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Given the growing number of available tools for mod-
eling dynamic networks, the choice of a suitable model
becomes central. The goal of this survey is to provide
an overview of tie-oriented dynamic network models.
The survey is focused on introducing binary network
models with their corresponding assumptions, advan-
tages, and shortfalls. The models are divided according
to generating processes, operating in discrete and con-
tinuous time. First, we introduce the temporal exponen-
tial random graph model (TERGM) and the separable
TERGM (STERGM), both being time-discrete models.
These models are then contrasted with continuous pro-
cess models, focusing on the relational event model
(REM). We additionally show how the REM can han-
dle time-clustered observations, that is, continuous-time
data observed at discrete time points. Besides the dis-
cussion of theoretical properties and fitting procedures,
we specifically focus on the application of the models on
two networks that represent international arms trans-
fers and email exchange, respectively. The data allow to
demonstrate the applicability and interpretation of the
network models.
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1 INTRODUCTION

The conceptualization of systems within a network framework has become popular within the
last decades; see Kolaczyk (2009) for a broad overview. This is mostly because network models
provide useful tools for describing complex dependence structures and are applicable to a wide
variety of research fields. In the network approach, the mathematical structure of a graph is uti-
lized to model network data. A graph is defined as a set of nodes and relational information
(ties) between them. Within this concept, nodes can represent individuals, countries, or general
entities, whereas ties are connections between those nodes. Dependent on the context, these con-
nections can represent friendships in a school (Raabe, Boda, & Stadtfeld, 2019), transfers of goods
between countries (Ward, Ahlquist, & Rozenas, 2013), sexual relations between people (Bearman,
Moody, & Stovel, 2004), or hyperlinks between websites (Leskovec, Lang, Dasgupta, & Mahoney,
2009) to name just a few. Given a suitable data structure for the system of interest, the conceptu-
alization as a network enables analyzing dependencies between ties. A central statistical model
that allows this is the exponential random graph model (ERGM, Robins & Pattison, 2001). This
model permits the inclusion of monadic, dyadic, and hyperdyadic features within a regression-like
framework.

Although the model allows for an insightful investigation of within-network dependencies,
most real-world systems are typically more complex. This is especially true if a temporal dimen-
sion is added, which is relevant, as most systems commonly described as networks evolve
dynamically over time. It can even be argued that most static networks are de facto not static but
snapshots of a dynamic process. A friendship network, for example, typically evolves over time
and influences like reciprocity often follow a natural chronological order.

Of course, this is not the first paper concerned with reviewing temporal network models.
Goldenberg, Zheng, Fienberg, and Airoldi (2010) wrote a general survey covering a wide range of
models. The authors laid the foundation for further articles and postulated a soft division of statis-
tical network models into latent space (Hoff, Raftery, & Handcock, 2002) and p1 models (Holland
& Leinhardt, 1981), all originating in the Erdös-Rényi-Gilbert random graph models (Erdös &
Rényi, 1959; Gilbert, 1959). Kim, Lee, Xue, and Niu (2018) give a contemporary update on the field
of dynamic models building on latent variables. Snijders (2005) discusses continuous-time mod-
els and reframes the independence and reciprocity model as a stochastic actor-oriented model
(SAOM; Snijders, 1996). Block, Koskinen, Hollway, Steglich, and Stadtfeld (2018) provide an
in-depth comparison of the temporal ERGM (TERGM, Hanneke, Fu, & Xing, 2010) and the SAOM
with special focus on the treatment of time. Furthermore, the ERGM and SAOM for networks
that are observed at single time points are contrasted by Block, Stadtfeld, and Snijders (2019),
deriving theoretical guidelines for model selection based on the differing mechanics implied by
each model.

