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Abstract
Introduction: Functional dizziness comprises a class of dizziness disorders, includ-
ing phobic postural vertigo (PPV), that cause vestibular symptoms in the absence of 
a structural organic origin. For this reason, functional brain mechanisms have been 
implicated in these disorders.
Methods: Here, functional network organization was investigated in 17 PPV patients 
and 18 healthy controls (HCs) during functional magnetic resonance imaging with a 
visual motion stimulus, data initially collected and described by Popp et al. (2018). 
Graph theoretical measures (degree centrality [DC], clustering coefficient [CC], and 
eccentricity) of 160 nodes within six functional networks were compared between 
HC and PPV patients during visual motion and static visual patterns.
Results: Graph theoretical measures analyzed during the static condition revealed 
significantly different DC in the default-mode, sensorimotor, and cerebellar net-
works. Furthermore, significantly different group differences in network organiza-
tion changes between static visual and visual motion stimulation were observed. In 
PPV, DC and CC showed a significantly stronger increase in the sensorimotor net-
work during visual stimulation, whereas cerebellar network showed a significantly 
stronger decrease in DC.
Conclusion: These results suggest that the altered visual motion processing seen 
in PPV patients may arise from a modified state of sensory and cerebellar network 
connectivity.
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1  | INTRODUC TION

One of the most common diagnoses in neuro-otology centers is 
functional dizziness with an estimated prevalence of 10% (Dieterich 
& Staab, 2017). Functional dizziness, previously known as somato-
form or psychogenic dizziness, refers to a class of chronic dizziness 
disorders with a highly overlapping etiology (Dieterich & Staab, 
2017). Although the disorder may be precipitated by a structural 
vestibular syndrome, the chronic manifestation of vertigo, dizziness, 
or unsteadiness symptoms has no structural origin. Key symptoms 
include persistent dizziness and unsteadiness that is usually exac-
erbated by upright posture, motion, or visual motion stimulation 
(Dieterich & Staab, 2017). Furthermore, functional dizziness often 
co-occurs with obsessive-compulsive personality traits and symp-
toms of anxiety and depression (Brandt, 1996; Staab et al., 2017).

Functional dizziness includes phobic postural vertigo (PPV) 
(Brandt, 1996), chronic subjective dizziness (Ruckenstein & Staab, 
2009), visually induced dizziness (Bisdorff, Von Brevern, Lempert, 
& Newman-Toker, 2009; Bronstein, 1995), and space and motion 
discomfort (Jacob, Lilienfeld, Furman, Durrant, & Turner, 1989). 
The disorders typically differ in their provocative factors, temporal 
profile, or the focus of the diagnosis. Recently, the Bárány Society 
Classification Committee developed diagnostic criteria that incor-
porate all these dizziness disorders into a common disorder called 
persistent postural-perceptual dizziness (PPPD) (Dieterich & Staab, 
2017; Popkirov, Staab, & Stone, 2018; Staab et al., 2017). In the cur-
rent study, patients were recruited before 2017 and thus used the 
original PPV criteria (Brandt, 1996; Lempert, Brandt, Dieterich, & 
Huppert, 1991). Patients are therefore referred to as PPV patients 
here, although they would fall under the new PPPD classification. 
Because PPPD is a recent classification and less well established in 
the literature, we use the term functional dizziness to discuss pre-
vious literature using patient populations described having chronic 
subjective dizziness, visually induced dizziness, or space and motion 
discomfort.

One of the hallmark features of functional dizziness is the task 
dependency of symptoms such as postural performance. While pa-
tients show increased body sway during simple standing tasks, they 
typically improve during more difficult balance tasks. In contrast, 
healthy individuals typically worsen with an increasing difficulty 
in balancing tasks (Holmberg, Tjernström, Karlberg, Fransson, & 
Magnusson, 2009; Querner, Krafczyk, Dieterich, & Brandt, 2000). 
Furthermore, when a balance task is combined with a distraction 
task, PPV patients showed the same amount of body sway and co-
contraction of leg antigravity muscles as healthy controls (HCs), that 
is, their balancing behavior normalizes (Wuehr, Brandt, & Schniepp, 
2017). This has led to the idea that functional changes in monitoring, 
predicting, and attention to bodily perceptions are altered in these 
patients.

Although the behavioral characteristics of functional dizziness 
disorders have been identified, their neural attributes are not yet 
understood. Since evaluation and interpretation of sensory stim-
uli appear disrupted in functional dizziness patients, information 

processing is likely affected in sensory brain areas. Furthermore, the 
cerebellum is often considered as a key structure in predicting per-
ceptual events (Baumann et al., 2015) and as being a control struc-
ture for automatic movements (Jahn, Deutschländer, Stephan, Kalla, 
Hüfner, et al., 2008; Jahn, Deutschländer, Stephan, Kalla, Wiesmann, 
et al., 2008). Cerebellar activity and connectivity might thus also be 
related to the dysfunctional behavior in functional dizziness.

Few imaging studies have investigated the neural character-
istics of functional dizziness disorders. For example, in the study 
by Indovina et al. (2015) functional connectivity changes between 
visual, vestibular, and anxiety-related brain regions in functional 
dizziness patients were investigated. They found more negative 
functional connectivity changes in these regions upon sound-
evoked vestibular stimulation, when compared to HCs. This suggests 
an altered coordination between sensory and higher cortical regions 
in these patients (Indovina et al., 2015). Alterations in sensory and 
cerebellar brain connectivity were found in functional dizziness 
patients during resting-state functional magnetic resonance imag-
ing (rs-fMRI) (Van Ombergen et al., 2017). Another recent rs-fMRI 
study differentiating comorbid anxiety and depression from PPPV 
suggested that increased connectivity in the occipital areas was 
more related to comorbid disorders, while decreased connectivity 
among vestibular, frontal regulatory, and visual cortices, as well as 
decreased connectivity between cerebellar regions, was rather re-
lated to functional dizziness itself (Lee et al., 2018). A task-based 
fMRI approach using a visual motion aftereffect paradigm to study 
task-related activity and task-based connectivity was performed in 
PPV patients (Popp et al., 2018). Here, the prefrontal cortex showed 
increased gray matter volume and increased connectivity with as-
sociated thalamic projections and primary motor areas. Conversely, 
decreased gray matter and connectivity were found in cerebellar 
vermis, posterior lobules, and the supramarginal gyrus. These results 
pointed to a higher weighting of cognitive-based control of motor 
areas during a sensory task that induced dizziness in PPV patients 
(Popp et al., 2018).

