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ABSTRACT  1 

Background: Cytokines and growth factors have been implicated in the initiation and 2 

propagation of vascular disease.		Observational studies have shown associations of their 3 

circulating levels with stroke. Our objective was to explore whether circulating levels of 4 

cytokines and growth factors are causally associated with stroke and its etiologic subtypes by 5 

conducting a two-sample Mendelian randomization (MR) study.  6 

Methods: Genetic instruments for 41 cytokines and growth factors were obtained from a 7 

genome-wide association study (GWAS) of 8,293 healthy adults. Their associations with 8 

stroke and stroke subtypes were evaluated in the MEGASTROKE GWAS dataset (67,162 9 

cases; 454,450 controls) applying inverse-variance-weighted meta-analysis, weighted-median 10 

analysis, MR-Egger regression, and multivariable MR. The UK Biobank cohort was used as 11 

an independent validation sample (4,985 cases; 364,434 controls). Genetic instruments for 12 

monocyte chemoattractant protein-1 (MCP-1/CCL2) were further tested for association with 13 

etiologically related vascular traits using publicly available GWAS data.  14 

Results: Genetic predisposition to higher MCP-1 levels was associated with increased risk of 15 

any stroke (OR per 1-SD increase: 1.06, 95% CI: 1.02-1.09, p=0.0009), any ischemic stroke 16 

(OR: 1.06, 95% CI: 1.02-1.10, p=0.002), large artery stroke (OR: 1.19, 95% CI: 1.09-1.30, 17 

p=0.0002) and cardioembolic stroke (OR: 1.14, 95% CI: 1.06-1.23, p=0.0004), but not with 18 

small vessel stroke. The results were stable in sensitivity analyses and remained significant 19 

after adjustment for cardiovascular risk factors. Analyses in the UK Biobank showed similar 20 

effect sizes for available phenotypes (any stroke: OR: 1.08, 95% CI: 0.99-1.17, p=0.09; any 21 

ischemic stroke: OR: 1.07, 95% CI: 0.97-1.18, p=0.17). Higher MCP-1 levels were further 22 

associated with coronary artery disease (OR: 1.04, 95% CI: 1.00-1.08, p=0.04) and 23 

myocardial infarction (OR: 1.05, 95% CI: 1.01-1.09, p=0.02), but not with atrial fibrillation. 24 
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A meta-analysis of observational studies showed higher circulating MCP-1 levels in stroke 1 

patients compared to controls.  2 

Conclusions: Lifelong elevated circulating levels of MCP-1 are causally associated with 3 

increased risk of stroke, particularly with large artery stroke and cardioembolic stroke. 4 

Whether targeting MCP-1 or its receptors can lower stroke incidence requires further study. 5 

 6 

Key Words: MCP-1; CCL2; inflammation; cytokines; atherosclerosis; stroke; Mendelian 7 

randomization; genetics, human 8 
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INTRODUCTION 1 

Stroke is the leading cause of long-term disability and the second most common cause of 2 

death world-wide1, 2 with a growing burden on global health.3 Inflammatory mechanisms have 3 

been implicated in stroke and etiologic stroke subtypes,4-7 and specifically demonstrated for 4 

large artery atherosclerotic stroke 4, 5. Cytokines and growth factors regulate the inflammatory 5 

response4 and thus may serve as targets for cardiovascular disease prevention.8 Indeed, the 6 

CANTOS trial recently demonstrated the potential of targeting specific inflammatory 7 

cytokines in reducing vascular endpoints.9 8 

Few studies have investigated associations between circulating levels of inflammatory 9 

cytokines and risk of stroke. Levels of IL-1β and IL-6 were found to be associated with 10 

incident and recurrent ischemic stroke.4 However, these associations derived from 11 

observational studies preclude conclusions about causal relationships because of possible 12 

confounding and reverse causation.10 Also, associations with etiologic stroke subtypes were 13 

not investigated in depth.4 Hence, the potential causative role of individual cytokines in 14 

determining stroke risk remains elusive. Developing meaningful strategies for stroke 15 

prevention will require defining these relationships.11 16 

Mendelian randomization (MR) aims to overcome the limitations of conventional 17 

epidemiologic studies with respect to confounding and reverse causation. By using genetic 18 

variants as instrumental variables for a trait, MR enables an investigation of causal effects.12, 19 

