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Connecting Dualities and Machine Learning

Philip Betzler and Sven Krippendorf*

Dualities are widely used in quantum field theories and string theory to obtain
correlation functions at high accuracy. Here we present examples where dual
data representations are useful in supervised classification, linking machine
learning and typical tasks in theoretical physics. We then discuss how such
beneficial representations can be enforced in the latent dimension of neural
networks. We find that additional contributions to the loss based on feature
separation, feature matching with respect to desired representations, and a
good performance on a ‘simple’ correlation function can lead to known and
unknown dual representations. This is the first proof of concept that
computers can find dualities. We discuss how our examples, based on
discrete Fourier transformation and Ising models, connect to other dualities in
theoretical physics, for instance Seiberg duality.

1. Introduction

In many cases, when we want to describe a dynamical system in
physics we identify the effective field theory governing its dynam-
ics. However, in some cases there are multiple effective field the-
ories describing the same system. This phenomenon is referred
to as duality. Dualities are a very powerful tool in fundamental
physics, ubiquitously used in dynamical systems involving gauge
theories, and are extremely explored and utilised in the context of
string theory (cf. [1, 2] for an overview). Such dualities provide two
descriptions – often two Lagrangians with distinct sets of fields
and associated couplings – of the same dynamical system. The
difference between these effective field theories is that they de-
scribe certain properties of the system, i.e. correlation functions,
in a more efficient way.
The efficient calculation of correlation functions or estimates

of them based on sample data is also relevant in typical data
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science applications such as classifica-
tion. Here, we present examples of data
questionswhere dualities prove to be use-
ful (cf. Section 2). For simplicity we re-
strict ourselves at this stage to data ques-
tions in physical systems where we know
a useful dual description. This has the
added benefit that the results can be com-
pared to interpretable solutions.We show
that the classification with ‘simple’ stan-
dard network architectures works much
better for data in the dual representation.
Better accuracy is achieved in the dual
frame with less training effort.
We then show that finding a simi-

lar level of classification is not easily
possible, i.e. by examining several standard changes to the archi-
tectures such as wider and deeper networks. In particular, this in-
cludes architectures which in principle have the capability to per-
form the duality transformation. We find that the network gener-
ically does not find this beneficial configuration. As a next step,
we then explore opportunities how to enforce such dual repre-
sentations, beyond a ‘trivial’ enforcing of dual variables when the
duality transformation is known (cf. Section 3). In particular, we
find positive results when we demand feature separation in the
latent space. We also identify good representations with a modi-
fied autoencoder structure where we put an additional constraint
(good performance on simple classification tasks) on the latent
dimension. Finally we provide and exemplify a method how to
enforce certain distributional properties of the dual representa-
tion. These representations found by the networks are the first
examples where dual representations are obtained without the
network “knowing” them a priori.
Before concluding, we comment on the connection to other

dualities in physics (cf. Section 4).

2. Benefits of Dual Representations

Here we present several examples where dualities prove useful
to address supervised classification tasks.

2.1. Discrete Fourier Transformation

The Fourier transformation captures the essence of many
dualities relating strongly-coupled and weakly-coupled field
theories (cf. also Section 4). Strongly coupled theories feature
non-vanishing correlations over large distances whereas weakly
coupled theories only feature seizable correlations at short dis-
tances. This is resembled in Fourier transformation, where a
delta-peak in momentum space is spread out over all of position
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Figure 1. Comparison of noisy signals and pure noise in position and Fourier space.

space.When is it useful to use position or momentum space represen-
tations?A simple example is given by identifying whether there is
a signal hiding under Gaussian noise. For concreteness we con-
sider a signal which is a single peak in momentum space. An
example of the data for each class in this binary classification
problem is shown in Figure 1 and the details of the construc-
tion and our neural networks and numerical experiments can be
found in Appendix A.
When performing classification with a simple neural net-

work1, we find that a classification is possible for the data in the
momentum representation (test accuracy 0.9835) but not for the
position representation (test accuracy at pure guessing ∼ 0.5).
When adding a single or several hidden dense layers to the

position space network, we find only a marginal improvement
(again details can be found in Appendix A). As the reached per-
formance does not even come close to the perfect score in the
momentum space representation, it is clear that our deeper neu-
ral networks are not adapting the position space representation.

2.2. 2D Ising Model

A very well-known example of duality in physics is that of the
high-low temperature duality in the 2D Ising model[3–5] (cf. also
[6] for a review).
This Ising model lives on a N × N square lattice with periodic

boundary conditions. On each lattice site there is a spin degree
of freedom si, which can take values ±1. The Hamiltonian of a
given state s in the original description is given by

H(s) = −J
∑
⟨i,j⟩ sisj, (1)

where we take the interaction to be ferromagnetic J > 0 and from
now set J = 1, kB = 1. The partition function of this system at
finite temperature T is given by

Z(𝛽) =
∑
s

e−𝛽H(s), (2)

1 Here we perform a classification with a single Conv1D layer with 4 fil-
ters and ReLU activation followed by a Dense layer with a single neu-
ron and sigmoid activation. Details on the experiment can be found in
Appendix A.

where 𝛽 = 1∕T . The duality in this Ising model is as follows. The
partition function Z(𝛽) of the above system is related to that of
another system at a dual temperature 𝛽 = − 1

2
ln tanh 𝛽 by the de-

pendency

Z(𝛽) = 1
2

(
sinh(2𝛽)

)−N ∑
𝜎

e−𝛽H(𝜎), (3)

where the dual spins 𝜎i also take values ±1 on a lattice with the
same geometry, and the dual system shows the same coupling
strength J. This is known as the Kramers-Wannier duality[3,4]

which relates a description at low temperature with long-range
correlations (strong coupling) and high temperature with short
range correlations (weak coupling).2

Classification of Temperature

When is it useful to use the high temperature and when is it use-
ful to use the low temperature phase? Similar in spirit to the
Fourier case, we start with a classification task. In particu-
lar we are interested in predicting which temperature a sam-
ple is drawn from. Our experimental setup is as follows: We
considered a square-lattice Ising model on a 40 × 40 lattice
at temperatures T = 0.25, 0.5,… , 2.25 and their corresponding
dual temperatures. The dataset for each temperature was split
into 16000 training samples and 4000 test samples. Networks
were then trained to classify states drawn from two datasets
according to the respective temperature of the set they were
drawn from (binary classification). We chose as architecture a
simple convolutional neural network consisting of one 2 × 2-
convolutional layer with 8 filters and ReLU activation followed
by a linear layer with sigmoid activation. The overall perfor-
mance did not change significantly when increasing the number
of layers to up to five and varying the umber of filters between
8, 12, 16, and 32. Weights were initialised randomly; training
was performed using standard Nesterov Adam optimiser with
initial learning rate 0.002 and learning rate decay. No significant

2 The fact that both partition functions describe the same type of Ising
model implies the existence of a critical temperature 𝛽crit ≈ 0.4407 at
which a transition between ordered and disordered phases occurs.
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Figure 2. Classification of states according to their temperature in the square-lattice Ising model. Solid lines and dots indicate data for the original
temperatures, dashed lines and crosses for the dual temperatures. Pairs of temperatures T0, T = T0 + ΔT were chosen by fixing a reference point T0 and
gradually increasing ΔT by increments of 0.05.

Figure 3. Distribution of energies and magnetizations of a square-lattice Ising model for various temperatures and their duals.

changes in performance were observed after a maximum of 200
training epochs.
Dataset generation and training was performed for ten dif-

ferent seeds to prevent outliers in performance from distorting
the results. The best test set accuracies reached after 200 epochs
were then averaged over the ten test-runs. The average best test
set accuracies for various pairs of temperatures are shown in
Figure 2.
As can be seen, the classification performance improves sub-

stantially when performed for the dual temperatures. This can
be seen when visualising the energy and magnetisation for both
representations, cf. Figure 3. An example of the overlap in the
energy distributions for temperatures T1 = 1.0 and T2 = 1.25 is
shown in Figure 4. The correlation with the classification perfor-
mance and the overlap of the energy distributions is shown in
Figure 2.
Further uses could be looked for in determining other corre-

lation functions. In particular, we investigated several disorder
correlation functions, e.g. correlators of the type ⟨𝜎i𝜎j⟩. How-
ever, as the performance difference between the two represen-
tations are not as dramatic as in the temperature classifica-
tion we leave a detailed discussion of these correlators to the
future.