In the context of this compendium of articles, the scope is to give an update on the dynamic
variant of the second strand of models relating to p1 models. We therefore extend the summariz-
ing diagram of Goldenberg et al. (2010), as depicted in Figure 1. Generally, we divide temporal
models into two sections, by differentiating between discrete and continuous-time network mod-
els. This review paper will focus on tie-oriented models. Tie-oriented models are concerned with
formulating a stochastic model for the existence of a tie in contrast to the actor-oriented approach
by Snijders (2002), which specifies the model from the actor's point of view (Block et al., 2018).
The dynamical actor-oriented model (DyNAM, Stadtfeld & Block, 2017) adopts this actor-oriented
paradigm to event data. This type of model was formulated with a focus on social networks
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FIGURE 1 Tree diagram summarizing the dependencies between models originating in the
Erdös-Rényi-Gilbert graph model; the models situated in a box with a grey background are discussed in this
article. This graph is an update of Figure 6.1 in Goldenberg, Zheng, Fienberg, and Airoldi (2010).
ERGM = exponential random graph model; TERGM = temporal exponential random graph model;
STERGM = separable temporal exponential random graph model; SAOM = stochastic actor-oriented model;
DyNAM = dynamical actor-oriented model; REM = relational event model

(Snijders, 1996). Tie-oriented models, on the other hand, can be viewed as more general because
they are also applicable to nonsocial networks.

Statistical models for time discrete data rely on an autoregressive structure and condition the
state of the network at time point t on previous states. This includes the TERGM and the separable
TERGM (STERGM; Krivitsky & Handcock, 2014). There exists a variety of recent applications
of the TERGM. White, Forester, and Craft (2018) use a TERGM for modeling epidemic disease
outcomes and Blank, Dincecco, and Zhukov (2017) investigate interstate conflicts. In He, Dong,
Wu, Jiang, and Zheng (2019), Chinese patent trade networks are inspected, and Benton and You
(2017) use a TERGM for analyzing shareholder activism. Applications of STERGMs are given, for
example, by Stansfield et al. (2019) that model sexual relationships and by Broekel and Bednarz
(2018) that study the network of research and development cooperation between German firms.

In case of time-continuous data, the model regards the network as a continuously evolving
system. Although this evolution is not necessarily observed in continuous time, the process is
taken to be latent and explicitly models the evolution from the state of the network at time point
t − 1 to t (Block et al., 2018). In this paper, we discuss the relational event model (REM, Butts,
2008) for the analysis of event data. Applications of the REM are manifold and range from explain-
ing the dynamics of health behavior sentiments via Twitter (Salathé, Vu, Khandelwal, & Hunter,
2013), interhospital patient transfers (Vu, Lomi, Mascia, & Pallotti, 2017), online learning plat-
forms (Vu, Pattison, & Robins, 2015), and animal behavior (Tranmer, Marcum, Morton, Croft,
& de Kort, 2015) to structures of project teams (Quintane, Pattison, Robins, & Mol, 2013). Even-
tually, the REM is adapted to time-discrete observations of networks. That is, we observe the
time-continuous developments of the network at discrete observation times only. Henceforth, we
use the term time-clustered for this special data structure.

In reviewing dynamic network models, we assume a temporal first-order Markov dependency.
To be more specific, this implies that the network at time point t only depends on the previ-
ous observation of the network. This characteristic is widely used in the analysis of longitudinal
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networks (Hanneke et al., 2010; Krivitsky & Handcock, 2014) and the resulting conditional inde-
pendence among states of the network facilitates the estimation with an arbitrary number of time
points. In that respect, it suffices to only include two observational moments for illustrative pur-
poses because the interpretation and estimation with a longer series of networks is unchanged.
This allows for a clear-cut comparison of the methods at hand.

This paper is structured as follows. In Section 2, we give basic definitions that are used
throughout this paper and present the two data examples that will be analyzed as illustra-
tive examples. After that, Section 3 introduces a time-discrete network model and Section 4, a
time-continuous network model. They are applied in Section 5 on two data sets and Section 6
concludes. Additional results relating to the applications can be found in the Supplementary
Material.

