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Abstract
1. With animal species disappearing at unprecedented rates, we need an efficient 

monitoring method providing reliable estimates of population density and abun-
dance, critical for the assessment of population status and trend.

2. We deployed 160 camera traps (CTs) systematically over 743 locations covering 
17,127 km2 of evergreen lowland rainforest of Salonga National Park, block South, 
Democratic Republic of the Congo. We evaluated the applicability of CT distance 
sampling (CTDS) to species different in size and behaviour. To improve precision 
of estimates, we evaluated two methods estimating species' availability (‘A’) for 
detection by CTs.

3. We recorded 16,700 video clips, revealing 43 different animal taxa. We estimated 
densities of 14 species differing in physical, behavioural and ecological traits, and 
extracted species-specific availability from available video footage using two 
methods (a) ‘ACa’ (Cappelle et al. [2019] Am. J. Primatol., 81, e22962) and (b) ‘ARo’ 
(Rowcliffe et al. [2014] Methods Ecol. Evol. 5, 1170). With sample sizes being large 
enough, we found minor differences between ACa and ARo in estimated densities. 
In contrast, low detectability and reactivity to the camera were main sources of 
bias. CTDS proved efficient for estimating density of homogenously rather than 
patchily distributed species.

4. Synthesis and applications. Our application of camera trap distance sampling (CTDS) 
to a diverse vertebrate community demonstrates the enormous potential of this 
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1  | INTRODUC TION

The use of camera traps (CTs) to study wildlife has seen an expo-
nential increase in the last decade (Burton et al., 2015), offering 
innovative approaches for obtaining species' distribution, density, 
abundance, behaviour and community structure in an economical 
and minimally invasive way (Rovero & Zimmermann, 2016). Animal 
density is an extremely informative parameter in community ecol-
ogy, providing data for monitoring temporal trends in population 
status and comparing populations across sites (Nichols & Williams, 
2006), crucial information for effective wildlife conservation.

The first density estimators based on CT footage were de-
signed for large, individually recognizable species, using a capture– 
recapture (CR) framework (Karanth & Nichols, 1998). The method 
was applied to few mammals, mainly felids identified by their coat 
pattern (Jackson, Roe, Wangchuk, & Hunter, 2006; Karanth, 1995). 
However, defining the effective surveyed area was problematic and 
CR methods estimated population size within an area of unknown 
size, rather than density (Sollmann, Mohamed, & Kelly, 2013). 
Mark-reSight methods (MS; Rich et al., 2014) and spatially explicit 
 capture–recapture methods (SECR; Efford, Borchers, & Byrom, 
2009) were a big improvement. By estimating the area effectively 
sampled, density estimates became statistically valid (Sollmann, 
Linkie, Haidir, & Macdonald, 2014). However, requiring at least a 
proportion of individuals to be recognizable, they were not applica-
ble to all species. Recently, the development of statistical estimators 
of animal density has overcome these limitations. SECR methods 
have been extended allowing density estimates of unmarked pop-
ulations (Chandler & Royle, 2013). Here, sampling effort must be 
spatially intensive and estimates lack precision unless supplemented 
with auxiliary data such as genetic sampling or telemetry (Evans & 
Rittenhouse, 2018; Linden, Sirén, & Pekins, 2018; Sollmann et al., 
2014). Random encounter models (REMs; Rowcliffe, Field, Turvey, 
& Carbone, 2008) were considered a promising development. REMs 
assumed a certain detection within an estimated area in front of the 
camera and, by using the gas model of Hutchinson and Waser (2007) 
to describe animal movement, required estimates of average animal 
speed for estimating animal density. Animal speed however, is hard 

to estimate accurately, and REMs broad applicability is still being 
tested (Chauvenet, Gill, Smith, Ward, & Massei, 2017; Sollmann 
et al., 2013). To address these issues, recent studies have used a 
modified version of REMs. Nakashima, Fukasawa, and Samejima 
(2017) replaced animal speed with the time animals remained in 
the camera field of view (obtained from recorded videos), whereas 
Campos-Candela, Palmer, Balle, and Alós (2017) in a simulation 
study and Moeller, Lukacs, and Horne (2018) in a study on elks 
Cervus canadensis, circumvented the need for animal average speed 
by collapsing sampling occasions into predetermined instantaneous 
moments where the surface covered by the camera field of view 
was known and 100% detectability assumed. Although these meth-
ods were a promising development for estimating density of un-
marked species, they remain to be tested in various field situations 
and, as some (e.g. Campos Candela et al., 2018; Nakashima et al., 
2017) are mathematically demanding, broad applicability without a 
user-friendly software seems unlikely.