13 A recent genome-wide association study (GWAS) in 8,293 healthy subjects of Finnish 20 

ancestry identified multiple common genetic variants that influence circulating levels of 41 21 

cytokines and growth factors (referred to hereafter as ‘cytokines’ for simplicity),14 thus 22 

providing comprehensive data on genetic determinants of circulating inflammatory 23 

biomarkers.14 24 
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Here, by leveraging data from this recent GWAS on cytokines14 and the largest GWAS meta-1 

analysis on stroke and stroke subtypes to date,15 we implemented a two-sample MR study to: 2 

(i) explore the causal associations between circulating cytokine levels with risk of any stroke; 3 

(ii) evaluate specific associations with ischemic stroke and its major etiologic subtypes (large 4 

artery stroke, cardioembolic stroke, and small vessel stroke); (iii) validate these findings in 5 

UK Biobank as an independent cohort; (iv) compare the MR effects to effect estimates 6 

derived from meta-analyses of observational studies and (v) examine the causal association 7 

with etiologically related vascular outcomes including coronary artery disease (CAD), 8 

myocardial infarction (MI), intracerebral hemorrhage (ICH), and atrial fibrillation (AF).  9 

 10 

METHODS 11 

Study design and data sources 12 

The overall design of this study is displayed in the Central Illustration. Supplemental 13 

Table 1 summarizes our data sources for this MR study. The genetic instruments were taken 14 

from publicly available summary statistics.14 For each of the 41 cytokines (full list provided 15 

in Supplemental Table 2) we selected single nucleotide polymorphisms (SNPs) associated 16 

with its circulating levels at a significance threshold of a false discovery rate (FDR) <5%.16 17 

To avoid bias by selection of false positive instruments, we performed additional analyses 18 

using a genome-wide threshold of significance (p <5x10-8). After extracting the summary 19 

statistics for significant SNPs, we pruned all SNPs in linkage disequilibrium (LD; r2 <0.1 in 20 

the European 1000G reference panel) retaining SNPs with the lowest p-value as independents 21 

instrument. We identified 698 SNPs not in LD to be significantly associated with circulating 22 

cytokine levels; 615 of them were also available in the MEGASTROKE dataset. To avoid use 23 

of pleiotropic instruments we excluded 126 SNPs that were associated with levels of more 24 

than one cytokine17 leaving 489 SNPs as the final instruments. These instruments related to 25 
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the circulating levels of 23 cytokines, whereas for 18 cytokines no SNPs fulfilling our 1 

instrument selection criteria could be identified.  2 

The primary outcomes for this study were any stroke, any ischemic stroke, and etiologic 3 

ischemic stroke subtypes defined by TOAST criteria: large artery stroke, cardioembolic 4 

stroke, and small vessel stroke.18 We extracted effect estimates for the associations of the 5 

selected instruments with stroke and its subtypes from the MEGASTROKE multi-ancestry 6 

GWAS dataset (67,162 cases; 454,450 controls).15 Sensitivity analyses restricted to 7 

individuals of European ancestry (40,528 cases; 445,396 controls) were conducted, to 8 

minimize ancestral mismatch with the Finnish population used for the discovery GWAS on 9 

cytokines.14 10 

We computed F-statistics to quantify the strength of the selected instruments19 and performed 11 

power calculations.20 The F-statistic for the 489 instrument SNPs ranged from 17 to 789 12 

