
COMMENT

Non-canonical nucleosides and
chemistry of the emergence of life
Sidney Becker1, Christina Schneider 1, Antony Crisp 1 & Thomas Carell 1

Prebiotic chemistry, driven by changing environmental parameters provides
canonical and a multitude of non-canonical nucleosides. This suggests that
Watson-Crick base pairs were selected from a diverse pool of nucleosides in a
pre-Darwinian chemical evolution process.

Life and LUCA
Life is a highly diverse phenomenon that occupies all conceivable geological niches on Earth. Its
development is explained by Darwinian evolution, which must have begun with rudimentary
“living” vesicles that at some point transitioned into what we call the last universal common
ancestor (LUCA)1. LUCA is a hypothetical life form obtained from phylogenetic analysis from
which all three kingdoms of life originated2. To our understanding, LUCA already possessed the
capacity to synthesize specific building blocks such as amino acids, nucleotides and lipids1. While
phylogenetics allow us to ascertain such information, any events that had occurred prior to
LUCA’s emergence remain in the dark, leaving us with only the possibility of simulating
plausible prebiotic scenarios in the laboratory.

Owing to the discovery of catalytic RNA, it is conceivable that life on Earth emerged from self-
replicating RNA oligomers. A prerequisite for this RNA-world concept3 is that RNA was present
on the early Earth. RNA, however, is a complex molecule (Fig. 1a) that consists of a sugar
(ribose), heterocycles (A, C, G and U) for base pairing, and phosphodiesters to link the units.
Since the formation of the ribose- and heterocyclic-portions of RNA required different chem-
istry, we must assume that the early Earth provided areas with different geological conditions to
facilitate their syntheses. We can imagine dry desert-type mineralic surfaces that were only
occasionally dampened by rain. These mineral fields may have experienced large temperature
differences during day and night. Hot fields, close to active volcanos certainly existed with
temperatures of above 200 °C, occasionally cooled by rain. We can imagine that much wetter
climates existed as well, in which water could dissolve minerals that would later be (re)-pre-
cipitated in draughts. pH values may also have varied greatly. Acidic rain generated by NOx and
SOx could have given rise to ponds with pH values below 3, while ponds filled with amines and
amidines could have had pH values of above 10 or even 12. It seems plausible that the different
RNA precursors formed separately in different geological settings and that they were incidentally
washed together due to flooding or similar phenomena.

Non-canonical bases and peptide-RNA hybrids
The chemistry of the early Earth must have been primitive and unspecific. It is hard to imagine
that parameters such as temperatures or concentrations of reactants were so tightly controlled
that single products formed selectively. Reactions likely took place in vessels such as aqueous
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ponds or on hot surfaces containing complex mixtures of dif-
ferent minerals. This leads us to believe that the conditions led to
the formation of diverse pools of molecules (Fig. 1). Indeed, even
today RNA is tremendously structurally diverse. Besides to the
four canonical nucleobases (A, C, G and U) RNA contains a
phlethora of additional modified nucleosides4. Some of these
bases are found in all three kingdoms of life, and as such, can be
considered to be molecular fossils of the original chemically
diverse primordial soup. These non-canonical nucleosides are
potential chemical ancestors; relics of early Earth’s chemistry1.

Prebiotic routes to purines and amino acid modified purines.
Prebiotic chemical processes likely occurred under conditions far
away from defined laboratory chemistry. Today, Chemists use
special glassware for their reactions and reactants are added step-
wise in a tightly controlled manner, often in a protecting atmo-
sphere and regularly in inert solvents. Concentration and tem-
perature are controlled, and importantly, the reaction product is
carefully isolated and purified before it is introduced into the next
reaction. All of this was impossible on the early Earth. Prebiotic
chemistry forces chemists therefore to think about robust reac-
tions that proceed under “dirty” conditions. Reactions that are
general enough that they tolerate different temperatures and
concentrations, and that are selective enough to proceed even in
mixtures are privileged in a prebiotic setting. They are driven by
fluctuations of outside physico-chemical parameters such as
day–night or seasonal cycles, which provide intermittent wet and
dry conditions along with changing temperatures. Drying out
could have triggered selective precipitation and crystallization,
which leads to purification and concentration to enable successive
reactions5. Prebiotic reactions have to work in water, in dry-state
conditions, or otherwise in higher-boiling solvents such as for-
mamide. Reductions and oxidations may have occurred in the