Camera trap distance sampling (CTDS; Howe, Buckland, Després-
Einspenner, & Kühl, 2017) is another recently proposed method for 
density estimations of unmarked populations. It uses a distance 
sampling (DS) approach (Buckland et al., 2001), adjusting point 
transect DS to the use of CTs. Similar to Moeller et al. (2017) and 
Campos-Candela et al. (2017), CTDS makes use of predetermined 
instantaneous snapshot moments, but assumes 100% detection at 
0 m only, accounting for imperfect detection by modelling detect-
ability as a function of distance. In addition, CTs only detect animals 
when available, a problem when studying arboreal or subterranean 
species. Therefore, CTDS requires estimates of species-specific 
availability 'A', that is, the proportion of time a species is available 
for detection. So far, two methods have been used for estimating 
‘A’: (a) ‘ACa’ (Cappelle, Després-Einspenner, Howe, Boesch, & Kühl, 
2019) refers to the time of activity ‘Ti’ with Ti being defined as the 
number of 1-hr intervals with at least one video; (b) ‘ARo’ (Rowcliffe, 
Kays, Kranstauber, Carbone, & Jansen, 2014) estimates ‘A’ by fitting 
a circular kernel distributions to times of independent detections, 
with the peak of activity defined by the maximum value of the ker-
nel distribution. Importantly, in both methods ‘A’ is extracted from 
the same videos used for estimating density. CTDS was applied to 

methodology for surveys of terrestrial wildlife, allowing rapid assessments of spe-
cies' status and trends that can translate into effective conservation strategies. 
By providing the first estimates of understudied species such as the Congo pea-
fowl, the giant ground pangolin and the cusimanses, CTDS may be used as a tool 
to revise these species' conservation status in the IUCN Red List of Threatened 
Species. Based on the constraints we encountered, we identify improvements to 
the current application, enhancing the general applicability of this method.

K E Y W O R D S

biomonitoring, camera trap, cryptic species, density estimation, distance sampling, multi-
species, Salonga National Park, unmarked population
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wild populations of Maxwell's duiker Philantomba maxwellii (Howe 
et al., 2017), and Western chimpanzees Pan troglodytes verus in Taï 
National Park, Côte d'Ivoire (Cappelle et al., 2019) returning unbi-
ased estimates for the latter. In addition, by using a DS approach, 
CTDS takes advantage of a consolidated mathematical framework, 
open-source software and a vast community of users and develop-
ers, making the method easily accessible. Therefore, CTDS could 
be considered among the most promising methods to assess animal 
density, particularly suitable for habitats where species taking ad-
vantage of dense vegetation for their cryptic existence are rarely 
encountered.

Our planet's tropical rainforests, particularly the Amazonian 
and the Congo basins, provide these features. Disappearing with 
unprecedented speed, ecological information for the vast majority 
of terrestrial vertebrates is urgently required (IUCN, 2019). Central 
Africa's Congo basin provides 1,620,000 km2 of evergreen rainfor-
ests, with 1,000 bird and 400 mammal species currently known 
(Campbell, 2005). Its heart, the Cuvette Centrale, 800,000 km2 in 
size situated south of the Congo River, Democratic Republic of the 
Congo (DRC), has the continent's largest protected area of pristine 
African lowland rainforest: Salonga National Park (SNP), an IUCN 

World Heritage Site. Here, we estimate vertebrate density by apply-
ing CTDS to the large and remote South block of Salonga National 
Park, assessing applicability of the methodology in relation to spe-
cies-specific properties such as (a) size; (b) activity patterns; (c) so-
ciality; (d) abundance; (e) distribution and (f) reactivity to CTs. The 
latter referring to any responsive behaviour occurring because of the 
presence of an observer (i.e. the CTs) causing the animal to modify 
its travelling trajectory. This either by (a) moving away from the cam-
era (avoidance), (b) approaching it (attraction), or (c) stopping, stand-
ing in front of the camera.