2.3. 1D Ising Models

Other lattice systems offer different types of dualities, and here
we present an example where the dual representation features
a different Hamiltonian, i.e. there is no self-duality of the same
system. Simple examples of this type of duality are given in the
context of one-dimensional Ising models on a finite spin-chain
with N spins, n-spin interactions and free boundary conditions.
A discussion of such systems can be found for instance in [7],
and we summarise here the important system properties for our
sub-sequent analysis.
For n-spin interaction models, the Hamiltonian H(s1,… , sN)

takes the form

H(s) = −J
N−n+1∑
k=1

n−1∏
l=0

sk+l − B
N∑
k=1

sk. (4)

The free boundary conditions are to be understood in the sense
that one considers only interactions of n-spin chains which can
be fully embedded into the system (s1, s2,… sN), and there are no
identifications or interactions connecting both ends of the chain.
Furthermore, there do not exist any relations which fix the values
of boundary (or other) spins to specific values.
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Figure 4. Energy distributions of the square-lattice Ising model for T = 1.25, 1.5 and their respective dual temperatures. The energies of the original
representation concentrate on a very small region and show a significant overlap. Both diagrams use bins of the same width respectively.

Figure 5. Comparison of spin configurations in a two-spin interaction model and a scalar field kink. Dual spins located on the interaction links represent
the energy distribution of a “kink” in the spin model.

Let us now consider the special case of a purely interacting
theory with B = 0. The Hamiltonian then reduces to

H(s) = −J
N−n+1∑
k=1

n−1∏
l=0

sk+l, (5)

This can be bijectively mapped to a non-interacting theory with
external field J and Hamiltonian

H(𝜎) = −J
N−n+1∑
k=1

𝜎k. (6)

The corresponding duality transformation exchanges the roles of
the spins and their interaction terms,

𝜎k =
n−1∏
l=0

sk+l, k = 1,…N, (7)

where spins sl with l > N are to be understood as ghost spins
taking the fixed value 1. The inverse transformation is given by

sk =
q∏

r=0
𝜎k+rn𝜎k+rn+1, (8)

where q is to be chosen as the maximum value such that k + qn ≤
N and one again introduces a ghost spin 𝜎N+1 = 1 (further ghost

spins can be introduced to generate representations of the same
dimension, but they do not play any role in the inverse transfor-
mation). For n-spin interactions, the product runs over pairs of
adjacent spins, starting from the position k and skipping n − 2
spins between the individual pairs. The involvement of spins in
the duality transformation (7) and its inverse (8) is exemplified
in Figure 6 for the case N = 10 and n = 3. Notice that this can
be considered a direct generalisation of the special case n = 2,
for which the the duality transformation corresponds to an ex-
change of roles between the original spins and their kink vari-
ables (cf. Figure 5).

Identifying (Meta-)Stable States

Which task is more easily addressed in the dual representation? A
simple example for this would be to compute the total energy of
a given spin configuration (s1,… , sN), which can involve high-
order products in the original frame and simplifies to summing
over the first N − n + 1 spins in the dual frame. Of course, this
is more of an ad-hoc example since the duality transformation by
construction computes the local energy contributions.
Generally speaking, there exist more sophisticated tasks where

no such hand-crafted frame can be constructed. These tasks also
can be drastically simplified by applying duality transformations
known from or learned in a different context.
One such instance is the detection of states s which are

(meta-)stable with respect to single-flip spin dynamics. Such
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Figure 6. Structure of the duality mappings (7) (red) and the inverse duality mappings (8) (blue) forN = 10 and n = 3. White spins with “+”-sign inside
indicate ghost spins with fixed value 1

Table 1. Detection of (meta-)stable states in the 1D Ising chain for different interactions and amounts of training data. The listed numbers describe the
average best test accuracy over 10 training runs of 500 epochs each. Missing values indicate that the number of required samples exceeds the total
number of metastable states for the considered setting. On the left are the results for the normal variables, and the right side shows the results for the
dual variables.

normal n = 4 n = 5 n = 8 n = 9 n = 12 dual n = 4 n = 5 n = 8 n = 9 n = 12

6 ⋅ 102 0.9113 0.8688 0.8788 0.8813 0.8803 6 ⋅ 102 0.9911 0.9783 0.9819 0.9855 0.9909

3 ⋅ 103 – 0.9243 0.9215 0.9223 0.9295 3 ⋅ 103 – 0.9958 0.9977 0.9994 1.0000

9.5 ⋅ 103 – – 0.9424 0.9475 0.9739 9.5 ⋅ 103 – – 1.0000 1.0000 1.0000

single-flip stable states are defined as configurations for which
flipping any of the spins causes the energy of the system to in-
crease.3

Effect on Simple Networks

In order to get an idea whether the duality (7) is a viable tool to
improve the classification of metastable states, we choose as a
first benchmark how “simple” architectures of neural networks
can handle this classification problem and whether transform-
ing our variables to the dual frame can improve their perfor-
mance. While, in practice, any improvement from utilising the
dual frame might also be achieved by using more sophisticated
architectures, this setting nevertheless serves as an important
first step. A positive result justifies a further scrutinising whether
the same principles also hold for taskswhich state-of-the-artmod-
els fail to solve.
Since the duality transformations (7) are themselves highly

nontrivial from the perspective of computational complexity,
some caution is needed here to prevent distorting our results by
limitations arising from a mere lack of capacity. Taking, for in-
stance, our toy-example of energy regression, it is clear that the
task cannot be solved by a linear network in the normal frame,
while even a simple perceptron with sufficiently high number
of neurons can do so at ease. In this case, the only benefit com-
ing from using the dual frame thus lies in a lower network com-
plexity, which is, however, in parts nullified by the computational
complexity of the duality transformation itself.
Taking this into account, we chose a suitable benchmark for

our tests a single-layer perceptron with 128 hidden neurons,
ReLu activation for the hidden layer and sigmoid activation for
the output layer. This architecture shows a sufficiently-high ca-
pacity to easily learn the transformation (7) directly, while at the
same time keeping a relatively simple structure.
We generated all 218 states for the 1D Ising chain with

N = 18 spins and tested different networks for varying n. We
split the data into states labeled as “not (meta-)stable” (0) or
“(meta-)stable” (1) and normalised the training and test sets to

contain an equal number of samples for each class. We further-
more checked the performance for varying amounts of training
data in order to properly analyse effects on generalisation errors
and data efficiency.
The average best test accuracies and losses achieved in 10 train-

ing runs of 500 epochs are listed in Table 1. Average training
curves for the case n = 8 and varying amounts of training data
can be found in Figure 7. Further details on the training and test-
ing modalities are discussed in Appendix B.

Results

The results show that there is indeed a major improvement
of performance in the dual representation. While all networks
are able to detect at least some patterns in either frame,
we find several advantages from using the dual representa-
tions:

• The best performance achieved for low numbers of training
samples is notably higher in the dual representation, imply-
ing that the duality transformation (7) can be useful to prevent
overfitting and improve data efficiency.

• While increasing the amount of training data gradually tight-
ens the performance gap between the original and dual rep-
resentations, the learning curves in the latter remain much
steeper in all cases, leading to shorter andmore stable training.

• Even in cases for which the best test accuracies are high in both
representations, there remains a significant difference in the
actual binary cross-entropy,

 = −[ytruelog(ypred) + (1 − ytrue)log(1 − ypred)], (9)

3 Such metastable states can cause standard MCMC-algorithms to be
trapped in a local minimum as the temperature approaches zero and
is a major reason why the performance of common simulation algo-
rithms tends to deteriorate at low temperatures.
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Figure 7. Example histories of training loss (blue) and test loss (orange) over the course of 300 epochs for n = 8 and various numbers of training
samples. The plots show averaged curves computed over ten test-runs; standard deviations are indicated with shaded colours.

Figure 8. Output distribution of simple neural networks for states clas-
sified as (meta-)stable for N = 18 and n = 8. Both networks were trained
on 3000 samples. Only values for the dual representation accumulate very
close to one, implying a higher degree of certainty in this frame.

implying that networks trained on the dual representation per-
form classifications with a considerably higher degree of cer-
tainty. This is also reflected in the model outputs, which are
commonly closer to 0 or 1 in the dual representation than in
the original variables, even in settings with high test accuracies
in both representations (cf. Figure 8).