2 DEFINITIONS AND DATA DESCRIPTION

2.1 Definitions
This article regards directed binary networks, with ties representing directed relations between
two nodes at a time point. The respective information can be represented in an adjacency matrix
Yt = (Yi𝑗,t)i,𝑗=1,..,n ∈  , where  = {Y ∶ Y ∈ {0, 1}n×n} represents the set of all possible networks
with n nodes. The entry (i, j) of Yt is “1” if a tie is outgoing from node i to j in year t and “0,”
otherwise. Furthermore, the discrete time points of the observations of Yt are denoted as t =
1, … ,T. We restrict our analysis to two time points in both exemplary networks, which suffices for
comparison. Hence, we set T = 2. In many networks, including our running examples, self-loops
are meaningless. We therefore fix Yii,t ≡ 0∀ i ∈ {1, … ,n} throughout the article. Furthermore,
all subscripted temporal indices (Yt) are assumed to take discrete values and all indices in brackets
(Y(t)) continuous values. The temporal indicator t denotes the observation times of the network,
and to notationally differ this from time-continuous model, we write t̃ for continuous time.

To sufficiently compare different models, we use two application cases. The first one repre-
sents the international trade of major weapons, which is given by discrete snapshots of networks
that are yearly aggregated over time-continuous trade instances, that is, the time-stamped infor-
mation is not observed. However, the second application, a network of email traffic, comes in
time-stamped format, which can be aggregated to discrete-time observations.

2.2 Data set 1: International arms trade
The data on international arms trading for the years 2016 and 2017 are provided by the Stockholm
International Peace Research Institute (SIPRI, 2019). To be more specific, information on the
exchange of major conventional weapons together with the volume of each transfer is included.
In order to have a binary network representation, we discretize the data and set edges Yij,t to “1”
if country i sent arms to country j in t.

The left side of Table 1 gives some descriptive measures (Csardi & Nepusz, 2006) and Figure 2
visualizes the arms trade network using the softwareGephi (Bastian, Heymann, & Jacomy, 2009).
The density of a network is the proportion of realized edges out of all possible edges and is similar
in both years, indicating the sparsity of the modeled network. Clustering can be expressed by the
transitivity measure, providing the percentage of triangles out of all connected triplets. Reciprocity
in a graph is the ratio of reciprocated ties and is similar in both years. As expressed by the high
percentage of repeated ties, most countries seem to continue trading with the same partners.
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TABLE 1 Descriptive statistics for the international arms trade network (left) and
the European research institutions email correspondence (right)

Arms trade network Email network
Time t 2016 2017 Period 1 Period 2
Number of events − − 4, 957 2, 537
Number of nodes n 180 180 88 88
Number of possible ties n(n − 1) 32,220 32,220 7,656 7,656
Density 0.021 0.020 0.123 0.087
Transitivity 0.195 0.202 0.407 0.345
Reciprocity 0.081 0.083 0.7 0.687
Repetition − 0.641 − 0.574

FIGURE 2 The international arms trade as a binary network in 2016 (left) and 2017 (right). Nodes that are
isolated in both years are not depicted for clarity and the node size relates to the sum of the out- and in-degrees.
The labels of the nodes are the ISO3 codes of the respective countries

Additionally, different kinds of exogenous covariates may be controlled for in statistical net-
work models. In the given example, we use the logarithmic gross domestic product (GDP; World
Bank, 2019) as monadic covariates concerning the sender and receiver of weapons. We also
include the absolute difference of the so-called polity IV index (Center for Systemic Peace, 2017),
ranging from zero (no ideological distance) to 20 (highest ideological distance), as a dyadic exem-
plary covariate. These covariates are assumed to be nonstochastic and we denote them by xt. See
the Supplementary Material for a list of all included countries and their ISO3 code.

2.3 Data set 2: European research institution email correspondence
The second network under study represents anonymized email exchange data between institution
members of a department in a European research institution (see Email EU Core, 2019; Paranjape,
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FIGURE 3 The European research institution email correspondence aggregated to a binary network divided
into Period 1 (days 1–365, left) and Period 2 (days 1–365, right). The node size relates to the sum of the out- and
in-degrees

Benson, & Leskovec, 2017). In this data set, we observe events 𝜔 = (i, 𝑗, t̃) that represent emails
sent from department member i to department member j at a specific time point t̃.