2  | MATERIAL S AND METHODS

2.1 | Study area

Salonga National Park (36,000 km2), situated in the Cuvette Centrale, 
DRC (Figure 1a), consists of two blocks, North and South. We inves-
tigated block South (17,127 km2), composed of 99% of primary low-
land mixed forest, 1% of savannahs, regenerating forest, cultivation, 
marshes and water bodies (Bessone et al., 2019).

F I G U R E  1   Location and survey design: (a) Democratic Republic of the Congo (DRC; light blue) with Congo river (blue line), Cuvette 
Centrale (green) and Salonga National Park (SNP; yellow); (b) SNP, block South with surveyed (black dots) and unsurveyed (white dots) line 
transects; (c) Camera trap locations along line transect
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2.2 | Data collection

Camera trap data were collected between September 2016 and May 
2018 as part of a comprehensive biodiversity inventory (PNS-Survey©), 
conducted along 405 systematically placed sample units (i.e. line tran-
sects), generated from a random origin. The 1 km transects running 
east–west were evenly spaced by 6 km (Figure 1b). Two infrared CTs 
(Bushnell Trophy CamTM, Model 119776), with angle of view θ = 45° 
and inter-trigger lag time = 1 s, were set up at 250 and 750 m from 
the beginning of each transect (Figure 1c). To avoid disturbance caused 
by the passage of field teams, cameras were systematically positioned 
50 m to the north or south of the transect line, oriented north between 
70 and 90 cm above-ground. Given the size of SNP and the limited 
number of devices (n = 160), the study area was divided into 37 sub-ar-
eas covering 380 km2 on average (range = 72–1,188 km2, SD = 274.8), 
each surveyed once. CTs were relocated to a new sub-area after a mini-
mum of 2 weeks (average = 38.4 days, range 14–78, SD = 12.4).

Of the 405 transects, 27 were not surveyed due to their proxim-
ity to major rivers, or armed poachers, resulting into 378 surveyed 
line transects (Figure 1b). Due to logistical constraints, one transect 
remained without, and four transects with only one CT each, re-
sulting in 750 sampling locations. Time of installation, habitat type 
and GPS location were noted for each device. Cameras were active 
24 hr/day and sensor sensitivity was set to ‘high’. For a discussion of 
potential limitations of our survey design, see Appendix S1.

2.3 | Camera trap distance sampling

2.3.1 | Measurements

Following Howe et al. (2017), we measured distances between 
the CT's lens (i.e. 0 m) and the midpoint of each detected animal 
(=radial distances) in each video at predetermined snapshot mo-
ments (=observations) by comparing animal locations to 1 m dis-
tance labels recorded during camera installation (from 1 to 12 m). 
Predetermined snapshot moments represent observations at spe-
cific times of day, starting with a snapshot at midnight 00 hr 00 min 
00 s with an interval between snapshots ‘t’ set to 2 s, a value con-
sidered appropriate to obtain adequate sample sizes even for fast 
moving and rare species (Howe et al., 2017). Temporal effort is 
then determined by the value of t (the longer ‘t’, the lower the ef-
fort—see Appendix S2).

We expected that species-specific features could potentially af-
fect CTDS estimates. Therefore, for each observation, we also re-
corded (a) individual maturity (immature/adult), (b) animal group size 
and (c) reactive behaviours (see Appendix S3).

2.3.2 | Species-specific availability

We corrected for species-specific availability ‘A’ applying (a) ‘ACa’ 
(Cappelle et al., 2019) and (b) ‘ARo’ (Rowcliffe et al., 2014), calculating 

ARo by using the r package ‘activity’ (R Core Team, 2019; see Figure 
S1). In order to ensure independence of observations of times of de-
tection, we used the number of capture events, defined as the first 
video recording the same individual/animal group, while subsequent 
videos of the same individual/group were discarded. A new event 
was recorded when a different individual/animal group entered the 
field of view.