These results suggest that brain function and connectivity differ 
in functional dizziness patients, even in the absence of an organic 
dysfunction. So far, however, no specific region or mechanism has 
emerged from the studies. Instead, a distributed array of regions ap-
pears to be implicated in functional dizziness, pointing toward network 
differences in these patients. Furthermore, considering that normal 
posture and gait can occur in these patients under certain conditions 
immediately after dysfunctional balancing (Querner et al., 2000; 
Schniepp et al., 2014; Wuehr et al., 2017), network organization may be 
influenced by differential sensory processing. Therefore, we examined 
the whole-brain network architecture during episodes of visual mo-
tion, compared to a static visual stimulus. To this aim, we used a graph 
theoretical approach to extensively analyze the network properties of 
the whole brain in PPV patients using the data collected in Popp et al. 
(2018). Six well-known functional subnetworks were characterized in 
terms of their importance, segregation, and functional integration of 
the network (degree centrality [DC], clustering coefficient [CC], and 
eccentricity [ECC], respectively) (Bullmore & Sporns, 2009; Rubinov & 
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Sporns, 2010). These measures during visual motion stimulation were 
then compared with those during a static visual stimulation as well as 
between PPV patients and HCs.

2  | METHODS

2.1 | Participants

This study used the data from Popp et al. (2018) to analyze differ-
ences in functional connectivity between PPV patients and HC. 
Overall, 34 patients and 37 HC were included in the original study 
(Popp et al., 2018). Patients were recruited from the Dizziness Clinic 
of the University Hospital Munich (German Center for Vertigo and 
Balance Disorders). The study was approved by the local ethics com-
mittee of the Ludwig-Maximilians-Universität München, Germany. 
All subjects gave their informed written consent to participate in the 
study.

Phobic postural vertigo was diagnosed based upon the crite-
ria by Brandt (1996) as determined after diagnostic testing at the 
German Center for Vertigo and Balance Disorders (DSGZ) in Munich. 
Patients presented with (a) persistent nonspinning dizziness or un-
steadiness while standing or walking despite normal clinical balance 
tests; (b) perceptual or social factors typically exacerbate the symp-
toms leading to conditioning and avoidance behavior; (c) fluctuating 
unsteadiness from seconds to minutes; (d) frequent onset after a 
serious illness, a vestibular disorder, or a period of emotional stress; 
(e) vegetative symptoms or anxiety during or after vertigo; and (f) 
an obsessive-compulsive personality type, mild depression, or a la-
bile affect. These symptoms must present either in the absence of a 
structural origin or as a secondary symptom after an acute but now 
compensated vestibular pathology. The absence of a structural pa-
thology was determined by a clinical neurological examination and 
a neuro-orthoptic examination including video head impulse test 
(vHIT), caloric irrigation, measurements of subjective visual vertical, 
posturography, and structural magnetic resonance imaging of the 
brain.

A high number of patients terminated the experiment early and 
displayed high head motion, particularly in later sessions of the ex-
periment. Therefore, participants had to complete the first session 
and had a maximum head motion of 3 mm or maximum head motion 
of 3 degrees to be included in the analysis so as not to introduce 
additional variability due to differences in the number of samples 
for the network analysis (18 patients and 18 HCs). One additional 
patient had to be excluded for excessive head movements (see 
Section 2.4.1). We thus ended up with 17 right-handed patients (8 
female) diagnosed with PPV patients and 18 right-handed HC (7 fe-
male) in the current analyses. The mean age of PPV patients was 
41.47 years (SD = 11.33 years). In HC, the mean age was 36.11 years 
(SD = 12.93 years). Groups did not significantly differ in terms of age 
(t(32.82) = −1.306, p = .201), but because of the potentially still rele-
vant difference in mean age between the cohorts, we used age as a 
relevant covariate in our analysis.

2.2 | MR parameters

MR data were acquired on a 3T MRI machine (GE, Signa Excite HD), 
using a 12-channel head coil. A T2*-weighted gradient-echo echo-
planar imaging sequence sensitive to blood-oxygen-level-dependent 
(BOLD) contrast was used to collect functional images (TR 2.45 s, TE 
40 ms, FA 90°, voxel size 3 mm isotropic, 38 transversal slices). Three 
consecutive functional runs were acquired, each containing 260 vol-
umes covering the whole brain. The total number of volumes did not 
include the first four volumes, which were not reconstructed because 
they contain transient T1 effects. Slices were collected in an ascend-
ing interleaved fashion. We analyzed the first completed session 
for each participant. A T1-weighted anatomical image (FSPGR, slice 
thickness = 0.7 mm, matrix size = 256 × 256, FOV = 220 mm, phase 
encoding = anterior/posterior, FA = 15 ms, bandwidth = 31.25, voxel 
size = 0.86 × 0.86 0.7 mm) was acquired at the start of the MRI session.

2.3 | Task description

Participants received earplugs in combination with sound-isolating 
headphones for a profound noise reduction inside the MRI machine. 
Our visual stimulus consisted of 600 black and white dots (diame-
ter = 0.5°) randomly positioned on a gray background. The dots moved 
coherently at a constant speed (7°/sec) for the duration of 27.5 s (here-
with called “motion” stimulus). After this time period, static dots were 
shown for another 27.5 s (herewith called “static” stimulus). Each run 
was 11 min long with 12 blocks of the motion stimulus. The motion 
stimulus could move to the left, right, counterclockwise, or clockwise 
and change from one block to the other. Participants were asked to 
passively look straight ahead through the visual stimulus. Instantly after 
the end of the motion stimulus, participants had to press a button when 
they no longer experienced the motion aftereffect (the feeling that the 
static dots were moving into the opposite direction from the precedent 
stimulus). MATLAB 8.0 (The MathWorks, Inc., Natick, Massachusetts, 
US) was used together with the Cogent 2000 toolbox (http://www.vis-
lab.ucl.ac.uk/cogent_2000.php) to present the visual stimuli. The field 
of view was ±24.9° in the horizontal and ±18.9° in the vertical plane. 
The visual field was kept small to prevent sensations of vection.

