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Abstract
When the objective is to administer the best of two treatments to an individual, it is

necessary to know his or her individual treatment effects (ITEs) and the correlation

between the potential responses (PRs) 𝑌 1
𝑖

and 𝑌 0
𝑖

under treatments 1 and 0. Data that

are generated in a parallel-group design RCT does not allow the ITE to be determined

because only two samples from the marginal distributions of these PRs are observed

and not the corresponding joint distribution. This is due to the “fundamental prob-

lem of causal inference.” Here, we present a counterfactual approach for estimating

the joint distribution of two normally distributed responses to two treatments. This

joint distribution of the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

can be estimated by assuming a bivariate nor-

mal distribution for the PRs and by using a normally distributed baseline biomarker

𝑍𝑖 functionally related to the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
. Such a functional relationship is plausi-

ble since a biomarker 𝑍𝑖 and the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
encode for the same information in an

RCT, namely the variation between subjects. The estimation of the joint trivariate dis-

tribution is subjected to some constraints. These constraints can be framed in the con-

text of linear regressions with regard to the proportions of variances in the responses

explained and with regard to the residual variation. This presents new insights on the

presence of treatment–biomarker interactions. We applied our approach to example

data on exercise and heart rate and extended the approach to survival data.

K E Y W O R D S
average treatment effect, individual treatment effect, reconstruction variable, subject–treatment interaction,

treatment–biomarker interaction

1 INTRODUCTION

Numerous examples in the medical literature demonstrate the existence of different treatments for the same disease with similar or

different modes of action. While in some indications, one treatment is uniformly superior to the other, there are also cases, where

a percentage of subjects benefited more from the one specific treatment compared to alternatives. This is called a heterogeneous
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treatment effect or subject–treatment interaction. The identification of these effects within respective subjects allows selecting

the appropriate individual treatment. These effects play a key role in the concept of personalized medicine.

Starting with a randomized controlled trial (RCT) that allocates two treatments denoted by 1 (for the new treatment) and 0

(for the standard treatment or placebo), let 𝑌
𝑗

𝑖
be the potential response (PR) to the treatment 𝑗 of subject 𝑖 (with 𝑗 ∈ {0, 1}).

However, we cannot simultaneously observe both responses 𝑌 1
𝑖

and 𝑌 0
𝑖

on subject 𝑖 due to the “fundamental problem of causal

inference” (Holland, 1986, p. 947). Formally, the observed response 𝑌𝑖 is given by

𝑌𝑖 = 𝑌 1
𝑖
𝑇𝑖 + 𝑌 0

𝑖
(1 − 𝑇𝑖), (1)

where 𝑇𝑖 ∈ {0; 1} denotes the treatment allocated to subject i. This equation holds true due to the consistency assumption, which

binds the potential to the observed response.

Nonetheless, it is of interest to know the joint distribution of the PRs from which the “individual treatment effect” (ITE)

𝑌 1
𝑖
− 𝑌 0

𝑖
is derived and to determine the subject’s probability to benefit from which treatment best. This is a decision aid for

a physician to make the best treatment choice within two (or several) treatment options. But due to the “fundamental problem

of causal inference” (Holland, 1986, p. 947), only the average of the expected difference of the PRs can be estimated when no

further information is available. The term

𝐸[𝑌 1 − 𝑌 0] = 𝐸[𝑌 1] − 𝐸[𝑌 0] = 𝜏1 − 𝜏0

is commonly known as “average treatment effect” (ATE) and can be estimated from the observed marginals of the PRs. If the

ITE, 𝑌 1
𝑖
− 𝑌 0

𝑖
, is not constant within the trial population, an interaction between treatments and the subjects (subject–treatment

interaction) is present.

It is possible to approximate the joint distribution of the PRs in a replicated randomized crossover design. This design is

commonly used for evaluating individual bioequivalence. It allows separate estimates of between–subject variation, subject–

treatment interactions (in the bioequivalence context called “subject–formulation interaction”) and within–subject variation

(Senn, 2001). Unreplicated crossover trials can also be used to determine the correlation between responses under two treatments.

A positive correlation reflects treatments with similar “modes of action,” a negative correlation reflects treatments with different

“modes of actions” (Cleophas, 2000).

In situations where a crossover design is not feasible (e.g., eradication therapies in infectious diseases and cancer), a parallel–

group RCT remains the only option to compare treatment effects. Here, subject effects (between-subject variation) can be

approximated by biomarkers (known as “prognostic biomarkers”) and subject–treatment interactions can be approximated by

treatment–biomarker interactions (known as “predictive biomarkers”) as proposed by Senn (2001). Predictive biomarker guide

treatment options and are labeled “companion diagnostic (cDx).” The most prominent example is the biomarker Her-2/neu. If a

breast cancer patient is treated with trastuzumab depends on the value measured (Hudis, 2007).

A treatment–biomarker interaction allows assessing if a biomarker is predictive or not. Here, two kinds of interactions are

distinguished: quantitative and qualitative interaction. A quantitative interaction is observed if the treatment effects differ with

respect to their size but not with respect to their sign over the range of biomarker values. A qualitative interaction is observed if

the treatment effects differ with respect to their size as well as their sign over the range of biomarker values. From a treatment

point of view, only qualitative interactions are of interest since there are subgroups of patients who benefit from treatment 1 as

well as subgroups of patients who benefit from treatment 0. In case of a quantitative interaction, all patients will benefit from

the same treatment but in different extent.

These effects can be seen by looking at the conditional treatment effect. It is the average treatment difference given a specific

biomarker value. In general, it is estimated by the difference of two regression functions which fit the biomarker value to the

specific treatment response. The goal of this paper is to sharpen this concept by introducing the correlation between the two

individual potential responses in order to predict the treatment effect for an individual with a given biomarker value. For this

aim, we derive prediction intervals. The consequence of not considering the dependence between the responses 𝑌 1
𝑖

and 𝑌 0
𝑖

is

shown in the bottom left plot of Figure 1. In this plot, the prediction intervals for a positive correlation between 𝑌 1
𝑖

and 𝑌 0
𝑖

(𝜌10 = 0.8) (dashed lines) are much closer around the conditional treatment effects compared to the prediction intervals where

independence (in this case thus a correlation 𝜌10 = 0.0) is assumed (dotted lines). The prediction intervals are wider for a negative

correlation (𝜌10 = −0.5) (dashed–dotted lines) than those based on a zero correlation and much wider than those based on a

positive correlation.

Homogeneous treatment effects are present for 𝜌10 = 1. As a consequence, the treatment effect is additive and is constant in

the trial population. Heterogeneous treatment effects are present if 𝜌10 ≠ 1. Here, treatment effects differ among the patients.