• While overfitting is prevalent in the original representation,
the loss curves additionally show signs of underfitting. This
can be remedied by increasing the capacity of the network,
which, however, leads to even stronger overfitting. We found
that regularization techniques can slightly improve perfor-
mance in this case, however, there remained a significant dif-
ference between both representations for all tested methods.
Details on this are discussed in Appendix B.

Interpretation

Some sense can be made out of this result when addressing the
problem from a naive analytical viewpoint. In the original repre-
sentation, checkingwhether flipping a particular spin si increases
the total energy of the system requires taking into account n in-
teraction terms containing si, some of whose contributionsmight
cancel each other. On the other hand, these n interaction terms
are represented by a cluster of n spins 𝜎j, j = i − n + 1,… , i in
the dual frame, and flipping si causes all of those n dual spins
to change sign. Since the total energy of the system can be com-
puted by simply adding up the first N − n + 1 dual spins of the
complete system, an overall increase in energy then occurs pre-
cisely iff more than half of the flipped dual spins take the value 1
(not counting those spins 𝜎j with j ≥ N − n). In other words, the
transformation (7) maps the single-flip dynamics of the original
system to n-spin-cluster dynamics in the system governed by the
Hamiltonian (6), thus creating a “dual task” which is consider-
ably easier to learn for neural networks. An illustrative example
for the case N = 10 and n = 3 is given in Figure 9.

Discussion and Limitations

There are several important aspects as well as limitations of the
considered experimental settings, which shall be briefly com-
mented on in this subsection.

• Modifications to Setup
A first important point to remark is that the discussed set-
ting describes a very low number of spins and is therefore
to be understood as a toy model. While a large-scale simula-
tion of realistic systems is beyond the scope of this work, it is
worth mentioning that we found a more drastic difference in
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Figure 9. Single-spin flip dynamics and metastability in the normal and dual representation. Top: Flipping a single spin si in the normal representation
(left) causes n dual spins 𝜎j with j = i − n + 1,… , i to change sign (right), as indicated by red color for the case n = 3. The overall energy increases iff
more than half of the involved dual spins have positive sign (counting only values j with 1 ≤ j ≤ N − n + 1). Bottom: Example of a metastable state for
n = 3 in the normal (left) and dual (right) representation. Flipping any of the spins in the original representation causes the overall energy of the state
to increase.

performance as more complex settings such as N = 100 and
n = 50 were considered. This commonly led to pure guessing
on the original data, whereas accuracies higher than 0.95 could
be reached with as few as 1500 training samples in the dual
representation. The benefits of dualities might thus extend be-
yond simple toy-settings, however, further testing is required
to confirm this.

• Sensitivity to Architecture
While the above tests were performed for a rather large num-
ber of different systems and training set sizes, defining a clear
benchmark naturally required the utilization of a fixed model
to test performance. In light of this, a natural question is to
which degree the improvement is owed to the choice of archi-
tecture, and whether the results remain valid if a wider class
of architectures is considered. We therefore checked the effect
of various modifications on our results, as described in more
detail Appendix B.
We found that, except for strong results of convolutional neu-
ral networks on very simple systems with n ≤ 4, none of the
above modifications led to a significant change in the overall
results. It cannot be excluded that a similar improvement in
performance can alternatively be obtained by more sophisti-
cated network architectures. However, our tests clearly demon-
strate that the benefits of the dual representation is not isolated
to our experimental setting, but does extended to a wider class
of architectures.

• Avoiding Shortcutting Predictors
Since the dual representation by definition describes the spin
system in terms of its local energy contributions, there is one
particular pitfall here which has to be treated with caution:
(Meta-)stable states commonly accumulate at low energies,
and relatively high accuracies in our classification task can
be obtained by simply choosing a fixed energy cutoff to label
states as “(meta-)stable” (see Table 2 and Figure 10). In such
situations, a neural network can be prone to adopting shallow

Table 2. Classification accuracy for (meta-)stable states using only a fixed
energy cutoff (cf. Figure 10).

n = 4 n = 5 n = 8 n = 9 n = 12

Energy cutoff 0.9925 0.9605 0.9535 0.9269 0.8985

Figure 10. Energy distributions of normal and (meta-)stable states forN =
100 and n = 50 (choice for illustrative reasons). Relatively high accuracies
can be obtained by choosing a fixed energy cutoff for classification (dashed
line).

heuristics which perform well in many cases (in this case the
total energy) instead of learning the actual task it is supposed
to solve.
We found, however, that the networks trained for the settings
listed in Table 1 do not rely purely on the lower energy of
metastable states, and the difference in performance remains
the same if tested in low-energy regions where the ratio of each
class is roughly the same. Going one step further, the element
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of energy can be eliminated completely by additionally training
only on states with fixed energies. While this drastically tight-
ens the performance gap in simple settings, a similar differ-
ence as before remains at more complex settings like N = 100
and n = 50.

3. Enforcing Good Representations

Having established that dual representations can be ‘beneficial’
for classification tasks, we now turn to the question how such rep-
resentations can be adapted by the network dynamically. When
a duality map is known explicitly, it could easily be learned by a
neural networkwith appropriate regression. Although this can be
of interest in principle, we here focus on unsupervised learning
techniques for adapting dual representations.
To do this, we discuss three different training strategies which

we find to lead to ‘dual-like’ representations:

1. Feature separation in the latent space.
2. An autoencoder setup with an additional latent loss. In this

case, the output of the encoder is the dual-like representation.
3. Demanding properties of the dual representation, for instance

that it resembles the correct energy distribution.

3.1. Feature Separation

For the discrete Fourier transform described in Section 2.1 and
Appendix A, the momentum space defines a valuable data rep-
resentation in which the previously infeasible task of detecting
signals in noisy data becomes easy to solve. Based on our finding
that deeper networks do not adapt this representation (cf. Ap-
pendix A), we now pursue the question how one can assist the
neural network to find such a beneficial representation without
knowledge about its explicit form.

Basic Idea and Motivation

Heuristically, the benefit is likely to come from the information
of a non-localised signal in the space domain being collected in
one single (complex) bin of the momentum space domain. This
causes the signal in the momentum space domain being clearly
separated from the background noise, which takes the same non-
local form in both frames (cf. again Figure 1).
Can this “feature separation” be exploited to automatically learn

such favourable representations without analytic knowledge about the
structure of the signal? Assuming for the moment that there exists
only one non-vanishing frequency, we would like to train a neural
network to find a representation in which the outputs for pure
signals and pure noise satisfy

|ysignal|2 − |ynoise|2 ≥ 𝛼. (10)

Here, 𝛼 > 0 denotes a margin where we want to push the latent
representation. Formulated as a loss function, at values larger
than 𝛼, this function shall take the value 0, which avoids a run-
away of the signal (vanishing gradients). Notice that this task re-

sembles the minimisation of a triplet loss,[8,9] with the location
of the noise fixed at zero. To apply this strategy to a setup with
N = 1000 different frequencies, two aspects have to be taken into
account:

1. The relation (10) should be satisfied for any frequency.
2. The information of different frequencies should be collected

at different locations. Otherwise, the mapping might not be
able to distinguish between clear signals and “noisy” inputs
with small components in many different frequencies (as is
the case for the background noise in our setting).

A viable ansatz to achieve this is by defining a loss function

 = max(0, 𝛼 − (𝜉21 + 𝜉22 )), (11)

where 𝜉21 and 𝜉22 are defined as the two largest squared values of
the 2N outputs for a given input sample.When using pure single-
frequency signals as training data, this loss effectively urges the
sum of only the two output components with largest absolute
value to be pushed away from zero until the margin 𝛼 is reached.
The aim of this is to enforce a data representation similar to the
actual Fourier transform, in which all information of the single-
frequency signals is concentrated in the real and imaginary parts
of the pk.
At the same time, we keep the complexity of the network as

low as possible (in this case linear). This is necessary because
the loss (11) alone does not prevent the occurrence of representa-
tions in which an arbitrarily large number of bins is maximised
for any frequency. As a consequence, enforcement of sparse and
local representations of signals would not take place. In practice,
such cases of “overfitting” are possible for any network architec-
ture, however, we observe that they commonly occur at higher
degrees of complexity, whereas the constrained parameter space
of low-capacity networks seems to act as an efficient preventive
measure. Somewhat remarkably, this heuristic approach clearly
outperformed more elaborate methods such as forcing sparse
outputs via L1 penalty or penalising for correlation of latent vari-
ables.
Note that the network has no further knowledge on the

structure of Fourier transformation or the structure of back-
ground noise.