(Supplemental Table 3), well above the threshold of F >10 typically recommended for MR 13 

analyses.21 Based on the sample size of MEGASTROKE, there was >80% power to detect 14 

significant associations with any stroke and any ischemic stroke for 18 of 23 cytokines at an 15 

effect size (OR [odds ratio]) of 1.10. Power was lower for the remaining 5 cytokines and for 16 

sub-analyses by ischemic stroke subtypes (Supplemental Table 3). 17 

For validation of significant associations in MEGASTROKE, we used the UK Biobank 18 

dataset as detailed in the Supplemental Methods. We included cases of prevalent and 19 

incident stroke. Cases with an unconfirmed self-reported diagnosis of stroke were excluded 20 

from the analysis. The final sample size consisted of 369,419 individuals, including 4,985 21 

cases with any stroke and 3,628 cases with any ischemic stroke. No data were available on 22 

ischemic stroke subtypes.  23 

Cytokines that were significantly associated with stroke were subsequently explored for an 24 

association with etiologically related vascular outcomes. Publicly available summary statistics 25 
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were extracted from the CARDIoGRAMplusC4D Consortium for CAD and MI (60,801 CAD 1 

and 43,676 MI cases; 123,504 controls),22 a meta-analysis of 1,545 cases and 1,481 controls 2 

for ICH,23 partially overlapping with the MEGASTROKE dataset, and the AFGen 3 

Consortium for AF (17,931 cases; 115,142 controls).24 4 

 5 

Mendelian randomization analysis 6 

After extraction of data and harmonization of the effect alleles across GWASs, we computed 7 

individual MR estimates and standard errors from the SNP-cytokine and SNP-outcome effects 8 

using the Wald estimator and the Delta method.25 The MR effect of each cytokine on stroke 9 

was estimated after pooling individual SNP MR estimates using fixed-effects inverse-variance 10 

weighted (IVW) meta-analysis.25 Statistical significance for the MR associations with stroke 11 

was set at a p-value corrected for multiple comparisons (based on number of cytokines) using 12 

the Bonferroni method. A p <0.05 but above the Bonferroni-corrected threshold was 13 

considered as suggestive for association. The IVW MR approach assumes that instruments 14 

affect the outcome only through the exposure under consideration, and not by some 15 

alternative pathway.25 Any violation of this assumption would represent horizontal pleiotropy 16 

of the instrument and could introduce bias to the MR estimate. In the absence of any such 17 

horizontal pleiotropy, there would not be any expected heterogeneity in the MR estimates 18 

obtained from different instruments. As such, heterogeneity markers (I2 >25% or Cochran Q-19 

derived p <0.05) from the IVW MR were used as indicators of possible horizontal 20 

pleiotropy.26 21 

For cytokines showing either significant or suggestive associations or significant 22 

heterogeneity in the primary IVW MR analysis, we conducted additional sensitivity analyses 23 

that vary in their underlying assumptions regarding the presence of pleiotropic genetic 24 

variants that may be associated with the outcome independently of the exposure. Particularly, 25 
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we used MR-Egger regression, which requires that the strengths of the instruments are 1 

independent of their direct effect on the outcome,27 and the weighted median method, which 2 

requires that at least half of the information for the MR analysis comes from valid 3 

instruments.28 We used the intercept obtained from the MR-Egger regression as a measure of 4 

directional pleiotropy (p <0.05 was considered significant),27 and also  tested for outlier SNPs 5 

using MR-PRESSO.29  6 

To generate MR estimates unaffected by the presence of pleiotropic pathways acting through 7 

cardiovascular risk factors, we performed regression-based multivariable MR with summary 8 

genetic association estimates30 that adjusted for the genetic association of instruments with 9 

circulating lipids levels (LDL cholesterol, HDL cholesterol, triglycerides), type 2 diabetes 10 

(T2D), and blood pressure measurements (systolic and diastolic blood pressure, 11 

hypertension). Genetic association estimates for these phenotypes were extracted from the 12 

GLGC consortium,31 the DIAGRAM consortium,32 and the UK Biobank GWAS published by 13 

the Neale lab (https://sites.google.com/broadinstitute.org/ukbbgwasresults), respectively.  14 

Instrument SNPs for cytokines showing significant associations with stroke were mapped to 15 

the nearest gene using the GRCh37/hg19 reference genome. We used the STRING database33 16 

to look for protein-protein interactions between gene products and the cytokines and 17 

identified interacting subnetworks. As a sensitivity analysis and to gain further insight into the 18 

biological processes involved in the causal association, we performed IVW MR analysis with 19 

