
contains a progenerator P and arbitrary coproducts of copies of P. If F 1is
an equivalence, then P may be chosen such that Homg(P, P) ~ R and
F =~ Homgy(P, —).

Proof. Let P be a progenerator in €. Then Homg(P, —) : € — Mod,
with R = Homg(P, P) is defined as Homy(P, —) : € — Ab, only that
the abelian groups Homg(P, 4) have the structure of an R-right-module
owing to the composition of morphisms of Homg(P, P) and of
Homgy(P, A). A morphism f: A — B then defines an R-homomorphism
Homgy(P, A) — Homgy(P, B). The functor Homg(P, —) defines an
isomorphism

Homg(P, P) o~ Homg(Homg(P, P), Homg(P, P))

First, Homg(P, —) is faithful because P is a generator. Now let
f: Homy(P, P) - Homy(P, P) be an R-homomorphism and let
g = f(1p), then f(r) = f(1, - 1) = f(1;)r = gr = Homg(P, g)(r), that
is, in this case Hom¢(P, —) is surjective. Since P is finite projective, we
get for families {P;};; and {P;};c;, with P; >~ P ~ P;

Homg (]_[ P, 1] Pj) = [][] Hom(P;, P;) = [ | | | Homg(R; , R;)

i€l ieJ 1€l jeJ i€l jeJ

~ Homg (H R, 11 R,)

iel jeJ

where R; = Homg(P, P;) ~ R, R; ~ R and the isomorphism is induced
by Homg(P, —). Hence, the functor Homg(P, —) induces an equivalence
between the full subcategory of the coproducts of copies of P in € and
the full subcategory of coproducts of copies of R in Mod, (Section 2.1,
Proposition 3).

For each A4 € € there exists an epimorphism [ [;; P; — A. Thus we
can construct for each 4 € % an exact sequence

[[P,L[[P.—A4—0
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and correspondingly for each B € Mod, an exact sequence

where the index sets {f} = I and {j} = ] certainly depend on 4 and B
respectively. 4 and B are uniquely determined up to isomorphisms by f
and g respectively as cokernels of these morphisms. If we apply to the
first exact sequence the functor Homg(P, —), then we get an exact
sequence of the form of the second exact sequence because P is projective
and thus Homg(P, —) is exact. Then g has the form Homg(P, f). To
each B there exists a ¢ = Homg(P, f). Thus B = Homg(P, Cok( f)).

Each morphism ¢: 4 — A’ in € induces a commutative diagram
with exact sequences

AR

117, 5[ P — 4 —>0

since the coproducts of copies of P are projective. Correspondingly, we
get for each R-homomorphism 2 : B — B’ a commutative diagram with
exact sequences

el

[ Ry —~>]] Ry —> B —>0

The pair (x, y) has the form (Hom(P, a), Home(P, b)). Furthermore,
¢ is uniquely determined by (a, ) and similarly % is uniquely determined
by (x,y) as morphisms between cokernels. Thus 2z = Homg(P, ¢),
that is, Homg(P, —) is full. Since P is a generator, Hom¢(P, —) is also
faithful and thus an isomorphism on all morphism sets.

Thus the hypothesis for Section 2.1, Proposition 3 are satisfied and
Homg(P, —) is an equivalence of categories.

Let & : € — Mod be an equivalence of categories and ¥ : Mod; — %
be the corresponding inverse equivalence. Then ¥ is left adjoint to &,
s0 Homg(%R, —) >~ Homg(R, # —) =~ & as functors. Furthermore,
R ~ Homg(R, R) =~ Hom¢(%R, 9R). Since R is a progenerator in
Mod, , also R is a progenerator in . This proves the theorem.

The categorical properties of module categories are also satisfied by
cocomplete abelian categories with a progenerator by this theorem. In
particular, we have the following corollary.
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CoROLLARY 1. A cocomplete abelian category with a progenerator is a
Grothendieck category and has an injective cogenerator.

Let R, S, and T be rings and g4, ¢Br, and zC; be bimodules. If we
denote the R-S-bimodule homomorphisms by Hom,_¢(—, —), then it
is easy to verify that the isomorphism which defines the adjointness
between the tensor product and the Hom functor preserves also the
corresponding operator rings such that we get a natural isomorphism
for the bimodules 4, B, and C

Homg_r(r4 @ sBr, rCr) = Homg_z(sBr, sHomg(r4s , xCr)r)

where we gave the operator rings in each case explicitly. For
fe Homg(z4s, xCr),a€ A,s€ S, and t € T we define (sft)(a) = (f(as))t
so that Homg(zA4s, C7) is an S-T-bimodule.

THEOREM 2 (Morita). Let rings R and S and an R-S-bimodule P be
given. Then the following assertions are equivalent:

(a) The functor P Q5 — : xMod — sMod is an equivalence.

(b) The functor — @ P : Mod, — Mod; s an equivalence.

(¢} The functor Homg(P, —) : RMod — {Mod s an equivalence.

(d) The functor Homg(P, —) : Modg — Mod, is an equivalence.

(e) P is a progenerator and the multiplication of S on P defines an
isomorphism S =~ Hom (P, P)°.

(f) Ps is a progenerator and the multiplication of R on P defines an
1somorphism R ~ Homg(P, P).

Proof. The equivalence of (d) and (f) was proved in Theorem 1. The
equivalence of (c) and (e) follows by symmetry if we observe that by our
definition endomorphism rings operate always on the left side whereas .S
operates on P from the right side.

The equivalence of (a) and (c) and of (b) and (d) can be obtained
because the functors P Qs — and — &z P are left adjoint to the
functors Homg(P, —) and Homg(P, —) respectively.

To show the equivalence of (e) and (f) we need some prerequisites.
The bimodule ;P is a generator in Mod, if and only if there is a bimodule
sOQr and an epimorphism Q ® P — S of S-S-bimodules. In fact, let
P be a generator and Q = Homg(P, S) and the evaluation as homomor-
phism. If O ®z P — S is an epimorphism, then there exists an epimor-
phism J],co P,— S with P, = P. Since S is a generator, P is also
a generator.

Let zPs, sOr = Homg(P, S), and R = Homy(P, P) be given. Then
there exists an R-R-homomorphism ¢ : P ®sQ — R which is defined
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by ¢(p ® ¢)(p') = pg(p’) where ¢g(p’) € S. Py is finitely generated and
projective if and only if ¢ is an epimorphism. In fact, if P is finitely
generated and projective and if {p, ,..., p,,} generates P, then there exists
an epimorphism g: ¢S @ - Pe,S— P with ¢, p, and ¢S >~ S.
Since P is projective there exists a section f: P—¢,S® - Pe,S.
This induces homomorphisms f; : P— S. Then

P =8 (p) = glef(p) =Y pifip)

for all p € P, that is, (> p; @ ¢;) = 1. Since ¢ is an R-R-homo-
morphism, ¢ is an epimorphism. Conversely, if ¢ is an epimorphism,
then there exist finite families {p;} and {f;} with p = X p,fi(p) for
all p € P. Let {¢;} be a finite family of elements with the same index set,
then we defne P— ¢S @ - @e,S by p+— Xef(p) and
eS® - @De,S— Pbye;+>p,. Then

P—eS@® - @eS—>P)=1p

hence P is finitely generated. Since ;S @ -+ @ ¢,S is projective, also
P is projective.

Assume that (f) holds. Then we have an epimorphism P ®s0 — R.
Hence P is a generator. Furthermore, this epimorphism induces a
homomorphism Q — Homg(P, R) of S-R-bimodules. Since Q @, P— S
is an epimorphism, 1 € S occurs in the image of this homomorphism. So
1, € Homg(P,P) occurs in the image of Homg(P,R) Qr P — Homg(P,P).
This Homg(P, P)-Homg(P, P)-homomorphism is an epimorphism.
Hence, P is finitely generated and projective, so it is a progenerator.
We still have to show that S =~ Homg(P, P)° by the homomorphism
induced by the right multiplication. Let ps = 0 for all p € P, then
s = Is = 3 f(p)s — Sf{pa) = 0. If fe Homy(P, P), then f(p) =
f(pls) = f(X pfi(p)) = F(Z o(p ® fi)(p:) = Z o(p ® fi) f(#:) =
P(X fi( (). So (e) is satisfied. By symmetry, one shows that (e)
implies (f)

We call P an R-S-progenerator if P satisfies one of the equivalent
conditions of Theorem 2.

LemMA 2. Let & and 9 be additive functors from (Mod to sMod. Let
n:F — Y be a natural transformation. If 7(R) : #(R) — 9(R) is an
isomorphism then n(P) : F(P)— 9(P) is an isomorphism for all finitely
generated projective R-modules P.

Proof. LetP@P ~R@ -+ @ R = R» Since & and ¥ are additive
we have that 7(R™) : #(R") — 4(R") is an isomorphism for F#(R") ~
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(ZF(R))"and 9(R") ~ (%(R))". The injection P — R™ and the projection
R” — P induce a commutative diagram

F(P)—> F(R") —> F(P)

| ! !

Y(P) —> 9(R") —> %(P)

where the middle morphism is an isomorphism. The left square implies
that »(P) is a monomorphism, the right square that n(P) is an epimor-
phism.

This lemma certainly still holds if # and ¢ are bifunctors and if we
restrict our considerations to one of the arguments. Two applications
of this lemma are the natural transformation

A X rB3a® b (f—f(a) b) e Homg(Homg(4, R), B)
which is natural in 4 and B and the natural transformation
Homg(A4, R) ® xkBaf ® b (a+ f(a) b) € Homg(4, B)

which is also natural in 4 and B. For these natural transformations, we
have R @z B =~ Homgy(Homg(R, R), B) and Homg(R, R) Qz B =~
Homg(R, B). In particular we get for an R-S-progenerator pPg isomor-
phisms between the following functors:
P ®s — =~ Homg(Homg(P, S), —)
— ®g P == Homg(Homg(P, R), —)
Homg(P, —) =~ — ®@s Homg(P, S)
Homg(P, —) = Homg(P, R) ®r —

CoROLLARY 2. Let P be an R-S-progenerator and let Q = Homg(P, R).
Then

(a) Q is an S-R-progenerator.

(b) O =~ Homg(P, S) as S-R-bimodules.

(c) Center(R) =~ Center(S).

(d) The lattice B(xP) of R-submodules of P is isomorphic to the lattice
B(sS) of left ideals of S. Correspondingly, we have

B(Ps) = B(Rgr), B(Or) == B(Ss), B(sQ) = B(xR)
and

B(xPs) == B(sSs) == B(xRr) = B(sQOr)
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Proof. (a) By Lemma 2, Homg(Q, —) : Mod; — Mod; is an equiv-
alence of categories.

(b) P ®s— is adjoint to Homg(P, —). Thus by the preceeding
remark Homg(Homg(P, S), —) is adjoint to QO @z —. But also
Homg(Q, —) is adjoint to Q ®r —. Hence, O =~ Homg (P, S) as
S-modules. Since R® is the endomorphism ring of ¢Q as well as of
sHomg(P, S), the isomorphism is an S-R-isomorphism.

(¢) We show that between the elements of the center 3(R) and the
endomorphisms of the identity functor # of ;Mod there is a bijection
which preserves the addition of natural transformations and of elements
of 3(R) as well as the composition of natural transformations and the
multiplication in J3(R). Since between the endomorphisms of the
identity functor of ;Mod and the endomorphisms of the identity functor
of ¢Mod there exists a bijection which preserves all compositions, this
proves (c).

Let p : # —# be an endomorphism of the identity functor of ;Mod.
p determines an R-homomorphism p(R): R— R. Let r, = p(R)(1),
then p(R)(r) = rp(R)(1) = rr,. For each R-module A and each R-
homomorphism f: R — 4 we get a commutative diagram

R®LR

ol

Y LNy

Hence, fp(R)(1) = p(A4) f(1), that is, for all 4 € 4, we have p(A4)(a) = 7,a
because f can always be chosen such that f(1) = a (R is a generator).
For all » € R, we have rr, = p(R)(r) = 7,7, hence r, € 3(R). Now let
pr, pa: F — 5 be given. Then (p, + p)(R)(1) = (p1(R) + po(R)(1) =
or(RYD)+po(RY(1) and (pypa)(R)(1)=pa( R)pa RY1)=(ps( RYD))pu( R)(1)).
Conversely, the multiplication with an element of the center defines an
R-endomorphism for each R-module 4. These R-endomorphisms are
compatible with all R-homomorphisms, and hence define an endomor-
phism of #. This application is inverse to the above given application.