Performance and Structure of Representation

Training a linear network with 2N output nodes with Nesterov
Adamoptimiser, learning rate 1 ⋅ 10−3 and 𝛼 = 5 commonly led to
close-to-zero losses after less than five epochs. As can be seen in
Figure 11, the learned representation shows characteristic prop-
erties of the actual Fourier transform when we trained just with
noisy signals as input. Using this representation for our previous
task of signal detection in noisy data, the mean best test accu-
racy of the same simple one-layer convolutional neural network
as described in Section 2.1 (cf. also Appendix A for more details)
indeed improved to around 0.7717.
Interestingly, the learned data representations often take the

form of transformations such as rescalings, reflections or ro-
tations of the actual Fourier transform in the 2N-dimensional
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Figure 11. Output of the feature-separation network for pure noise and noisy signal.

Figure 12. Comparison of representations learned via feature separation and embedding into true momentum space domain. The above plots show
examples of learned representations and Fourier transforms of single-frequency signals at different frequencies without noise. Signals with non-vanishing
component in the respective frequency arrange in similar shapes, while the rest accumulates close to or at the origin.

space. Projecting the output of the network for a large number
of samples onto particular pairs of components, the distribution
of values then corresponds to that of the real and imaginary parts
of a certain value pk in the Fourier domain. This is exemplified
for two instances in Figure 12.

Response to Single-Frequency Signals

Some more insights into the structure of the feature-separation
network can be gained by analysing its outputs fj(x). Here, we
do this by analysing the 2N response values fj(x)|pi≠0 when given
pure signals with single non-vanishing frequency pi. These can
be stored a N × 2N response matrix

Mij = ⟨| fj(x)|2⟩ ||||pi≠0, (12)

where the mean is taken over all samples satisfying the condi-
tion pi ≠ 0. The matrix generally shows a high degree of sparsity,
and we find that a fraction of higher than 0.8 of all rows contain
at least one large value, implying that the network makes effi-
cient use of the 2N dimensions to embed the signals into the la-
tent space. An example plot of the matrixM for the case N = 100

can be found in Figure 13. It can be observed that each row of
the matrix commonly contains between 2 and 4 large activations,
with the remaining entries being close to zero. Visualising the
corresponding latent dimensions, one finds that this behaviour
reflects precisely the way in which the Fourier-transform is em-
bedded into the latent space. This is exemplified for various cases
in Figure 14.

3.2. Autoencoder with Latent Loss

Wenow turn to the second example of adapting an appropriate la-
tent dimension dynamically which is based on the 1D Ising setup
already described in Section 2.3.

Motivation and Architecture

We have seen that by exchanging the roles of individual spins
and their interaction terms, the task of detecting (meta-)stable
states becomes more accessible due to the relevant information
being easier to extract from a lower number of spins in the dual
frame. To find such a suitable representation, we here employ
the following strategy: We use the fact that a simple task can be
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Figure 13. Example plot of an activation matrix (12) for the case N = 100. The columns have been reordered according to the indices of their respective
largest entries. The number of non-vanishing values in a given row matches with the dimension of the subspace of the 2N-dimensional latent space into
which the representation of signals with a corresponding non-vanishing frequency pi is nontrivially embedded (cf. Figure 14).

performed very efficiently in the dual representation. In this case
this is the (trivial) task of energy classification.
By itself, this is not sufficient and we need to ensure that no in-

formation is lost in the latent representation. A viable method to
achieve this goal is to use a autoencoder-like architecture whose
‘bottleneck’ has (at least) the same dimension as the original in-
put and is required to represent the data in a way that the total
energy can be extracted by a simple linear model. This way, the
model is guaranteed to learn a representation which encodes the
energetic properties of a state in a manner similar to the dual
frame (cf. Equation (7)), while at the same time the presence of
an additional reconstruction loss forces the mapping to be infor-
mation conserving.
In practice, this can be implemented by training a neural net-

work to map an input state s1,… , sN to an intermediate output of
(at least) the same dimension, which in turn serves as input for
a linear model extracting the total energy of the input state and
another network reconstructing the initial input configuration.
Figure 15 illustrates this architecture schematically.

3.2.1. Results and Discussion

We tested the performance in classifying (meta-)stable states us-
ing the same setting as before, with the duality transformation (7)
replaced by the intermediate output of a constrained autoencoder
with latent dimension 18 and 50.Details on the experimental con-
ditions are provided in Appendix B; results are shown in Table 3.
One again observes a significant improvement compared to

the original representation (cf. Table 1, left), albeit not as dras-
tic as in the actual dual representation. Autoencoders with la-
tent dimension 18 often suffered from underfitting problems,

and further benefits were possible when increasing the latent
dimension to 50. Networks trained on the learned representa-
tion mostly outperformed accuracies reachable by pure energy
cutoffs in particular at latent dimension 50, but showed a slight
tendency to misclassify samples which are located in energy re-
gions dominated by the respective other class. While part of the
improvement might therefore be attributed to the correlation be-
tween overall energy and (meta-)stability, the learned representa-
tion still allows to solve the classification task significantly better
than by training on the original representation directly, and the
networks do not resort completely to superficial energetic argu-
ments.

Further Applications

Let us conclude this discussion by stressing that the main pur-
pose of the above architecture is to realise transfer learning be-
tween different physically related problems. This can be bene-
ficial when training data is limited or expensive to generate for
one task but can be efficiently acquired for a simpler task. In such
cases, itmight not be a reduction of required overall training data,
but rather a change in the type of data that eventually leads to an
improvement in overall performance.
In our considered setting, we indeed found that benefits in per-

formance are only possible when the constrained autoencoder is
trained on relatively large datasets. While this obviously nullifies
the improvement in overall data efficiency of analytical dualities,
it can simplify the process of training due to the possibility to re-
place large datasets of metastable states (which might not even
exist for some settings) by corresponding pairs of random states
and their energy.
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Figure 14. Interpretation of the activation matrix illustrated in Figure 13. The plotted latent dimensions correspond to the three largest entries of a
given row. (Top) Two non-vanishing entries in one row. The Fourier transform is completely embedded into two latent dimensions. (Bottom) Three
non-vanishing entries in one row. The Fourier transform is nontrivially embedded into three latent dimensions.

Table 3. Detection of (meta-)stable states in the 1D Ising chain for different interactions and amounts of training data. The listed numbers describe the
average best test accuracy over 10 training runs of 500 epochs each when trained on the intermediate output of a constrained autoencoder with latent
dimension 18 (Left) and 50 (Right). Missing values indicate that the number of required samples exceeds the total number of metastable states for the
considered setting.

lat (18) n = 4 n = 5 n = 8 n = 9 n = 12 lat (50) n = 4 n = 5 n = 8 n = 9 n = 12

6 ⋅ 102 0.9880 0.9540 0.9180 0.9072 0.9228 6 ⋅ 102 0.9887 0.9526 0.9300 0.9304 0.9500

3 ⋅ 103 – 0.9677 0.9527 0.9353 0.9476 3 ⋅ 103 – 0.9718 0.9787 0.9637 0.9829

9.5 ⋅ 103 – – 0.9607 0.9500 0.9597 9.5 ⋅ 103 – – 0.9910 0.9885 0.9968

Figure 15. Schematic illustration of a task-constrained autoencoder used
to learn suitable representations for difficult tasks. The intermediate out-
put takes the role of the “dual” representation.

Generally, finding such physically related tasks commonly re-
quires domain knowledge or heuristic arguments, but it never-
theless opens up a wide range of new possibilities going beyond
known analytical dualities.