Knowing the joint distribution of the responses 𝑌 1
𝑖

and 𝑌 0
𝑖

formalizes the aims of “personalized medicine”: Applying the best
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F I G U R E 1 In the top left, the outcome for two

different treatments is depicted, 𝑐 is the value of the

biomarker where both treatments are equally

effective. The top right figure shows the ATE

conditional on the biomarker together with the

confidence and the prediction interval under the

assumption of 𝜌10 = 0. The bottom left figure shows

prediction intervals for different values of 𝜌10. The

bottom right figure shows the probailities

𝑃 (𝑌 1
𝑖
> 𝑌 0

𝑖
) for different values of 𝜌10

F I G U R E 2 Plot of the heart rate observed after treatment 𝑦
𝑗

𝑖
under exercise

1, 2, and 3 versus baseline heart rate 𝑧1
𝑖

with estimated linear relationships

of two (or more) treatment alternatives to a patient 𝑖 based on his or her baseline biomarker value 𝑍𝑖 = 𝑧𝑖. We assume a linear

dependence between the potential responses 𝑌
𝑗

𝑖
and the biomarker.

An example of Schwenke (1990, Table 1) demonstrates our ideas. The RCT randomized 24 patients equally to three different

exercise programs to improve the heart rate. After 8 weeks of training, each participant’s heart rate was recorded after a 6 min

run. Schwenke also provides data on the resting heart rate at baseline, which we consider as the biomarker of interest. Lower

heart rates after the exercise are considered as more favorable. Figure 2 shows the data. It indicates a linear relationship between

biomarker and outcome as well as a quantitative and qualitative interaction. This example is discussed in more detail in Section 4.
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The article is organized as follows. In Section 2, the model for reconstructing the joint distribution of the PRs is presented.

We assume normal marginal distributions of the responses under treatment 1 and 0, respectively. Further, the assumptions on the

biomarker for reconstructing the joint distribution are presented. In Section 3, estimators for reconstructing the joint distribution

and corresponding variability are derived using the maximum likelihood theory. Conditions for the existence of variation in

ITEs are presented. In Section 4, a medical data example is presented which is analyzed by the developed methodology for

reconstructing joint distributions. In Section 5, the limitations of the presented methodology are discussed and an outlook for

further issues of research is given.

2 A MODEL FOR RECONSTRUCTING THE JOINT DISTRIBUTION

2.1 General setting
In accordance with Cox and Reid (2000, p. 20), we extend the potential responses as follows:

𝑌 1
𝑖
= 𝜏1 + 𝑈1

𝑖

𝑌 0
𝑖
= 𝜏0 + 𝑈0

𝑖

(2)

with 𝜏𝑗 as constant mean parameters and (𝑈1
𝑖
, 𝑈0

𝑖
)′ as independent and identically distributed from a bivariate normal distribution

with 𝐸(𝑈𝑗

𝑖
) = 0. We denote the potential outcome of individual 𝑖 dependent on treatment 𝑎, 𝑎 ∈ 0, 1 by 𝑌 𝑎

𝑖
. Substituting 𝑌 1

𝑖
and

𝑌 0
𝑖

in (1) yields

𝑌 𝑎
𝑖
= 𝑎𝑌 1

𝑖
+ (1 − 𝑎)𝑌 0

𝑖
= 𝜏0 + (𝜏1 − 𝜏0)𝑎 + 𝑈0

𝑖
+
(
𝑈1
𝑖
− 𝑈0

𝑖

)
𝑎, (3)

where 𝜏0 can be interpreted as global mean, (𝜏1 − 𝜏0)𝑎 as treatment effect, 𝑈0
𝑖

as subject effect and (𝑈1
𝑖
− 𝑈0

𝑖
)𝑎 as subject–

treatment interaction. This can be interpreted as a structural model of heterogeneous treatment effects considering subject-

specific effects.

In an RCT based on the parallel-group design, we can approximate the potential responses 𝑌 1
𝑖

and 𝑌 0
𝑖

in (2) by a covariate

𝑍𝑖 and a linear relationship leading to

𝑌 1
𝑖
= 𝛼1 + 𝛽1𝑍𝑖 + 𝜖1𝑖

𝑌 0
𝑖
= 𝛼0 + 𝛽0𝑍𝑖 + 𝜖0𝑖

(4)

with 𝜖1
𝑖

and 𝜖0
𝑖

being identically and independently distributed additive errors. This in turn yields the following structural model

of heterogeneous treatment effects approximating subject-specific effects by a covariate 𝑍𝑖:

𝑌 𝑎
𝑖
= 𝛼0 + (𝛼1 − 𝛼0)𝑎 + 𝛽0𝑍𝑖 + (𝛽1 − 𝛽0)𝑎𝑍𝑖 + 𝜖0𝑖 +

(
𝜖1
𝑖
− 𝜖0

𝑖

)
𝑎. (5)

We assume that the variables 𝑌 1
𝑖

, 𝑌 0
𝑖

, and 𝑍𝑖 follow a trivariate normal distribution given by

N

⎡⎢⎢⎣
⎛⎜⎜⎝
𝜇1
𝜇0
𝜇𝑍

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

𝜎21 𝜌10𝜎1𝜎0 𝜌1𝜎1𝜎𝑍
𝜌10𝜎1𝜎0 𝜎20 𝜌0𝜎0𝜎𝑍
𝜌1𝜎1𝜎𝑍 𝜌0𝜎0𝜎𝑍 𝜎2

𝑍

⎞⎟⎟⎠
⎤⎥⎥⎦,

where 𝜇𝑗 is the mean of 𝑌
𝑗

𝑖
, 𝜇𝑍 is the mean of𝑍𝑖, 𝜎

2
𝑗

is the variance of 𝑌
𝑗

𝑖
, and 𝜎2

𝑍
is the variance of𝑍𝑖. The correlation between

𝑌
𝑗

𝑖
and 𝑍𝑖 is denoted by 𝜌𝑗 . The trivariate normal distribution implies that the ATE is given by

Δ = 𝜇1 − 𝜇0.

Further, it also implies that the joint distribution of 𝑌
𝑗

𝑖
and 𝑍𝑖 is bivariate normal. The conditional distribution of 𝑌

𝑗

𝑖
given 𝑍𝑖

is

𝑌
𝑗

𝑖
|𝑍𝑖 ∼ 𝑁 [

𝛼𝑗 + 𝛽𝑗𝑍𝑖, 𝜎2𝑗|𝑍
]
,
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where

𝛽𝑗 = 𝜌𝑗
𝜎𝑗

𝜎𝑍
(6)

𝛼𝑗 = 𝜇𝑗 − 𝛽𝑗𝜇𝑍 (7)

𝜎2
𝑗∣𝑍 = 𝜎2

𝑗
(1 − 𝜌2

𝑗
) (8)

hold. Generally, we cannot measure both PRs in a parallel–group RCT: we can only estimate the quantities 𝛼𝑗 , 𝛽𝑗 and 𝜎2
𝑗∣𝑍

for both treatment groups. Thus, we can calculate the expected value of the response 𝑌
𝑗

𝑖
conditional on the biomarker 𝑍𝑖,

𝐸[𝑌 𝑗
𝑖
|𝑍𝑖], by a linear relationship described by the intercept 𝛼𝑗 and the slope 𝛽𝑗 . Based on the linear relationship, the expected

difference 𝐸[𝑌 1
𝑖
− 𝑌 0

𝑖
|𝑍𝑖], can be estimated. If the difference 𝐸[𝑌 1

𝑖
− 𝑌 0

𝑖
|𝑍𝑖] is constant for every value of the biomarker 𝑍𝑖

then treatment–biomarker additivity will be present. If not, an interaction between the treatments and the biomarker is present.