The data contain n = 89 persons and are recorded over 802 days. For this paper, we select
the first two years and split them again into two years, labeled Period 1 and Period 2. Within the
first period, 8, 068 events are recorded, and in the second period, 4, 031 events. We only regard
one-to-one email correspondences; therefore, we exclude all group mails from the analysis. In the
right column of Table 1, the descriptive measures for the two aggregated networks are given and
in Figure 3, they are visualized. All descriptive statistics are higher in the email exchange network
as compared to the arms trade network. In comparison to the arms trade network, the aggregated
network is more dense with more than 10% of all possible ties being realized. In both years, the
transitivity measure is relatively higher in both time periods. The high share of reciprocated ties is
intuitive given that the network represents email exchange between institution members that may
collaborate. No covariates are available for this network. See the Appendix for the visualization
of the degree distributions of both applications.

3 DYNAMIC EXPONENTIAL RANDOM GRAPH MODELS

3.1 Temporal ERGM
The ERGM is among the most popular models for the analysis of static network data. Holland and
Leinhardt (1981) introduced the model class, which was subsequently extended with respect to
fitting algorithms and network statistics (see Lusher, Koskinen, & Robins, 2012; Robins, Pattison,
Kalish, & Lusher, 2007). Spurred by the popularity of ERGMs, dynamic extensions of this model
class emerged, pioneered by Robins and Pattison (2001) who developed time-discrete models for
temporally evolving social networks. Before we start with a description of the model, we want
to highlight that the TERGM and the STERGM are most appropriate for equidistant time points.
That is, we observe the networks Yt at discrete and equidistant time points t = 1, … ,T. Only in
this setting, the parameters allow for a meaningful interpretation. See Block et al. (2018) for a
deeper discussion.
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Hanneke et al. (2010) is the main reference for the TERGM, a model class that utilizes the
Markov structure and, thereby, assumes that the transition of a network from time point t − 1
to time point t can be explained by exogenous covariates as well as structural components of the
present and preceding networks. Using a first-order Markov dependence structure and condition-
ing on the first network, the resulting dependence structure of the model can be factorized into

ℙ𝜃(YT , … ,Y2|Y1, x1, … , xT) = ℙ𝜃(YT|YT−1, xT)…ℙ𝜃(Y3|Y2, x3)ℙ𝜃(Y2|Y1, x2). (1)

In the formulation above, the joint distribution is decomposed into yearly transitions from Yt−1
to Yt. Furthermore, it is assumed that the same parameter vector 𝜃 governs all transitions. Often,
this is an unrealistic assumption for networks observed at many time points because the gener-
ative process may change other time. Therefore, it can be useful to allow for different parameter
vectors for each transition probability (i.e., 𝜃T, 𝜃T−1, ...). In such a setting, the parameters for each
transition can either be estimated sequentially (e.g., Thurner, Schmid, Cranmer, & Kauermann,
2019) or by using smooth time-varying effects (e.g., Lebacher, Thurner, & Kauermann, 2019).

Given the dependence structure (1), the TERGM assumes that the transition from Yt−1 to Yt
is generated according to an exponential random graph distribution with the parameter 𝜃:

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) =
exp{𝜃Ts(𝑦t, 𝑦t−1, xt)}

𝜅(𝜃, 𝑦t−1, xt)
. (2)

Generally, s(yt, yt−1, xt) specifies a p-dimensional function of sufficient network statistics, which
may depend on the present and previous network, as well as on covariates. These network
statistics can include static components, designed for cross-sectional dependence structures (see
Morris, Handcock, & Hunter, 2008, for more examples). However, the statistics s(yt, yt−1, xt)
explicitly allow temporal interactions, for example, delayed reciprocity

sdelrecip(𝑦t, 𝑦t−1) ∝
∑
i≠𝑗

𝑦𝑗i,t𝑦i𝑗,t−1. (3)