Interpretation of Intermediate Output

Before we delve into the interpretation of the intermediate out-
put, it is important to remark that we did not impose any further
constraints regarding the structure of the intermediate output as
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Figure 16. Plots of the sensitivity matrix (13) for the actual duality transformation (left) and a learned representation of a constrained autoencoder (right)
for N = 10 and n = 2. Both matrices show characteristic nearest neighbour interactions; the latter contains additional nonlocal components.

performance commonly suffered from reduced network capac-
ity in such cases. As a consequence, the intermediate output has
no obvious physical interpretation and relations to the true dual
representation are a priori not obvious.
An interesting question in this context is whether there is

some way to make sense of how the relevant information is en-
coded in our learned representation. A viable way to study depen-
dencies between the input and latent variables is to analyse the
sensitivity of the latent variables with respect to flips of a partic-
ular spin sj while keeping all other spins fixed. This information
can be stored in the matrix

Mij =
⟨(fi(s1,… , sj,… sN) − fi(s1,… ,−sj,… sN)

)2⟩
1
N

∑N
k=1⟨(fi(s1,… , sk,… sN) − fi(s1,… ,−sk,… sN)

)2⟩ , (13)

where the expectation values are to be computed for the complete
(test) dataset. Heuristically, this matrix encodes the average sen-
sitivity of the components fi of the transformed representation
with respect to flips of a particular spin sj, normalised by the av-
erage sensitivity of fi to flips of any spin. For the actual duality
transformation (7), the numerator takes precisely the values 0 or
4, leading to a staircase-like structure as depicted on the left hand
side in Figure 16.
We trained 25 constrained autoencoders for the simple setting

N = 10 and n = 2 and compared the transformation behaviour
of the learned variables to that of the true duality transformation
(7). Interestingly, there exist many instances of networks with
structurally similar dependencies as the proper duality trans-
formation. These commonly include components fi depending
strongly on neighbouring pairs of spins and a distinguished value
fN which is highly sensitive to one particular spin - the matrix
Mij for one such example is presented on the right hand side in
Figure 16.
Notice that this basically represents the way the duality trans-

formations (7) encode the information of the original system in
that there exist N − 1 terms 𝜎i, i = 1,… , N − 1 describing the
nearest-neighbour interactions and one value 𝜎N which does not
interact with the external field and stores the overall sign of
the system.

3.3. Distributional Properties

The next question we analysed is to which degree neural net-
works are capable of learning the relation between dual Ising
models on the square lattice. A minimal requirement for this is
that the duality map between the two systems can be learned if
samples from both data representations are provided explicitly.
Here we start with no one-to-one mapping between states of

a system at temperature T and those of a system at dual temper-
ature T̃ . Instead, we match features of the dual representation
on the level of the probability distributions, i.e. that the learned
representation shares features with the target dual distribution.
For this purpose, we consider the following architecture: States s
sampled from the temperatureT are used as input for a deep con-
volutional network and mapped onto a lattice of the same shape
whose entries are interpreted as probabilities of the the respective
spins to take the value 1.
Binary states are then sampled by utilising the Gumbel trick

to preserve differentiability of the network. In the discussed set-
ting, this can be realised by sampling for each site pi of the lattice
some value 𝜀i ∼ U(0, 1) uniformly and map the input state s to
an output state f (s) with

fi(s) = 2 ⋅ sig[𝛾(log(𝜀i) − log(1 − 𝜀i) + log(pi) − log(1 − pi))] − 1,

(14)

where sig denotes the sigmoid function sig(x) = 1
1+e−x

and 𝛾 is
a scale parameter which can be used to force the output values
closer to the extremal values 0 and 14.
The output states f (s) are then fed into a hard-coded layer to

compute their total energy, and the loss function is defined as
the Kullback-Leibler divergence

DKL(Pf ‖P𝜎) = −
∑
E

Pf (E) log

(
P𝜎(E)
Pf (E)

)
(15)

4 Some caution is needed when choosing 𝛾 as high values can lead to
vanishing or exploding gradients, resulting in poor training.
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Figure 17. Schematic illustration of a U-Net architecture.

between the energy distributions Pf (E) and P𝜎(E) of states sam-
pled from the network and the true dual temperature, respec-
tively.
The network produces binary outputs as desired, with the en-

ergy distributions closely resembling those of the actual dual sys-
tem. This is depicted for two examples in Figure 18.

Results

We used a U-Net architecture as depicted in Figure 17 with three
levels consisting of two layers of 15, 30 respectively 60 2 × 2
filters with ReLu activations. The scale parameter in (14) was
set to 50. Tests were conducted for a 40 × 40 lattice at tempera-
tures T = 0.25, 0.5,… , 2.25 using standard Nesterov Adam opti-
miser with initial learning rate 0.002 and learning rate decay. The
dataset for each temperature was again split into 16000 training
samples and 4000 test samples. Training equilibrium was com-
monly reached within 50 epochs; no significant changes were
noticed after 500 epochs. Tests were again performed for 10 ran-
dom seeds per temperature and showed consistent overall per-
formance, however, there were rare instances in which poor lo-
cal minima required reinitialization of the network in particular
when mapping to lower temperatures.
The network produces binary outputs as desired, with the en-

ergy distributions closely resembling those of the actual dual sys-
tem. This is depicted for two examples in Figure 18.
We next checked the output of U-nets trained on a single tem-

perature for input states sampled from other temperatures. For
networks trained on larger original temperatures, the output en-
ergy distribution shows some resemblance of the true dual tem-
peratures, albeit with wrong numerical values. This behaviour is
shown in Figure 19 for temperature T = 1.80. For lower train-
ing set temperatures, the networks gradually lose their ability to
distinguish between input states.

When we trained the network with data frommultiple temper-
atures, we have not (yet) found a significant improvement com-
pared to Figure 19.
Generally speaking, one can think of extending this method

and incorporatingmore andmore properties, i.e. matchingmore
andmore correlators. This would lead to amore andmore precise
map which satisfies more and more properties of the respective
dynamical system.

4. Connection to Other Dualities in Physics

We have seen in previous sections that dualities are a change
in the basis which describes the system. Although we have al-
ready used this in the case of physical systems, such as the 2D
Isingmodel (cf. Section 2.2), we would like to highlight how such
a change in the basis appears analytically in physical systems
and how it is connected to Fourier transformation. To do this
we repeat the key steps from arguments presented for instance
in [2].
To do this, one can consider electromagnetism in four dimen-

sions without sources. The path integral is described by

∫ A eiS(A)∕ℏ,

S(A) = − 1
4g2 ∫ d4x (𝜕𝜇A𝜈 − 𝜕𝜈A𝜇)(𝜕𝜇A𝜈 − 𝜕𝜈A𝜇) (16)

This can be re-formulated as a path integral over the antisym-
metric tensor field F𝜇𝜈 subject to the constraint that the Bianchi
identity 𝜕𝜇F̃

𝜇𝜈 = 0 is satisfied at each point x

∫ F
∏
x

𝛿(𝜕𝜇F̃
𝜇𝜈(x))e

− i
4ℏg2

∫ d4xF𝜇𝜈F
𝜇𝜈

, (17)
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Figure 18. Energy distributions of U-Net outputs and true dual temperatures. Top: Mapping from low- to high-temperature regions. Bottom: Mapping
from high- to low-temperature regions.

Figure 19. Output of U-networks trained on a single-temperature dataset for various temperatures. The ability to distinguish between inputs depends
strongly on the original temperature. Here we show results for T = 1.80 where the network is able to distinguish between different inputs.

where a potential Jacobian is ignored. By using an integral repre-
sentation for the 𝛿 function and some integration by parts, this
action can be rewritten as

∫ FV e
− i

ℏ
∫ d4x 1

4g2
F𝜇𝜈F

𝜇𝜈− 1
4𝜋 (𝜕𝜇V𝜈−𝜕𝜈V𝜇 )F̃

𝜇𝜈

. (18)

In this formulation one can now also integrate out F𝜇𝜈 as the in-
tegral is essentially Gaussian. This leads to

∫ Ve−
ig2

16𝜋2
∫ d4x(𝜕𝜇V𝜈−𝜕𝜈V𝜇 )(𝜕

𝜇V𝜈−𝜕𝜈V𝜇 ) (19)
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This path integral is now over a different field V which was in-
troduced merely as an auxiliary field. The relation between both
representations can be seen from the equations of motion from
the action involving both fields A and V :

F̃𝜇𝜈 = −
g2

2𝜋
(𝜕𝜇V𝜈 − 𝜕𝜈V𝜇) ≡ −G𝜇𝜈 (20)

Electric and magnetic fields components are exchanged between
these two descriptions and in addition the appearance of the
coupling constant is inverted g → 1∕g.5 Despite the local rela-
tion (20), the map relating both representations is non-local as
it involves the integration over space-time.
Note that the integration of a Gaussian from (18) to (19) cor-

responds precisely to the transformation of a Gaussian from po-
sition space to momentum space in the Fourier transformation.
This highlights the connection between Fourier transformation
and mapping fields under duality.
This analysis for electromagnetism in four dimensions can be

extended to the discussion of massive p−form fields inD dimen-
sions (cf. [1] for a review). Again a relation between the variables
in terms of Fourier transformation can be established.