The expected conditional ITE𝐸[𝑌 1
𝑖
− 𝑌 0

𝑖
|𝑍𝑖] could of course be estimated via the standard linear model approach by includ-

ing a biomarker–treatment interaction term and predicting the outcome under both treatments. However, this approach is not

sufficient, as the variance of the ITEs is dependent on the correlation between the PRs. As this correlation is unknown, we

propose a different approach which allows us estimating this parameter. Futhermore, having an estimate of this correlation, our

approach allows obtaining individual response probabilities (and prediction intervals).

In order to determine the variance of the ITE the dependence structure of the two PRs has to be known. As a consequence,

it is necessary to make some assumptions about the joint distribution of the two PRs. In the case of normally distributed PRs,

Gadbury and Iyer (2000) and Gadbury, Iyer, and Allison (2001) rely on the trivariate normal distribution and derive bounds for

the correlation coefficient 𝜌10. The correlation coefficient 𝜌10 can be bounded due to the fact that the matrix Σ𝑀 of the trivariate

normal distribution has to be positive definite. Knowing the correlation coefficient 𝜌10 allows, in consequence, the bounding of

the variance of the ITEs (unconditional or conditional on𝑍𝑖) as outlined by Gadbury and Iyer (2000) and Gadbury et al. (2001).

These bounds usually cover a wide range of 𝜌10 and are thus of limited practical value as already noticed by Lord (1955a).

The article examines a trivariate normal distribution as a model to evaluate the variation of ITEs when the PRs 𝑌 1
𝑖

and

𝑌 0
𝑖

and the biomarker 𝑍𝑖 are generated in a parallel–group RCT (Gadbury & Iyer, 2000; Gadbury et al., 2001; Lord, 1955a).

With a point estimate of the correlation between the PRs, their joint distribution can be reconstructed and a point estimator

for the variation of the ITEs can be derived. This allows the assessment of whether or not subject–treatment interactions are

present. Additionally, it should be noted that knowledge about the correlation parameter 𝜌10 can be used for planning RCTs with

less subjects if this correlation is positive. A more rapid and efficient drug development could be achieved. There is medical

evidence that the assumption of independence is not reasonable when comparing treatments. In a series of articles, Cleophas

et al. (Cleophas, 1996a, 1996b; Cleophas and de Vogel, 1998; Cleophas, 2000) showed by using results of crossover RCTs

that a positive correlation 𝜌10 between the responses 𝑌 1
𝑖

and 𝑌 0
𝑖

is observed if the compared treatments 1 and 0 have a similar
pharmacological mode of action whereas a negative correlation 𝜌10 between the responses 𝑌 1

𝑖
and 𝑌 0

𝑖
is observed if the compared

treatments 1 and 0 each have different pharmacological modes of action.

2.2 Reconstruction
We start by making assumptions about the PRs with regard to the mechanism of how the data are generated based on Cheng,

Small, Tan, and Ten Have (2009, p. 21). First the PR of subject 𝑖 is assumed to be independent of the treatment allocation other

than that of subject 𝑖. This is commonly referred to as “stable unit treatment value assumption (SUTVA).” The second point

would be that a subject enrolled in the RCT is an independent and identically distributed random sample from a well–defined

population. The third assumption is that the allocation 𝑇𝑖 and 𝑍𝑖 are independent as guaranteed by random allocation. Aside

from these standard assumptions we relate the biomarker 𝑍𝑖 to the ITE.

Assume for the moment that we would know the joint distribution of the normally distributed marginals of the responses 𝑌 1
𝑖

and 𝑌 0
𝑖

as shown in Figure 3a. The diagonal line shows where the responses to the compared treatments are exactly equivalent.

As described above, we make the reasonable assumption that the joint distribution of 𝑌 1
𝑖

and 𝑌 0
𝑖

follows a bivariate normal dis-

tribution.

Rotating Figure 3a by 45◦ in a clock-wise manner yields Tukey’s well–known “sum–difference plot,” that is this plot is

obtained by graphing the differences 𝑌 1
𝑖
− 𝑌 0

𝑖
on the sums 𝑌 1

𝑖
+ 𝑌 0

𝑖
. Note that the y-axis shows the treatment effects for each
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F I G U R E 3 Marginal distributions 𝑌 1
𝑖

and 𝑌 0
𝑖

and “sum–difference plot.” A linear relation between 𝑌 1
𝑖
+ 𝑌 0

𝑖
and 𝑍𝑖 is assumed with only small

measurement errors. The different gray tones denote the quantiles of 𝑍𝑖. It can be seen that lighter values benefit more likely from treatment 𝑌 0
𝑖

while darker values benefit more likely from treatment 𝑌 1
𝑖

single subject. In our hypothetical example, the sum–difference plot corresponding to Figure 3a is shown in the plot of Figure 3b.

The diagonal line in Figure 3a is now a horizontal line. Variation alongside the x-axis quantifies between-subject variation
whereas variation along the y-axis quantifies within-subject variation. Since there is no independence between the sums 𝑌 1

𝑖
+ 𝑌 0

𝑖

and differences 𝑌 1
𝑖
− 𝑌 0

𝑖
, subject–treatment interactions are present. The between-subject variation and the subject–treatment

interactions are approximated in an RCT based on the parallel-group design by a biomarker 𝑍𝑖. Since the biomarker 𝑍𝑖 and the

sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
encode for the same information, namely the between-subject variation and the subject–treatment interactions, it

is reasonable to assume a functional relationship between the biomarker 𝑍𝑖 and the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
given by

𝑍𝑖 = 𝜆 + 𝜅
(
𝑌 1
𝑖
+ 𝑌 0

𝑖

)
+ 𝜂𝑖, (9)

where 𝜆 and 𝜅 are constants and the error term 𝜂𝑖 is assumed to be independent of 𝑌
𝑗

𝑖
, formally 𝜂𝑖 ⟂ 𝑌

𝑗

𝑖
, independent of (𝑌 1

𝑖
+

𝑌 0
𝑖
), formally 𝜂𝑖 ⟂ (𝑌 1

𝑖
+ 𝑌 0

𝑖
) and identically and independently distributed (iid) as 𝜂𝑖 ∣ 𝑌 1

𝑖
+ 𝑌 0

𝑖
∼ N[0, 𝜎2

𝜂
] where 𝜎2

𝜂
denotes

the variance of 𝜂𝑖. If the random variables (𝑌 1
𝑖
, 𝑌 0
𝑖
, 𝜂𝑖)′ have a normal distribution then the linear combination in (9) will be

normally distributed with mean value 𝜆 + 𝜅(𝜇1 + 𝜇0) and variance 𝜅2(𝜎21 + 𝜎
2
0 + 2𝜌10𝜎1𝜎0) + 𝜎2𝜂 .