2.3.3 | Density estimation

Densities were estimated by applying the formula of Howe et al. 
(2017; see Appendix S2 for further details). All operational days, ex-
cluding days of camera installation and retrieval, were considered 
when calculating survey effort.

As reactivity to CTs is expected to induce bias (Buckland et al., 
2001), we discarded all observations where animal behaviour indi-
cated a reaction to CTs. Then, we left- and/or right-truncated each 
dataset after visual inspection of the histogram of observed radial 
distances (see Figure S2). We fitted the detection functions to the 
remaining radial distances and calculated species-specific density 
in distance 7.3 (Thomas et al., 2010), correcting for both ACa and 
ARo, and considering six CTDS models (half normal with 0 and 1 
hermite polynomial adjustment terms; hazard rate with 0 and 1 co-
sine adjustments terms; uniform with 1 and 2 cosine adjustment 
terms).

In CTDS, violation of the assumption of independence of ob-
servations is expected. Violation does not affect point estimates of 
abundance (Buckland et al., 2001), but introduces ‘over-dispersion’, 
which is partially addressed by defining predetermined instanta-
neous snapshot moments (Howe et al., 2017; Moeller et al., 2017). 
In addition, the assumption can be relaxed by estimating variances 
using a nonparametric bootstrap, resampling points with replace-
ment (Buckland et al., 2001), and by using model selection meth-
ods adjusted for over-dispersed data. Accordingly, we estimated 
variance from 999 bootstrap resamples, with replacement across 
camera locations, and selected between competing models com-
paring QAIC scores, following a two-step method (Howe, Buckland, 
Després-Einspenner, & Kühl, 2019).

2.4 | Considered species

Recorded species were considered suitable for density estimation 
if (a) the number of independent capture events was ≥20; (b) the 
number of recorded radial distances was ≥80 (Buckland, Rexstad, 
Marques, & Oedekoven, 2015). To test general applicability of the 
method, we selected species showing differences in size, activity, 
abundance and distribution patterns. Information on the follow-
ing species-specific traits was acquired from published literature: 
(a) body mass, a proxy of body size (Smith et al., 2003); (b) activity 
pattern (diurnal, nocturnal or crepuscular); (c) sociality (gregari-
ous or solitary); (d) expected abundance; (e) expected distribution 
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(homogeneous or heterogeneous) (2–5: Kingdon et al., 2013) and 
(f) conservation status (IUCN Red List of Endangered Species, 
2019).

3  | RESULTS

A total of 160 CTs were fully functional and active at 743 locations. 
Total effort was 27,045 camera days, returning 16,734 videos show-
ing animals belonging to 43 different taxa (see Table S1). Average 
species richness per location was 4.7 (range 0–24, SD = 3.04). Of 
these 43 taxa, 29 provided adequate data for density estimation. 
Table 1 shows 14 out of these, selected due to their differences 
in biological (body mass), behavioural (activity pattern, sociality), 

ecological (abundance, distribution) and conservation (IUCN status) 
traits. Except for the endemic Congo peafowl, all chosen species 
were mammals.

Table 2 shows species-specific information obtained from CTs, in-
cluding activity times, availability according to Cappelle et al. (2019) 
and Rowcliffe et al. (2014; examples provided in Figure 2), as well as 
truncation distance. Detectability positively correlated with body size, 
with small-sized species being undetected within the first 2 m from the 
camera (Figure 3).

Of the 14 species, immature individuals were never detected 
in seven, made up less than 10% of observations in another four, 
and more than 10% in three species only (Table 2). Therefore, we 
decided to exclude observations of immature individuals, provid-
ing population estimates for adults only. Three different types 

TA B L E  1   Species (Common name, scientific name) selected for method evaluation. Body mass (average in kg; Smith et al., 2003); Activity 
pattern (sD = strictly diurnal; sN = strictly nocturnal; mD = mainly diurnal; mN = mainly nocturnal; Cr = crepuscular); Sociality (G = gregarious; 
S = solitary); Approximate expected abundance (n/km2) available from literature; Distribution available from literature; IUCN status (IUCN, 
2019). Reference: Kingdon et al. (2013)

ID Species
Body mass  
(kg)