(d) The equivalence Homy(P, —) preserves lattices of subobjects.
Homg(P, P)° ~ S implies the first assertion. Multiplication with
elements of S defines R-homomorphisms of P. These are preserved by
Homg(P, —) as multiplications because for s, s € .S considered as
elements of S as well as right multiplicators of P we get Homg(P, s)(s') =
s+§ = (s's) by S =~ Homg(P, P)°. The given isomorphism of lattices
carries R-S-submodules of P over into S-S-submodules of S. Conversely,
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the inverse equivalence carries S-S-submodules of S over into R-S-
submodules of P because we also have Homg(S, S)° =~ S. The other
lattice isomorphisms follow by symmetry.

We also observe that Homg(Q, R) ~ Homy(Q, S) >~ P as R-S-
bimodules because of the remarks which follow Lemma 2. By the same
reasons, we get P ®s0O ~ R as R-R-bimodules and Q ®z P =~ S as
S-S-bimodules.

4.12 Semisimple and Simple Rings

Among many other applications of the Morita theorems (Frobenius
extensions, Azumaya algebras), the structure theory of semisimple and
simple rings is one of the best-known applications of this theory. We
want to present it as far as it is interesting from the point of view of
categories.

Let R = 0 be aring. R is called artinian, if R is artinian as an object in
Mod. A left ideal (= R-submodule in (Mod) is called nilpotent if
A™ = 0 for some # > 1. A ring R is called semisimple if R is artinian
and has no nonzero nilpotent left ideals. A ring R is called simple if R is
artinian and has no two-sided ideal (= R-R-submodule) different from
zero and R.

LemMa 1.  Each simple ring is semisimple.

Proof. Let A # 0 be a nilpotent ideal in a simple ring R. 4™ = 0 is
equivalent to the assertion that for each sequence 4, ,..., a,, of elements of
A we get a, -+ a,, = 0. We show that C = 3 A4 for all nilpotent ideals
A4 is a two-sided ideal. It is sufficient to show that for each a € 4 and
r € R the element ar is in a nilpotent ideal. We have ar € Rar and

(ryar) =« (rpar) = (ra)(rrya) -+~ (rrpa)r = 0r =0

hence (Rar)* = 0. 4 # 0 implies C 5 0. Since R is simple, R = C,
hence 1 € C. Thus 1 € 4, + --- + 4, for certain nilpotent ideals. The
sum of two nilpotent ideals 4 and B is again nilpotent. In fact let
Ar = B™ = (, then (a,0,) -+ (a,b,) = ay(b,a,) *** (b,_14,) b, = 0. Thus
A + B is nilpotent. This proves that 1 € R is an element of a nilpotent
ideal, hence 17 = 0. This contradiction arose from the assumption that
R has a nonzero nilpotent ideal. Consequently, R is semisimple.

LemMma 2. If R is a semisimple ring, then each ideal of R is a direct
summand.
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Proof. Since R is artinian, there exists in the set of ideals which are
not direct summands a minimal element 4 (in case that this set is not
empty). If 4 contains a proper subideal B C 4, then B is a direct
summand of R, hence, there is a morphism R — B such that
(B—~A—+R—B)=1g. Thus B is also a direct summand in 4 and
we have 4 = B @ C. But also C is a direct summand of R. The
morphisms R — B and R — C induce a morphism R — B @ C such
that( 4 = B@C—-R—->B®PC)=1,.If 4is not a direct summand
in R, then 4 must be a simple ideal. For some a € 4, we have 4a # 0
because otherwise 4% = 0. Since 4 is simple we have 4a = A hence
(4—R 4 A) =~ 1. Therefore, the set of ideals which are not direct
summands of R is empty.

Lemma 3. Let R be a semisimple ring, then all R-modules are injective and
projective.

Proof. We apply Section 4.9, Corollary 2 to the generator R. Since each
ideal A4 is a direct summand of R, for each R-module B, the group
Homg(4, B) is a direct summand of Homg(R, B); hence the map
Homg(R, B) — Homg(4, B) is surjective. Thus all objects are injective.
For all exact sequences 0 - A4 — B — C — 0, the morphism 4 — B
is a section. Hence each epimorphism B — C must be a retraction. By
Section 4.9, Lemma 2, each R-module is projective.

Levmma 4. Each finite product (in the category of rings) of semisimple
rings is semisimple.

Proof. 1t is sufficient to prove the lemma for two semisimple rings R,
and R, . Let R = R, X R, .If we recall the construction of the product
of rings in Section 1.11 and the theorem of Section 3.2, then it is clear
that R, and R, annihilate each other and that R = R, @ R, as R-modules.
Let p : R— R, be the projection of the direct sum onto R, . Let A4;
be a descending sequence of ideals in R. Then p(4,) is a descending
sequence of ideals in R,. Let K; = Ker(4; — p(4;)). The K, form a
descending sequence of ideals in R; . The last two sequences become
constant for 7 > n. Thus we get a commutative diagram with exact
sequences

0 Ko Apy; P(Ani) —>0

l |
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where 4,.; C A, . This morphism is also an epimorphism. In fact let
a, € A, , then there exists an a,; € 4,,; with p(a,,;) = p(a,). Hence,
a, —a,,;€K,=K,,;C A4,,;. Thus also, a, € 4,,;. Therefore R is
artinian.

Let A C R be a nilpotent ideal with A" = 0, then for a € 4 also
(Ra)* = 0. We have Ra = Ra, + Ra, = R,a, + R,a, with aq,€ R;.
In fact

nay + 78, = (1, + r3)(a; + a5)
Hence,

(Rya; + Rya)® = (Ryay)™ + (Raay)" = 0

and consequently a, = @, = a = 0, since R; and R, have no nonzero
nilpotent ideals. Therefore R is semisimple.

THEOREM 1. If R is semisimple, then R = A, @ --- @ A, , where the
A; are simple left ideals in R.

Proof. Since each R-module is injective, each coproduct of injective
modules is injective. By Section 4.10, Corollary 3 R is noetherian. Each
indecomposable injective object is simple because all objects are
injective. By Section 4.10, Theorem 4, R may be decomposed into a
coproduct of simple left ideals. Since R is finitely generated, Section 4.10,
Lemma 3 holds, that is, R may be decomposed into a finite direct sum
of simple left ideals.

THEOREM 2. The ring R is simple if and only if R is isomorphic to a full
matrix ring with coefficients in a skew-field.

Proof. A skew-field is a not necessarily commutative field. A full
matrix ring over a skew-field is the ring of all # X » matrices with
coefficients in the skew-field. It is well known that such a ring is iso-
morphic to the endomorphism ring of an #-dimensional vector space over
the skew-field K. A vector space of finite dimension is a progenerator.
If we denote the full matrix ring by M,(K), then the categories of K-
modules (K-vector spaces) and of M,(K)-modules are equivalent.
Since the n-dimensional K-vector space K™ is artinian, also M, (K) is
artinian by Section 4.11, Corollary 2. Since K has no ideals, also M,(K)
has no two-sided ideals by the same corollary. Hence M,(K) is simple.

Let R be simple and P be a simple R-module, then P is finitely
generated and projective by Lemma 1 and Lemma 3. Let K = Endg(P).
Then K is a skew-field. In fact, let f : P — P be a nonzero endomorphism
of P, then the image of f is a submodule of P, hence coincides with P
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since P is simple. Also the kernel of f is zero, hence f is an isomorphism
and has an inverse isomorphism in K. This assertion, which holds for
all simple objects in an abelian category, is called Schur’s lemma.

The evaluation homomorphism P @, Homg(P, R) — R is an R-R-
homomorphism. The image of this homomorphism is a two-sided ideal
in R. Since P is simple, there exists an epimorphism R — P. Since P is
projective, this epimorphism is a retraction and there is a nonzero
homomorphism P — R. Therefore, the image of the evaluation homo-
morphism is nonzero. Since R is simple, the image must coincide with
R. The evaluation homomorphism is an epimorphism. In the proof of
Section 4.11, Theorem 2 we observed that this condition is sufficient
for the fact that P is a generator. Hence P is an R-K-progenerator. By
Section 4.11, Theorem 2(f), R =~ Homg(P, P) and Py is a finitely
generated projective K-module, that is, a finite dimensional K-vector
space.

TrEOREM 3. For the ring R the following assertions are equivalent:
(a) R is semisimple.
(b) Each R-module is projective.
(c) R is a finite product (in the category of rings) of simple rings.

Proof. Lemma 3 shows that (a) implies (b). Lemma 4 shows that (c)
implies (a). Thus we have to show that (b) implies (c).

Since each R-module is projective, each epimorphism is a retraction.
Then each monomorphism is a section as a kernel of an epimorphism.
This means that, by Section 4.9, Lemma 2, each R-module is an injective
R-module. Each R-module may be decomposed into a coproduct of
simple R-modules as we saw in the proof of Theorem 1. There are only
finitely many nonisomorphic simple R-modules 4;. In fact if 4; is
simple, then there is an epimorphism R — A4; which is a retraction.
Hence 4, is a direct summand of R up to an isomorphism. By Section
4.10, Theorem 4, A; occurs up to an isomorphism in a decomposition of
R into a coproduct of simple R-modules. By Section 4.10, Theorem 5,
A; is isomorphic to a direct summand of R in the decomposition given
in Theorem 1.

Let E,,..., E, be all classes of isomorphic simple R-modules. Let
R=A4, @ @ A4, with simple R-modules 4; be given. We collect the
isomorphic A4; of this decomposition, which are in E; , to a direct sum
4; @+ @ 4;, = B,. Correspondingly we collect the 4; in E; to
a direct sum B;. So we get R = B; @ - @ B, . Since there are only
zero morphisms into nonisomorphic simple R-modules, and since all
simple R-modules in B; are isomorphic because of the uniqueness of the
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decomposition, there exists only the zero morphism for different 7 and
between B; and B; . For b; € B; the right multiplication b; : B; — B; is
an R-(left)-homomorphism. This proves that B;B; = 0 for 7 # j and
B,B; C B;. Each B, is a two-sided ideal, and the B; annihilate each other.

In the decomposition R = B, @ - @ B, wehavel = ¢, + - + ¢, .
For b, € B; we have b; = 1b, = ¢;b, . Hence e; operates in B; as a unit,
that is, B, is a ring and R the product of the rings B, ,..., B, . Each
B;-module is an R-module if one has the B; with j # 7 as zero multipliers
for the B;-modules. The R-homomorphisms and the B;-homomorphisms
between the B;-modules coincide. Hence all B;-modules are projective.
By construction, B; is a direct sum of simple isomorphic R-modules,
which are simple and isomorphic also as B;-modules. Let P be such a
simple B;-module, then P is finitely generated and projective and also
a generator, since B; = P @ --- @ P. Hence P is a B;-K-progenerator
with a skew-field K, where we used Schur’s lemma. As in Theorem 2
we now have B; ~ End(K™), that is, a simple ring.

We conclude with a remark about the properties of simple rings which
may now be proved easily.

CoroLLARY 1. The center of a full matrix ring over a skew-field K is
isomorphic to the center of K.

Proof. The category of modules over a full matrix ring over K is
equivalent to the category of K-vector spaces. By Section 4.11,
Theorem 2 and Section 4.11, Corollary 2(c) the assertion is proved.

COROLLARY 2. Let R be a simple ring. Then each finitely generated
R-module P is a progenerator and Homg(P, P) is a simple ring.

Proof. The category of R-modules is equivalent to the category of
K-vector spaces with a skew-field K. In ;Mod the assertion is trivial.

4.13 Functor Categories

The results of this section shall mainly prepare the proof of the em-
bedding theorems for abelian categories presented Section 4.14. There-
fore we shall restrict ourselves to the most important properties of the
functor categories under consideration.

Let &/ and € be abelian categories and let the category 27 be small.
By Section 4.7, Proposition 1, we know that Funct(«<Z, %) is an abelian
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category. We form the full subcategory (27, €) of Funct(&Z, €) which
consists of the additive functors from 27 to %.

ProrosiTioN. UA(, €) is an abelian category.

Proof. We know that limits preserve difference kernels and that
colimits preserve difference cokernels (Section 2.7, Corollary 2). By
Section 4.6, Proposition 1, limits and colimits are additive functors.
Since by Section 2.7, Theorem 1, limits and colimits of functors are
formed argumentwise, a limit as well as a colimit of additive functors in
Funct(2Z, %) is again an additive functor. Thus the full subcategory
A(Z, €) of Funct(, ¥) is closed with respect to forming limits and
colimits. In A(eZ, €) there exist kernels, cokernels, finite direct sums,
and a zero object and they coincide with the corresponding limits and
colimits in Funct(e/, ¥). Furthermore, each isomorphism in
Funct(2Z, €) which is in UA(LZ, ¥) is also an isomorphism in A(Z, ¥)
because A(Z, €) is full. Therefore, AU(Z, ¥) is an abelian category.