SNPs restricted to the specific subnetworks. 20 

The GWAS used to select cytokine instruments included no replication and its effect 21 

estimates were further adjusted for BMI, besides age and sex.14 As a sensitivity analysis for 22 

any possible bias that may be introduced by this BMI adjustment or winner’s curse,34 we also 23 

calculated an unweighted allele score for any cytokines demonstrating a significant effect in 24 

our main IVW MR analysis.35 Such an unweighted allele score may offer evidence of a causal 25 
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effect of the exposure on the outcome without suffering from bias in the genetic association 1 

estimates for the exposure, although this is at the cost of not being able to estimate the 2 

magnitude of any such effect.35 3 

 4 

Meta-analysis of observational studies 5 

For the cytokines that showed significant associations with stroke in MR, we performed a 6 

meta-analysis of observational studies. We searched Medline until December 10, 2017 7 

(search strategy is available in the Supplemental Methods), for case-control studies 8 

comparing the circulating cytokine levels between stroke patients and controls, and cohort 9 

studies exploring the association of baseline levels with incident or recurrent stroke. We 10 

extracted relevant data and applied random-effects meta-analyses for Hazard ratios (cohort 11 

studies) or standardized mean differences (case-control studies). We evaluated heterogeneity 12 

with the I2 and the Cochran Q.  13 

Statistical analysis was conducted in Stata 13.1 (StataCorp).  14 
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RESULTS 1 

Circulating levels of cytokines and risk of stroke in MEGASTROKE  2 

The primary results of the MR analyses for the 23 cytokines are presented in Figure 2. 3 

Following Bonferroni correction for testing multiple cytokines (p <0.05/23=0.0022), the only 4 

cytokine showing statistically significant associations with stroke was the CC chemokine 5 

monocyte chemoattractant protein-1 (MCP-1/CCL2). As depicted in Figure 3A and 6 

Supplemental Figure 1, higher circulating MCP-1 levels (1-SD increase) were associated 7 

with 6% increased odds for both any stroke (OR: 1.06, 95%CI: 1.02-1.09, p=9x10-4) and any 8 

ischemic stroke (OR: 1.06, 95%CI: 1.02-1.10, p=0.0018) in MR analyses. Corresponding 9 

analyses for ischemic stroke subtypes revealed significant associations for large artery stroke 10 

(OR: 1.19, 95%CI: 1.09-1.30, p=2x10-4) and cardioembolic stroke (OR: 1.14, 95%CI: 1.06-11 

1.23, p=4x10-4), but not for small vessel stroke (OR: 1.03, 95%CI: 0.95-1.11, p=0.50). The 12 

individual SNPs associated with MCP-1 levels are presented in Supplemental Table 4.  13 

There was no evidence for heterogeneity in any of the MCP-1 associations as measured by I2 14 

and Cochran Q (Figure 3A) and no outlier SNPs were detected with the MR-PRESSO 15 

method. Also, there was no indication for directional pleiotropy effects as assessed by the 16 

MR-Egger intercept (any stroke, p=0.41; any ischemic stroke, p=0.39; large artery stroke, 17 

p=0.98; cardioembolic stroke, p=0.67; small vessel stroke, p=0.70). The weighted median 18 

estimator and the MR-Egger regression analysis provided estimates of the same magnitude as 19 

the fixed-effects IVW meta-analysis for large artery stroke (OR: 1.22, 95%CI: 1.07-1.40, 20 

p=0.002 and OR: 1.19, 95%CI: 0.93-1.53, p=0.13, respectively) and cardioembolic stroke 21 

(OR: 1.13, 95%CI: 1.01-1.27, p=0.04 and OR: 1.21, 95%CI: 0.96-1.53, p=0.09, respectively, 22 

Figure 3B); although with wider confidence intervals as would be expected given the lower 23 

statistical power of these approaches.27, 28 Use of an unweighted allele score for the MCP-1 24 

instrument SNPs also showed statistically significant associations with risk of large artery 25 
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(p=1.5x10-4) and cardioembolic stroke (p=2.8x10-4). The significant effect of MCP-1 on 1 

outcomes was retained both when restricting the analysis to individuals of European ancestry 2 