This statistic governs the tendency whether a tie (i, j) in t − 1 will be reciprocated in t. Another
important temporal statistic is stability

sstability(𝑦t, 𝑦t−1) ∝
∑
i≠𝑗

(
𝑦i𝑗,t𝑦i𝑗,t−1 + (1 − 𝑦i𝑗,t)(1 − 𝑦i𝑗,t−1)

)
. (4)

In this case, the first product in the sum measures whether existing ties in t − 1 persist in t and
the second term is one if nonexistent ties in t − 1 remain nonexistent in t. The proportionality
sign is used because in many cases the network statistics are scaled into a specific interval (e.g.,
[0,n] or [0, 1]). Such a standardization is especially sensible for networks where the actor set
changes with time. Additionally, exogenous covariates can be included, for example, time-varying
covariates xij,t

sdyadic(𝑦t, xt) =
∑
i≠𝑗

𝑦i𝑗,txi𝑗,t. (5)

There exists an abundance of possibilities for defining interactions between ties in t−1 and t. From
this discussion and Equation (2), it also becomes evident that, in a situation where the interest lies
in the transition between two periods, a TERGM can be modeled simply as an ERGM, including
lagged network statistics. This can be done for example by incorporating yij,t−1 as explanatory
variable in (5), which is mathematically equivalent to the stability statistic (4). In the application
we call this statistic repetition (Block et al., 2018).
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Concerning the estimation of the model, maximum likelihood estimation appears to be a
natural candidate due to the simple exponential family form (2). However, the normalization
constant in the denominator of model (2) often poses an inhibiting obstacle when estimat-
ing (T)ERGMs. This can be seen by inspecting the normalization constant 𝜅(𝜃, 𝑦t−1, xt) =∑

𝑦̃∈ exp{𝜃Ts(𝑦̃t, 𝑦t−1, xt)}, which requires summation over all possible networks 𝑦̃ ∈  . This
task is virtually infeasible, except for very small networks. Therefore, Markov Chain Monte Carlo
(MCMC) methods have been proposed in order to approximate the logarithmic likelihood func-
tion (see Geyer & Thompson, 1992, for Monte Carlo maximum likelihood, and Hummel, Hunter,
& Handcock, 2012, for its adaption to ERGMs). The article by Caimo and Friel (2011) provides an
alternative algorithm that uses MCMC-based inference in a Bayesian model framework. Another
approach is to employ maximum pseudolikelihood estimation (MPLE, Strauss & Ikeda, 1990) that
can be viewed as a local alternative to the likelihood (van Duijn, Gile, & Handcock, 2009) but is
often regarded as unreliable and poorly understood in the literature (Handcock, 2003; Hunter,
Goodreau, & Handcock, 2008). However, the MPLE is claimed to be consistent and asymptotically
efficient (Desmarais & Cranmer, 2012) and the biased standard errors can be corrected via boot-
strap (Leifeld, Cranmer, & Desmarais, 2018). A notable special case arises if the network statistics
are restricted such that they decompose to

s(𝑦t, 𝑦t−1, xt) =
∑
i≠𝑗

𝑦i𝑗,t s̃i𝑗(𝑦t−1, xt), (6)

with s̃i𝑗 being a function that is evaluated only at the lagged network yt−1 and covariates xt for
tie (i, j). With this restriction, we impose that the ties in t are independent, conditional on the
network structures in t − 1. This greatly simplifies the estimation procedure and allows to fit the
model as a logistic regression model (see, e.g., Almquist & Butts, 2014) without the issues related
to the MPLE.