For our considerations we need still another full subcategory of
Funct(Z, €), namely 2(«/, %), the category of left-exact functors from
&/ to €. Obviously &(=Z, €) is also a full subcategory of UA(Z, ¥)
because each left-adjoint functor is additive. We want to investigate
(, €) further and we want to show in particular that this category is
abelian. It will turn out that the cokernels formed in (7, €) are different
from the cokernels formed in A(Z, €). This means that the embedding
functor is not exact. To construct the cokernel in £(«Z, ¥) we shall
show that 2(&7, €) is a reflexive subcategory of U(<Z, ). For this
purpose, we solve the corresponding universal problem with the following
construction.

Let A € &/. Denote the set of monomorphisms a : 4 — X in &/ with
domain 4 and arbitrary range X € & by S(A4). Observe that o7 is small.
To S(A4) we construct a small directed category T(A4) with the elements
of S(A) as object. We define a < b, that 1s, there is a morphism from a
to b in T(4) if and only if there is a commutative diagram

X

/!

A x

N

Y
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in &7, that is, if 5 may be factored through a. This factorization x need not
be uniquely determined. On the other hand, by definition of the directed
category, there can exist at most one morphism between a and & in
T(A). We call x the representative of this morphism. Trivially ¢ < a is
satisfied by the identity. Also the composition of morphisms in 7(A4)
holds because morphisms may be composed in &/. Given objects a and b
in T(4), we get a cin T(A4) with a < cand b < ¢ by the following cofiber
product

A2 X

AR

Y—27

as the diagonal 4 — Z, for by the dual assertion of Section 4.3, Lemma
3(c) with b also X — Z is a monomorphism. Consequently, ¢ is a mono-
morphism.

Let f: A — B be a morphism in &. If a and a’ are monomorphisms
in 4 and if Z and Z’ are the cofiber products of f with a and a’ respec-
tively, and if @ < &/, then we get a commutative diagram

SN
|
AN

where b and b’ are monomorphisms, and Z — Z’ is uniquely determined
by X — X' and b'. f defines a functor T(f): T(A) — T(B) which,
with the notations of the diagram, assigns to an object a in T(A) the
object in T(B), such thata < a’ implies T(f)(a) = b < &' = T(f)(a').
- Since T(A) and T'(B) are directed small categories, T( f) is a functor.

If f: A— B is a monomorphism in & and if 4, b’ € T(B), then in the
commutative diagram

A X'

f
B z
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x 1y
/ \
»

f
B X'

bf and &'f are also monomorphisms and are objects of T(4). If b < ¥/,
then bf << b’f. Thus we get a functor T*(f) : T(B) — T(A4). If a e T(4)
and b = T(f)(a), then the commutative diagram

A2 X

A

B,y

implies that f as well as §f are monomorphisms,-and that we have
a < bf. Thus for a monomorphism f we have

a < THf) T(f)()

Lemma 1. T is a functor from A into the category of small categories with
isomorphism classes of functors as morphisms.

Proof. The definition of T implies trivially T(1,) =< 15 . Let
morphisms f: A— B and g : B— C in &/ be given. Let a € T(4). By
Section 2.6, Lemma 3, we have T(g) T(f )(a) == T(gf )(a). Since all
diagrams in T(C) must be commutative, this isomorphism is a natural
isomorphism, T(g) T(f) =~ T(gf).

Given an additive functor & : & —%. We construct a functor
F,*: T(A) — ¥ for each object Ae . If ae T(4) is given, then it
defines an exact sequence

0-4% X —> Coka—0

Since & is not necessarily exact, # does not necessarily preserve the
kernel A of X — Cok a, when applied to the above exact sequence. Let
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us define F,*(a) as the kernel of #(X)— % (Cok a), then we get a
commutative diagram with an exact row

F(4)
RS
0—— F,%(a) F(X) F(Cok a)

where #(4) — & *(a) exists uniquely because
(F(4) - F(X)— F(Cok a)) = 0
If a < a’ in T(A4), then there exists a morphism x : X — Y in & with

X = R(a), Y = R(a’), and xa = a’. Therefore, we get a commutative
diagram with exact rows

0 —> F¥(a) fo F(X)—> F(Cok a)

NS

F 44(x) F(4) F (%)

-

where & (Cok a) - #(Cok a’) is determined by the natural morphism
Cok a — Cok @’ and where &, *(x) exists because the right square of
the diagram is commutative. Because of the uniqueness of the factoriza-
tions through kernels and cokernels, &% ,*(x) is uniquely determined by x.
Now we have to show that the morphism % *(x) does not depend on
the choice of the representative for a < a’. Thus let also y : X —> Y with
ya = a’ be given. Then (x — y)a = 0. Hence x — y may be factored
through Cok 4. Then also & (x — y) may be factored through % (Cok a),
and we have Z(x — y)i, = 0, hence F(x)i, = #(y)i,. The above
diagram implies i,- %, *(x) = 1,,%,*(y) and ZF *(x) = %,*(y). Thus
F,* is defined on T(A4). The functor properties follow trivially from
the functor properties of &% and the uniqueness of the factorizations.
Let f: A— B be a morphism in &/. Then there are functors
F*T(f): T(A) > € and F *: T(A) —> € defined. We construct a
natural transformation F;* : F,* — F*¥T(f). Let a: A— X be a
monomorphism in &7, hence an object in 7'(4), then T(f)(a) =b: B—Y

0 —> Z,Xa) F(Y)—> F(Cok a')
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is a monomorphism into the cofiber product ¥ of X and B over 4. We
get a commutative diagram with exact rows

0 A4 X Cok a 0

! !

|
v
0 B Y — Cok b 0

This diagram induces another commutative diagram with exact rows

0 —> Z,*(a) —> F(X) ——» F(Cok a)

! } }

0 —> F*(b) —> F(Y) —> F(Cok b)

We denote the morphism %, *(a) > Fp*(b) = Fp*T(f)a) by
&, *(a). It is obviously uniquely determined by f and a. If g: B— C
is another morphism in &7, then by the uniqueness the diagram

F4(a) i Z*T(f)a)

fz,(x AT(f)(a)

F*T(gf Na)

1s commutative. If @ << @’ in T(A) is given, then T(f)(a) = b < b =
T(f )(a’). With the same argument as for the uniqueness of &,*(a) one
shows that the morphism %, *(a) — %;*(b') is uniquely determined.
Therefore, the diagram

y *
Z4a) 222, Z,4a)
f;'(a)l ly/'(a')

Z(b) 22D Zb)

is commutative, where x is a representative for a < @’ and y = T(f )(x)
is a representative for & << 4’. Consequently, &#,* is a natural transforma-
tion.

Now we assume that % is a Grothendieck category. Then there exist
direct limits of the functors & *. By Section 2.5 there exists a morphism

lim T(f) : lim F*T(f) — lim F5*
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Furthermore, #;* induces a morphism
lim ;% : lim £,* - lim F*7(/)

The composition of these two morphisms will be denoted by (RF)( f)
and lim #* with (R#)(4). Then (RF)(f) : (RF)(4) — (RF)(B) is
defined such that the diagram

9/*(0)

Z4*(a) Z5*(b)

(RF)(A) (RF)(f)

(RF)(B)

is commutative. (R#)(f) is uniquely determined by the fact that all
diagrams of this form are commutative for all a € T(A4). The vertical
arrows are the injections into the direct limit.

F1,(a) = lg oo implies (RF)(1 ) = 1 s (0. F,*(b) F¥(a) = F fi(a)
implies (RZ)(g)RF)(f) = (RF)(gf). Hence, (RF) is a functor from
& to €. The construction of &, *(a) defines a morphism % (4) — & ,*(a)
such that for all ¢ < a’ the diagram

Z(4)

/N

FuH(@) ———— F M)

is commutative. Thus we get a morphism %#(4) — £, *(a) > (RF)(4),
which is independent of the choice of a. Since for f : 4 — B, the diagram

F(4) 9D, #B)

ZHa) 2L Zb)

is commutative, also

F(f)

F(4) Z(B)

(RF)(S)
—_—

(RF)A) (RZ)(B)

is commutative. The morphism % (4) — (R%)(A) is a natural transfor-
mation, which will be denoted by p : # — (R%).
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LemMA 2. Let 9 : o/ — € be a left exact functor and ¢ : & — & be
a natural transformation. Then there exists exactly one natural transforma-
tion  : (RF) — Z such that Yp = .

Proof. Let a€ T(A). Then, be the left exactness of &, we get a com-
mutative diagram with exact rows

00— £ *(a) F(X) F(Cok a)
N
F(4) ®(X) @(Coka)
oo
0 9(4) 4(X) %(Cok a)

where & *(a) — 9(A) is uniquely determined by ¢. If a < @/, then by
this uniqueness the diagram

Za*(a)

AR

F(4) 4(4)

NS

F ()
is commutative. Hence we can factor ¢(4) through (RF)(4) = lim & ,*:
9(d) = (F(4) 24> (RF)(A) +2> 9(4))

where §(4) is uniquely determined by this property, for (RF)(4) is
a direct limit.

We still have to show that i is a natural transformation. Let f: 4 — B
be a morphism in 4. Let & = T'(f)(a). Then by two-fold application of
the first diagram in this proof, together with the construction of b, we
get that

FaH@) — Fp*(b)

! !

9(4) —— 9(B)
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is commutative. The direct limit preserves this commutativity, that is,
¢ is a natural transformation.

LemMma 3. If f: A— B is a monomorphism in sZ, then (RF)(f) is a
monomorphism in €.

Proof. Similar to the definition of &* we define a natural transforma-
tion &+ F ¥TH f)— Fp* by the commutative diagram

0 —> F,*(bf) —> F (V) — F(Cok bf)

1 15" (y) l
0 —> FyH(b) —> F(Y)—> F(Cok b)
As for &,*, here again one proves that &,* is a natural transformation.
But the above diagram implies also that % *(b) : & *(bf ) — Fp*(b) is
a monomorphism because &, *(bf) — % (Y) is a monomorphism. Since,
by hypothesis on %, the Grothendieck condition holds, also

3 Z+ . 11 Z ok 1 %
lim F* : lim F*T*(f) — lim F

is a monomorphism (Section 4.7, Theorem 1).
Let ae T(A4) and b = T(f )(a). The commutative diagram

45X
U
421y
A
o By
implies that &, *(a) may be factored through
FHT(f @) : Z*THS) T(f)@) > F*T(f)a)

where the morphism %, *(a) > F *TH(f) T(f)a) is induced by
a < TH(f) T(f)(a). This factorization is preserved by the direct limit.
Observe that the morphisms %, *(a) — ZF ,*TH(f) T(f )a) give the
identity after the application of the direct limit. This implies the assertion
of the lemma.

LemMA 4. Let & : o — € be an additive functor which preserves
monomorphisms. Then (RF) is left exact.
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Proof. Leta < a’in T(A4) be given. First, we show that the morphism
FX(x): Z, *(a)—» &, *(a’) is a monomorphism. We form the cofiber
product

A5 x
a’l lx
Y—2Z

The composed morphism a” : A — Z is a monomorphism because in the
cofiber product the morphism X — Z is a monomorphism. Thus we
get a diagram

EAC) F(X)
F () —> F(Y) 7@
FH(a") F(2)

where the two inner quadrangles and the outer quadrangle are
commutative, but not necessarily the right triangle. However, because of
a < a' <a" the left triangle is commutative. Since by hypothesis
Z(x) is a monomorphism, we have %, ,*a) > %#(Z) and also
F*¥(a) - F *(a') are monomorphlsms

Let an exact sequence 0—>A45B2% C—0 together with an
object b€ T(B) be given. Then we get a commutative diagram with
exact rows

0—a-1.B_% 0
lAl bl cl
0— Ay —Z—0

where the right square is a cofiber product. The properties of the cofiber
product imply that ¢ is a monomorphism and ¥ — Z is an epimorphism.
By construction, we have 4 C Ker(Y — Z). To show the converse, we
consider the corresponding diagram with Y/A4 instead of Z. Then we get
a morphism Z — Y/4 such that (Y — Y/4) = (Y - Z — Y/A). This
means that Ker(Y — Z) C 4. Since 1, b, and ¢ are monomorphisms,
we may complete this diagram by the 3 X 3 lemma. Let U = Cok(d)
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and V = Cok(c), then U =~ V because Cok(l,) = 0. If we apply
& to the diagram and form the corresponding kernels, then we get
a commutative diagram with exact rows and columns

0 0

! !