(Supplemental Figure 2), and when applying the more conservative threshold of p <5x10-8 3 

for instrument selection (Supplemental Figure 3).  4 

To explore whether the MR effect of MCP-1 levels on stroke was attributable through 5 

pleiotropic pathways relating to cardiovascular risk factors, we conducted multivariable MR 6 

analysis adjusting for circulating lipid levels, T2D, and blood pressure. The results remained 7 

stable regardless of the model (unadjusted, single or fully-adjusted model), thus supporting an 8 

independent effect of MCP-1 levels on stroke and stroke subtypes (Table 1).  9 

To add biological plausibility to our analysis, we next looked at proteins encoded by genes in 10 

the vicinity of the genetic instruments for MCP-1. Using the STRING database, we identified 11 

several proteins integrating into a subnetwork of protein-protein interactions with MCP-1 12 

including the MCP-1 receptor CCR2, the chemokine receptors CCR1, CCR3, CCR9, the 13 

chemokine binding protein CCBP2, and the receptor of the complement C5a (C5aR1) 14 

(Supplemental Figure 4A). Restricting the MR analysis to the respective SNPs, resulted in 15 

significant effect estimates for large artery and cardioembolic stroke that were stronger than 16 

when using the full set of genetic instruments (Supplemental Figure 4B). 17 

Several other cytokines not reaching the Bonferroni-corrected threshold showed suggestive (p 18 

<0.05) associations with risk of stroke in MR analyses: higher levels of eotaxin, IP-10, MIG, 19 

PDGF-bb, and VEGF were associated with an increased risk of stroke whereas higher levels 20 

of SCF and SCGF-b were associated with lower risk of stroke (Figure 2).  21 

 22 

Circulating levels of MCP-1 and risk of stroke in UK Biobank 23 

We next explored the MR effect of MCP-1 levels on risk of any stroke and risk of any 24 

ischemic stroke in the independent UK Biobank sample and meta-analyzed the 25 
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MEGASTROKE and UK Biobank data (Figure 4A and Supplemental Figure 5). Effect 1 

estimates in UK Biobank were similar to MEGASTROKE for any stroke (OR per 1-SD 2 

increase: 1.08, 95%CI: 0.99-1.17, p=0.09) and any ischemic stroke (OR: 1.07, 95%CI: 0.97-3 

1.18, p=0.17), but did not reach statistical significance. Higher circulating MCP-1 levels were 4 

significantly associated with both any stroke (OR: 1.06, 95%CI: 1.03-1.09, p=2x10-4) and any 5 

ischemic stroke (OR: 1.06, 95%CI: 1.03-1.10, p=7x10-4) in the meta-analysis of 6 

MEGASTROKE and UK Biobank 7 

 8 

Circulating levels of MCP-1 and risk of stroke: meta-analysis of observational studies 9 

Next, we compared the MR causal estimates with those derived from a meta-analysis of 10 

observational studies. Our search yielded 17 case-control studies of ischemic stroke patients 11 

and controls, two cohort studies on patients with a history of stroke or cardiovascular disease 12 

exploring the risk of recurrent ischemic stroke, and one case-cohort study of incident ischemic 13 

stroke in a community population (Supplemental Table 5 and Supplemental Figure 6). 14 

Patients with any ischemic stroke were found to have significantly higher MCP-1 levels than 15 

controls in the case-control studies (Hedges’ g: 0.66, 95%CI: 0.18-1.15 [corresponding to a 16 

medium to strong effect size36]; 1137 cases, 717 controls; heterogeneity: I2=89%, p<0.001; 17 

Figure 4B and Supplemental Figure 7A). Studies on recurrent stroke (2,642 individuals, 605 18 

events) yielded a HR of 1.11 (95%CI: 0.92-1.33) for 1 SD increase in MCP-1 levels 19 

(heterogeneity: I2=32%, p=0.23; Figure 4B and Supplemental Figure 7B), whereas the 20 

single study examining incident ischemic stroke (95 cases, 190 controls) reported a HR of 21 

0.99 (95%CI: 0.68-1.45). 22 

 23 

 24 

 25 
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Circulating levels of MCP-1 and etiologically related vascular outcomes 1 

Figure 5 depicts the MR effect of higher MCP-1 levels on the risk of CAD, ICH and AF. 2 