The use of the reconstruction variable leads to the following model of heterogeneous treatment effects:

𝑌 𝑎
𝑖
= 𝛼0 + (𝛼1 − 𝛼0)𝑎 + (𝛽0 + (𝛽1 − 𝛽0)𝑎)

(
𝜆 + 𝜅

(
𝑌 1
𝑖
+ 𝑌 0

𝑖

)
+ 𝜂𝑖

)
+ 𝜖0

𝑖
+
(
𝜖1
𝑖
− 𝜖0

𝑖

)
𝑎. (10)

When looking at any model of heterogeneous treatment effects shown in (5) and (10), we can see the following restrictions.

• If 𝛽1 = 𝛽0, then no interaction between the biomarker 𝑍𝑖 and the treatment 𝑇𝑖 is present. This might be due to the fact that

there are indeed no heterogeneous treatment effects and thus no treatment-covariate interaction are present or due to the fact

that the covariate 𝑍𝑖 simply cannot “recover” any heterogeneous treatment effects although indeed present. Alternatively, in

case of 𝛽0 = 𝛽1 ≠ 0, a prognostic biomarker 𝑍𝑖 is present.

• Besides, if without loss of generality 𝛽1 = −𝛽0 holds, then no between-subject variability is present and a “pure” subject–

treatment interaction is present. However, only knowledge about 𝛽0 is necessary since the in case of 𝑇𝑖 = 0 the biomarker

effect is quantified by 𝛽0𝑍𝑖 or in case of 𝑇𝑖 = 1 the biomarker effect is quantified by −𝛽0𝑍𝑖.

Note that the presence of a biomarker–treatment interaction leads without loss of generality to 𝜎21 − 𝜎
2
0 > 0.

The joint distribution of (𝑌 1
𝑖
, 𝑌 0
𝑖
, 𝑍𝑖)′ where 𝑍𝑖 is interpreted as reconstruction variable as defined by Definition (9) follows

a trivariate normal distribution given by

N

⎡⎢⎢⎣
⎛⎜⎜⎝

𝜇1
𝜇0

𝜆 + 𝜅(𝜇1 + 𝜇0)

⎞⎟⎟⎠ ,
⎛⎜⎜⎝

𝜎21 𝜌10𝜎1𝜎0 𝜅𝜎1(𝜎1 + 𝜌10𝜎0)
𝜌10𝜎1𝜎0 𝜎20 𝜅𝜎0(𝜌10𝜎1 + 𝜎0)

𝜅𝜎1(𝜎1 + 𝜌10𝜎0) 𝜅𝜎0(𝜌10𝜎1 + 𝜎0) 𝜎2
𝑍

⎞⎟⎟⎠
⎤⎥⎥⎦, (11)
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where 𝜎2
𝑍
= 𝜅2(𝜎21 + 𝜎

2
0 + 2𝜌10𝜎1𝜎0) + 𝜎2𝜂 . This variance–covariance matrix Σ𝑅 is non-negative definite for 𝜌10 ∈ [−1, 1] and

positive definite for 𝜌10 ∈ (−1, 1).
The proof can be found in the Supporting Information. The relation between 𝑍𝑖 and 𝑌 1

𝑖
+ 𝑌 0

𝑖
can be checked in the marginal

distribution plots of 𝑍𝑖 and 𝑌
𝑗

𝑖
. If a linear relation between 𝑍𝑖 and both of them can be assumed, then the relation between 𝑍𝑖

and 𝑌 1
𝑖
+ 𝑌 0

𝑖
is also linear.

Now, the trivariate normal distribution is completely described by the reconstruction parameters 𝜃𝑅 =
(𝜇1, 𝜇0, 𝜎21 , 𝜎

2
0 , 𝜌10, 𝜅, 𝜆, 𝜎

2
𝜂
)′. The information about the parameter 𝜌10, which is necessary for reconstructing the joint

distribution of 𝑌 1
𝑖

and 𝑌 0
𝑖

, is “contained” in the correlations between 𝑌
𝑗

𝑖
and 𝑍𝑖. These correlations are observable in

parallel-group RCTs.

3 MAXIMUM LIKELIHOOD ESTIMATION

In the following, we propose maximum likelihood estimators of the parameters for model (11) which are based on data generated

in a parallel–group RCT by (𝑌𝑖, 𝑇𝑖, 𝑍𝑖) with two treatment groups. We start with deriving maximum likelihood estimators of

the parameters (𝜇𝑍, 𝜎2𝑍, 𝛼𝑗 , 𝛽𝑗 , 𝜎
2
𝑗∣𝑍 ). Further, conditions where the estimation of the joint distribution of the PRs is possible are

shown. For each subject 𝑖 either response 𝑌 1
𝑖

or 𝑌 0
𝑖

is observable. This results in a missing value problem with respect to the

PRs 𝑌 1
𝑖

or 𝑌 0
𝑖

per subject which was first recognized by Lord (1955a) and Anderson (1957).

We start by introducing the data structure of an RCT based on the parallel-group design and corresponding notation. Let the

treatment indicator 𝑇𝑖 be independently distributed from 𝑍𝑖, 𝑇𝑖 ⟂ 𝑍𝑖. Additionally, let 𝑁 = 𝑛1 + 𝑛0 be the sample size with 𝑛1
subjects allocated to treatment 1 and 𝑛0 to treatment 0. Ordering by the treatment indicator 𝑇𝑖 we get the following data structure

(adapted from (Anderson, 1957, p. 202)) with missing data

𝑧1,… , 𝑧𝑛1
, 𝑧𝑛1+1,… , 𝑧𝑛1+𝑛0

𝑦11,… , 𝑦1
𝑛1
, 𝑁𝐴,… , 𝑁𝐴

𝑁𝐴,… , 𝑁𝐴 𝑦0
𝑛1+1

,… , 𝑦0
𝑛1+𝑛0

with 𝑖 ∈ {1,… , 𝑛1, 𝑛1 + 1,… , 𝑛1 + 𝑛0}.