0—> Ker(d) —> F*(b) —— F*(c)

l ! !

0— Z*(bf) — F(¥)— F(2)
F(U) —— F(U)

(FXOf)—> F(Y)—> F(U)) = 0 implies that there is exactly one
morphism & *(bf) — Z;*(b) which makes the diagram commutative.
But then (F, *(bf) — Fp*(b) - F*(c)) = 0, hence F *(bf) — F5*(b)
may be uniquely factored through Ker(d). Consequently, Ker(d) o~
F ().

For b < ¥’, we get a commutative diagram with exact rows

0 —> ZFTHNb) —> Fp*(b) — F*T(8)(0)

! 1 !

0 —> ZFXTHINE) —> F*(b') —> F*T(8)(b")

which after the application of the direct limit becomes the exact sequence

lim& + » lim&
0 — lim F*T4(f) ———— (RF)(B) ——— lim F*T(g)

From the proof of Lemma 3, we know already that lim & *T*(f) =
(R#F)(A4) and lim #* = (RF)(f). By definition (RZ)g) =
lim T'(g) lim & *. To prove the assertion of the lemma, it is sufficient
to show that lim T( £) 1s a monomorphism.

Since for ¢ < ¢’ the morphism F*(c) - Z*(c’') is a monomorphism,
the morphisms F:*(c) - (RF)(C) are monomorphisms by Section 4.7,
Lemma 3. By Section 4.7, Theorem 1(b), lim T'(g) is a2 monomorphism.

LemMa 5. (RF) is an additive functor.

Proof. Let A and B be objects in 4 and let S = 4 @ B be the dlrect
sum. Let an object ¢ € T(S) be given. If we consider 4 by 4 — S > X
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as a subobject of X and correspondingly B C X, then the morphism
X — X/A @ X/B induced by X - X/4 and X — X/B is a monomor-
phism because the kernel is 4 N B = 0. The morphism (S 5> X —
X/A @ X/B) = d is again a monomorphism and we have ¢ << d in
T(S). (A—>S— X/A) =0 and (B— S — X/B) = 0 imply that d is
the direct sum of the monomorphisms (4 — S — X/B) = a and
(B— S — S/4) = b. Hence the cokernel of d is the direct sum of the
cokernels of @ and 4. Since & is an additive functor, & preserves the
decompositions into direct sums. Since kernels preserve direct sums, the
kernel of #(X/A @ X/B) — % (Cok d) is the direct sum of the kernels of
F(X|A) - F(Cok b) and F(X/B)— F(Coka). This construction
preserves the corresponding injections and projections. Hence, #,*(d) =
F ¥ (a) @ Z5*(b). The application of the direct limit gives (RZ)(S) =
(RF)(A) ® (RF)(B). In fact it is sufficient to form the direct limit over
those objects d € T(S) that may be written as a direct sum of objects
a € T(A) with objects b € T(B) because, to each object ¢, there exists
such an object d with ¢ < d.

LemMa 6. R : U(H, ) > (A, €) is a left exact functor.

Proof. Let 0— % 5 @5 o — 0 be an exact sequence in A(, %).
For each 4 € o and each a € T(A4), we get a commutative diagram with
exact rows and columns

0 0 0

| ! |

0 —— F,X(a) —— Y,N(a) —— H#,%(a)

| l l

0 —> FX) —— HX) —— H(X)

! ! !

0 —> F(Cok a) —> %(Cok a) — #(Cok a)

The morphisms &, *(a) — ¥ ,*(a) constructed in this way are obviously
natural transformations with respect to 4 €/ and ae T(4). Thus
we may apply the direct limit over 7'(4) in the first row to get an exact
sequence

0 — (RF)(A) ~*24> (RG)(A) 214> (R)(4)

where the morphisms are uniquely determined by « and B and are natural
in 4 by construction. Because of the uniqueness it is clear that R is a
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functor. R is a left exact functor by the definition of the exactness in
WL, F).

With these lemmas we now can solve easily the universal problem
described in the beginning of this section.

THEOREM 1. Let o be a small abelian category and € be a Grothendieck
category. Then (s, €) is a reflexive subcategory of W(L,€). The
reflector R : (L, €) — (A, €) is called the zeroth right-derived
Sfunctor.

Proof. We know that it is sufficient to solve the corresponding universal
problem. Let & € U(H, ¥), ¥ € (&, ¥), and a natural transformation
¢ : F — G be given. By two-fold application of Lemma 2, we get a
commutative diagram

F " (RF) "> (R(RF))
¢
- \ |
g

where p’ is the natural transformation which corresponds to (R#) and
is constructed similarly to p. ¢ and ¢}’ are uniquely determined by ¢.
By Lemma 3 (R%) preserves monomorphisms. By Lemma 4, (R(R%))
is left exact. Thus the universal problem is solved. Furthermore,
R°F = (R(R%)).

CorOLLARY 1. Under the hypotheses of Theorem 1, &(Z, €) is an abelian
category.

Proof. The direct sums in £(&7, %) and A(Z, €) coincide because the
direct sum of left exact functors is left exact. Furthermore, the null
functor is left exact. By the theorem of Section 4.1, (7, €) is an additive
category. ' '

Let ¢ : & — & be a natural transformation of left exact functors.
The kernel of this morphism in Funct(s/, €)—hence, argumentwise
formed—preserves kernels, that is, is left exact. We denote this functor
by Ker(p). This functor has, also in 2(«Z, €), the property of a kernel.
Let 5 be the cokernel of ¢ in Funct(<Z, €). Let  : ¥ — A be a mor-
phism in (&7, ¥) with yp = 0. Then we get a commutative diagram

g A RO
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where " is uniquely determined by ¢. Hence R°%¢ = Cok(p) is the
cokernel of ¢ in 2(&Z, ¥).
In A(«, €) we have an exact sequence

0— Ker(r) > € 1> 4 —0

Since R is left exact by Lemma 6, R is also left exact. So we get the exact
sequence

0 — R%Ker(r) — & — RO’

in A(LZ, €) (and also in (&, €)) because ¥ = R°¥, since ¥ is left
exact. Let Z be the cokernel of Ker(¢) —> & in AU(H, €). Then we get
an exact sequence

0 — Ker(p) > F — RO

Since &Z is the coimage of ¢ in A(Z, ¥) and Ker(7) is the image of ¢,
we have that £ ~ Ker(r). Hence we also have R%.¥ = R%Ker(r). The
last two exact sequences show that R°.% is the coimage of ¢ in (7, ¥)
and R%Ker(7) is the image of ¢ in £(7, ¥). Hence, £(«, %) is an abelian
category.

THEOREM 2. Let o/ be a small abelian category and Ab be the category of
abelian groups. Then (Z, Ab) is a Grothendieck category with a generator.

Proof. Funct(e/, Ab) has coproducts; coproducts of additive functors
are additive, hence, (27, Ab) is cocomplete. Since (=7, AB) is a full
reflexive subcategory of A(Z, Ab), £(o/, Ab) is also cocomplete
(Section 2.11, Theorem 3).

We show that the Grothendieck condition holds in Funct(s/, Ab).
Let {#} be a directed family of subfunctors of ¢ and 5# be a subfunctor
of ¢. Since subfunctors are kernels in Funct(Z, Ab), the corresponding
monomorphisms are pointwise monomorphisms. Since limits and colimits
are formed pointwise in Funct(«/, Ab), intersections and unions of
functors are formed pointwise also:

(U#) na) () = (U£Fa) n #(4) = U (F(4) 0 #(4))
— U & n#)4)

Thus direct limits in Funct(e/, Ab) are exact. Since they preserve
additive functors, they are also exact UA(~Z, Ab). Since kernels in
2(«, Ab) coincide with kernels in U(2Z, Ab), the monomorphisms also
coincide. Direct limits preserve monomorphisms in (.7, Ab), hence
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they also preserve monomorphisms in £(&/, Ab), for direct limits of
left exact functors are again left exact by the Grothendieck condition.
Consequently, direct limits in 2(.27, Ab) are exact, that is, the Grothen-
dieck condition holds.

To show that £(.«Z, Ab) is locally small, it is sufficient to know that
there is a generator in £(%/, Ab). We claim [ [ .., #4 = G is a generator.
First, A4 is left exact for all 4 € &/. Then the coproduct of left exact
functors is left exact. (Section 2.7, Corollary 2), hence G € £(<, Ab).
Let ¢ and ¢ be two different natural transformations from &% to ¢ in
2(=/, Ab). Then there is at least one 4 € & with ¢(4) # ¢(A4). Hence
the product morphisms from [] e F(4) to [T cr 9(A4) are different.
By the Yoneda lemma these are induced by the morphisms Mor (G, ¢)
and Mor/(G, ) because we have Mor(G, #) =~ [ e #(4) and
Mor (G, 9) =~ [1 e 9(A4). Since F(4) # o for all AeZ, also
Mor (G, ) # @ for all # € 2(«, Ab). Consequently, G is a generator
for £(=Z, Ab).

CoOROLLARY 2. (&, Ab) is an abelian category with an injective
cogenerator.

Proof. 'The corollary is implied by Section 4.9, Corollary 3.

TrEOREM 3. The contravariant representation functor h : ¢ — 2(</, Ab)
is full, faithful, and exact.

Proof. We denote the injective cogenerator of 2(«/, Ab) by A". The
functor Mor,(—, ") : (<, Ab) — Ab is faithful and exact by definition
of . By Section 4.3, Lemma 2 and Section 2.12, Lemma 1, a sequence
in £(«/, Ab) is exact if and only if the image under Mor,(—, %) is
sequence 0 — A€ — h® — h4 is exact, since for all D € &/ the sequence
0 — hS(D) — h8(D) — hA4(D) is exact and since kernels in £(=7, Ab) are
formed pointwise. Thus the sequences Mor (A4, £") — Mor (h®, A") —
Mor (¢, A7) — 0 and A (4) — A (B) — A (C) — 0 are exact. But X~
is a left exact functor, thus even 0 — £ (4) — A (B) — A4 (C) — 0 and
also 0 — Mor ,(k*, ") — Mor (h®, A") — Mor (h¢, #) -0 are exact.
Thus by the above remark

0>+ —>h—>h1—>0

is exact. We know already from Section 2.12, Proposition 2 that the repre-
sentation functor is full and faithful.

D7



236 4. ABELIAN CATEGORIES
4.14 Embedding Theorems

We have investigated the importance of full faithful functors in
Section 2.12. For abelian categories, there is an additional very important
notion, namely that of an exact functor. Again the behavior of functors
with respect to diagrams is of interest. Since the corresponding diagram
schemes, however, are not abelian categories in general, we shall have to
reformulate the exactness.

Let us discuss the example of a part of the assertion of the 3 X 3
lemma. Given a commutative diagram with exact columns and an exact
first and second row in an abelian category €,

0 0 0

0—> A4, —> dy—> A;—>0

ool

0——>B,—>B,—>B,—>0
Lo
0—>C,—>Cy—>Cy —>0
Lo
0 0 0

then the third row is also exact. How can we formulate this assertion
in the language of diagram schemes ? First, let a diagram scheme & with
the corresponding objects A4,, B, C,/ (i = 1,2, 3) and 0’ be given.
When we define the morphisms of &, we may already take into account
the existing commutativity relations. Let & be the functor which maps
2 to our given diagram. The assertions about the exactness have to be
checked in €. But we can say in & for which pairs of morphisms we have
to check the exactness, namely for

(0'— 4/, 4y = 4y) ..., (B —Cy,Cy—0)
however, not for
O —>C/,C/ —CY), (C/—Cy,Cf/ —Cy) and (Cy—Cy,C—0)

If these pairs of morphisms become exact after the application of &,
then by the 3 X 3 lemma also the pairs (0' — Gy, C — Cy'),...,
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(Cy — C4, Cy' — 0’) will become exact after the application of Z.
But here we did not yet take into account that % (0’) shall be the zero
object of €. Certainly we can ask for this property separate from the
exactness conditions. But there is an exactness condition which implies
this condition automatically. If (0’ => 0", 0’ > 0') becomes exact after the
application of %, then % (0’) can only be a zero object of €. Later we shall
express other conditions by exactness conditions. First, we want to for-
malize the considerations we made up to now.