2.4 | Preprocessing

Image preprocessing was performed using DPARSF 
(RRID:SCR_002372, version 4.3_170105) toolbox with MATLAB 
2016 (RRID:SCR_001622, The MathWorks, Inc.). Functional images 
of each participant were realigned to the first. The T1 images were 
segmented using the affine regularization in DARTEL and subse-
quently coregistered to the mean functional image. Both functional 
and structural images were normalized using DARTEL into MNI 
space at a voxel size of 2 mm3. Functional images were addition-
ally smoothed during the normalization process using a Gaussian 
smoothing kernel with FWHM of 4 mm.

http://www.vislab.ucl.ac.uk/cogent_2000.php
http://www.vislab.ucl.ac.uk/cogent_2000.php
info:x-wiley/rrid/RRID:SCR_002372
info:x-wiley/rrid/RRID:SCR_001622
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2.4.1 | Head motion

Head movements may induce spurious correlations of the fMRI 
time courses with each other (Power, Barnes, Snyder, Schlaggar, & 
Petersen, 2012) and distort graph measures (Yan, Craddock, He, & 
Milham, 2013). Therefore, mean motion and correlations of head 
movement with task on- and offsets were inspected and compared 
between PPV patients and HC. Head motion was determined using 
framewise displacement (FD) calculated according to Jenkinson 
(Jenkinson, Bannister, Brady, & Smith, 2002) as implemented within 
the DPARSF toolbox. This measure was recommended over other 
head motion parameters by Yan, Cheung, et al. (2013).

For all participants, the following two FD measures were used. 
First, mean FD was calculated across the whole scanning session 
(260 time points). Second, the correlation between FD and the task 
was determined as the Pearson correlation between the binary vec-
tor representing task on- and offsets and the FD vector across the 
scanning session. Therefore, we determined not only whether par-
ticipants moved excessively in general but also to what degree head 
movement coincided with the task. Values with a normalized z-score 
of >±3 within each group led to exclusion of the subject's data set.

In the PPV group, one patient had to be excluded due to high 
mean FD (mean FD = 0.153, z = 3.191). No other individual from the 
PPV group had to be excluded due to excessive task–motion correla-
tion. Within the HC group, no outlier values were found. No HC was 
therefore excluded from further analysis.

Differences in head motion between groups were analyzed to 
assure validity of the network analysis. Assumptions for homoge-
neity of variances were tested for each group using F test; assump-
tions of normality were tested using Shapiro–Wilk normality test. If 
assumptions of homogeneity and normality were met, two-sample t 
test was used for group comparison; else, nonparametric Wilcoxon 
rank test was used.

Nonparametric tests were used to determine differences of 
mean FD between groups; groups did not differ significantly in mean 
FD (W = 124, p = .351) (Figure 2c). Group differences between task–
movement correlations were tested using a parametric two-sample t 
test since all necessary assumptions were met. Indeed, group differ-
ences were found (t(33) = −2.203, p = .035) with correlation of motion 
with task onsets being significantly higher in PPV patients compared 
to HC (Figure 2d). To take this into consideration, we removed mo-
tion parameters from the original BOLD signal, as described in the 
following section.

2.4.2 | Data extraction and cleaning

Subsequent processing was performed using the CONN toolbox 
(RRID:SCR_009550, version 17.f) (Whitfield-Gabrieli & Nieto-
Castanon, 2012). For each participant, inputs to the CONN 
processing pipeline included the preprocessed functional and 
structural images, as well as the normalized gray matter, white mat-
ter (WM), and cerebrospinal fluid (CSF) masks. The mean BOLD 

signal was extracted from 160 region of interest (ROIs) (4.5-mm-
radius spheres), according to the Dosenbach atlas (Dosenbach et al., 
2010) (Figure  1a). The atlas was downloaded from ABIDE Open 
Connectomes Project website (http://prepr​ocess​ed-conne​ctome​s-
proje​ct.org/abide​/Pipel​ines.html). Six motion parameters (three ro-
tation and three translation parameters) were entered as first-level 
covariates, and group identity vectors (patients and controls) were 
entered as second-level parameters. A principal component analysis 
(PCA) was performed to determine the signals explaining the most 
variance in the WM and CSF.

The time series were then denoised. First, the first five princi-
pal components from the PCA and the 6 motion parameters were 
removed via linear regression. Because we were interested in func-
tional connectivity which cannot be explained by task-specific co-ac-
tivations, the time series convolved with the hemodynamic response 
function for the task effects of the “motion” and “static” conditions 
were also regressed out of the BOLD signals. After regression, data 
were high-pass-filtered with a cutoff of 0.008  Hz to remove any 
scanner-related drifts in the signal. No low-pass filter was applied to 
avoid possible signal spillage of the BOLD signal between different 
conditions and to avoid filtering out possible task signals at higher 
frequencies (Cole, Bassett, Power, Braver, & Petersen, 2014). Finally, 
the time series were detrended and despiked, as implemented in the 
CONN toolbox. The resulting BOLD signals from the 160 regions 
were used for data analysis.

2.5 | Data analysis

Graph theory was used to characterize brain network connectivity. In 
this method, the brain is defined as a set of nodes connected to each 
other via edges, thus forming a graph (Fornito, Zalesky, & Bullmore, 
2016). In the context of fMRI, edges are derived from the Pearson 
correlation between BOLD signal time courses of the two respective 
nodes (Fornito et al., 2016). In the following, the analysis steps will 
be specified (also see Figure 1 for a graphical representation).

2.5.1 | Adjacency matrix

We were interested in investigating potential differences in con-
nectivity separately during static and motion conditions. To 
achieve this, we used the standard approach implemented in 
CONN to determine “condition-dependent” functional connectiv-
ity. Specifically, a weighted GLM was performed to determine the 
BOLD signals specific for the static and the motion conditions, re-
spectively. For this, the block regressors are convolved with the 
hemodynamic response function, thus creating a measure of how 
each scan is expected to be affected by each task. This regres-
sor is then further used to weight each scan in order to compute 
a weighted correlation across all time points (also see Whitfield-
Gabrieli & Nieto-Castanon, 2012). The correlations computed for 
each ROI were included in two 160x160 adjacency matrices for 

info:x-wiley/rrid/RRID:SCR_009550
http://preprocessed-connectomes-project.org/abide/Pipelines.html
http://preprocessed-connectomes-project.org/abide/Pipelines.html
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each participant, one for each condition (static and motion) with 
the correlation value between all nodes described as a z-score 
(Figure 1b). Note that anticorrelations were not considered for the 
analysis; therefore, only positive z-scores were used for the sub-
sequent calculations.