Applications in Physics

In the previous sections we have focused on the determination
of classification tasks with the help of dual variables. In the con-
text of physics, the use of dualities is generally speaking in the
context of determining correlation functions more accurately. In
turn this can be seen as properties of the data and hence can be
connected with our classification tasks. To highlight the strength
of these techniques we mention two major applications where
the methods based on dualities outperform other techniques:

1. Hydrodynamic transport coefficients for quark gluon plasma:
In the context of holography, strongly coupled conformal
field theories are related with weakly coupled gravitational
systems6 in one higher dimension. Field theory correlators
can be calculated by performing the appropriate perturbation
analysis in the gravitational system.[11–13] One of the prime
examples includes the calculation of the shear viscosity 𝜂∕s
of  = 4 super Yang-Mills theory which effectively is a two-
point correlation function of the stress energy tensor.[14,15] It
has been argued that these calculations can be used to under-
stand properties of the quark-gluon plasma and provide - at
reasonably low calculational effort - quantitatively more accu-
rate results than lattice predictions (cf. [16] for a review and
further interesting applications).

2. Yukawa couplings in the standard embedding for the heterotic
string: Here the duality in use is referred to as mirror sym-
metry, a generalisation of T-duality. In the heterotic standard
embedding it facilitates the calculation of Yukawa couplings
in the standard embedding. Concretely, in the dual frame the

5 Note that this becomes a real strong-weak duality once charged fields
are introduced.

6 See [10] for the connection between holography and deep Boltz-
mann machines.

Table 4. Field content of the electric phase.

Field SU(Nc) SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R

Q Nc Nf 1 1 1 1 − Nc
Nf

Q̃ Nc 1 Nf 1 −1 1 − Nc
Nf

Table 5. Field content of the magnetic phase.

Field SU(Ñc = Nf −Nc) SU(Nf )L SU(Nf )R U(1)A U(1)B U(1)R

q Ñc Nf 1 1 Nc
Ñc

1 − Ñc
Nf

q̃ Ñc 1 Nf 1 − Nc
Ñc

1 − Ñc
Nf

M̃ 1 Nf Nf −2 0 2 Ñc
Nf

273 couplings are purely topological whereas in the original

frame the couplings (27
3
) depend on the Kähler moduli. The

topological couplings can be computed with standard meth-
ods in finding solutions to the Picard-Fuchs equations. Both
couplings have to be identical due to mirror symmetry and
utilising the mirror map between the dual moduli spaces al-

lows a calculation of the Kähler moduli dependence in the 27
3

coupling. The direct calculation of these corrections requires
counting of appropriate rational curves on the background
Calabi-Yau manifold which is known as a hard problem in
Mathematics. Using mirror symmetry this hard calculation
can be avoided. For a physicist the Yukawa couplings in the
original frame capture a tree-level part and non-perturbative
corrections. It is these non-perturbative corrections which can
be calculated using mirror symmetry. For explicit construc-
tions of these dualities andmore details see for instance.[17–20]

Note that the reduced calculational complexity required to cal-
culate the Yukawa couplings in the dual framewasmentioned
in [21].

Both examples highlight the capability of calculating far beyond
the realm of standard perturbation theory. As a final comparison
to showcase the connection of the dualities in the 1D Ising case,
we discuss the connection with Seiberg duality. Here we iden-
tify a starting point for correlators which can serve as candidate
replacements of metastability in the 1D Ising case.

4.1. Seiberg Duality

Let us comment on the connection to the classical example of
Seiberg duality in the context of SQCD.[22–24] Here two gauge the-
ories share the same infrared physics but differ in the UV. These
are referred to as the electric and magnetic phase. The electric
phase (3∕2Nc < Nf < 3Nc) is described by the field content pre-
sented in Table 4 and the magnetic one in Table 5. The electric
theory has no superpotential whereas the magnetic theory has a
superpotential of the form W = M̃qq̃ where M̃ is related to the
mesonM built out of quarks in the electric phase.
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Electric Phase

As a supersymmetric theory with zero tree-level superpotential,
the classical Lagrangian of the electric phase involves a D-term
potential whose flat directions at vanishing value parameterise
themoduli space of the theory. More precisely, the corresponding
quark expectation values can be determined by imposing the D-
flatness condition DA = 0 with

DA =
∑
i

Q†
i T

A
i Qi + Q̃†

i T
A
i Q̃i, (21)

where the TA denote the generators of the respective gauge group
SU(Nc). The classical moduli space is then defined as the space
of quark vacuum expectation values modulo gauge equivalence.
As argued in [24, 25], this allows for an equivalent description
in terms of expectation values of gauge-invariant polynomials in
the fields subject to any classical relations. For the theories con-
sidered here, such combinations are given by the 2

(Nf
Nc

)
baryon

and N2
f meson operators

Bi1…iNc = Qi1
a1
⋯Q

iNc
aNc

𝜖a1…aNc ,

B̃i1…iNc
= Q̃a1

i1
⋯ Q̃

aNc
iNc

𝜖a1…aNc
, (22)

Mi
j = Qi

aQ̃
a
j .

Due to the identity

𝜖a1…aNc
𝜖b1…bNc = 𝛿a1

[b1𝛿aNc

bNc ], (23)

these are subject to additional constraints

Bi1…iNc B̃j1…jNc
= M

[i1
j1
M

iNc ]

jNc
, (24)

leaving a total of 2Nf Nc − (N2
c − 1) light D-flat directions (cf. [26]).

The physical interpretation of this is that the gauge group SU(Nc)
is completely broken, which is reflected in the number N2

c − 1 of
broken generators.[24]

Magnetic Phase

In the infrared, the above theory is dual to a magnetic description
based on the gauge group SU(Ñc = Nf − Nc). The corresponding
field content is listed in Table 5. Unlike the electric phase, the
magnetic phase involves an additional superpotential

W = M̃i
j qiq̃

j, (25)

where the magnetic meson M̃ defines a fundamental degree of
freedom and is related to its electric counterpart defined in (22)
by a characteristic scale 𝜇,

M̃ = 1
𝜇
M. (26)

Often both mesons are identified and one uses the notationM in
either phase, which is indeed valid at the infrared fixed point. The

presence of the dimensionful parameter 𝜇 in (26) is only required
to relate both meson operators in the ultraviolet limit: Here, the
electric meson is a composite state with canonical dimension 2,
picking up an anomalous dimension 3 Ñc

Nf
during the renormali-

sation group flow to the infrared fixed point, while the latter de-
fines a fundamental field of dimension one flowing to the same
fixed point. It is therefore common to define a separate operator
as in (26) to correctly describe the magnetic meson in the ultravi-
olet limit. The characteristic scale 𝜇 also appears in the matching
condition

Λ3Nc−Nf Λ̃3Ñc−Nf = (−1)Ñc𝜇Nf (27)

for the scalesΛ and Λ̃ of the electric andmagnetic theory, respec-
tively. From this, it can be seen that the duality relates different
theories at strong and weak coupling, thus resembling the char-
acteristic structure of a strong-weak duality.
Analogously to the electric phase, one can define 2

(Nf

Ñc

)
mag-

netic baryon operators as

bi1…iÑc
= qa1i1 ⋯ q

aÑc
iÑc

𝜖a1…aÑc
,

b̃i1…iÑc = q̃i1a1 ⋯ q̃
iÑc
aÑc

𝜖
a1…aÑc , (28)

which, due to the identity
(Nf
Nc

)
=
( Nf
Nf −Nc

)
, carry the same number

of degrees of freedom as their electrical counterparts. Formally,
further mesons could be defined by m̃ = qq̃, however, these do
not lead to new degrees of freedom in the moduli space due to
additional equations of motion ⟨qq̃⟩ = 0 arising from the pres-
ence of the superpotential (25), thus avoiding inconsistency of
the duality.[26] A more in-depth analysis of the moduli spaces as
well as further consistency checks of the duality were performed
(e.g. in [24]) and we would like to refer the interested reader to
the original works for more details.