Let 2 be a diagram scheme. A set E of pairs of morphisms in 2 is
called a set of exactness conditions if we have R(a) = D(b) for each pair
(a, b) € E, that is, if the two morphisms in a pair may be composed in
9. Let F : 9 — € be a diagram over & in €. We say that & satisfies the
exactness conditions E if for each pair (a, b) € E the sequence

F(D(a)) 9> F(R(a)) Z%> F(R(b))

is exact. Let us denote by E, the exactness conditions for the zero object
and the exactness of the columns and the first and second row and by E,
the exactness conditions for the exactness of the last row of the given
diagram, then the 3 X 3 lemma may be formulated in the following way.
Each diagram & which satisfies the exactness conditions E, also satisfies
the exactness conditions E, .

If & satisfies a set of given exactness conditions, then it is possible that
certain parts of the diagram become commutative where the commutati-
vity in & was not given or not recognizable. The commutativity of
diagrams may also be expressed by a set K of pairs of morphisms in 2
for which (q, b) € K always implies D(a) = D(b) and R(a) = R(b).
Such a set K is also called a set of commutativity conditions. We say that
& satisfies the commutativity conditions K if for each pair (q, b)) e K
we have & (a) = Z(b). An exact categorical statement in an abelian cate-
gory € with respect to the diagram scheme & with the exactness condi-
tions E and E’ and the commutativity conditions K and K’ is an assertion
of the following form: Each diagram &% over & in € which satisfies the
exactness conditions E and the commutativity conditions K satisfies also
the exactness conditions E’ and the commutativity conditions K'.

Since the identities and compositions of morphisms may already be
formulated in & and are preserved by the functor & some of the notions
in an abelian category may be defined by exactness and commutativity
conditions. Since we are only interested in functors & which satisfy the
given exactness and commutativity conditions, we can formulate the
defining exactness and commutativity conditions in % for the particular
notions independently of the diagram scheme 2.
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The following assertions hold in any abelian category €:

A = 0if and only if 4 2> A4 1 4 is exact.

(A—B)=0ifand only if 4 — B 2 Bis exact.

A — B is a monomorphism if and only if 0 — 4 — B is exact.

(A — B) = Ker(B— C) if and only if 0 > 4 — B — C is exact.

S = A @ B with projections and injections S — 4, S— B, 4 — S,
and B — S respectively if and only if 4 — S — Bis exact, B— S — 4
is exact, (4 — S — A) = (4 4), and (B — S — B) = (B = B).

C — S is the morphism into the direct sum induced by C — 4 and
C— B if and only if (C—-S— 4) = (C— 4) and (C— S— B) =
(C— B).

The diagram

P— 4

b

B—C

is a fiber product if and only if 0 - P — 4 @ B — C'is exact.

Beyond these examples there are many more notions which may be
represented in a similar way. In particular, finite limits and colimits
together with their universal properties may be defined in this way.

LevmMma 1. Let 9 :% — € be a faithful exact functor between abelian
categories. Assume that the exact categorical statement defined by
(2,E,K, E', K'Y is true in €. Then it is also true in %.

Proof. We have to show that a diagram & : 2 — % which satisfies
the exactness conditions E and the commutativity conditions K also
satisfies the exactness conditions E’ and the commutativity conditions
K’. By hypothesis, % : 2 — € satisfies the conditions E’ and K'. In
fact, if & satisfies E and K, then 4% satisfies conditions F and K because
@ is exact. Since ¢ is faithful, the conditions K’ have to be satisfied
already in #. We only have to show that a sequence 4 -~ B — CinZ is
exact if 9(4) — %(B) — %(C) is exact in €. In fact, then E’ also holds
in 4.

Let AL B% C in # be not exact. Then (A—-B—->C)#0 or
(Ker(g) - B — Cok(f)) # 0. Since ¥ is faithful and exact,
% preserves kernels, cokernels, and nonzero morphisms. Hence
(9(4) — 9(B) — %(C)) +~ 0 or (Ker(%(g)) — 9(B) — Cok(%9(f))) # 0.
Hence, also %(4) — %(B) — %(C) cannot be exact (Section 4.3,
Lemma 1).
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With this lemma we can test the truth of an exact categorical statement
via faithful exact functors. Since a diagram consists always only of a set
of objects and morphisms, it is interesting to know if each diagram in
an abelian category is already in a small abelian category. Later on we
shall see that for small abelian categories there are faithful exact test
functors into the category of abelian groups.

ProrosITION 1. FEach set of objects in an abelian category lies in a small
full exact abelian subcategory.

Proof. Let &, be the full subcategory of the abelian category ¢ with
the given set of objects in € as objects. Now we construct a sequence of
full subcategories & of € by the following construction. If & is given,
then let &7, consist of the kernels and cokernels of all morphisms of
&Z; as well as of all direct sums of objects of .27, where the kernels, coker-
nels, and direct sums have to be formed in € and where we take for each
morphism only one kernel and cokernel and to each finite set of objects
only one direct sum. Let 2, be the full subcategory of € defined by
these objects. Since & is small also &7, is small. Furthermore, we have
&, C o, if, for example, we use A4 as the kernel of 0 : 4 — A. Thus
AyisinB = oo, and Z is a small full exact abelian subcategory of €.
By definition # is a small full subcategory. # contains the zero object
of & as kernel of an identity and the morphism sets of & form abelian
groups in the same way as they do in €. Furthermore, for each finite set
of objects in & there exists a direct sum in & since the finite set has to lie
already in one of the & . Therefore, # is an additive category. Further-
more, kernels and cokernels of morphisms in # coincide with kernels
and cokernels in € by definition, and they exist. The natural morphism
from the coimage into the image of a morphism in & coincides with the
one formed in &, so it has an inverse morphism which is also in %. Thus
2 is abelian and the embedding is exact.

THEOREM 1. Let &7 be a small abelian category. Then there exists a
covariant faithful exact functor & : o/ — Ab from o into the category
of abelian groups.

Proof. We apply Section 4.13, Theorem 3 and Corollary 2. The contra-
variant representation functor % : & — £(&, Ab) is faithful and exact.
Let 2 be an injective cogenerator in £(2, Ab). Then the contravariant
representable functor Mor/(—, %) : (&, Ab) — Ab) is faithful and
exact by the definition of the injective cogenerator. The composition of
these two functors is covariant, faithful, and exact and we have
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Mor(—, #)h == A". Hence, A" : &/ — Ab is a covariant faithful exact
functor.

Now by Lemma 1, it is sufficient to test the truth of exact categorical
statements only in the category of abelian groups Ab. This is also true
for an arbitrary abelian category %, since each diagram is already in a
small abelian category &/ by Proposition 1 and since the exactness in
& and in % is the same. Since we can check the exactness and equality of
morphisms in Ab elementwise, many proofs will be considerably simpli-
fied. We formulate this fact in the metatheorem that follows.

METATHEOREM 1. An exacl categorical statement which is true in the
category Ab of abelian groups is true in each abelian category.

As an application of this metatheorem, we show that in each abelian
category the lattice of subobjects of an object is modular. A lattice is
called modular if for elements A, B, and C of the lattice 4 C C implies
AuBNC)y=(AuUB)nC We always have 4 U (BN C) C
(A U B) N C by the hypothesis A C C. To prove the equality in the
lattice of the subobjects, we have to show that the morphism
AV (Bn C)C(Av B)N Cis an isomorphism. For the formulation of
an intersection and a union, we may use finite limits and colimits. Hence,
the modularity of the lattice of the subobjects of an object in an abelian
category is an exact categorical assertion. We need check it in Ab only.
But if ce (AU B)NC, then ¢ = a + b with ae 4 and b e B. Since
ACC we get c—a=0beC, hence be BN C. This proves that
c=a+beAUBNC)thatis, AUBNC)=(AUB)NC.

CoRrOLLARY 1. The lattice of the subobjects of an object in an abelian
category is modular.

With our example of the 3 X 3 lemma we were only able to cover a
part of the lemma as an exact categorical statement. Although in this case
it is easy to prove the existence of the morphisms in the lower row,
which make the diagram commutative, it is of principal interest to carry
even this task over into another category by a suitable functor. This
problem deals with two diagram schemes with the same objects where
the morphisms of the first diagram scheme are also morphisms of the
second diagram scheme, but in the second diagram scheme there are
more morphisms.

Let 2 be a diagram scheme with the exactness conditions E and the
commutativity conditions K. Let &’ be another diagram scheme with the
exactness conditions E’ and the commutativity conditions K’. Let
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J + @ — 2’ be a functor which is bijective on the objects. (£, 9, @', E,
K, E’, K') defines a full exact categorical statement with respect to an
abelian category % of the following form: To each diagram &% : 9 — &
which satisfies the exactness conditions £ and the commutativity condi-
tions K, there exists a diagram &' : 2’ — € with 'S = F which
satisfies the exactness conditions E’ and the commutativity conditions K.
Hence the 3 X 3 lemma is a full exact categorical statement which is true
in each abelian category.

LEMMA 2. Let 9: % — € be a full faithful exact functor between
abelian categories. Let the full exact categorical statement defined by
(F,92,92',E,K, E,K’) be true in €. Then it is also true in %.

Proof. Assume that & : & — Z satisfies the conditions E and K. Then
also 4 : 9 — € satisfies the conditions E and K, because ¢ is exact.
Hence there is a diagram &” : 9’ — € which satisfies the conditions E’
and K'. By Section 1.15, Lemma 2, %" may be uniquely factored through
# with a diagram ¥’ : @' —> % and F" = F'. Since ¢ is faithful
and exact and since ¥& ' satisfies the conditions E’ and K’, so does % .
This has already been proved in Lemma 1.

By Proposition 1 we may decide each full exact categorical statement
already in a small abelian category, namely in the small full exact
abelian subcategory which contains all objects of the diagram & : 9 — %.
This category certainly depends on the choice of the diagram £.
However, if we show that a full exact categorical statement in each small
full exact abelian subcategory of % is true, then it is also true in €. For
the following considerations, we still need another theorem.

THEOREM 2. Let € be a cocomplete abelian category with a projective
generator P. Let o/ be a small full exact abelian subcategory of €. Then
there exists a full faithful exact covariant functor & : o/ — Mod from o/
into a category of R-modules.

Proof. The proof goes analogously to the proof of Section 4.11, Theo-
rem 1. Since P is not finite, we shall not try find epimorphisms from
coproducts of P with itself to the particular objects, but only epimor-
phisms from some projective generator. Since each coproduct of copies
of P is again a projective generator we choose the number of factors large
enough such that each object 4 of &7 may be reached by an epimorphism
11 P — A. This is possible because &/ is small. Let us call [T P = P’
and R = Hom(P’, P’). Since P’ is a projective generator, the
functor Homg(P', —) : € — Mody is faithful and exact. We still have
to show that the restriction & of Homg(P’, —) to the subcategory & is
full. Then & is full, faithful, and exact. Let ¥ = Homg(P’, —).
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Let f: #A — % B be given for objects 4, B e &/. We have to find
a morphism f': A — B with Ff' = f. Leta: P"—> A and b: P'—> B
be epimorphisms. Since the ring R is projective we get a commutative
diagram

Ker(%a) —> R—2% F 4

“ b

RZ2, 7B

The morphism R — R may be represented in the form %g because
Homgy(P’, P') =~ Homg(R, R) by the functor Homg(P’, —). Since ¥ is
exact, Ker(%a) ~ %(Ker(a)). Since ¥ is faithful, (Ker(%a) - R —
R — %B) =0 implies (Ker(a¢) > P'— P — B) = 0. Thus in the
diagram

Ker(a) —> P’ —> 4

| |

| R

there exists exactly one morphism f’ which makes the square
commutative. Hence, the upper diagram becomes commutative also if
we replace f by &#f'. But since %a is an epimorphism we get f = Zf'.

THeorReM 3 (Mitchell). Let &7 be a small abelian category. Then there
exists a covariant full faithful exact functor & : o/ — Mody from o into
a category of R-modules.

Proof. The functor h: o/ — &(«Z, Ab) is contravariant, full, faithful,
and exact. Let 4° be the corresponding functor from .27 into the category
2%/, Ab) dual to £(«Z, Ab) which is cocomplete by Section 4.13 and
has a projective generator. Then A° is covariant, full, faithful, and
exact. Let # be the small full exact abelian subcategory of 2%(Z, Ab)
which is generated by 4°(«Z) by Proposition 1. Then by Theorem 2, there
exists a full faithful exact functor Z# — Mod, for a ring R. Hence also
& — % — Mod;, is covariant, full, faithful, and exact.

As in the case of the Metatheorem 1, Lemma 2 and Theorem 3 imply
the following result.

METATHEOREM 2. A full exact categorical statement which is true in all
module categories is true in each abelian category.