Then the maximum likelihood estimators for 𝜇𝑍 and 𝜎2
𝑍

denoted by �̂�𝑍 and �̂�2
𝑍

are given by

�̂�𝑍 = 1
𝑁

𝑁∑
𝑖=1

𝑧𝑖, (12)

�̂�2
𝑍
= 1
𝑁

𝑁∑
𝑖=1

𝑧2
𝑖
− �̂�2

𝑍
. (13)

Further, the maximum likelihood estimators for 𝛽𝑗 , 𝛼𝑗 , and 𝜎2
𝑗∣𝑍 denoted by 𝛽𝑗 , �̂�𝑗 , and �̂�2

𝑗∣𝑍 are given by

𝛽𝑗 =
∑𝑛𝑗

𝑖=1(𝑦
𝑗

𝑖
− �̄�𝑗)(𝑧𝑖 − �̄�𝑗)∑𝑛𝑗

𝑖=1(𝑧𝑖 − �̄�𝑗)
2

, (14)

�̂�𝑗 = �̄�𝑗 − 𝛽𝑗�̄�𝑗 , (15)

�̂�2
𝑗∣𝑍 = 1

𝑛𝑗

𝑛𝑗∑
𝑖=1

(𝑦𝑗
𝑖
− �̄�𝑗)2 − 𝛽2𝑗

1
𝑛𝑗

𝑛𝑗∑
𝑖=1

(𝑧𝑖 − �̄�𝑗)2, (16)

where �̄�1 =
1
𝑛𝑗

∑𝑛𝑗

𝑖=1 𝑦
𝑗

𝑖
and �̄�𝑗 =

1
𝑛𝑗

∑𝑛𝑗

𝑖=1 𝑧𝑖.
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Before proceeding to the estimation of the reconstruction parameters 𝜃𝑅 = (𝜇𝑗, 𝜎2𝑗 , 𝜌10, 𝜅, 𝜆, 𝜎
2
𝜂
)′, we provide marginal param-

eters 𝜃𝑀 = (𝜇𝑗, 𝜇𝑍, 𝜎2𝑗 , 𝜎
2
𝑍
, 𝜌𝑗)′.

𝜇𝑗 = 𝛼𝑗 + 𝛽𝑗𝜇𝑍, (17)

𝜎2
𝑗
= 𝜎2

𝑗∣𝑍 + 𝛽2
𝑗
𝜎2
𝑍
, (18)

𝜌𝑗 =
𝛽𝑗𝜎𝑍√

𝜎2
𝑗∣𝑍 + 𝛽2

𝑗
𝜎2
𝑍

. (19)

Substituting the parameters of 𝜃𝑀 by the corresponding estimators for 𝜃𝐶 = (𝜇𝑍, 𝜎2𝑍, 𝛼𝑗 , 𝛽𝑗 , 𝜎
2
𝑗|𝑍 )′ provided in (12)–(16)

gives the maximum likelihood estimators for 𝜃𝑀 denoted by

�̂�𝑀 = (�̂�𝑗 , �̂�𝑍 , �̂�2𝑗 , �̂�
2
𝑍
, �̂�𝑗)′.

Similar versions of the estimates �̂�𝐶 and �̂�𝑀 were derived by Lord (1955a), Lord (1955b) and Anderson (1957).

For reconstruction of the joint distribution of the PRs, the reconstruction parameters 𝜃𝑅 = (𝜇𝑗, 𝜎2𝑗 , 𝜌10, 𝜅, 𝜆, 𝜎
2
𝜂
)′ have to

be estimated.

The parameters for 𝜇𝑗 and 𝜎2
𝑗

are already given in (17)–(18). The parameters (𝜌10, 𝜅, 𝜆, 𝜎2𝜂 )
′ are given by

𝜌10 =
𝛽1(𝜎20∣𝑍 + 𝛽20𝜎

2
𝑍
) − 𝛽0(𝜎21∣𝑍 + 𝛽21𝜎

2
𝑍
)

(𝛽0 − 𝛽1)
√
𝜎21∣𝑍 + 𝛽21𝜎

2
𝑍

√
𝜎20∣𝑍 + 𝛽20𝜎

2
𝑍

,

𝜅 =
(𝛽0 − 𝛽1)𝜎2𝑍

𝜎20∣𝑍 − 𝜎21∣𝑍 + (𝛽20 − 𝛽
2
1 )𝜎

2
𝑍

,

𝜆 =
𝜇𝑍 (𝜎20∣𝑍 − 𝜎21∣𝑍 ) − (𝛼1 + 𝛼0)(𝛽0 − 𝛽1)𝜎2𝑍

𝜎20∣𝑍 − 𝜎21∣𝑍 + (𝛽20 − 𝛽
2
1 )𝜎

2
𝑍

,

𝜎2
𝜂
=

(𝜎20∣𝑍 − 𝜎21∣𝑍 )𝜎
2
𝑍

𝜎20∣𝑍 − 𝜎21∣𝑍 + (𝛽20 − 𝛽
2
1 )𝜎

2
𝑍

.

Substituting the parameters 𝜃𝑅 by the estimators for 𝜃𝐶 provided in (12)–(16) gives the estimators for 𝜃𝑅 denoted by

(�̂�𝑗 , �̂�2𝑗 , �̂�10, �̂�, �̂�, �̂�
2
𝜂
)′.

The asymptotic variances (and covariances) of 𝜃𝑅 can be derived by using the multivariate delta method (Greene, 2003,

chapter D.2.7) and can be found in the Supporting Information.

Besides, some restrictions appear in the parameter space and are given in terms of 𝜃𝐶 by(
𝛽21𝜎

2
𝑍

𝜎21∣𝑍 + 𝛽21𝜎
2
𝑍

>
𝛽20𝜎

2
𝑍

𝜎20∣𝑍 + 𝛽20𝜎
2
𝑍

)
∧
(
𝜎21∣𝑍 > 𝜎

2
0∣𝑍

)
∨

(
𝛽21𝜎

2
𝑍

𝜎21∣𝑍 + 𝛽21𝜎
2
𝑍

<
𝛽20𝜎

2
𝑍

𝜎20∣𝑍 + 𝛽20𝜎
2
𝑍

)
∧
(
𝜎21∣𝑍 < 𝜎

2
0∣𝑍

)
or in terms of 𝜃𝑀 by (

𝜌21 > 𝜌
2
0
)

∧
(
𝜎21(1 − 𝜌

2
1) > 𝜎

2
0(1 − 𝜌

2
0)
)

∨(
𝜌21 < 𝜌

2
0
)

∧
(
𝜎21(1 − 𝜌

2
1) < 𝜎

2
0(1 − 𝜌

2
0)
)
.
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The proof for deriving these restrictions can be found in Laubender (2014). In practice, checking the regression lines for both

outcomes 𝑌 0 and 𝑌 1 on the biomarker 𝑍 will give an impression, whether there is an interaction effect.