Activity 
pattern Sociality

Approximate 
expected 
abundance  
[n/km2] Distribution

IUCN 
status

1 Congo peafowla 
Afropavo congensis

1.4 sD G Unknown Homogeneous VU

2 Forest elephant
Loxodonta cyclotis

3,940.0 mD G 0.05 Heterogeneous EN

3 Bonobo
Pan paniscus

34.0 sD G 0.42 Homogeneous EN

4 Allen's swamp monkey
Allenopithecus nigroviridis

4.7 sD G 100 Heterogeneous LC

5 Honey badger
Mellivora capensis

8.0 mD S 0.03 Homogeneous LC

6 African golden cat
Caracal aurata

10.6 mD S 0.04–0.1b  Homogeneous VU

7 Genets
Genetta sp.

2.0–1.9c  sN S 0.8–4.5c  Homogeneous LC

8 Cusimanses
Crossarchus sp.

0.7–1.5d  mD G Unknown Homogeneous LC

9 Aardvark
Orycteropus afer

52.3 sN S 1–2 Homogeneous LC

10 Giant ground pangolin
Smutsia gigantea

33.0 sN S Unknown Unknown VU

11 Sitatunga
Tragelaphus spekii

78.0 mD S 92–180 Heterogeneous LC

12 Water chevrotain
Hyemoschus aquaticus

10.8 sN S 1.5–5 Homogeneous LC

13 Brush-tailed porcupine
Atherurus africanus

1.9 sN S 2.4–13 Homogeneous LC

14 Four-toed sengi
Petrodromus tetradactylus

0.2 Cr S 210 Homogeneous LC

aMcGowan, Kirwan, & Sharpe (2019). 
bBahaa-el-din et al. (2016). 
cGenetta servalina and G. maculata. 
dCrossarchus alexandri and C. ansorgei. 
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F I G U R E  2   Camera trap-derived 
daily activity patterns for (a) Capture 
events < 50 (Elephant); (b) Capture 
events > 50 (Aardvark); (c) Capture 
events > 100 (Water chevrotain). Solid 
lines show availability (ACa) as relative 
frequency of capture events for each 
hour interval according to Cappelle et al. 
(2019); Dashed blue lines show availability 
(ARo) as relative frequency of capture 
events fitted over 24 hr according to 
Rowcliffe et al. (2014)
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F I G U R E  3   Species-specific truncation 
distances (m) for Left-truncation (left); 
and Right-truncation (right). Blue lines 
represent linear regression (left-truncation 
R2 = 0.48, p < 0.01; right-truncation 
R2 = 0.19, p = 0.07) with 95% confidence 
intervals (light blue areas). Black dot with 
number indicates species; numbers see 
‘ID’ in Table 1
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F I G U R E  4   Reactivity to camera 
traps. Columns: Left (yellow): Attraction 
(honey badger); Middle (grey): Olfactory 
(elephant); Right (green): Avoidance 
(bonobo). Rows: Top: reactive 
observations included; Middle: reactive 
observation excluded; Bottom: final 
fitted model after right-truncation (honey 
badger); binning (elephant); as is (bonobo). 
Bars provide detection probability as 
function of distances (1.0 = 100%) prior 
to truncation (reactivity observations 
included). Dashed black lines show 
distances of truncation. Dashed blue 
lines detection probability as a function 
of distance (reactivity observations 
discarded)
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TA B L E  3   Species-specific density estimates. Selected model for density estimation showing (a) key function (HN = Half normal; 
HR = Hazard rate; UNI = Uniform); (b) series expansion (co = cosine; hp = hermite polynomial); (c) adjustment terms; Radial distances 
(=observations): Number of measurements after truncation and discarding of immatures and reactive individuals; Density (ACa) [ind/km2] 
(95% CIs): Density of mature individuals per km2 (in bold) corrected for availability using ACa (Cappelle et al., 2019) with 95% confidence 
intervals (CIs); Density (ARo) [ind/km2] (95% CIs): Density of mature individuals per km2 (in bold) corrected for availability using ARo  
(Rowcliffe et al., 2014) with 95% confidence intervals (CIs); C.V. ACa; ARo: Estimated coefficient of variation for (a) Density (ACa),  
(b) Density (ARo)