presence of iron- and sulphur-containing compounds, for
example, by the conversion of iron sulphide (FeS) to pyrite
(FeS2)6. High-energy irradiation could also have initiated che-
mical reactions, particularly when we assume the absence of a
shielding ozone layer. Since DNA and RNA are not stable under
UV irradiation (λ < 300 nm), photocatalysis was probably more
important for the formation of small reactive organic molecules.
Without sophisticated DNA/RNA repair mechanisms, oligonu-
cleotides could survive only in niches devoid of UV light7. It is
safe to assume that UV light was a thread to early life.

When we think about the formation of small prebiotic starting
molecules, electrical discharge needs to be considered (Fig. 2a). In
a nearly neutral N2 atmosphere composed also of H2O, CO2, H2

and CH4, electrical discharge converts N2 into NO8 which can be
reduced to NH2OH and then into NH3. In addition, N2 reacts
with CH4 under discharge conditions to give products including
HCN, cyanamide and cyanoacetylene9. Under such electrical
discharge conditions (Fig. 2a) humid CO2 produces the starting
materials for sugars such as formaldehyde and glycolaldehyde
(Fig. 2b). This all together provides a rather large set of small
prebiotic organic molecules that can act as starting materials for
the formation or RNA nucleosides (Figs. 1b and 2b).

Cyanamide, for example, can give different amidinium
compounds by nucleophilic addition, which form low-melting
organic salts with nitrosated malononitrile (Fig. 1b)5. We found
that that these salts form formamidopyrimidines (FaPys, Fig. 1b),
which react efficiently with ribose to give purine nucleosides10.
This new FaPy-pathway generates not only the two canonical
purine bases (A and G), but also a variety of RNA modifications5.
Under special conditions, even amino acid modified purine
nucleosides are generated. Most importantly all these modified
purine bases are found today in contemporary RNA, thus
strengthening the idea that non-canonical RNA bases are vestiges
of our primordial anscestor11.
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Fig. 1 LUCA’s modified bases. a The chemical structure of ribonucleic acid (RNA) and of some modified bases. Different (thio)methylation sites and amino
acid purine modifications in LUCA are marked in red. b Amidine salts are converted into nitrosopyrimidines, which then form formamidopyrimidines.
Reaction with ribose provides a set of canonical and non-canonical nucleosides that are assumed to have been present in LUCA
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Ribose and the oligomerization problem. The use of ribose as a
prebiotic starting material for nucleoside formation is sometimes
criticised because no clear prebiotically plausible route to ribose
has been found. We still believe that ribose was present on the
early Earth and that we have simply to discover the right con-
ditions. It is well known that formaldehyde and glycolaldehyde
produce ribose in the formose reaction (Fig. 2b), but admittedly,
the yields are low (<1%)12. It is known that borates increase the
yield of ribose13 and we are sure that with more time and research
even better and more selective conditions will be found. We
should also not forget that life could have begun with oligonu-
cleotides composed of sugars other than ribose14. Even ribose can
exist in a 5- or a 6-membered ring form. The 5-membered
arrangement (furanosides) are what today constitute our RNA,
but we know from A. Eschenmosers’ seminal work that the 6-
membered pyranosidic RNA also produces wonderful double
strands with selective base pairing15. It is a riddle, why the
thermodynamically less favoured 5-membered furanosides were
chosen to create life. One argument is that the 5-membered
furanosides are more easily phosphorylated because they possess
a very reactive primary hydroxyl group16. Such phosphorylation
is needed to stitch the nucleosides together to enable strand
formation17. Given that prebiotic RNA nucleosides and conse-
quently RNA strands may have been structurally diverse, con-
taining for example, amino acid modifications, we can envision
that some had physico-chemical properties or catalytic properties
that offered a survival advantage. Pre-Darwinian evolution may
have acted first on molecules rather than living species to select
the fittest, initially maybe just the most stable molecules or RNA
strands (Fig. 2c). At some point nature must have discovered that
the ultimate solution to molecular survival is reproduction via
self-replication and catalysis. This is best achieved in a shielded
environment within which the molecules needed for replication
can be autonomously generated (metabolism). This unit is called
a cell.
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