In order to understand the constraints 𝜌20 − 𝜌
2
1 < 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 < 0, assume without loss of generality that we want

to develop a cDx 𝑍𝑖 for a new treatment 1. A high response is more favorable and the variance 𝜎21 is higher than the

variance 𝜎20 indicating the presence of subject–treatment interactions (see, e.g., Cox and Reid (2000, p. 21)). In this case, it

is essential to see how the comparison treatment 0 performs under that cDx 𝑍𝑖 so that a treatment–biomarker interaction can

be established. However, as outlined in Section 1, it is not sufficient to only consider the mean of the ITEs but the variance

of the ITEs (either unconditional or conditional on 𝑍𝑖) should also be taken into account. The restriction of different sized

residual variances 𝜎20∣𝑍 and 𝜎21∣𝑍 < 0 is a consequence of the structural model of heterogeneous treatment effects shown in (5)

and (10).

When looking at the ITEs conditional on 𝑍𝑖, three types of (qualitative) interactions can be distinguished and examples are

shown in Figure 4. The scatter plots in Figure 4 show simulated responses of treatment 1 (gray crosses) and 0 (black circles)

stratified by the cDx 𝑍𝑖 with corresponding regression lines superimposed. The first interaction is shown in the top of Figure 4

and is in accordance with the constraints 𝜌20 − 𝜌
2
1 < 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 < 0. For high values of 𝑍𝑖, we see that the conditional

mean of treatment 1 is higher than that of treatment 0, and higher responses under treatment 1 compared to treatment 0 can

be reached.

The second interaction is shown in the middle of Figure 4. In this case 𝜌20 − 𝜌
2
1 > 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 < 0 hold so that the

constraints are not fulfilled. For high values of 𝑍𝑖 we can now see that the conditional mean of treatment 0 is higher than under

treatment 1, but under treatment 1 more higher responses are achieved under treatment 1 than under treatment 0. Thus, the cDx

𝑍𝑖 does not capture the variation of the responses 𝑌 1
𝑖

as accurate as the variation of the responses 𝑌 0
𝑖

. In this case the strict

focusing on mean effects is misleading.

The third interaction is shown in the bottom of Figure 4. In this case 𝜌20 − 𝜌
2
1 < 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 > 0 hold so that the

constraints are not fulfilled. For very high values of 𝑍𝑖, we see that the conditional mean of treatment 0 is higher than under

treatment 1 and that higher responses under treatment 1 can be reached than under treatment 0. However, the lower the value of

the cDx 𝑍𝑖 becomes the higher the values of response under treatment 0 are even though the mean of 𝑌 1
𝑖

conditional on 𝑍𝑖 is

higher than the mean of 𝑌 0
𝑖

conditional on 𝑍𝑖.

These constraints also imply the following well-known situations of linear regression modeling where no estimation of

the reconstruction parameters 𝜃𝑅 and thus the joint distribution of the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

is possible: First, if 𝜌21 = 𝜌
2
0 = 0 hold,

then an uninformative biomarker 𝑍𝑖 is present. Nonetheless, there might be subject–treatment interactions present which

cannot be modeled by the uninformative biomarker 𝑍𝑖. Second, if 𝜌1 = 𝜌0 ≠ 0 and simultaneously 𝜎21∣𝑍 = 𝜎20∣𝑍 hold, then

subject–treatment additivity is usually assumed in this situation. Third, if 𝜌1 = −𝜌0 or 𝜌0 = −𝜌1 and simultaneously 𝜎21∣𝑍 = 𝜎20∣𝑍
hold then subject–treatment interactions are present without any simultaneous subject effects. This finding is in accordance with

the statement that subject–treatment interactions “cannot be estimated separately from variation among the units” (Cox & Reid,

2000, p. 20). An interaction without main effect for the biomarker 𝑍𝑖 is present, from the point of view of the linear regression

model.

4 DATA EXAMPLE

A classic example of an RCT is taken from Schwenke (1990, table 1). The RCT randomized 24 patients equally to three types of

exercise programs. The clinically relevant endpoint is the heart rate observed after treatment. A lower value is more favorable.

The biomarker 𝑍𝑖 is the baseline heart rate (Schwenke, 1990, p. 444). Similar to Schwenke (1990, Figure 1), the scatter plot in

Figure 2 shows the data. It shows the linear relationships between the heart rate observed after treatment and the baseline heart

rate separately for each exercise group. Following Schwenke (1990, table 3, “Without Bonferroni Adjustment”), the contrast

exercise 1 compared to exercise 3 (contrast A), and exercise 2 compared to exercise 3 (contrast B) are considered so that in the

following exercise 3 is regarded as reference treatment (𝑇𝑖 = 0).

The crossing of the both lines of exercises 1 and 3 indicates a qualitative interaction for contrast A whereas the nearly non–

crossing lines of exercise 2 and 3 pronounces a quantitative interaction for contrast B. A first check shows that the restrictions on

the parameter space Θ⋆
𝐶

are fulfilled. It can be seen from Table 1 that for both contrasts A and B �̂�20 − �̂�
2
1 < 0 and �̂�20∣𝑍 − �̂�21∣𝑍 <

0 hold.

Table 1 also shows the estimates of the reconstruction parameters with asymptotic 95% confidence intervals. Exercise 1 is on

average lower than exercise 3 with an ATE Δ̂ = −5.75 and the corresponding 95% confidence interval includes 0. In contrast,
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F I G U R E 4 Scatter plots of simulated responses 𝑌
𝑗

𝑖
and a biomarker 𝑍𝑖

for treatment 1 (gray crosses) and for treatment 0 (black circles) with regression

lines superimposed. All three plots show a qualitative interaction. Only the top

plot shows data which fulfill the constraints 𝜌20 − 𝜌
2
1 < 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 < 0
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T A B L E 1 Estimates of selected parameters with corresponding asymptotic 95% confidence intervals (CIs). The lower and upper limits of the

confidence intervals for some estimates are outside their range which is due to the fact that asymptotic estimators instead of exact estimators are used

Exercise 1 versus 3 (𝑵 = 𝟏𝟔) Exercise 2 versus 3 (𝑵 = 𝟏𝟔)
Estimate 95% CI Estimate 95% CI