2.5.2 | Graph measures

Three graph measures were chosen to describe network properties: 
DC, CC, and ECC. DC is the total number of edges that connect the 
node to the remaining network (Bullmore & Sporns, 2009). A node 
with a high DC will interact highly with the remaining nodes of the 
network (Fornito et al., 2016; Rubinov & Sporns, 2010). CC measures 

the number of pairs of a node's neighbors that are connected with 
each other as a fraction of the total amount of pairs that particular 
node has (Fornito et al., 2016). Paths in a network are a distinct se-
quence of a route of information flow. ECC is a nodal measure for 
path length and is defined as the maximum shortest path length be-
tween a node and any other node, thus describing how functionally 
integrated a node is (Rubinov & Sporns, 2010).

2.5.3 | Thresholding

In order to calculate graph theory measures from the  adjacency 
matrices, thresholding is usually performed to remove spurious 
links with low correlation values (Fornito et al., 2016). It has been 

F I G U R E  1  The analysis pipeline used in this study, shown for one example participant. The analysis pipeline was loosely based on 
previous analysis approaches (e.g., Bassett et al. (2012) and Markett, Montag, Melchers, Weber, and Reuter (2016). (a) The BOLD signal 
was extracted from 160 Dosenbach nodes for all 260 time points. Signal includes periods where participants were shown a visual motion 
stimulus (“motion”), interspersed with periods with a static visual stimulus (“static”). (b) Adjacency matrices for each participant were created 
for the static and motion condition by using hemodynamic response function weighting and bivariate correlation. (c) Binarized matrices were 
created with a range of costs (0.04–0.3, steps of 0.01), which was determined as being the thresholds where small-world dynamics were 
preserved. (d) For each threshold, three measures were calculated: degree centrality, clustering coefficient, and eccentricity. Area under 
the curve (AUC) was calculated for each node and each graph measure. (e) Mean over nodes belonging to the same network, for each of the 
graph measures. Here, only values for mean DC are shown; however, they were calculated for clustering coefficient and shortest path as 
well. DC, degree centrality
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suggested that density thresholding is more appropriate than abso-
lute thresholding to keep the number of links in the graph stable. 
This way, possible differences in graph properties do not merely 
emerge due to different connection density. Relative thresholding is 
thus particularly suited for comparing brain graphs between groups 
of participants (De Vico Fallani, Richiardi, Chavez, & Achard, 2014; 
Fornito et al., 2016). However, often only one arbitrary proportional 
threshold (or “network cost”) is chosen for a network which might 
also lead to erroneous results.

We therefore adopted the approach of calculating graph mea-
sures over a range of threshold values (similar to Bassett, Nelson, 
Mueller, Camchong, & Lim, 2012; Ginestet, Nichols, Bullmore, & 
Simmons, 2011) instead of choosing one arbitrary network cost. The 
range of threshold values was chosen such that networks had small-
world properties, as would be expected from a biologically plausible 
network (Achard & Bullmore, 2007). A small-world network should 
have a global efficiency greater than a lattice graph but smaller than 
a random graph (Achard & Bullmore, 2007). Furthermore, local ef-
ficiency of a small-world network should be lower than a lattice 
graph and higher than a random graph. For this, global and local ef-
ficiency of all participants during static periods were compared with 
global and local efficiency of randomized and lattice graphs. Using 
the randmio_und and latmio_und functions of the Brain Connectivity 
Toolbox (Rubinov & Sporns, 2010, RRID:SCR_004841, version from 
15.01.2017), the graph of each participant was both permuted to 
a random and a lattice graph for costs in the interval of 0.01–0.60 

using a step size of 0.02 and a rewiring parameter of 100. Global and 
local efficiency were calculated for each cost (Figure  2a,b). Small-
world properties were found in the range of costs between 0.04 
and 0.3 (Figure 2a), similar to Achard and Bullmore (2007). This cost 
range was used for all subsequent calculations (Figure 1c).

For each thresholded matrix (0.04–0.3, steps of 0.01), adja-
cency matrices were binarized using the functions threshold_propor-
tional and weight_conversion from the Brain Connectivity Toolbox 
(Figure 1c). For ECC, a distance matrix was calculated using the func-
tion distance_bin. DC, CC, and ECC were calculated using functions 
for undirected binary networks from the Brain Connectivity toolbox, 
respectively. Therefore, each node could be described with three 
graph measures calculated using 35 different thresholds.

To summarize these values, for each of the 160 atlas nodes and 
for each graph measure, the area under the curve (AUC) was cal-
culated, resulting in 160 × 3 values for each participant (Figure 1d). 
Since we were mainly interested in characterizing network prop-
erties of functional networks, we grouped every node into one of 
six networks: cingulo-opercular, fronto-parietal, default-mode, 
sensorimotor, occipital, and cerebellum (Figure  1e) (according to 
Dosenbach et al., 2010). For each network, we thus calculated the 
mean AUC from the respective nodes. Therefore, in the end, each 
participant had 18 summary network measures for each condition: 
the AUC for the three graph measures for the six networks. These 
were calculated for both static and motion periods, thus resulting in 
36 measures overall for each participant.

F I G U R E  2   (a) Global efficiency for 
real graphs (healthy controls [HCs] and 
patients [PPV]) and shuffled graphs 
(random and lattice) at different costs. 
Small-world regime occurs between 
thresholds of 0.04 and 0.3 (highlighted in 
red). (b) Local efficiency for real graphs 
(HC and PPV patients) and shuffled graphs 
(random and lattice) at different costs. 
(c) Box plot showing mean framewise 
displacement (FD) over the course of the 
whole session for HC and PPV patients 
(white cross indicates mean). (d) Box plot 
showing correlation between FD and a 
vector modeling onset and offset of visual 
stimulation for HC and PPV patients 
(white cross indicates mean). PPV, phobic 
postural vertigo

info:x-wiley/rrid/RRID:SCR_004841
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2.5.4 | Group statistics

We first tested for differences between network properties in each 
stimulation condition separately, and then by subtracting the sum-
mary graph measures of the static condition from the motion condi-
tion (motion–static). In both cases, we used a mixed-design ANCOVA 
with “group” as between-group factor, “network” as within-group 
factor, and age of participants as a covariate. In case of a significant 
Mauchly test of sphericity, Greenhouse–Geisser correction for de-
parture from sphericity was reported. We were interested in dif-
ferences between groups, rather than differences solely explained 
by the heterogeneity of networks across groups. Therefore, only 
in the case of significant main effects of “group” or an interaction 
of “group” with “network,” post hoc pairwise t tests were used to 
determine the nature of the difference using FWE correction using 
Tukey's method. All calculations were performed using lsmeans 
(Lenth, 2016), afex (Singmann, Bolker, Westfall, & Aust, 2018), plyr 
(Wickham, 2011), and reshape (Wickham, 2007) libraries in R 3.4.0 
(RRID:SCR_001905, 2018). Human brain networks were visualized 
using BrainNet Viewer (Xia, Wang, & He, 2013, RRID:SCR_009446). 
All analysis and plotting of results were performed using R 3.4.0, 
Python 3, and MATLAB 2016 (The MathWorks, Inc.).