A problem, that is very often encountered when fitting (T)ERGMs with endogenous network
statistics is called degeneracy (Schweinberger, 2011) and occurs if most of the probability mass is
attributed to network realizations that provide either full or empty networks. One way to circum-
vent these problems is the inclusion of modified statistics, called geometrically weighted statistics
(Snijders, Pattison, Robins, & Handcock, 2006). Using the definitions of Hunter (2007), the geo-
metrically weighted out-degree distribution (GWOD) controls for the out-degree distribution with
one statistic, via

sGWOD(𝑦t) = exp{𝛼O}
n−1∑
k=1

(
1 − (1 − exp{−𝛼O})k)Ok(𝑦t), (7)

with Ok(yt) being the number of nodes with out-degree k in t and 𝛼O being the weighting
parameter. Correspondingly, the in-degree distribution is captured by the geometrically weighted
in-degree distribution (GWID) statistic by exchanging Ok(yt)with Ik(yt), which counts the number
of nodes with in-degree k, and 𝛼O with 𝛼I. While on the one hand, the weighting often effec-
tively counteracts the problem of degeneracy, the statistics become more complicated to interpret.
Negative values of the associated parameter typically indicate a centralized network structure.

Regarding statistics capturing clustering, the most common geometrically weighted triangular
structure is called geometrically weighted edge-wise shared partners (GWESP) and builds on the
number of two-paths that indirectly connect two nodes i and j given the presence of an edge (i, j):

sGWESP(𝑦t) = exp{𝛼S}
n−2∑
k=1

(
1 − (1 − exp{−𝛼S})k) Sk(𝑦t), (8)
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where 𝛼S is a weighting parameter. The number of edges with k shared partners (Sk(yt)) is uniquely
defined in undirected networks. If the edges are directed it must be decided which combina-
tion should form a triangle; see Lusher et al. (2012) for a discussion. As a default, the number of
directed two-paths is chosen (Goodreau, Kitts, & Morris, 2009). Generally, a positive coefficient
for GWESP indicates that triadic closure increases the probability of edge occurrence, and glob-
ally, a positive value for the associated parameter means more triadic closure as compared to a
regime with a negative value (Morris et al., 2008).

3.2 Separable TERGM
A useful improvement of the TERGM (2) is the STERGM proposed by Krivitsky and Handcock
(2014). This model can be motivated by the fact that the stability term leads to an ambiguous
interpretation of its corresponding parameter. Given that we include (4) in a TERGM and obtain
a positive coefficient after fitting the model, it is not clear whether the network can be regarded
as “stable” because existing ties are not dissolved (i.e., yij,t = yij,t−1 = 1) or because no new ties are
formed (i.e., yij,t = yij,t−1 = 0). To disentangle this, the authors propose a model that allows for the
separation of formation and dissolution.

Krivitsky and Handcock (2014) define the formation network as Y + = Yt ∪ Yt−1, being the
network that consists of the initial network Yt−1 together with all ties that are newly added in t.
The dissolution network is given by Y− = Yt ∩ Yt−1 and contains exclusively ties that are present
in t and t−1. Given the network in t−1 together with the formation and the dissolution network,
we can then uniquely reconstruct the network in t because Yt = Y +∖(Yt−1∖Y−) = Y− ∪ (Y +∖Yt−1).
Define 𝜃 = (𝜃+, 𝜃−) as the joint parameter vector that contains the parameters of the formation
and the dissolution model. Building on that, Krivitsky and Handcock (2014) define their model to
be separable in the sense that the parameter space of 𝜃 is the product of the parameter spaces of 𝜃+

and 𝜃− together with conditional independence of formation and dissolution given the network
in t − 1:

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) = ℙ𝜃+(Y+ = 𝑦+|Yt−1 = 𝑦t−1, xt)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Formation Model

ℙ𝜃−(Y− = 𝑦−|Yt−1 = 𝑦t−1, xt)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Dissolution Model

. (9)

The structure of the model is visualized in Figure 4. On the left-hand side, the state of the
network Yt−1 is given, consisting of two ties (i, h) and (h, j). In the top network all ties that could
possibly be formed are shown dashed and the actual formation in this example (i, j) is shown solid.
On the bottom, the two ties that could possibly be dissolved are shown, and in this example, (h, j)
persists while (i, j) is dissolved. On the right-hand side of Figure 4, the resulting network at time
point t is displayed. Given this structure and the separability assumption (9), it is assumed that
the formation model is given by