Now with this theorem we can also decide about the existence of
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morphisms in relatively simple categories, namely module categories
where one can compute elementwise. So the 3 X 3 lemma need only be
proved with these means in an arbitrary module category. This then
implies that it holds in all abelian categories.

The best-known application of this theorem is the existence of the
connecting homomorphism.

CoROLLARY 2. Let the diagram

0 0 0

ool

Ay —> 4y — 4,

ool

B,—>B,—>B,——0

Lol

0—> C, —> Cy —> C,

ool

D, —— Dy, — D,

ool

0 0 0

be commutative with exact rows and columns in an abelian category €. Then
there is a morphism 8 : Ay — D, called the connecting homomorphism
such that the sequence

-~ Ay—> A3~ Dy, — D,
is exact.

Proof. The assertion of the corollary is a full exact categorical statement.

So we need only check it in a module category. We define the following
application

A3 3 a5 by by cyt> ey > dy e Dy

Here the elements are in the modules with the corresponding subscripts.
Let b, be chosen such that b, is mapped onto b3 by B, — B;. Since
¢, is mapped onto 0 by C, — C,, ¢, is already an element in C; which
we denote by ¢, . The only ambiguity of this application is the choice of
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b, . This choice is unique up to a summand b, € B; . But we have
by + b >3+ ¢ > ¢y + ¢ > d; because (B, — C;— D;) = 0.
Obviously this map is a homomorphism which we denote by § : 4, — D,.

If 8(a;) = 0, then there exists a b," € B; with b,"+>¢; by B; — C.
Therefore, b, — b, 0 by B, — C, . Hence, there exists exactly one
a, with ay+> b, — b,'. But then a,+>a; by A, — A;, hence
A, — A3 — D, is exact.

Let d, € D, be given such that 4, is mapped to 0 by D, — D, , then
there exists a ¢, with ¢; > d; and ¢, is mapped to 0 by C; - C, — D, .
Hence there exists a b, with b, > ¢, and ¢; > ¢, . Therefore, b, is mapped
to 0 by B,— B; — C;, that is, there exists an a; with a4+ b; and
by > by. By definition of & we have 8(q;) = d,. Consequently,
the sequence

A,— A, LN D,— D,
is exact.

Problems

4.1. Show that Example 2 of Section 4.1 is not an abelian category.
4.2. 'The sequence 0 - A — B — 0 is exact if and only if A — B is an isomorphism.

4.3. Let % be an abelian category. If the following diagram in ¥

0— 4B Cc—0

0— a4 B0 —o0

is commutative and if both rows are short exact sequences, then: (1) if « and w are mono-
morphisms, then v is a monomorphism; (2) if # and w are epimorphisms, then v is an
epimorphism.

4.4 Dualize Lemma 2 of Section 4.3.

4.5, Let0— 4 A B 2> C — 0 be an exact sequence. The following are equivalent:
(1) fis a section.

(2) g is a retraction.
(3) B=A®Cand f:4 — A ® C is the injection with respect to 4.

4.6. Show that the category of ordered abelian groups is not an abelian category.
An abelian group G is ordered if G is an ordered set (Section 1.1, Example 2) such that
a < bimpliesa + x < b + xforalla, b, x € G. Let G and G’ be ordered abelian groups.
A homomorphism f: G — G’ is called order-preserving if a < b implies f(a) < f(b).
The ordered abelian groups together with the order-preserving homomorphisms form
an additive category, the category of ordered abelian groups.
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4.7. Show that the assertion of Section 4.5, Lemma 1 holds without the assumption
that C/A4 is simple.

4.8. Find an object of finite length with infinitely many different subobjects in an
abelian category.

4.9. Show that gfMod is a Grothendieck category for each unitary associative ring R.

4.10. In a module category gRMod the union (in the categorical sense) of submodules
of a module is the sum (in the module theoretical sense) of these submodules.

4.11. Prove the Steinitz exchange theorem for vector spaces by Section 4.10,
Theorem 5.

4.12. Show that in Section 4.9, Corollary 4 the module R/M for a local ring R is
not a cogenerator, so that in general | [ R/M is not a cogenerator.

4.13. An additive functor between abelian categories is faithful if and only if it
reflects exact sequences (Section 4.14, Lemma 1).

4.14. Does Section 4.10, Corollary 1 hold for arbitrary equationally defined algebras
instead of R-modules?

4.15. (a) Let M € gRMod. Let {G}:c; be the set of large submodules of M and {E;};e;
be the set of simple submodules of M. Then ﬂ G; = [ Jsex E; for suitable subset K C J
and is called socle of M.

(b) M € gMod is called cocompact if M is compact in gRMod®. M is cocompact if and
only if the socle of M is large in M and finitely generated.

4.16. Let & :% — 2 be an additive functor between abelian categories with an
exact right adjoint functor . Then & preserves injective objects.

4.17. Let % be an abelian cocomplete category with a finitely generated generator
and let G, G’ € %.
(a) If for all simple objects U there is a commutative diagram

G s U

NS

P(U)

with an epimorphism f and a projective object P(U), then G is a generator.
(b) If for all simple objects U there is a commutative diagram

U : G’

NS

I(U)

with a monomorphism g and a projective object I(U), then G’ is a cogenerator.
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Appendix

Fundamentals of Set Theory

We shall give an outline of those facts of set theory which are not too
well known from naive set theory. As a basis we shall use the set of
axioms of Godel and Bernays. The difference between sets and classes
and the consequences of the strong axiom of choice play an important
part in the theory of categories. Since the axiomatic description of set
theory is very formalistic, we shall try to express most of the formulas in
ordinary language. Observe that, for an axiomatic representation of a
theory, we prove theorems on and within this theory, but that the models
which satisfy the axioms of this theory do not belong to the theory
itself. So axiomatic set theory involves computations with the given
formulas; the “class of all sets,”” however, or better, a model for the
class of all sets will not be given. The axioms and the theorems derived
from the axioms, however, should always have a meaning for naive set
theory.

We agree on the following symbols: class variables X, Y, Z,...; special
classes @, U, 4,, 4, ,...; set variables %, y, 2,..., and formulas o, ¥,... .
We may use subscripts with the symbols so that we have countably many
symbols at hand in this way. Equality = and element of € are used
between set variables, class variables, and special classes, where on both
sides different kinds of these symbols may be used. Logical symbols
are: “not” —, “or” v, “and” A, “implies” =, “if and only if” <,
“there exists” V, ‘“there exists exactly one” V!, and “for all” A. The
symbol — precedes formulas. The symbols v, A, =, < are used between
formulas. The symbols V, V!, and A are used in front of variables, they
are put in parentheses, and are followed by a formula or some other
sequence of symbols.

There are relations between the logical symbols through which all
logical symbols may be reduced to the three logical symbols —, A, and
V (and the equality sign). The other symbols may be considered as
abbreviations in the following way:

oV is equivalent to —(—p A —3).
247
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@ = ¢ isequivalentto —(p A —).

@< isequivalentto (¢ = ¢) A (Y = @).

(A X)p is equivalent to —((V X) — o).

(VI X)p isequivalentto (V X)p A ((VY)p = (X = Y)).

A formula is inductively defined for variables or special classes /1, I" by

(1) A€l is a formula.

(2) If ¢ and ¢ are formulas, then also —@, @ A ¢, and (V x)p are
formulas where x may be replaced by any other set variable and
where we admit abbreviations (e.g., with other logical symbols).

(3) Only those sequences of symbols which arise from (1) and (2)
are called formulas.

If one of the variables occurs together with one of the so-called
quantifiers V, A, or V! (e.g., (V X)...,(A X)...,(V!y)...), then the
variable is called a bound variable, otherwise it is called a free variable.

The axioms of set theory are subdivided into several groups. The
axioms of group 4 are:

x is a class (Al)
Each set is a class.
XeY = Xisaset (A2)
Each class which is an element of another class is a set.
Aw(ueX<sueY)=X=Y (A3)

Axiom of extensionality: If two classes have the same elements, then
they are equal. (If two classes are equal, then they also have the same
elements by the logical properties of the equality sign.)

Ay, o)(Vu)xew<x =uvx =0) (Ad)

For any two sets , v there exists another set w which contains exactly
# and v as elements.

Only sets may occur as elements of classes or sets. In particular
elements are not objects different from sets, contrary to the view of naive
set theory. Talking about elements is nothing more than the colloquial
transcription of the symbol €.

We introduce a number of abbreviations which will be admitted also
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in formulas except for the first two abbreviations. Here “:=" has the
meaning of ““is an abbreviation of”.

S(X) = Xisa set.

C(X) = X is a class but not a set.

X#Y = 1 X=Y.

X¢Y = —XeV.

{xy} = the set defined by (A4) which contains exactly x

and y and which is uniquely determined by (A3).

{x} := {xx}, hence {x} = {xx}.

{xy) := {{x}{xy}}, the ordered pair of x and y.

{x) = «x.

{y o xyy 1= {y{xy -+ &,y for all positive integers n. Thus
finite ordered sets are defined.

Empty(X) = —((Vu)(zeX)), X is empty.

Ex(X,Y) = —(Vu(ueXAruecY)), X and Y do not have

a common element.
Un(X) = Ay, v, w)((Kvupe X A {wuy e X) = w = v), the
subclass of X that contains only ordered pairs
contains to each %, at most one pair {zu), that is, X
has uniquely defined values.
Auw(ueX =>ueY).
(XCY)A (X #7).

XCY
XCY

]

The axioms of the other groups B, C, and D are:

(VAYA 2, 9)<xy) € A <> x€) (B1)

There is a class A4 which contains the ordered pair {(xy) if and only
if x €y holds.

(A A, BV CYA u)(ue A A ueB)<ucC) (B2)

For any two classes 4 and B there exists a class C, the intersection

A N Bof A and B, which consists of exactly those sets which are elements
as well of 4 as of B.

(A AYV BY(A u)(u¢ A<>ueB) (B3)

To each class 4 there exists a class B, the complement — A of A, which
contains exactly those sets which are not contained in 4.

(A A)V B)(A u)(u € B < (V y)(<yup € 4)) (B4)
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To each class 4 there exists a class B, the domain D(A) of A, which
contains exactly the second components of the ordered pairs in 4.

(A A)(V BYA 23)({yx> € B < x € A) (BS)

To each class A4 there exists a class B, which contains an ordered pair
if and only if the second component of the ordered pair is an element of 4.
Nothing is said about the elements of B which are not ordered pairs.
(BS) serves to construct the product.

(A A)V B)A xy)((xy) € A < (yx) € B) (B6)

To each class 4 there exists a class B which contains as ordered pairs
exactly the ordered pairs of 4 with reversed order.

(A AV BYA x, 3, 2)((xyz) € 4 < (yax) € B) (B7)
(A A)(V BYA x, 9, 2)({xyz) € A < (xzy) € B) (B8)
To each class 4 there exists a class B which contains as triples exactly

the triples of 4 where the order is changed in correspondence with
(B7) or (BS).

(V a)(— Empty(a) A (A x)(xca = (Vy)(yeanrxCy))) (C1)

There exists a set a which has at least countably (infinitely) many
elements.

Ax)Vy)Au v uevArvex =>ucy) (C2)

To each set x there exists a set y which contains the union of those
sets which are elements of x.

Ax) VYA u)(ulx=uecy) (C3)

To each set x there exists a set y which contains each subset of x as an
element.

(A x, AY(Un(4) = (VyYAu)uey< (Vo) vex A (uv) e 4))) (C4)

To each class 4 with unique values (an application) and to each set x
there exists a set y which consists of exactly those elements which are
the values of the elements of x under the application 4.

— Empty(4) = (V u)(u € 4 A Ex(u, A)) (D)
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Axiom of foundation: Each nonempty class contains an element which
is disjoint to the given class.

LemMa 1. There exists exactly one class & with (ANu)u¢ @) and
exactly one class U with (A u)(u e U).

Proof. By axiom (BI) there exists a class 4. By (B3) the complement
B = —A4 of A exists. By (B2) the intersection C of 4 and B with
ANuueC<>uecAdArueB) thatis, (AufueC<uecd r —(uei)),
exists. Hence we get (A u)(u ¢ C) because ue 4 A — (u € A) is always
wrong. We set C = @. By (A3) the class & is uniquely determined. Let
U be the complement of @ (B3). Also U is uniquely determined.

We call U the universal class and @ the empty set. We shall show later
on that & is a set.