Estimates of the restriction parameters

�̂�1 0.93 0.84, 1.01 0.94 0.86, 1.01

�̂�0 0.64 0.25, 1.03 0.63 0.23, 1.03

�̂�1∣𝑍 6.29 0.89, 8.85 3.58 0.51, 5.04

�̂�0∣𝑍 3.32 0.47, 4.67 3.32 0.47, 4.67

Estimates of the reconstruction parameters 𝜃𝑅

�̂�1 150.13 141.33, 158.93 163.26 157.98, 168.54

�̂�0 155.88 153.21, 158.55 156.06 153.42, 158.71

�̂�1 16.82 7.93, 22.43 10.15 4.87, 13.51

�̂�0 4.32 1.08, 6.02 4.26 1.03, 5.94

�̂�10 0.53 –0.03, 1.08 0.35 –0.32, 1.02

�̂� 0.51 0.37, 0.65 0.81 0.54, 1.09

�̂� –86.29 –129.57, –43.02 –189.61 –276.69, –102.54

�̂�2
𝜂

11.93 –4.31, 28.17 2.19 –17.45, 21.82

Estimates of presentation parameters

Δ̂ –5.75 –13.74, 2.24 7.20 2.44, 11.96

�̂�Δ 15.00 6.48, 20.19 9.55 4.52, 12.72

Φ[Δ̂∕�̂�Δ] 0.35 0.14, 0.56 0.77 0.60, 0.95

exercise 2 is on average higher than exercise 3 with Δ̂ = 7.20, here the corresponding 95% confidence interval does not include

0. However, the ATE does not inform whether or not there are patients which will more likely profit from exercise 1 (or 2)

or more likely from exercise 3. In order to get this information, it is necessary to know the correlation 𝜌10 for the contrasts A

and B. The correlations �̂�10 are positive for both contrasts. The resulting variation in ITEs is described by �̂�Δ and we can see

that the corresponding 95% confidence intervals do not include 0 for both contrasts. This indicates the presence of subject–

treatment interactions.

Based on the estimates of the reconstruction parameters 𝜃𝑅, both bivariate normal densities are drawn for both contrasts in

Figure 5 (top row). From this reconstructed joint distribution of 𝑌 1
𝑖

and 𝑌 0
𝑖

, we can quantify the subgroup of patients which

will more likely benefit from exercise 1 (or 2) compared to exercise 3 and vice versa: In the upper wedge is the proportion

of patients who will benefit from exercise 1 (or 2) whereas in the lower wedge is the proportion of patients who will benefit

from exercise 3. This subgroup can be quantified by the probability that 𝑌 1
𝑖
> 𝑌 0

𝑖
hold, that is the probability that a higher

(unfavorable) response is observed under exercise 1 (or 2) than under exercise 3. This probability is estimated by Φ[Δ̂∕�̂�Δ],
where Φ[⋅] denotes the cumulative distribution function of the standard normal distribution. Note that this probability heavily

depends on the correlation coefficient 𝜌10. For contrast A, Φ[Δ̂∕�̂�Δ] is 0.35, that is on average 35 out of 100 randomly selected

patients from a population will reach a higher unfavorable response under exercise 1 than under exercise 3 and thus should be

treated by exercise 3. Vice versa, on average 65 out of 100 randomly selected patients will benefit from exercise 3 compared

to exercise 1. For contrast B Φ[Δ̂∕�̂�Δ] = 0.77 is observed. A similar reasoning holds for contrast B. Although the ATE is in

this case in clear favor for exercise 3, there are nonetheless 23 out of 100 randomly selected patients which will be harmed by

exercise 3.

For clinical decision–making, it is of interest to not only have estimates with𝑍𝑖 “integrated out” like Δ̂ and Φ[Δ̂∕�̂�Δ] but also

to have estimates conditional on 𝑍𝑖 = 𝑧𝑖. Such estimates are shown in Figure 5 (bottom row) where the treatment effects condi-

tional on 𝑍𝑖 are shown with 95% confidence and prediction intervals. Here, probabilites that 𝑌 1
𝑖
> 𝑌 0

𝑖
conditional on 𝑍𝑖 holds

are shown with asymptotic 95% confidence intervals. Details on these estimators can be found in Laubender (2014). For contrast

A, it can be seen that there is a clear distinction between those patients benefitting from exercise 1 or from exercise 3 illustrat-

ing the qualitative nature of the treatment–biomarker interaction whereas for contrast B exercise 3 should be recommended for

patients with higher values of the baseline heart rate.
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F I G U R E 5 The left column of plots refers to contrast A whereas the right column of plots refers to contrast B. Top row: reconstructed joint

distribution of heart rate after treatment 𝑌 1
𝑖

and 𝑌 0
𝑖

where the corresponding values of 𝜇1 and 𝜇0 are added by vertical and horizontal dotted lines.

Further, the line of no difference between the two treatments is indicated by the diagonal; middle row: plot of the ITEs conditional on the baseline

heart rate 𝑍𝑖 (solid line) with 95% confidence intervals (dashed lines) and 95% prediction intervals (dotted lines) and with reference line

(dashed–dotted line) of no treatment difference between exercises 1 and 3 and exercises 2 and 3; bottom row: corresponding conditional response

probabilities 𝑃 [𝑌 1
𝑖
> 𝑌 0

𝑖
|𝑍𝑖] (solid line) with reference line (dashed–dotted line) of no treatment effect between exercises 1 and 3 and exercises 2

and 3
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5 DISCUSSION

5.1 Conclusions
The knowledge of ITEs is helpful to select the best of two treatments for an individual subject. To improve the assessment of

uncertainty of ITE estimates it is necessary to know the counterfactual correlation between the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

. In a parallel–

group RCT information of the marginal distributions of the single PR components is available, but no information of their joint

distribution due to the “fundamental problem of causal inference” (Holland, 1986, p. 947).

We present a counterfactual approach for estimating the joint distribution of two normally distributed responses to two treat-

ments. We assume a bivariate normal joint distribution for the PR. Additionally, we assume the presence of a normally dis-

tributed baseline biomarker 𝑍𝑖 which is functionally related to the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
. Such a functional relationship is plausible

since a biomarker 𝑍𝑖 and the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
encode for the same information in an RCT : the between-subject variation.

The biomarker 𝑍𝑖 as an indicator for the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
, which creates constraints for the estimation of the bivariate PR

distribution. To perform successfully a maximum likelihood estimation of the reconstruction parameters 𝜃𝑅, the constraints

𝜌20 − 𝜌
2
1 < 0 and 𝜎20∣𝑍 − 𝜎21∣𝑍 < 0 have to be fulfilled. The quantity 𝜌2

𝑗
can be interpreted as proportion of the variance of 𝑌

𝑗

𝑖

explained by the biomarker 𝑍𝑖. Similarly, the quantity 𝜎2
𝑗∣𝑍 can be regarded as unexplained or residual variance.

Lord (1955a) formulated this problem in the early 1950s and described the estimation of parameters in the given specific

incomplete data setting. He used a trivariate normal distribution. Our model combines this idea and ideas proposed by Gadbury

and Iyer (2000). This paper derives bounds of the correlation 𝜌10. For the first time, we provide a point estimate of the correlation

between the individual potential responses 𝜌10 together with a confidence interval.