Application to Neural Networks

At the infrared fixed point, there exists a direct relation between
both types of baryon operators,

Bi1 ,…iNc =
√

−(−𝜇)Nc−Nf Λ3Nc−Nf 𝜖
i1 ,…iNc j1 ,…jÑc bj1…jÑc

,

B̃i1 ,…iNc
=
√

−(−𝜇)Nc−Nf Λ3Nc−Nf 𝜖i1 ,…iNc j1 ,…jÑc
b̃j1…jÑc . (29)

As can be seen, the baryons in the electric andmagnetic phase in-
volve products of Nc and Ñc = Nf − Nc quarks, respectively. This
is similar to our discussion of the 1D Ising chain, in which deter-
mining the total energy required the computation of n-spin prod-
ucts in the original representation, while the dependency was lin-
ear in the dual frame and therefore significantly easier to learn
for neural networks. As the degree n of interactions was raised,
the value of the total energy became increasingly sensitive to flips
of single spins due to their involvement in an increasing number
of n local interaction terms (cf. Figure 9), which eventually led to
a complete deterioration of performance at very high n.
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In the above setting, the baryon operators in (22) and (28)
take the form of sums over products of Nc or Ñc quarks, with
each particular component appearing in (Nc − 1)! or (Ñc − 1)!
non-vanishing products (taking the role of the “local interaction
terms”). Similar to the 1D Ising chain, such dependencies are
likely to be learned more easily in the phase for which the num-
ber of factors is lower. In the setting discussed here, there ex-
ists a range 3∕2Nc < Nf < 2Nc for which Ñc < Nc, implying that
baryon relations might be easier to be accessed in the magnetic
theory. Conversely, the electric phase might be preferable in the
region 2Nc < Nf < 3Nc, where generically Ñc > Nc.
It is a natural question to explore whether this fact can be used

to re-discover Seiberg-like dualities following the strategy suc-
cessfully applied for the 1D Ising case in Section 2.3. As this anal-
ysis promises to be too lengthy for this proof of concept paper, we
leave this issue for the future.

5. Conclusion

Dualities offer a more efficient way of calculating correlation
functions in physics. In particular, in the context of strongly cou-
pled regions they provide in several examples the best technique
to calculate properties of these dynamical systems. We have pre-
sented several examples where this improved way of calculating
correlation functions via dual representations can be related to
improved classification tasks.
Such different and more efficient data descriptions are clearly

desirable, but how can one get them without knowing about the
explicit map between such representations. We have shown in
this work how such beneficial representations can be obtained in
an unsupervised fashion, i.e. without telling the network about
its existence. By reproducing several human-made dualities au-
tomatically we provide a proof of concept that machines can be
programmed to find dualities. Clearly, further andmore involved
types of dualities need to be addressed with these kind of tech-
niques, which then will enable the search for new dualities.
Undoubtedly our tasks are relatively simple and can be

achieved for instance in the case of the 1D Ising and Fourier
analysis by more sophisticated architectures. However, we want
to stress that these settings serve as an important first step to
address tasks which are not accessible with state-of-the-art tech-
niques with the same strategies used here.
The dual representations obtained by our networks can be

analysed and we have found a representation which is inter-
pretable, e.g. we could recognise a Fourier-like transformation or
transformations similar to the duality transformation in the 1D
Ising example. This is encouraging as the neural network pro-
vides us with the explicitmap to this interpretable representation.
Where will further steps in this new field of exploring dual-

ities between different descriptions of dynamical systems with
the help of machine learning take us?

Appendix A: Details on Discrete Fourier
Transformation

This appendix contains further details on the experimental setup
used for our discussion of the Fourier transform in section

A.1. Data

The dataset is split into two categories “pure noise” (0) and “noise
with signal” (1). We consider a discretised space of size 1000 and
generate 105 signals pk in the Fourier domain taking the form

pk = |pk|ei𝜑k , (A.1)

where |pk| ∼  (2, 0.1), 𝜑k ∼  (0, 2𝜋) and k uniformly sampled
between 0 and 1000. A signal in position space is generated by
computing the inverse Fourier transform, which relates the po-
sition and Fourier domains via

pk =
1√
N

N∑
j=1

xje
−2𝜋ijk∕N,

xk =
1√
N

N∑
j=1

pje
2𝜋ijk∕N, (A.2)

with N = 1000. We then generate noisy signals (“class 1”)
by adding Gaussian noise following the distribution xk, noisy ∼ (0, 0.1) and pure noise xk, pure noise ∼  (0, 𝜎) with 𝜎 chosen
such that the samples of both classes show the same mean
quadratic deviation from 0. The number of samples for both
classes is set to 105 , and we employ a 4:1 train-test split. The
data is formatted in such a way that each sample contains one
channel representing its real part and one its imaginary part.
In this task a signal in the position space takes the form of a

sine-cosine wave spread all over the domain, whereas its infor-
mation is concentrated in one (complex) bin in the Fourier space
(cf. Figure 1).

A.2. Experiments

All experiments were performed using Keras with TensorFlow
backend. Training equilibrium in all settings was commonly
reached after less than 50 epochs; the training process was run for
200 epochs to ensure that no further improvements occur after
stopping. Trainingwas performedwithNesterov Adamoptimiser
with learning rate 2 ⋅ 10−3, batch size 128 and binary crossentropy
as loss function. Data generation, preprocessing and training of
networks was performed for ten different random seeds to pre-
vent results from getting skewed due to outliers. A summary of
all results related to this setting can be found in Table A1 at the
end of this appendix.
Simple Networks: We first checked whether simple networks

are able to distinguish the classes in position space. We used one-
dimensional convolutional neural networks with one convolu-
tional layer consisting of 4 filters of size one with ReLu activation
followed by a linear layer with sigmoid activation. The accuracy
on the position space commonly stagnated at values around 0.53,
which is only slightly superior to pure guessing. The poor perfor-
mance could be traced back to both underfitting and overfitting,
with the training set accuracy commonly remaining below 0.5800
for the entire training process. Slight improvements to test set ac-
curacies around 0.54 could be made by including one or two ad-
ditional convolutional layers, however, no notable difference in
performance was observed for more complex architectures.
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Table A1.Mean best test set accuracies for signal detection in noisy data reached after 200 epochs.

Model val acc

Simple Network x-space 0.5317

Simple Network p-space 0.9879

Simple Network learned representation (feature separation) 0.7717

Simple Network (2 Conv-Layers) x-space 0.5449

Simple Network (3 Conv-Layers) x-space 0.5438

Simple Network + Dense x-space (fixed pretrained weights) 0.5005

Simple Network + Dense x-space (free pretrained weights) 0.5013

Simple Network + Dense x-space (free random weights) 0.5016

Simple Network + 2 Dense x-space (free random weights) 0.5018

Simple Network + 3 Dense x-space (free random weights) 0.5025

Simple Network + Dense x-space (free random weights) + L1-Reg (1e-5) 0.5013

Simple Network + Dense x-space (free random weights) + L1-Reg (1e-4) 0.5014

Simple Network + Dense x-space (free random weights) + L1-Reg (1e-3) 0.5011

Simple Network + Dense x-space (free random weights) + L1-Reg (1e-2) 0.5015

Simple Network + Dense x-space (free random weights) + L1-Reg (1e-1) 0.5008

Simple Network + Dense x-space (free random weights) + L2-Reg (1e-5) 0.5010

Simple Network + Dense x-space (free random weights) + L2-Reg (1e-4) 0.5019

Simple Network + Dense x-space (free random weights) + L2-Reg (1e-3) 0.5010

Simple Network + Dense x-space (free random weights) + L2-Reg (1e-2) 0.5018

Simple Network + Dense x-space (free random weights) + L2-Reg (1e-1) 0.5015

Simple Network + Dense x-space (free random weights) + Dropout (0.1) 0.5017

Simple Network + Dense x-space (free random weights) + Dropout (0.2) 0.5015

Simple Network + Dense x-space (free random weights) + Dropout (0.5) 0.5004

Simple Network + Dense x-space (free random weights) + BatchNorm 0.5013

Adding Dense Layers: We tested whether adding a dense layer
of size 2N at the beginning of the above architecture can improve
the results. Themodel was tested for the three different settings

• all weights randomly initialised and trainable,
• weights of the convolutional-layer pretrained on Fourier do-
main and trainable,

• weights of the convolutional-layer pretrained on Fourier do-
main and fixed.