METATHEOREM OF CLASS FORMATION. Let o(x; -+ x,,) be a formula with
no other free variables than x, ,..., x,, . Then there exists exactly one class A
such that the following holds:

(A )& Ao (V 5y ey ) = 5y oo 22 A ol )

Proof. (1) We may assume that in ¢ there is no special class at the left
side of € because of

(Ape )< ((V 2)(x = 4, A xeT))

(2) We may assume that, except special classes and variables, there
occur only €, —, A, and V (with parentheses) in the formulas (and no
equality sign) because of

A=<= ((Ax)xed<=xecl))

(3) Let ¢ = (x,€x,). If r = s, then ¢ = (x, € %,). But x, € x, and
x, € {x,} implies — Ex(x, , {x,}) a contradiction to axiom (D). We set
A4, = . 1fr <s, then we get by (Bl)

(V Al)(/\ Xr s xs)(<x'rxs> € Al < X, € xs)
If » > s, then we get by (B1) and (B6)

(VAN %, , x)((xgx,y € Ay <> %, € ;)
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By (BS5), (B6), (B7), and (B8) we get in all three cases with 1 <7 < zand
I <s<m

(V AZ)(A Xy yeeey xn)(<x1 Xy € Az <X, € xs)

(4) Let ¢ = (x,€ 4;). Then we get (V 4,)(x, € 4, < x,€ 4;). By
(B5)—~(B8) we get for 1 <7 < n

(V AR)(A %y yeury 2)(Cy o %) € Ay <> %, € Ay)

(5) Now we make an induction with respect to the number of logical
symbols —, A, and V. The necessary induction steps are

— @: By (B3)
(A %y yeeey 2, )2y o0 X0 € Ay <> @y *+* %))
= (A Xy ooy XKy e X € — Ay <> — (%5 700 %))
g Ag: By (B2)
(A e ) ) € Ay < gy -+ 2)
A (A %y ooy 2o )<y e 2> € Ay < (g - %))
= (A Xy yeey 2,)(Hq - x> € Ay N Ay <> (@ A P)(%y -+ x,))
(Vx): By (B4)
(A 2, 2y ooy 2,) (% - %> € Ay <> @y 2,)
= (A %y ey %,)($2y 70 %) € D(Ap) <> (V 2)(p(xxy *+* %))
(6) We define 4 X B by
(Ax)(xe A x B> (Vy, 2)(x = {yz> Aye A A z€B))
Furthermore, let A» = A x A»-L In particular, we get
(A ) e Un <> (V 2y ey ) = <y o %))

We replace the class B(= —A4,, 4, N 45, D(A4,)) defined by (5) by the
class A = B N U™ Then by (A3) the class 4 is uniquely determined by

Au)ue A< (Vxy o, 2)(u = {2y 0 20 A (g - %))

The class 4 constructed in the Metatheorem of class formation is also
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written as 4 = {{x, - x,) | p(%; *** x,)}. Thus we get further abbre-
viations:

A—B := {x|xeAnAx¢B}

AUB := {x|xe€AvxeB}

UXx = {x|(Vy)xeyryeX),

nx = {|(Ay)(yeX ==xey)}

P(X) = {x|xC X}

X1 = x| (Vy, ) = <y@> A <y e X))

R(X) = D(X?) (range of X)

F(X)) = RFNQU X X)) (image of X under F, that is, the

class of those elements which occur as images of ele-
ments of X under the application of F).

A series of new formulas is defined by

Rel(X) = XCuz

Equ.Rel(X) = Rel(X) A (A x)(x € D(X) = (xx) € X)
A (A x,y)((xy) € X = (yx) € X)
AAxy 2(xy>eX A{yzd>eX
= (xz) € X),

Map(X) := Rel(X) A Un(X),

Fmapon X = Map(F) A D(F) = X,

FmapfromXtoY := FmaponX A RF)CY,

bijective (F) :=  Un(F) A Un(F2).

Let F be a class and x be a set. Then F(x) is uniquely defined by

(VI5)<yw> €F)) = ((F@) 5> €F)) A ((— (VI 5)<y) €F)) = Flx) = 2)

Let F map from X to Y be given. F is called injective, if Un(F-1). F is
called surjective if R(F) = Y. Instead of F map from X to Y, we
often write F: X > Y or Xsx+>F(x)e ¥ or X -5 Y. Observe that
the arrow > is used between sets which are assigned to each other,
whereas the arrow — is used between sets or classes the elements of
which are assigned to each other. A family F of elements of ¥ with index
set X is (F map from X to Y).

We have the following rules of set theory:

(a) Ne=uUL NU=g; Ug=2; YU=1U;
(b) @CXCU

() X=Y<XCYAYCX,

(d D =u; RAU) =u;

(e B =1

®  S(e); Wy
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(8)  S(X) = S(X N Y)AS(BX)) A SV X);

(h) X # o = S(NX);

(1) S(X) A (YC X) = S(Y);

G) S(X)AS(Y) = S(X X Y)AS(XUY);

(k) F map on x = S(F) A S(R(F)) A S(F((x)));

) CX) = C(BX) A C(UX) A CX U V) A C(X — y);

(m) CX)AY # 0 = CX X Y);

(n) bijective(F) A X C D(F) A C(X) = C(F((X)));

(o) F map on A A G map on 4 = (Au)(ue 4 = F(u) = G(u))
=>F = G).

Proof. It is trivial to verify (a), (b), (c), (d), and (e).

(i) Let 4 = {Kzz)|z€ Y}, then 4 has uniquely defined values
(Un(4)). By axiom (C4), we get y = Y, that is, S(Y).

(g) S(X N Y) trivially by (i). (i) implies also S(B(X)) and S(|) X) by
axioms (C2) and (C3).

(j) {X, Y}is a set by axiom (A4). (g) implies S(X U Y). X x Y C
PP(X U Y) implies S(X X Y) by (i) and (g).

(k) S(R(F)) and S(F((x))) hold by axiom (C4). F C x X R(F) implies
S(F). (1), (m), and (n) are proved analogously.

(o) holds by definition of F(x).

(f) 2 CX and the existence of a set (axiom(Cl)) imply S(o).
Assume S(U). Then U € W and U € {U} contradicting axiom D. Hence
C(u).

(h) yeXand N X Cyimply S(N X).

The strong axiom of choice of Gédel is equivalent to the axiom of
choice we use here and is particularly suitable for the application in
categories. (The equivalence of these two axioms holds only if the
axiom of foundation holds.) The axiom of choice is

Equ. Rel R = (V X)(A u)(x € D(R) = (V! v)(v e X A {uv) € R))

To each equivalence relation R on D(R) there exists a complete system of
representatives X N D(R).

THEOREM. The axiom of choice is equivalent to the following axiom of
choice of Gidel

(V A)Y(Un(4) A (A x)(— Empty(x). = (Vy)(y € x A {yx) € 4)

(There is a class with uniquely defined values (an application) which
assigns to each nonempty set x one of its elements.)
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Proof. Assume that the axiom of choice holds. Let E be the class of
the e-relation: E = {{xy) | x € y}. Let

R = {Cwxyz) [{wxd e EALy)EE A x = 2}

Then R is an equivalence relation on E. Let 4 be a complete system of
representatives for R. If y #* @, then there is exactly one x with
(xy>€e A CE. Thus A4 is the choice function for the strong axiom of
choice of Godel.

We shall only indicate the converse of the proof. Gédel’s strong
axiom of choice implies that 2 may be well-ordered. If R is an equivalence
relation, then

X = {xlxeDR) A Ay)(yeD(R) A (xy)eR = x <y}
is a complete system of representatives.

The axiom of choice implies in particular Zorn’s Lemma. We define
a chain K in an ordered set X (in the sense of Section 1.1, Example 2) to
be a subset of X such that for any two elements x, y € K always x < y
ory < x holds. An upper bound for a chain K in X is an element 5(K) e X
such that x < 5(K) for all x € K. A maximal element m € X is an element
with the property that m < x implies m = x for all x € X. Observe that
a chain may be empty and that every element of X is an upper bound for
the empty chain.

ZorN’s LEMMA. If X is an ordered set and if each chain K in X has an
upper bound, then there is a maximal element in X.

We have to refer the reader to text books on set theory for the proof
of this and the following lemma on ordinals.

Lemma 2. Let K be a well-ordered set of ordinals o, let y be the first
ordinal with | K| <|y| and |o| <|vy| for all «€ K. Then there is
an ordinal B with f < y and o < B for all x € K.
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Commutator factor group, 148
Compact hausdorff space, 74, 114
Compact module, 245
co-, 245
Compact object, 204
Compactification, Stone-Cech, 114
Complement, 249
Complete category, 78, 85



co-, 78, 90
finitely, 78, 85, 89
Complex, 167
Composition, 2
Composition series, 174
factor of, 174
length of, 174
Condition
commutativity, 237
exactness, 237
Grothendieck, 181
Congruence, 141
Connected category
directly, 58
inversely, 60
universally directly, 59
universally inversely, 60
Connecting homomorphism, 243
Connection, 58
Consistent algebraic theory, 121, 136
Constant functor, 77, 79
Construction, see Standard construction
Continuous functor, 86
co-, 86
Continuous map, 5
dense, 15
pointed, S
Contractible pair, 69
Contravariant functor, 7
Correspondence of sets, 6
Counterimage, 34, 35, 97
Covariant functor, 7
Creation
of difference cokernels, 70
of isomorphisms, 69
properties, 69
Cube lemma, 15

D

Decomposable object, 190

in-, 190
Decomposition, Q-S-, 118
Dense continuous map, 15
Derived functor, zeroth right-, 233
Diagonal, 33, 159

co-, 33, 159
Diagram, 9, 24

category, 24, 89

commutative, 9, 24

INDEX
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empty, 86
large, 79
large diagram category, 79
scheme, 6, 24, 237
Difference cokernel, 26, 28, 70, 81, 163
kernel, 26, 81-86, 163
quotient object, 28
subobject, 28
Direct limit, 81, 88
exact, 185
Direct sum, 159
Directed category, 88
Directed family of subobjects, 182
Directly connected category, 58
universally, 59
Discrete category, 6, 81
Discrete topological space, 8, 112
Divisible abelian group, 14, 18, 148, 163
Domain, 3, 250
Double dual space, 12
Dual category, 12, 19
Dual standard construction, 62
Dual theorem, 13
Duality, 12
principle, 13

Ehrbar, 118
Eilenberg, 62, 256
Element, nilpotent, 192
Embedding theorem, 236
Empty category, 3
Empty diagram, 86
Empty product, 31
Empty set, 251
Endofunctor, 62
Endomorphism, 17
of identity functor, 216
ring, 163
Epimorphic image, 34
Epimorphism, 14
relative, 118
relatively split, 141
Equationally defined algebra, 127
Equivalence, 18, 55
Equivalence relation, 6, 99
monomorphic, 99
pre-, 101
Equivalent category, 18, 55



262 INDEX

Equivalent monomorphism, 20 Free product, 33
Essential extension, 197, 198 Free variable, 248
largest, 198 Full exact categorical statement, 241, 242
maximal, 198 Full faithful functor, 115, 117
Evaluation functor, 43, 45, 46 Full functor, 44, 115, 116
Evaluation map, 11 Full matrix ring, 219
Exact categorical statement, 237, 240 Functor, 6, 7
full, 241, 242 additive, 178, 179, 222
Exact direct limit, 185 adjoint, 51, 91
Exact functor, 179 adjoint functor theorem, 105, 110, 113
Exact sequence, 166 algebraic, 137, 139, 145
short, 166 bi-, 39
Exactness condition, 237 category, 10, 227
Exchange theorem, 209, 245 cocontinuous, 86
Extension constant, 77, 79
base ring, 149 continuous, 86
essential, 197, 198 contravariant, 7
injective, 198 covariant, 7
largest essential, 198 endo-, 62
maximal essential, 198 evaluation, 43, 45, 46
minimal injective, 198 exact, 179
smalles injective, 198 faithful, 44, 115, 116
Exterior algebra, 148 forgetful, 8, 129
full, 44, 115, 116
F full faithful, 115, 117
halfexact, 180
Factor of composition series, 174 image of a, 24
Faithful functor, 44, 115, 116 isomorphic, 18
Family, 253 leftexact, 180, 222
Fiber product, 82-84, 168 monadic, 68, 139, 140
co-, 83, 85, 169 multi-, 39
Fiber sum, 83 power set, 50
Field, 148 product, 55
skew-, 219 projection, 39
Filtered category, 87 representable, 10, 11, 14, 40, 47, 105
Filtered colimit, 88 representable functor theorem, 109
Filtered limit, 88 representable sub-, 105
Final object, 22, 84, 86 representation, 44, 116, 235
Finite poduct, 84 rightexact, 180