3  | RESULTS

3.1 | Connectivity group effects during static and 
motion condition

To test for the presence of general differences in any of the meas-
ures, we performed a MANCOVA to determine the overall group, 
network, or interaction effect on any graph measure during static 

and motion conditions, as well as the effect of age. By including 
the factor “network” as a repeated-measure factor and “group” as 
an independent-measure factor, we aimed to minimize unexplained 
variance from the model. Three graph measures (DC, CC, and ECC) 
were included as dependent variables, and group of participants and 
six functional networks were included as independent variables. 
Age was added as a covariate. Note that the main significant results 
below remain, even if we correct our initial significant p-value for 
multiple testing using Bonferroni correction since three MANCOVAs 
were tested (i.e., if we adjust the criterion to p = .0167).

To additionally investigate effects of motion, an alternative 
model was tested that included a subject-specific nuisance regres-
sor for regressing out the signal related to time points with excessive 
motion (see Supplementary Information, Analysis 1). We also con-
ducted the same analysis with normalized values by the estimated 
values for a random graph (see Supplementary Information, Analysis 
2). Unless otherwise stated, the results in these alternative analyses 
yielded the same results.

During the visual motion condition, no significant interaction 
(Pillai's trace = 0.062 F(5,15) = 0.658, p = .826) or main group effects 
were found (Pillai's trace = 0.087, F(3,29) = 0.924, p = .441). The main 
effect of age (Pillai's trace = 0.370, F(3,29) = 5.681, p = .003), as well as 
the factor of network, was found to be significant using MANCOVA 
(Pillai's trace  =  0.844, F(5,15)  =  12.143, p  <  .001). No subsequent 
ANCOVAs were thus performed for this condition (Figure 3b,d).

For the static condition, however, the interaction between 
group and network effects was significant (Pillai's trace  =  0.187, 
F(15,465)  =  2.057, p  =  .011). There was no significant main effect 
of group (Pillai's trace  =  0.023, F(3,29)  =  0.234, p  =  .871) and no 
main effect of age (Pillai's trace = 0.159, F(3,29)  = 1.834, p  =  .163). 
Furthermore, a significant main effect of the factor network was 
found (Pillai's trace = 0.740, F(15,465) = 10.145, p < .001).Consequently, 

F I G U R E  3  Box plots comparing 
degree centrality mean area under the 
curve (AUC) and clustering coefficient 
AUC between healthy controls (HCs) 
and patients (PPV) both in static and in 
motion, for each of the six functional 
brain networks given by Dosenbach 
(2010). White crosses indicate means, 
stars indicate a significant (p < .05) group 
effect, and outliers are marked with a 
black cross. (a) Degree centrality during 
static conditions. (b) Degree centrality 
during motion conditions. (c) Clustering 
coefficient during static conditions. (d) 
Clustering coefficient during visual motion 
conditions. PPV, phobic postural vertigo

info:x-wiley/rrid/RRID:SCR_001905
info:x-wiley/rrid/RRID:SCR_009446
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a subsequent post hoc analysis was used to determine what net-
work properties show differences between PPV patients and HC in 
specific networks. For this, three separate mixed-design ANCOVAs 
were performed, one for each of the network measures, DC, CC, and 
ECC during the static condition.

For DC, the factor group and network showed a significant in-
teraction (F(3.41,109.12) = 3.266, p =  .019, where degrees of freedom 
were adjusted using Greenhouse–Geisser estimates of spheric-
ity (ε  =  0.683) after Mauchly's test indicated that the assumption 
of sphericity had been violated [W(14)=0.355, p  =  .005]). Both the 
factor of group (F(1,32)=0.062, p =  .435) and the main effect of age 
(F(1,32)=0.136, p = .715) were not found significant. The main effect 
of network was found significant (F(3.41,109.12)=20.068, p < .001 after 
adjusting degrees of freedom as above). Because of the significant 
interaction, post hoc t tests were performed using Tukey's method 
to test in which networks the group effect was most pronounced. 
Indeed, DC of cerebellar network nodes (t(168.32) = −2.245, p = .0260) 
and default-mode network nodes (t(168.32) = −2.201, p = .0291) was 

higher in PPV patients compared to HC (Figure 3a). In contrast, DC 
of sensorimotor nodes (t(168.32) = 2.389, p = .018) was lower in PPV 
patients when compared to HC (Figure 3a). PPV patients also had 
a lower DC of occipital nodes, compared to HC (t(168.32)  =  1.996, 
p = .048), but this result did not survive in the model for subject-spe-
cific motion (see Analysis 1 in Supplementary Information). Individual 
within-participant changes in DC can be seen in Figure A.1.

For CC, a significant interaction between the factor of group 
and network was also found (F(3.57,114.24) = 2.560, p = .046). Degrees 
of freedom were adjusted using Greenhouse–Geisser estimates of 

F I G U R E  4  Box plots showing (a) change in degree centrality 
(ΔDC) and (b) clustering coefficient (ΔCC) across tasks (i.e., graph 
values during static subtracted from motion condition) for six 
functional networks of the Dosenbach atlas for healthy controls 
(HCs) and patients (PPV). Values above zero indicated nodes in the 
respective network had an AUC value during motion on average, 
whereas values below zero mean nodes in the network had a higher 
AUC value on average during the static condition. White cross 
indicates mean, stars indicate a significant (p < .05) group effect, 
and outliers are marked with a black cross. AUC, area under the 
curve; PPV, phobic postural vertigo

TA B L E  1   Coordinates and labels of nodes in the sensorimotor 
network (after Dosenbach et al., 2010)