Higher MCP-1 levels were associated with CAD (OR per 1-SD increase: 1.04, 95%CI: 1.00-3 

1.08, p=0.04) and MI (OR: 1.05, 95%CI: 1.01-1.09, p=0.02). We found no association 4 

between circulating MCP-1 levels and risk of any ICH (OR: 1.24, 95%CI: 0.94-1.64, p=0.13), 5 

lobar ICH (OR: 1.25, 95%CI: 0.88-1.79, p=0.22), and nonlobar ICH (OR: 1.03, 95%CI: 0.72-6 

1.49, p=0.16). Given the association of MCP-1 with cardioembolic stroke, we further 7 

explored the relationship between MCP-1 levels and risk of AF in MR analysis, but found no 8 

association (OR: 0.96, 95%CI: 0.91-1.01, p=0.09).   9 

 10 

DISCUSSION 11 

Exploring 41 cytokines in a two-sample MR approach involving the largest GWAS datasets 12 

available, we found that genetic predisposition to higher levels of MCP-1/CCL2 is associated 13 

with increased risk of any stroke, any ischemic stroke, large artery stroke, and cardioembolic 14 

stroke. The results were stable in alternative MR methods and sensitivity analyses and 15 

remained significant after adjustment for cardiovascular risk factors. Moreover, effect sizes 16 

for any stroke and any ischemic stroke were similar in the UK Biobank. We further found 17 

associations between higher MCP-1 levels and increased risk of CAD and MI as etiologically 18 

related outcomes. Collectively, our findings support a causal effect of lifelong elevated 19 

circulating MCP-1 levels on risk of stroke. 20 

The directionality of the MR effect of increased levels of MCP-1 on risk of large artery stroke 21 

is consistent with experimental data showing a key role for this chemokine in atherogenesis 22 

and atheroprogression. Acting mainly through its receptor CCR2, MCP-1 is the prototypical 23 

CC family chemokine that is upregulated by chronic inflammatory conditions and attracts 24 

monocytes to the subendothelial space of the atherogenic arterial wall.37 Mice lacking MCP-25 
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138 or CCR239 are less susceptible to atherosclerosis and anti-MCP-1 gene therapy,40 MCP-1 1 

competitors,41 and CCR2 antagonists42 reduce plaque size and inhibit plaque progression and 2 

destabilization in experimental atherosclerosis. Conversely, overexpression of MCP-1 leads to 3 

inflammation, accumulation of lipids, and smooth muscle cell proliferation in atherosclerotic 4 

plaques.43  5 

We further found an MR association between higher MCP-1 levels and risk of cardioembolic 6 

stroke, although the mechanisms underlying this association remain unclear. MCP-1 has been 7 

reported to promote myocardial fibrosis,44 an established risk factor for AF.45  However, we 8 

found no association between the genetic instruments for MCP-1 and AF risk. Other 9 

investigators have found an association between circulating MCP-1 levels and the presence of 10 

atrial thrombi in patients with AF46 which might have contributed to our signal. Alternative 11 

explanations for the association between circulating MCP-1 levels and cardioembolic stroke 12 

might include less frequent causes of cardioembolism and misclassification of patients with 13 

multiple competing stroke etiologies including atherosclerosis. 14 

Our meta-analysis of case-control studies revealed higher circulating MCP-1 levels in patients 15 

with ischemic stroke compared to healthy controls. However, our systematic search identified 16 

only one prospective cohort study on incident events.47 Also, ischemic stroke subtypes were 17 

not considered in any of these studies, precluding meaningful comparisons with our MR 18 

results. Interestingly, observational cohort studies on CAD found higher MCP-1 levels to be 19 

associated with increased risk of incident48 and recurrent49 events consistent with the observed 20 

association with atherosclerotic stroke. Serial measurements of MCP-1 in large population-21 

based cohorts with data on ischemic stroke subtypes would offer further insights into the 22 

relationship between MCP-1 and risk of stroke. 23 

Targeting specific inflammatory cytokines might reduce vascular risk. The recent multicenter 24 