Finite projective object, 210

Finitely cocomplete category, 78, 90 G

Finitely complete category, 78, 85, 89 Gabriel, 2, 158

Finitely generated algebra, 135, 138 Generator, 110, 111, 141, 202, 245
Finitely generated module, 205 co-, 110, 112, 203, 213, 245
Finitely generated object, 204 pro-, 211

Forgetful functor, 8, 129 set of, 110

Formula, 248 Godel, 2, 247, 254, 255

Free algebra, 68, 130, 135 Grothendieck, 2, 158

Free algebraic theory, 123 category, /81, 182, 188

Free object, relatively, 141 condition, 181



Group, 3, 6, 125, 126, 127, 146
abelian, 4
affine algebraic, 155
algebraic theory of, 125, 126, 155

algebraic theory of commutative, 155

analytic, 155

category of finite, 16

commutator factor, 148

divisible abelian, 14, 18, 148, 163

finite abelian, 156

homomorphism, 4

homotopy, 155

ordered abelian, 244

quasi-, 145

semi-, 145

sub-, 21, 5O

topological, 155

torsion, 74

torsionfree abelian, 74, 156
Groupoid, 101, 104

H

H-object, 145
Half exact functor, 180

Hausdorff topological space, 8, 15, 18, 74,

114
compact, 74, 114
normal, 74, 114
Hilton, 120
Hélder, 174, 176
Homomorphism
algebra-, 126
connecting, 243
group-, 4
insertion, 156
module-, 4
theorem, 142, 164
Homotopy, 5
group, 155
Hull, injective, 195, 198

I

Ideal, nilpotent left, 217
Idempotent, 190
Identity, 2, 10

of n-th order, 125
Image, 34, 165, 253

co-, 34, 35, 165

INDEX

counter-, 34, 35, 97
epimorphic, 34
of functor, 24
monomorphic co-, 35
Indecomposable object, 190
Induced topology, 49
Inductive limit, 81
Infimum, 81
Initial object, 22
Injection, 33, 78
Injective cogenerator, 203, 213
Injective extension, 198
minimal, 198
smallest, 198
Injective hull, 195, 198
Injective map, 14,253
Injective object, 195
relatively, 141
Insertion homomorphism, 156
Integral domain, 115, 148
Intersection, 33, 34, 97, 171, 249
co-, 34
Inverse limit, 81, 88
Inversely connected category, 60
Isomorphic categories, 18
Isomorphic functors, 18
Isomorphic morphisms, 17, 25
Isomorphic objects, 17
Isomorphism, 14, 17
anti-, 19
creation of, 69
natural, 18
theorems, 144, 172, 173

]

Jordan algebra, 147, 149
module, 147
ring, 147
Jordan-Hélder theorem, 174, 176

K

Kan, 51, 108

Kernel, 28, 163
co-, 28, 163

difference, 26, 81-86, 163
difference co-, 26, 28, 70, 81, 163
pair, 86, 141

Kleisli, 62, 136

Krull, 190, 193, 202, 208
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Large diagram, 79
category, 79
Large subobject, 197
Largest essential extension, 198
Lattice
modular, 240
of quotient objects, 170
of subobjects, 170
Lawvere, 2, 120
Left adjoint functor, 51, 91
Left exact functor, 180, 222
Left ideal, nilpotent, 217
Left root, 81
" Left zero morphism, 22
Length
of composition series, 174
object of finite, 177
of object, 177
Lie algebra, 147, 149
module, 147
ring, 146
Limit, 51, 77, 81, 89, 91, 97
co-, 77, 18, 81, 91
direct, 81, 88
exact direct, 185
filtered, 88
filtered co-, 88
inductive, 81
inverse, 81, 88
projective, 81
Linton, 120
Local ring, 190, 202

Locally arcwise connected space, 74

Locally connected space, 74
Locally cosmall category, 22
Locally noetherian category, 206
Locally small category, 21, 112
Loop, 146

M

M-object, 145

Map, 253
continuous, 5
dense continuous, 15
injective, 14, 253
order preserving, 3
pointed, 3
pointed continuous, 5

INDEX

surjective, 14, 253
Matlis, 208
Matrix of homomorphisms, 162
Matrix ring, full, 219
Maximal condition for chains, 21
Maximal essential extension 198
Maximal subobject 21
Metatheorem, 240, 242

of class formation, 251
Minimal condition for chains, 21
Minimal injective extension, 198
Minimal subobject, 21
Mitchell, 242
Modular lattice, 240
Module, 4, 147

bi-, 147

cocompact, 245

compact, 245

finitely generated, 205

homomorphism, 4

Jordan, 147

Lie, 147

relatively projective, 196
Monad, 61, 62

co-, 62
Monadic functor, 68, 139, 140
Monoid, 55, 56, 62, 145

ring, 56, 149
Monomorphic coimage, 35

Monomorphic equivalence relation, 99

Monomorphism, 14, 87

equivalent, 20

relatively split, 141
Moore, 62
Morita, 158, 210, 213, 217
Morphism, 1, 150

of algebraic theories, 121

antiiso-, 19

auto-, 17

category, 25

of diagrams, 25

endo-, 17

endomorphism ring, 163

epi-, 14

iso-, 14, 17

isomorphic, 17

matrix of, 161

mono-, 14, 87

zero, 22, 23
Multifunctor, 39



N

n-ary operation, 125
Natural isomorphism, 18
Natural numbers, 6
Natural transformation, 6, 9
Nilalgebra, 148
Nilpotent algebra, 148
Nilpotent element, 192
Nilpotent ideal, 217
Nine lemma, see Three-by-three lemma
Noetherian category, 21
locally, 206

Noetherian object, 21, 206
Noetherian power set, 21
Noetherian ring, 206

" Nonunit, 190
Normal hausdorff space, 74, 114
Normal quotient object, 28
Normal subgroup, 50
Normal suboboject, 28
Numbers, natural, 6

o

Object, 1
artinian, 21
cogroup, 151
coirreducible, 208
compact, 204
decomposable, 190
difference quotient, 28
difference sub-, 28
final, 22, 86
of finite length, 177
finite projective, 210
finitely generated, 204
Hopf, 145
indecomposable, 190
initial, 22
injective, 195
isomorphic, 17
large sub-, 197
lattice of sub-, 170
maximal sub-, 21
minimal sub-, 21
multiplicative, 145
noetherian, 21, 206
normal quotient, 28
normal sub-, 28
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order of sub-, 21
projective, 141, 195
quotient, 20, 21
relatively free, 141
relatively injective, 141
relatively projective, 141
representing, 11, 47
simple, 174
sub-, 20
transfinitely generated, 205
zero, 22
Order
identity of n-th, 125
of subobjects, 21
Order preserving map, 3
Ordered abelian group, 244
Ordered set, 3, 6
pre-, 81
Open set, 5
Operation, n-ary, 125

Pair of adjoint functors, 51
Pointed category, 23
Pointed continuous map, 5
Pointed map, 3
Pointed set, 3
Pointed topological space, 5
Polynomial algebra, 149, 156

generalized, 156
Power class, 21

co-, 21, 22
Power set, 21

artinian, 21

functor, S0

noetherian, 21
Preequivalence relation, 101
Preordered set, 81
Preservation property, 69
Problem, see universal problem
Product, 29, 81, 85, 86, 158, 250

amalgamated, 83

category, 39

co-, 29, 33, 81, 83, 159

cofiber-, 83

empty, 31

fiber, 82-85

finite, 84

free, 31
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functor, 55

tensor, 33, 56, 152
Progenerator, 211

R-S-, 214
Projection, 31, 78

functor, 39
Projective limit, 81
Projective module, relatively, 196
Projective object, 141, 195

finite, 210

relatively, 141
Pullback, 82
Pushout, 83

Quantifier, 248
Quasigroup, 145
Quotient object, 20, 21
difference, 28
lattice of, 170
normal, 28
Quotient topology, 49

R

R-S-progenerator, 214
Radical ring, 146
Range, 3, 253
Reduced representative, 132
Reflector, 74

co-, 74
Reflexion property 69
Reflexive subcategory, 73, 114

co- 74
Regular space, 74
Relative epimorphism, 118
Relatively free object, 141
Relatively injective object, 141
Relatively projective module, 196
Relatively projective object, 141
Relatively split epimorphism, 141
Relatively split monomorphism, 141
Remak, 790, 193, 202, 208
Representable functor, 10, 11, 14, 40, 47,

105

theorem, 109
Representable subfunctor, 105
Representation functor, 44, 116, 235
Representative, reduced, 132
Representing object, 11, 47

INDEX

Retraction, 29
Right adjoint functor, 51, 91
Right derived functor, zeroth, 233
Right exact functor, 179
Right root, 81
Right zero morphism, 22, 23
Ring, 4, 146
alternative, 147
anticommutative, 146
artinian, 217
associative, 4, 146
center of, 215, 216
commutative, 74, 115, 146
endomorphism, 163
full matrix, 219
homomorphism, 4
Jordan, 147
Lie, 146
local, 190, 202
monoid, 56, 149
noetherian, 206
radical, 146
semisimple, 217
simple, 217
unitary, 146
Root
left, 81
right, 81

Skeleton, 19
Schmidt, 190, 193, 202, 208
Schur, 220, 221
Section, 29
Semigroup, 145
Semisimple ring, 217
Sequence
exact, 166
short exact, 166
Set 2, 247
artinian power, 21
correspondence of, 6
empty, 251
of generators, 110
noetherian power, 21
open, 5
ordered, 3, 6
pointed, 3
power, 21
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preordered, 81 T
underiying, 129 Ti-space, 74
variable, 247 Tensor algebra, 148, 156
Short exact sequence, 166 Tensor product, 33, 56
Simple object, 174 of algebraic theories, 152
Simple ring, 217 Theorem
semi, 217 of Beck, 72
Skew-field, 219 dual, 13
Small category, 6, 8, 10, 24 exchange, 209, 245
locally, 21, 112 of Krull-Remak-Schmidt-Azumaya, 190,
locally co-, 22 193, 202, 208
Socle, 245 of Matlis, 208
Solution set, 106 meta-, 240, 242
universal, 58, 60 metatheorem of class formation, 251
Sphere, 155 of Mitchell, 242
Split epimorphism, relatively, 141 of Morita, 210, 213, 217
Split monomorphism, relatively, 141 Theory
Square algebraic, 120, 121, 136, 145
cartesian, 82 of groups, 125, 126, 155
cocartesian, 83 free, 123
Standard construction, 62 consistent, 121, 136
dual, 62 morphism of, 121
Statement tensor product of, 152
exact categorical, 237, 240 Three-by-three (3 x 3) lemma, 172, 236
full exact categorical, 214, 242 Topological group, 155
Stone-Cech compactification, 114 Topological space, 5
Subalgebra, 130, 138 compact, 74, 114
Subcategory, 9 discrete, 8, 112
coreflexive, 74 hausdorff, 8, 15, 18, 74, 114
reflexive, 73, 114 locally arcwise connected, 74
Subfunctor, representable, 105 locally connected, 74
Subgroup, 21, 50 normal hausdorff, 74, 114
Subobject, 20 pointed, 5
chain of, 21, 181 regular, 74
difference, 28 totally disconnected, 74
directed family of, 182 . Topological subspace, 21, 49
large, 197 Topology, coarsest, 87
lattice of, 170 Torsionfree abelian group, 74, 156
maximal, 21 Torsiongroup, 74
minimal, 21 Totally disconnected space, 74
normal, 28 Transfinitely generated object, 205
order of, 21 Transformation, natural, 6, 9
Subspace, topological, 21, 49 Tripel, 62
Sum co-, 62
direct, 159 Tychonoff, 114
fiber-, 83 U
Supremum, 81
Surjective algebra homomorphism, 142 Underlying set, 129
Surjective map, 14, 253 Union, 33, 34, 170

Symmetric algebra, 148, 156 co-, 34
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Unit, 48, 190
non-, 190

Unitary associative ring, 4

Unitary module, 4, 147

Unitary ring, 146
homomorphism, 4

Univers, 2

Universal algebra, 120

Universal class, 251

Universal enveloping algebra, 149

Universal problem, 27, 31, 56, 58, 59

Universal solution, 58, 60

Universally directly connected category, 59
Universally inversely connected category,

60
Upper bound, 255
Urysohn, 114

Variable
bound, 248

INDEX

class, 247

free, 248

set, 247
Vector space, 4

w

Watts, 204
Well ordered set, 255

Y
Yoneda lemma, 41, 42, 46
Z
Zero morphism, 22, 23
Zero object, 22, 23, 158
Zeroth right derived functor, 233

Zorn, 199, 203, 209, 255
Ziirich, 120
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