ID Species
Selected model 
a; b; c

Radial 
distances

Density (ACa) [ind/km2]
(95% CIs)

Density (ARo) [ind/km2]
(95% CIs)

C.V.
ACa; ARo

1 Congo peafowl UNI; co; 1 2,383 0.91 (0.66–1.27) 0.76 (0.55–1.06) 0.17; 0.17

2 Forest elephant HN; hp; 0 151 0.03 (0.01–0.07) 0.02 (0.01–0.03) 0.44; 0.45

3 Bonobo HR; co; 0 3,658 0.70 (0.32–1.53) 0.54 (0.24–1.21) 0.41; 0.43

4 Allen's swamp monkey HN; hp; 0 691 0.53 (0.24–1.14) 0.20 (0.09–0.43) 0.41; 0.40

5 Honey badger HN; hp; 0 121 0.05 (0.02–0.09) 0.03 (0.01–0.06) 0.39; 0.41

6 African golden cat HN; hp; 0 78 0.04 (0.02–0.07) 0.02 (0.01–0.03) 0.36; 0.36

7 Genets HN; hp; 0 374 0.27 (0.17–0.43) 0.18 (0.11–0.28) 0.24; 0.23

8 Cusimanses HN; hp; 0 1,104 1.16 (0.58–2.36) 0.62 (0.31–1.26) 0.37; 0.37

9 Aardvark HN; hp; 0 255 0.20 (0.10–0.34) 0.15 (0.09–0.26) 0.27; 0.28

10 Giant ground pangolin HN; hp; 0 112 0.05 (0.02–0.13) 0.03 (0.01–0.08) 0.50; 0.54

11 Sitatunga HN; hp; 0 253 0.12 (0.03–0.42) 0.07 (0.02–0.25) 0.71; 0.74

12 Water chevrotain HN; hp; 0 1,250 0.72 (0.38–1.35) 0.68 (0.37–1.27) 0.33; 0.32

13 Brush-tailed porcupine HN; hp; 0 1,624 0.71 (0.48–1.03) 0.64 (0.44–0.96) 0.20; 0.20

14 Four-toed sengi HR; co; 0 191 289.46 (2.67–31,294.00) 181.09 (2.16–15,177.00) 17.20; 12.71
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of reaction to CTs (i.e. attraction, avoidance and olfactory) were 
recognized in seven species (Table 2); examples are provided in 
Figure 4.

Table 3 shows density estimates for each species after boot-
strapping, corrected for species-specific activity patterns, providing 
selected model and coefficient of variation. ACa-corrected estimates 
consistently provided higher densities than ARo, with ACa-corrected 
and ARo-corrected estimates being similar with at least 100 capture 
events (Table 2 and Figure 5). Estimates' precision significantly im-
proved with a higher number of individual locations with at least 
one capture event (log-transformed—R2 = 0.63; p < 0.01). A similar 
trend, with precision increasing with higher numbers of recorded 
radial distances or estimated densities, was not significant (see 
Figure S3). These results were confirmed by a multiple regression 
analysis, where precision was modelled as a function of the three 
aforementioned variables (see Table S2), suggesting precision was 
mainly driven by the number of individual locations and sample size.

4  | DISCUSSION

Our results are the first application of CTDS to a multi-species ani-
mal community and show the enormous potential of this method for 
biomonitoring. However, as in other CTs studies (Burton et al., 2015), 
biological, ecological and behavioural features affected specific de-
tectability. In the following, we will discuss how six of these features 
could influence the applicability of CTDS: (a) body size/mass; (b) 
sociality; (c) activity pattern; (d) distribution; (e) abundance and (f) 
reactivity to the camera.