Based on the more developed theory, our approach facilitates a more–informed assessment of a biomarker’s relevance for

treatment selection than the classical approach of estimating an interaction effect between marker and treatment. As Huang,

Gilbert, and Janes (2012) have demonstrated, a strong interaction coefficient is important for a biomarker to have value for

treatment selection but is not useful for summarizing its predictive performance . The predictive performance depends on other

coefficients in the risk model as well as the functional form of the model. Therefore, the interaction coefficient is not directly

comparable between biomarkers (and models).

We present the dependency between biomarker value and ITE by plots of the response function 𝑓 [𝑧𝑖] = Pr[Δ > 0|𝑍𝑖 = 𝑧𝑖].
This provides a useful decision to guide individual decisions.

Huang et al. (2012) introduce an ROC curve to characterize and compare biomarkers with respect to their treatment–selection

capacity. Following their idea, we can define (assuming that high biomarker values favor treatment 1) the true positive frac-

tion TPF[𝑧𝑖] = Pr[𝑍𝑖 > 𝑧𝑖|Δ > 0], and the false positive fraction FPF[𝑧𝑖] = Pr[𝑍𝑖 > 𝑧𝑖|Δ < 0]. The ROC curve is given by

ROC[𝑡] = TPF[FPF−1[𝑡]]. The TPF (as well as the FPF) can be calculated from the function 𝑓 [⋅] and the distribution of the

biomarker 𝑍𝑖. As in the work of Huang et al. (2012), our measures provide an overview of treatment–selection capacity allow-

ing the ITE threshold to vary. This is helpful in situations where there does not exist a well-established decision threshold and

the choice relies on other factors such as the cost and side-effects of the active treatment.

Most of the methodological literature on treatment-selection markers discusses the issue in the context of a randomized

trial. It also stresses that the statistical interaction between marker value and treatment assigned is the primary measure of

marker performance (Buyse, 2007; Freidlin & Simon, 2005; Sargent, Conley, Allegra, & Collette, 2005; Simon, 2008; Simon,

Paik, & Hayes, 2009). However, a strong interaction is important but not sufficient for adequate marker performance (Janes,

2011). Specifically, two markers can have the same interaction but very different performance. Huang et al. (2012) present an

example where two biomarkers have the same numerical interaction coefficient estimates but show different capacity in terms

of classifying a subject according to treatment effectiveness. Therefore, we see the response function as important information

to be communicated to clinicians (see Figure 5).

5.2 Limitations and issues for future research
The main limitation of our approach consists in its distributional and structural assumptions: linear relationship between

biomarker and PRs and the distributional assumptions, especially that the joint distribution of the PRs follows a bivariate normal

PR distribution. We explore copula models as alternative to the bivariate normal PR distribution. They allow marginal normal

distributions of the biomarker 𝑍𝑖 and the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

as well as a bivariate normal distributions of (𝑌 1
𝑖
, 𝑍𝑖) and of (𝑌 0

𝑖
, 𝑍𝑖)

to be normal. Conditional copula models may have the potential to work out such distributions (Veraverbeke, Omelka, & Gij-

bels, 2011). It is important to stress that these observable and assessable relationships—even made normally distributed by a

transformation—do not necessarily imply that the PRs follow a joint normal distribution.
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It is well-known that univariate normality of 𝑌 1
𝑖

, 𝑌 0
𝑖

, and 𝑍𝑖 and bivariate normality of 𝑌 1
𝑖

and 𝑍𝑖 and of 𝑌 0
𝑖

and 𝑍𝑖 does

not necessarily imply trivariate normality, however it is usually sufficient to evaluate these assumptions as outlined in standard

text books on multivariate statistics: “in practice, …, the presence of joint nonnormality is likely to be detected quite often by

methods directed at studying the marginal normality of the observations on each variable” (Gnanadesikan, 1977, p. 168) and

“many types of nonnormality are often reflected in the marginal distributions and scatterplots. Moreover, for most practical

work, one-dimensional and two-dimensional investigations are ordinarily sufficient. Fortunately, pathological data sets that are

normal in lower-dimensional representations but nonnormal in higher dimensions are not frequently encountered in practice”

(Johnson & Wichern, 1992, p. 153).

A similar critical aspect consists in the distributional assumptions of the reconstruction variable 𝑍𝑖 created by its linear

relationship with the sum 𝑌 1
𝑖
+ 𝑌 0

𝑖
. Here, it is an issue of research to explore the potential of proper scoring rules (see, e.g.,

Gneiting and Raftery (2007)) to assess the correct functional relationship between biomarker 𝑍𝑖 and the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

.

It is also of interest to study models where the correlation between the PRs 𝑌 1
𝑖

and 𝑌 0
𝑖

depends on a biomarker value. This

aspect is not studied so far and is an issue for future research. Finally, the model is developed for univariate biomarkers. It is

an issue for future research to generalize to the use of multiple biomarkers simultaneously. Attempts have been made by Kaiser

and Gadbury (2013). It is also of interest to apply the basic idea of this paper to other common clinical outcomes like binary

endpoints and count data, especially to remove restrictions as introduced by Huang et al. (2012) to make the counterfactual

model identifiable.

The extension of our work to multivariate measurements per subject, as in longitudinal data, are of interest. Another potential

extension is the analysis of time-to-event data in the described context. The concept described herein could also be applied when

𝑌 1
𝑖

and 𝑌 0
𝑖

are (potentially right-censored) survival times that follow a log-normal distribution. However, for right-censored

survival times, values would have to be imputed. This is a topic for future work. Log-normally distributed event times and

handling right censoring with the EM-algorithm allows to translate the event data problem in the setting of our approach. The

interesting question is, how many real data settings do fit in this structural straightjacket.

5.3 Summary
The presented work follows a line of ideas which started with Lord’s paper on the calibration of scores, Anderson’s likelihood

approach to Lord’s problem, and the work of Gadbury and colleagues to infer information on the correlation between the indi-

vidual potential responses 𝜌01. We complete this line of thinking by providing a structural model with a maximum likelihood

estimation of 𝜌01 and related measures of uncertainty. Having presented the formal machinery, we demonstrate its application

for individualized treatment decisions and derive decision tools for a straightforward interpretation of the formal outcomes.

We stress the difference between our counterfactual and the usual approach, which combines exchangeability arguments and

regression models with interaction effects between treatment and biomarker. Our approach exploits strong formal assumptions:

trivariate normal distribution as well as linear relationships between biomarker and outcome. We present an example, which

fit this formal setting and discuss strategies to assess these assumptions. The presented structural model offers approaches to

causal sensitivity analyses of clinical trial data. There are options to generalize our model by using copula and monotone rela-

tionships between treatment outcome and biomarker. It is also of interest to explore Bayesian approaches to handle issues of

non-identifiability, which easily raise for more general potential response models or when modeling non-Gaussian types of out-

comes. We see our work as a proof of principle and as encouragement to explore the relevance of more general potential response

models in clinical research.
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