CANTOS trial showed that canakinumab, a monoclonal antibody against IL-1β, decreases the 25 
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rate of recurrent cardiovascular events, including nonfatal myocardial infarction, nonfatal 1 

stroke and cardiovascular mortality, among patients with MI and elevated circulating CRP 2 

levels.9 The MCP-1/CCR2 pathway was targeted in a small phase II clinical trial in patients 3 

with risk factors for atherosclerosis and elevated circulating CRP levels. MLN1202, a 4 

humanized monoclonal antibody against CCR2 reduced CRP levels after 4 and 12 weeks.50 5 

However, effects on clinical endpoints were not assessed50 and would need to be determined 6 

in a larger trial. 7 

This study has several methodological strengths. We used the most recent and comprehensive 8 

dataset for cytokine levels and the largest available GWAS dataset for stroke and stroke 9 

subtypes. Results were confirmed through sensitivity analyses for pleiotropy including 10 

alternative MR methods, in sub-analyses on a biologically plausible protein-protein 11 

interaction network, and in analyses on etiologically related outcomes (CAD and MI). Our 12 

study also has limitations. First, our instrument selection was based on a single discovery 13 

GWAS that adjusted for BMI. While this might have introduced bias into the MR effect 14 

estimates, the consistency of the association for MCP-1 when using an unweighted allele 15 

score argues against this possibility. Second, we could not obtain reliable genetic instruments 16 

for 18 cytokines and several analyses for ischemic stroke subtypes were underpowered. Thus, 17 

we might have missed associations for several cytokines that have previously been implicated 18 

in vascular disease such as IL-1β, TNF-α and IL-6. Targeted studies incorporating further 19 

GWAS data on individual cytokines might reveal additional associations not captured by our 20 

approach. Third, none of the SNPs used as instruments for MCP-1 were located within or 21 

close to the MCP-1 gene thus precluding analyses restricted to SNPs within this locus. Fourth, 22 

genetic instruments were selected using an FDR-based approach, which might have weakened 23 

the instruments. However, the F-statistics were high and the results were in line with those 24 

derived when selecting instruments based on the genome-wide threshold (p <5x10-8). Finally, 25 

the UK Biobank analysis was rather underpowered and did not include stroke subtypes. Yet, 26 
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the consistency of both the direction and magnitude of the effects for any stroke and any 1 

ischemic stroke supports our results.  2 

In conclusion, this study demonstrates that lifelong elevated circulating MCP-1 levels are 3 

causally associated with increased risk of stroke and particularly with the large artery and the 4 

cardioembolic subtypes. Interventions aimed at targeting MCP-1 or its downstream effectors 5 

seem a promising strategy for lowering stroke risk. 6 

 7 
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Figure 1. Schematic representation of the study design. Methods used to test for causal effects and for violations of the Mendelian randomization 

assumptions (dashed lines).  

AF, atrial fibrillation; CAD, coronary artery disease; DBP, diastolic blood pressure; HDL, high-density lipoprotein cholesterol; HTN, hypertension; 

ICH, intracerebral hemorrhage; IVW, inverse-variance weighted; LDL, low-density lipoprotein cholesterol; MI, myocardial infarction; MR: 

Mendelian randomization; SBP, systolic blood pressure; SNP, Single-nucleotide polymorphism; T2D. type 2 diabetes mellitus; TG, triglycerides.  
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Figure 2. Mendelian randomization associations of circulating cytokine and growth factor levels with stroke and stroke subtypes. Shown are 

the results derived from the fixed-effects inverse-variance weighted (IVW) meta-analysis in the MEGASTROKE data.	 

* Significant heterogeneity (I2>25% or Cochran Q-derived p <0.05) 

† Bonferroni-corrected threshold 
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Figure 3. Mendelian randomization analysis for circulating MCP-1 levels and risk of stroke. 

(A) MR-derived effects of circulating MCP-1 levels (1-SD increase) on risk of any stroke and stroke 

subtypes in MEGASTROKE data. (B) Effects of circulating MCP-1 levels on risk of large artery 

(left) and cardioembolic (right) stroke based on different MR methods. I2 refers to heterogeneity in 

the Mendelian randomization analysis (inverse-variance weighted method). 