4.1 | Body size/mass

Our results confirm previous studies (Rowcliffe, Carbone, Jansen, 
Kays, & Kranstauber, 2011; Sollmann et al., 2013; Tobler, Carrillo-
Percastegui, Pitman, Mares, & Powell, 2008), showing that body-size 

positively correlates with detectability (Table 2; Figure 3). In such 
cases, we left-truncated our data when estimating density, a method 
known to effectively address low detectability at short distances 
(Buckland et al., 2001). However, left- truncation implies loss of data 
needed for achieving accurate estimates, especially for rare spe-
cies. Therefore, we suggest that deploying cameras at a height of 
50 cm above-ground would increase detection rates of small-sized 
species. Although surprisingly found to be detected imperfectly 
within the first 2 m from the CT despite an average shoulder height 
of 95 cm (Figure 4), left-truncation was not applied to the bonobo, 
for reasons explained later (‘6. Reactivity to camera’). As expected, 
elephants were detected at short distances. However, given their 
size, both body length and width were considered when measuring 
radial distances, and fit was improved by binning data in 2-m inter-
vals (Figure 4).

4.2 | Sociality

When applying DS to gregarious species, detection rates may be 
inflated, as detecting the first animal in a group increases the prob-
ability of detecting others (Treves, Mwima, Plumptre, & Isoke, 2010). 
However, we found no clear evidence for overestimated density in 
gregarious species (see Table S3) and obtained satisfactory coeffi-
cients of variation (<25%) for both brush-tailed porcupine (solitary) 
and Congo peafowl (gregarious), with low precision equally affect-
ing solitary and gregarious species when capture events were rare 
(Table 3).

4.3 | Activity patterns

Although differences in the specific availability calculated accord-
ing to Cappelle et al. (2019), and Rowcliffe et al. (2014) were minor 
with large sample sizes, ARo presented major advantages: (a) cal-
culations provided standard errors of estimated availabilities (that 

F I G U R E  5   Relative species-specific 
concordance of density estimates 
corrected with ARo (Rowcliffe et al., 2014) 
and ACa (Cappelle et al., 2019) by number 
of capture events. Relative accordance 
(ARo/ACa): 1.0 = 100% accordance. 
Blue line represents linear regression 
(R2 = 0.62, p < 0.01) with 95% confidence 
intervals (light blue area). Black dot with 
number indicates species; numbers see 
‘ID’ in Table 1
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could be included in the estimation of total variance of density) 
and (b) values appeared to be less influenced by the peak of ob-
servation and stochasticity (Figure 2; Table 3). Both methods rely 
on the assumption that at peak time, 100% of the population is 
available for detection (Rowcliffe et al., 2014), with asynchronous 
activity patterns of individuals within species leading to an over-
estimation of activity time, hence underestimated densities. ARo is 
consistently calculated over 24 hr, whereas ACa refers to the hour 
intervals of observed activity, considering activity hours with one 
capture event only (Figure 2). In ACa, activity intervals may remain 
undetected due to low sample size, potentially causing underes-
timation of survey effort. For example, we observed elephants 
from 20 capture events only, revealing activity in 11 of 24-hr in-
tervals (Figure 2). Elephant activity however, is reported to occur 
throughout a 24-hr-day (Kely et al., 2019), suggesting we missed 
part of the species' activity time. While available knowledge could 
be used to interpret results according to species-specific ecology 
and behaviour, with ARo activity time fitted over 24 hr, additional 
sources of variation were avoided (Figure 2). In sum, sample sizes 
larger than 100 capture events allowed accurate and consistent es-
timates (Figure 5). Limited numbers of capture events however lead 
to underestimated ACa, inflating density values (Tables 2 and 3). 
Therefore, we recommend longer CT deployment, allowing a mini-
mum of 100 capture events per species and the use ARo (Rowcliffe 
et al., 2014) for the calculation of specific availability. Unless sup-
ported by large enough sample sizes, comparing specific availabil-
ity and density estimates across different studies is precarious and 
should be performed with care.

4.4 | Distribution

We expected high variability in encounter rates for heterogeneously 
distributed species, leading to imprecise density estimates due to spa-
tial variation (Buckland et al., 2001). In fact, all the species we expected 
being heterogeneously distributed (Table 1), showed a coefficient of 
variation >40%, due to low sample size and observations obtained from 
very few locations (Table 3—but see also Figure S3). Future research 
should aim at increased spatial effort with synchronous camera de-
ployment to reduce potential bias and strengthen precision (Buckland 
et al., 2015). When this is not possible, a stratified random design might 
increase estimate precision (Foster & Harmsen, 2012).