Coordinates Node Number

58 11 14 Frontal 1

60 8 34 dFC 2

−55 7 23 vFC 3

10 5 51 Pre-SMA 4

43 1 12 vFC 5

0 −1 52 SMA 6

53 −3 32 Frontal 7

58 −3 17 Precentral gyrus 8

−42 −3 11 Mid-insula 9

−44 −6 49 Precentral gyrus 10

−26 −8 54 Parietal 11

46 −8 24 Precentral gyrus 12

−54 −9 23 Precentral gyrus 13

44 −11 38 Precentral gyrus 14

−47 −12 36 Parietal 15

33 −12 16 Mid-insula 16

−36 −12 15 Mid-insula 17

59 −13 8 Temporal 18

−38 −15 59 Parietal 19

−47 −18 50 Parietal 20

46 −20 45 Parietal 21

−55 −22 38 Parietal 22

−54 −22 22 Precentral gyrus 23

−54 −22 9 Temporal 24

41 −23 55 Parietal 25

42 −24 17 Posterior insula 26

18 −27 62 Parietal 27

−38 −27 60 Parietal 28

−24 −30 64 Parietal 29

−41 −31 48 Posterior 
parietal

30

−41 −37 16 Temporal 31

−53 −37 13 Temporal 32

34 −39 65 Superior parietal 33

Abbreviations: dFC, dorsal frontal cortex; SMA, supplementary motor 
area; vFC, ventral frontal cortex.
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sphericity (ε = 0.714), since Mauchly's test indicated that the assump-
tion of sphericity was violated, W(14) = 0.385, p = .012. No main ef-
fect of group was found (F(1,32) = 0.219, p = .643). However, the main 
factor of age was found to be significant (F(1,32) = 0.029, p =  .029). 
The main effect of network was also significant (F(3.57,114.24) = 26.817, 
p < .001), degrees of freedom were adjusted as above). Because of 
the significant interaction, we performed post hoc t tests using 
Tukey's method to determine in which networks CC significantly 
differed between HC and PPV patients. The only significant effect 
was found in the sensorimotor network (t(95.73) = 2.014, p = .047); HC 
showed a higher CC in the sensorimotor network (Figure 3c) than 
PPV patients. For an overview of within-participant changes in CC, 
see Figure A.2.

For ECC, no significant main effect or interaction was found 
during the static condition (Figure A.3a). Within-participant ECC val-
ues for each network can be seen in Figure A.4.

3.2 | Change of graph measures between conditions

We were further interested in the relative change in network 
properties between the visual motion and static visual conditions. 
For this, for each participant and graph measure, the values of 
each node during the static condition were subtracted from the 
motion condition, thus resulting in values representing the change 
of degree centrality (ΔDC), clustering coefficient (ΔCC), and ec-
centricity (ΔECC). This resulting value indicates whether the mean 
AUC for one graph measure of a certain network remained the 
same between conditions (and thus has a value close to zero), or 
whether it increased during motion (positive) or decreased during 
motion (negative).

An initial MANCOVA resulted in a significant interaction between 
the factors group and network (Pillai's trace = 0.176, F(15,465) = 1.933, 
p  =  .019), as well as a main effect of group (Pillai's trace = 0.313, 
F(3,29)  =  4.409, p  =  .0113) and a main effect of network (Pillai's 
trace = 0.182, F(15,465) = 2.008, p = .0135). The covariate of age was 
not significant (Pillai's trace = 0.066, F(3,29) = 0.679, p = .572). As be-
fore, the specific effects for each graph measure was determined via 
mixed-design ANCOVAs for ΔDC, ΔCC, and ΔECC. Only ΔDC and 
ΔCC showed significant differences between HC and PPV patients. 
For ΔECC, no significant interaction or main group effect was found 
(Figure A.5). For ΔDC, a significant interaction was found between 
the factor of group and network (F(3.97, 127.04)  =  3.456, p  =  .010). 
Degrees of freedom were adjusted using Greenhouse–Geisser es-
timates of sphericity (ε = 0.794) after Mauchly's test indicated that 
the assumption of sphericity was violated (W(14) = 0.422, p = .027). 
A significant main effect of network (F(3.97, 127.04) = 4.477, p =  .002 
degrees of freedom were adjusted as described above) and group 
(F(1,32) = 7.096, p = .012) was also found. No significant main effect of 
age was found (F(1,32) = 0.017, p = .897).

Subsequent t tests using Tukey's method revealed that the differ-
ence between groups was significant for the sensorimotor network 
(t(167.99)  =  −3.467, p  =  .0007). PPV patients showed a significantly 
higher positive change, compared to HC. Conversely, HC showed a 
significantly higher positive change of DC in the cerebellar network 
(T(167.99) = 2.389, p = .018). No significant group difference changes 
were found in the other networks for DC (Figure 4a).

For ΔCC, a significant interaction between the factor of group 
and network (F(5,160) = 3.003, p = .013) was found. There was no sig-
nificant group (F(1,32) = 2.167, p = .151) or age effect (F(1,32) = 0.928, 
p  =  .343). A significant main effect of network (F(5,160)  =  3.500, 
p  =  .005) was also found. Because of the significant interaction, 

F I G U R E  5   Nodes of the sensorimotor 
network defined according to Dosenbach 
(2010)
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post hoc t tests were performed. A significant difference of ΔCC 
between groups in the sensorimotor network was found again 
(t(185.94) = −3.627, p = .0004). PPV patients displayed a significantly 
higher positive change of CC, compared to HC. No other significant 
group differences were found in other networks (Figure 4b).

The results for ΔCC were maintained when the analysis per-
formed on the values that were normalized to random networks. 
However, an additional significant interaction of network and 
group was found in ΔECC, with post hoc t tests showing that 
PPV patients had a significantly increased ECC in the sensorimo-
tor network compared to the HC group (t(63.51) = −2.217, p = .030) 
(see Supplementary Information, Analysis 2 for details). An over-
view of the nodes from the sensorimotor and cerebellar networks 
can be found in Table 1 and Figure 5 and Table 2 and Figure 6, 
respectively.

3.3 | Sources of differences in connectivity within 
cerebellar and sensorimotor network

Considering that cerebellar and sensorimotor networks showed sig-
nificant network property changes between experimental condition 
and across groups, the question arises: What about these networks 
led to a change in DC? Three options were conceivable: an increase/
decrease in connections (a) with nodes within the same network, (b) 
between nodes of the cerebellar and sensorimotor network specifi-
cally, and (c) to nodes of all the remaining networks in the brain (i.e., 
to the cingulo-opercular, fronto-parietal, default-mode, and occipital 
networks).