CI, confidence intervals; IVW, inverse-variance weighted; OR, Odds Ratio; SNP, single nucleotide 

polymorphism. 
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Figure 4. Effects of circulating MCP-1 levels on risk of stroke in Mendelian randomization and in 

observational studies. (A) MR-derived effects of circulating MCP-1 levels (1-SD increase) on risk of 
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any stroke and any ischemic stroke in MEGASTROKE, in UK Biobank, and a meta-analysis of both 

samples. (B) Meta-analysis-derived effects of circulating MCP-1 levels (1-SD increase) on risk of 

ischemic stroke in case-control and cohort studies.	k refers to number of included studies. I2 in Figure 

4A refers to heterogeneity in the Mendelian randomization analysis (inverse-variance weighted method) 

and in Figure 4B in the random-effects meta-analyses of observational studies. 

CI, confidence interval; HR, hazard ratio; OR, odds ratio; SMD, standardized mean difference; SNP, 

single nucleotide polymorphism. 
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Figure 5. Mendelian randomization analysis for circulating MCP-1 levels and etiologically related 

vascular outcomes. MR-derived effects of circulating MCP-1 levels (1-SD increase) on risk of (A) 

coronary artery disease and myocardial infarction, (B) intracerebral hemorrhage (any, lobar, nonlobar) 
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and (C) atrial fibrillation. I2 refers to heterogeneity in the Mendelian randomization analysis (inverse-

variance weighted METHOD). 

SNP, single nucleotide polymorphism; OR, Odds Ratio; CI, confidence intervals. 
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Table 1. Multivariable Mendelian randomization effects of circulating MCP-1 levels on the risk for stroke and its subtypes adjusting for cardiovascular 

risk factors. 

Model Any stroke 
Any ischemic 

stroke 

Large artery 

stroke 

Cardioembolic 

stroke 

Small vessel 

stroke 

Unadjusted model  1.06 (1.02-1.09) 1.06 (1.02-1.10) 1.19 (1.09-1.30) 1.14 (1.06-1.23) 1.03 (0.95-1.11) 

Adjusted for T2D 1.07 (1.03-1.11) 1.07 (1.03-1.11) 1.22 (1.12-1.33) 1.17 (1.08-1.27) 1.03 (0.97-1.10) 

Adjusted for LDL 1.06 (1.02-1.10) 1.06 (1.02-1.11) 1.20 (1.10-1.31) 1.16 (1.06-1.24) 1.03 (0.98-1.09) 

Adjusted for HDL 1.07 (1.03-1.11) 1.07 (1.02-1.11) 1.21 (1.11-1.33) 1.15 (1.06-1.25) 1.04 (0.97-1.10) 

Adjusted for TG 1.06 (1.02-1.10) 1.06 (1.02-1.10) 1.19 (1.09-1.30) 1.16 (1.06-1.26) 1.03 (0.97-1.10) 

Adjusted for SBP 1.08 (1.04-1.12) 1.09 (1.05-1.14) 1.23 (1.12-1.35) 1.20 (1.10-1.32) 1.03 (0.96-1.11) 

Adjusted for DBP 1.08 (1.04-1.13) 1.09 (1.05-1.14) 1.22 (1.11-1.34) 1.20 (1.10-1.32) 1.04 (0.96-1.11) 

Adjusted for HTN 1.07 (1.03-1.11) 1.07 (1.03-1.11) 1.19 (1.09-1.29) 1.18 (1.08-1.29) 1.03 (0.95-1.11) 

Fully-adjusted model (T2D, LDL*, SBP	†) 1.08 (1.03-1.12) 1.09 (1.04-1.13) 1.23 (1.11-1.35) 1.20 (1.10-1.32) 1.04 (0.97-1.12) 

The results are presented as Odds Ratios (95% Confidence Intervals) for the effect of 1 standard deviation increase in MCP-1 levels.  

* restricted to LDL to avoid collinearity with HDL and TG levels. † restricted to SBP to avoid collinearity with DBP and HTN.  

DBP, diastolic blood pressure; HDL, high-density lipoprotein cholesterol; HTN, hypertension; LDL, low-density lipoprotein cholesterol; SBP: systolic 

blood pressure; T2D, type 2 diabetes mellitus; TG, triglycerides. 