Due to the high number of parameters, we tested the
performance for L1 and L2 regularisation with parameters
10−5, 10−4, 10−3, 10−2, 10−1, dropout with rates 0.1,0.2,0.5 and
batch normalisation. To cover a wider range of architectures, we
furthermore varied the number of dense layers between 1 and 3.
Interestingly, none of the architectures showed any improve-

ments beyond pure guessing, implying that it is difficult for neu-
ral networks to find the Fourier transform (or similar mappings)
by themselves, even if given “hints” by initializing parts of the
weights to perform well in the momentum space domain.
Except for architectures with very strong regularization, the

poor performance inmost settings could be attributed exclusively
to severe overfitting. This problem might in principle be avoid-
able by increasing the amount of the training data to extremely
large values. This would, however, defeat the point of finding a
“useful” network with reasonable resources.

Feature Separation: Tests for representations learned by the
architecture described in Section 3.1 were performed using the
same simple network architecture as employed for comparing
the position and actual momentum space. Preprocessing and
training modalities were the same as before; the feature sepa-
ration network was trained separately for each of the ten test-
runs. The feature separation network was trained on separately-
generated noisy signals with varying noise levels of up to 𝜎 =
0.075 and showed similarly good performance in all instances.
All performance values and plots presented in this paper are with
respect to networks trained on noisy data with 𝜎 = 0.075. We
found an improved performance when we reduced noise levels
in the data.

Appendix B: Details on 1D Ising Model

This appendix contains further details on the experimental setup
used for our discussion of the 1D Ising model in sections 2.3
and 3.2.

B.1. True Dual Representation

In Section 2.3 we focused on the application of simple neural
networks to detect (meta-)stable states in the 1D Isingmodel with
multi-spin interactions.
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Classifying (Meta-)Stable States: For our large-scale tests, we
used a single-layer perceptron with 128 hidden neurons, ReLu
activation for the hidden layer and sigmoid activation for the out-
put layer. To ensure comparability of results, we did not include
any regularisation techniques or more advanced components.
Weights were initialised randomly following common practice;
training was performed with standard Nesterov Adam optimiser
and learning rate decay.
The full dataset contained all 218 states for the 1D Ising

chain with N = 18, and tests were performed for varying orders
of interaction n. We split the data into states labeled as “not
(meta-)stable” (0) or “(meta-)stable” (1) and normalised the train-
ing and test sets to contain an equal number of samples for each
class. Experiments were performed for training set sizes of 600,
3000 and 9500 which were chosen for better comparability of re-
sults due different total numbers of metastable states for differ-
ent n.
The training showed a slight dependence on the initial con-

ditions and was therefore performed ten times for each setting
and data representation. Python, NumPy and TensorFlow ran-
dom seeds were fixed by hand and stored for each result. We
found that 500 epochs was a viable cutoff after which no relevant
changes in the overall performance occurred. The average best
test accuracies and losses achieved in 10 training runs are listed
in Table 1.
Modifications of Architecture: In order to check whether the

results obtained for the above setting generalise to a wider class
of neural networks, we performed sample-wise tests for one or
more of the following modifications in architecture:

• Varying the number of hidden layers within the range
1,2,3,4,5.

• Varying the number of neurons per layer within the range
16, 32,… , 1024.

• Employing linear, sigmoid or ReLu activation functions.
• Using L2 weight regularisation with penalty 0.01 and 0.1,
dropout with rates 0.2 and 0.5 or batch normalisation.

• Including up to five Convolutional layers into the network.

Almost none of the modifications lead to any significant
change in the overall results. One exception was the introduc-
tion of convolutional networks, which were able to reach close-
to-perfect performance at very low n ≤ 4, but resorted to pure
guessing at higher-order interactions.

B.2. Autoencoder with Latent Loss

In Section 3.2 the discussion of (meta-)stability classification was
extended to the output of a constrained autoencoder as depicted
in Figure 15.
Training of Autoencoders: The constrained autoencoders con-

sisted of one hidden layer of 128 neurons in their encoder and
decoder components and bottleneck of dimension 18 and 50. The
latent output of the bottleneck part was additionally fed into a lin-
ear layer. Training was then performed using standard Nesterov
Adam optimiser to simultaneously minimise component-wise
binary crossentropy as reconstruction loss and mean squared er-
ror as regression loss.

Weights were initialised randomly for both autoencoders. We
found that this generally led to better performance in both losses
compared against hard-coded layers or pretraining on the actual
dual representation (the latter only possible for latent dimension
18).
Achieving good performance in both tasks required relatively

large amounts of training data. The autoencoders were therefore
trained on 80% of the full dataset of 218 states. In case of poor
performance, underfittingwas prevalent, and there were no cases
of overfitting. Using L1 penalties to force sparse activations or
representations generally led to poor performance and therefore
were not used for our tests.
Classifying (Meta-)Stable States: We tested the performance

in classifying (meta-)stable states using the same setting as be-
fore, with the duality transformation (7) replaced by the inter-
mediate output of the previously described constrained autoen-
coders. In order to prevent information of the metastability test
set from leaking into the training set of the autoencoder, the same
train-test split was employed for the metastability classification.
Otherwise, training and testing modalities were identical with
those of the original and true dual representation.
Data preprocessing and training of all involved networks were

repeated ten times for different Python, NumPy and TensorFlow
random seeds to prevent outliers from skewing the results. The
average best test set accuracies reached after at most 500 epochs
are stored in Table 3. More specifically, we observed the following
behaviour:

• For very simple settings such as n = 4, the classifiers per-
formed almost equally well on the intermediate output as on
the actual dual representation. As shown in Table 2, similar
performances can also be reached by using pure energy con-
siderations, and these results should therefore be treated with
caution.

• For all higher-degree interactions with n ≥ 4, bothmost classi-
fiers clearly beat the benchmark performance on the original
representation. However, networks trained on outputs with la-
tent dimension 18 often fall short of outperforming the bench-
marks set by purely energetic arguments (cf. again Table 2) in
particular at low training set sizes. This is not the case for la-
tent dimension 50, and such networks are able to distinguish
well between both classes in regions of high energetic overlap.
Their performance is, however, not equally well to the true dual
representation in these critical cases.

• Themethod transfers well to other values ofN and n as long as
the task of energy regression is sufficiently easy to solve for the
considered class of networks, but breaks down in very complex
cases such as N = 100 and n = 50.

In addition to the above tests, a sanity check similar to the Fourier
setting was performed by placing a non-pretrained encoding ar-
chitecture with latent dimension 18 or 50 in front the simple net-
work and training on the original representation (see Table B1).
The performance in this case was slightly worse than that of the
simple networks alone (cf. Table 1), showing that the layer pre-
trained for energy regression indeed leads to a benefit beyond a
mere improvement of network capacity.
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Table B1. Detection of (meta-)stable states in the 1D Ising chain for different interactions and amounts of training data. The listed numbers describe
the average best test accuracy over 10 training runs of 500 epochs each when trained in the original representation with a non-pretrained encoding
architecture with latent dimension 18 (Left) and 50 (Right) placed in front of the simple network. Missing values indicate that the number of required
samples exceeds the total number of metastable states for the considered setting.

lat (18) n = 4 n = 5 n = 8 n = 9 n = 12 lat (50) n = 4 n = 5 n = 8 n = 9 n = 12

6 ⋅ 102 0.9047 0.8404 0.8629 0.8507 0.8747 6 ⋅ 102 0.9026 0.8570 0.8616 0.8715 0.8632

3 ⋅ 103 – 0.8983 0.9039 0.9011 0.9165 3 ⋅ 103 – 0.9058 0.9002 0.8991 0.9176

9.5 ⋅ 103 – – 0.9405 0.9400 0.9751 9.5 ⋅ 103 – – 0.9410 0.9360 0.9745
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