To determine this, the same adjacency matrix values were used 
for the analyses described before, but the matrices were reduced 
in size to test each of the three options. To test for within-network 
connectivity, DC for nodes of only one network (either cerebellar 
or sensorimotor) was calculated. To examine connectivity between 
the cerebellar and sensorimotor network, DC only between nodes 
of these networks was calculated (i.e., adjacency matrices were cre-
ated containing only the correlation values of sensorimotor nodes to 
cerebellar nodes or vice versa). To determine the connectivity to the 
remaining networks, adjacency matrices containing only correlation 
values of either cerebellar or sensorimotor networks to nodes in the 
remaining networks were calculated. Other than the reduction of 
the adjacency matrices, the methodology was the same as described 
in Section 2.5 (also see Figure 1). To determine how PPV patients 
differed from HC, a 2  ×  2 mixed-design ANOVA with the repeat-
ed-measure factors of connectivity type (within-network connectiv-
ity, reciprocal connectivity, and other remaining connectivity) and 
the independent factor of group (HC and PPV) was performed for 
DC values during static and for ΔDC values.

For cerebellar connectivity during static vision, no main effect 
of group was found (HC and PPV patients) (F(1,33) = 2.678, p = .11). 
Therefore, differences in cerebellar DC between groups seem not 
to be driven by distinct patterns in within or between connectiv-
ity (Figure A.6a). In sensorimotor connectivity during static vision, 

a significant effect of the factor group was found F(1,33)  =  5.68, 
p = .023). In subsequent post hoc tests, a significant effect of with-
in-connectivity was found with PPV showing significantly lower 
within-network connectivity (t(98.39)  = 2.893, p  =  .005). Therefore, 
differences in DC between groups seem to be driven by connectivity 
changes within the somatosensory network (Figure A.6b).

When analyzing ΔDC values, again for cerebellum, no group ef-
fect was found (F(1,33) = 1.72, p = .20). Again, this suggests that no 
distinct connectivity changes occur (Figure A.4a) in the cerebellar 
network. For sensorimotor connectivity, a main effect for the fac-
tor group was found (F(1,33) = 11.786, p = .002). Post hoc t tests re-
vealed a significant effect both in within-sensorimotor connectivity 
(t(98.35)  = −2.934, p  =  .004) and in remaining connectivity to other 
brain networks (t(98.35) = −3.157, p = .002), with PPV patients show-
ing higher ΔDC than HC. Therefore, both within-connectivity and 
connectivity to the remaining brain contributed to differences in 
ΔDC between groups (Figure A.7b).

4  | DISCUSSION

The aim of the current analysis was to study the whole-brain net-
work properties in functional dizziness. We further wished to disen-
tangle intrinsic network effects related to visual motion processing 
from network effects during static visual processing. For this, graph 
theory was used to characterize six functional brain networks 
(cingulo-opercular, fronto-parietal, default-mode, sensorimotor, oc-
cipital, and cerebellar network) during periods of visual motion and 
interjacent periods of a static visual stimulation. Importantly, the 

TA B L E  2   Coordinates and labels of nodes in the cerebellar 
network (after Dosenbach et al., 2010)

Coordinates Node Number

−28 −44 −25 Lateral cerebellum A

−24 −54 −21 Lateral cerebellum B

−37 −54 −37 Inferior cerebellum C

−34 −57 −24 Lateral cerebellum D

−6 −60 −15 Medial cerebellum E

−25 −60 −34 Inferior cerebellum F

32 −61 −31 Inferior cerebellum G

−16 −64 −21 Medial cerebellum H

21 −64 −22 Lateral cerebellum I

1 −66 −24 Medial cerebellum J

−34 −67 −29 Inferior cerebellum K

−11 −72 −14 Medial cerebellum L

33 −73 −30 Inferior cerebellum M

5 −75 −11 Medial cerebellum N

14 −75 −21 Medial cerebellum O

−21 −79 −33 Inferior cerebellum P

−6 −79 −33 Inferior cerebellum Q

18 −81 −33 Inferior cerebellum R
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effect of the task was regressed out from the main signal to study in-
teraction of regions above and beyond task co-activations. Based on 
previous behavioral findings (Holmberg et al., 2009; Querner et al., 
2000; Wuehr et al., 2017), we expected the sensory systems and the 
cerebellum to show the strongest changes in network properties.

To summarize, we found that brain networks of PPV patients are 
connected differently (i.e., they differed in their DC) in the two con-
ditions studied, compared to HC. During static visual stimulation, the 
default-mode network as well as the cerebellar network was found 
to be more strongly connected in PPV. This was accompanied by a 
lower connectivity of the sensorimotor network. Upon visual mo-
tion stimulation, the sensorimotor network of PPV patients became 
significantly more connected, while the cerebellar network became 
less connected compared to HC. Building on the previous study by 
Popp et al. (2018), we also find different connectivity of cerebel-
lum. The significant changes of network properties within the sen-
sorimotor network during the two visual stimulation periods in PPV 
patients are particularly notable. We found that the sensorimotor 
network initially displayed decreased DC and CC during static visual 
stimulation, but that these measures increased to a greater extent in 
PPV patients during visual motion. The significant differences in DC 
and CC suggest changes in importance and functional segregation 
of the sensorimotor network, respectively. To understand these re-
sults, it is helpful to understand that sensorimotor nodes are located 
in, amongst others, premotor regions, the supplementary motor 
area, and precentral gyrus (see Table 1 and Figure 5). These regions 
are thought to belong to the action-oriented motor network and are 
active during imagined vestibular sensation (zu Eulenburg, Müller-
Forell, & Dieterich, 2013).

The cerebellar network also had different network properties in 
PPV patients. The cerebellar network was connected more strongly 
in the static condition of PPV patients, and it did not display the same 
increase in DC upon motion stimulation, as is seen in HC. Aberrant 
cerebellar connectivity in functional dizziness has been also found 
during resting state, with an increase in connectivity to the thalamus 
(Van Ombergen et al., 2017) and a decrease in connectivity to other 
brain regions (Lee et al., 2018). The cerebellum is, amongst others, 
considered to be responsible for predicting sensory information to 
optimize perception (Baumann et al., 2015), displaying enhanced 
activity upon the absence of an expected somatosensory stimulus 
(Tesche & Karhu, 2000). Based on these findings, it would be inter-
esting to investigate whether increased DC of the cerebellum during 
static conditions is related to a dysfunctional stimulus prediction in 
PPV patients. Specifically, in a state without specific motion input, 
increased cerebellar integration to the remaining brain network may 
reflect inappropriate stimulus expectations, a possible mechanism 
for the overpreparedness of PPV patients for motion stimuli.