4.5 | Abundance

Consequently, while precision was more satisfactory for abundant 
species, it was also good (C.V. below 35%) for rare, but widespread 
species such as the genets and the aardvark (Table 3—but see Figure 
S3), with precision being mainly a function of sample size (i.e. num-
ber of radial distances) and heterogeneous distribution (i.e. number 
of individual locations with at least one capture event—see Table S2). 
When estimating density of abundant species, a limiting factor was 

the time required for distance measurements from video-clips. To 
reduce time of analysis, (a) snapshot interval t could be increased, 
or (b) observations may be restricted to peak of activity only (Howe 
et al., 2017). For validation, we compared the full with the reduced 
methods for all species, and obtained consistent densities despite 
increased snapshot intervals and peak of activity observations only 
(see Table S4). However, in the case of rarer species, the application 
of these methods would further reduce the number of exploitable 
radial distances, making safe estimates impossible.

4.6 | Reactivity to the camera

Reactivity to the camera is known to bias density estimates, as it 
violates the assumptions of DS (Buckland et al., 2001). Attraction to 
CTs, providing a high number of observations close to the camera has 
been previously addressed with left-truncation (Cappelle et al., 2019). 
However, to minimize induced bias, we consistently excluded all snap-
shots showing evident reactivity to the camera from analysis, not 
only for species attracted to CTs, such as the honey badger (Figure 4), 
but also for the elephants, showing strong olfactory reactivity by in-
sistently smelling the area in front of the camera (regardless of the 
distance interval). In elephants, when using all observations including 
the 80% showing reactivity, estimates were inflated up to two orders 
of magnitude (Figure 4). Avoidance is less frequent, but Kalan et al. 
(2019) reported it for the bonobo. We confirm bonobos' avoidance 
of the camera, resulting in fewer observations within the first 2 m 
(Figure 5). However, bonobos were not undetected, but rather ob-
served further away, and left-truncation was not applicable. Lack of 
detection close to the camera can be levelled out by excess of detec-
tion further away (Buckland et al., 2015), but densities were inflated 
by 15% because bonobo neophobia seems to be coupled with curi-
osity from a secure distance. Therefore, we discarded all snapshots 
showing reactive behaviours. This study suggests reactivity to CTs 
being the most impacting form of bias in CTDS. Not accounting for 
reactivity could result in largely inflated density estimates, and fu-
ture studies should carefully examine the videos to detect reactive 
behaviours. To reduce visual and olfactory reactivity, we recommend 
to either deploy CTs for at least 1 month prior to the survey, allowing 
animals to habituate to cameras; or record reference distance labels 
after the survey, reducing the time of CT set-up, and by that ‘contami-
nation’ with human odour. If neither is possible, methods not influ-
enced by reactivity to CTs (e.g. SECR), is to be favoured over CTDS.

5  | CONCLUSIONS

Camera trap distance sampling is an excellent survey method provid-
ing standardized and comparable information on wildlife density and 
abundance, particularly important for threatened species. Because of 
its highly diverse vertebrate community, SNP block South represents 
an excellent test-field, showing CTDS applicability to one of the re-
motest and least known rainforest areas of the globe. Density values 
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for the Congo peafowl, the giant ground pangolin, and the cusimanses 
presented here, are the first ever obtained, and are of critical conser-
vation importance providing the basis for IUCN Red Lists species as-
sessments. Despite limitations in comparability due to methodological 
differences and a site-specific ecological set-up, eight out of 11 den-
sities obtained fell within published ranges (see Table S5). However, 
our estimates' accuracy remains to be confirmed: longitudinal assess-
ments of density using standardized methods such as those detailed 
here will validate our results and shed light on the status of these cryp-
tic species. Continuous monitoring and population trend evaluation 
are crucial information for wildlife conservation. Allowing simultane-
ous surveys of large portions of the terrestrial vertebrate community, 
rather than single species, the information CTDS can provide is of piv-
otal importance for the development of conservation plans of multi-
species' communities. It may allow to reveal the delicacy of location 
specific ecological equilibria, crucial for the conservation of the integ-
rity of the few remnant intact habitats of our planet.
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