The default-mode network was found to have a higher mean 
DC in PPV patients during the static visual condition, when com-
pared to HC, but no different dynamics were found between the 
two visual conditions. This network consists of nodes extracted 
from precuneus, prefrontal cortex, anterior cingulate cortex, 
frontal cortex, and occipital regions (see Dosenbach et al., 2010). 
These regions were reported to support emotional process-
ing, self-referential mental activity, and recollection of previous 
experiences (Raichle, 2015), and aberrant default-mode rest-
ing-state connectivity was also found in patients diagnosed with 
major depressive disorders (Sheline, Price, Yan, & Mintun, 2010; 

F I G U R E  6   Nodes of the cerebellar 
network defined according to Dosenbach 
(2010)
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Whitfield-Gabrieli & Ford, 2012). Depression as well as anxiety 
disorders often displays with functional dizziness (Staab et al., 
2017). It would be interesting to test whether anxiety and depres-
sion are related to default-mode network connectivity changes in 
PPV—since we were not specifically interested in affective disor-
ders, this research question was, however, out of the scope of our 
current study. Other sensory networks did not differ in terms of 
their modulation between groups. The differences found in the 
occipital network were not statistically robust when correcting for 
motion, thus suggesting no direct involvement of the occipital net-
work in PPV. This is contrary to previous findings (Lee et al., 2018; 
van Ombergen et al., 2017).

The presented findings are an extension of the initial analysis 
by Popp et al. (2018), who conducted a voxel-based morphometry 
(VBM) analysis, task-based fMRI, and task-based functional con-
nectivity of selected seed regions. In the latter study, structural 
differences between PPV patients and HC were found in cerebel-
lum, as well as precentral gyrus and primary motor cortical areas 
(largely part of the sensorimotor network), but also thalamus, left 
supramarginal gyrus, and middle frontal gyrus. Interestingly, in the 
task-based fMRI analysis only a significant increased BOLD signal 
in the subgenual anterior cingulate cortex was seen in PPV, hinting 
at more complex functional differences. Using task-based functional 
connectivity of six selected seeds (based on the findings of the VBM 
analysis), differences in the cerebellum and precentral gyrus were 
found amongst others (Popp et al., 2018). In the current study, we 
expanded on these findings using a functional network analysis 
across the whole brain (rather than extracting seeds) and took ad-
vantage of the different task episodes (static and motion). Indeed, 
we also found an involvement of premotor areas and cerebellar net-
works, particularly upon visual motion stimulation.

Taken together, we hypothesize that network changes found 
in PPV patients can be connected to the mechanistic models of 
sensory efference copy (von Holst & Mittelstaedt, 1950) or the 
related Bayesian modeling approach (Henningsen et al., 2018; 
Petzschner, Weber, Gard, & Stephan, 2017). The first model ex-
plains the tendency of vertigo patients to perceive involuntary 
bodily fluctuations and individual head movements as a disturbing 
external acceleration by a transient uncoupling of efference and 
efference copy, leading to a mismatch between anticipated and 
actual motion (Brandt, 1996; Henningsen et al., 2018; Petzschner 
et al., 2017). In the latter model, perception or beliefs are consid-
ered to be an inferred process. Here, abnormal signaling or com-
putation of priors, prediction errors, or precision ratios leads to 
functional somatic syndromes such as PPV (see Petzschner et al., 
2017 for more details). Connecting this to the present findings, 
we suggest that in the absence of visual motion stimulation, net-
works associated with stimulus expectations (cerebellar network) 
and increased focus on internal processes (default-mode network) 
are overprioritized in PPV. Conversely, the sensorimotor network 
is less important in PPV during static visual input. Upon visual mo-
tion, regions involved with action-oriented evaluation of sensory 
stimuli become overprioritized upon sensory input in patients. To 

test the hypothesis that the differences in network dynamics are 
related to differences in stimulus expectation and evaluation, it 
would be necessary to include behavioral measures which test for 
dysfunctional interpretation of sensory input and to connect them 
to changes in connectivity measured by means of fMRI.

Overall, in the present study we took a whole-brain, net-
work-level approach to characterize changes in the brain of PPV pa-
tients when compared to HCs. Therefore, we did not aim to reach 
any conclusions regarding how individual nodes/brain regions are 
implicated. We restricted our graph theoretical approach to three 
simple and widely used measures (DC, CC, and ECC) to investigate 
importance, functional segregation, and functional integration of 
the networks. We did not find any differences in ECC in any of our 
measurements.

A limitation of our study is that eye movements were monitored 
but not recorded. Although relevant ocular motor phenomena or 
neuroophthalmological pathologies have already been excluded 
in the diagnosis process, we cannot completely exclude that sub-
tle differences in ocular motor behavior explain the differences in 
functional connectivity. In future studies, it would be interesting to 
record and analyze eye movements during such a visual motion para-
digm to determine potential influences on connectivity. Another lim-
itation of the study is that the presented findings may not be unique 
to PPV. Firstly, due to the comorbidity of PPV with depression and 
anxiety the network-level changes found in PPV may not be specific 
to functional dizziness, but rather depression or anxiety in general. 
Future studies should include populations of individuals with similar 
levels of trait anxiety and depression (but without dizziness symp-
toms) to evaluate specificity of the described results. Furthermore, 
previous studies suggested that visual dependency is related to 
chronic functional dizziness symptoms (Cousins et al., 2014, 2017). 
In future, recording visual dependency in a similar manner would 
be useful to determine the relation of our reported functional brain 
changes to such visual motion sensitivity.

5  | CONCLUSIONS

Distinct changes in functional brain networks in PPV patients dur-
ing static visual stimulation were found in nodes of the sensorimo-
tor network, the cerebellar network, and the default-mode network. 
Upon visual motion, nodes in the sensorimotor network become 
more connected in PPV, whereas cerebellar nodes become more 
connected in HC. We hypothesize that the underlying network dif-
ferences may be related to dysfunctional stimulus expectations and 
suggest combining functional brain network analysis with psycho-
physical approaches in PPV patients using Bayesian modeling.
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