ℙ𝜃+(Y+ = 𝑦+|Yt−1 = 𝑦t−1, xt) =
exp{(𝜃+)Ts(𝑦+, 𝑦t−1, xt)}

𝜅(𝜃+, 𝑦t−1, xt)
, (10)

with 𝜅(𝜃+, yt−1, xt) being the normalization constant. Accordingly, the dissolution model can be
defined. It becomes apparent how the STERGM is a subclass of the TERGM by inserting the
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FIGURE 4 Conceptual representation, illustrating formation, and dissolution in the separable temporal
exponential random graph model

separable models in (9) because

ℙ𝜃(Yt = 𝑦t|Yt−1 = 𝑦t−1, xt) =
exp{(𝜃+)Ts(𝑦+, 𝑦t−1, xt)}

𝜅(𝜃+, 𝑦t−1, xt)
exp{(𝜃−)Ts(𝑦−, 𝑦t−1, xt)}

𝜅(𝜃−, 𝑦t−1, xt)

=
exp{𝜃Ts(𝑦t, 𝑦t−1, xt)}

𝜅(𝜃, 𝑦t−1, xt)

with 𝜃 = (𝜃+, 𝜃−)T, s(yt, yt−1, xt) = (s(y+, yt−1, xt), s(y−, yt−1, xt))T, and the normalization constant
set accordingly.

For practical reasons, it is important to understand that the term dissolution model is some-
what misleading because a positive coefficient in the dissolution model implies that nodes (or
dyads) with high values for this statistic are less likely to dissolve. This is also the standard
implementation in software packages but can simply be changed by switching the signs of the
parameters in the dissolution model.

The network statistics are used similarly as in a cross-sectional ERGM. In Krivitsky and Hand-
cock (2014), they are called implicitly dynamic because they are evaluated either at the formation
network y+ or the dissolution network y−, which are both formed from yt−1 and yt. For example,
the number of edges is separately computed now for the formation and the dissolution network,
giving either the number of edges that newly formed or the number of edges that persisted. For
example, reciprocity in the formation network is defined as

srecip(𝑦+, 𝑦t−1) = srecip(𝑦+) ∝
∑
i≠𝑗

𝑦+
𝑗i𝑦

+
i𝑗 , (11)

and in case of the dissolution model, y+ is simply exchanged with y−. Similarly, edge covariates
or the geometrically weighted statistics shown in Equations (5), (7), and (8) are now functions of
y+ or y−, not yt.

3.3 Model assessment
In analogy to binary regressions models, the (S)TERGM can be evaluated in terms of their
receiver-operator-characteristic (ROC) curve or precision-recall (PR), where the latter puts more
emphasis on finding true positives (e.g., Grau, Grosse, & Keilwagen, 2015). A comparison between
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different models is possible using, for example, the Akaike information criterion (AIC, Claeskens
& Hjort, 2008). Here, we want to highlight that the AIC fundamentally builds on the log likeli-
hood, which in most realistic applications is only available as an approximation; see Hunter et al.
(2008) for further discussion.

However, in statistical network analysis, it is often argued that suitable network models should
not exclusively provide good predictions for individual edges but also be able to represent topolo-
gies of the observed network. The dominant approach to asses the goodness-of-fit of (S)TERGMs
is based on sampling networks from their distribution under the estimated parameters and then
comparing network characteristics of these sampled networks with the same ones from the
observed network (Hunter et al., 2008). For this approach, it is recommendable to utilize net-
work characteristics that are not used for specifying the model. For instance, models that include
the GWOD statistic (7) may not be compared to its simulated values but against the out-degree
distribution.

Hanneke et al. (2010) point out that for networks with more than one transition from t − 1 to
t available, it is possible to employ a “cross-validation-type” assessment of the fit. The parameters
can be fit repetitively to all observed transitions except one hold-out transition. It is then checked,
how well the network statistics from the hold-out transition period are represented by the ones
sampled from the coefficients obtained from all other transitions.

4 RELATIONAL EVENT MODEL

4.1 Time-continuous event processes
The second type of dynamic network models results by comprehending network changes as a
continuously evolving process (see Girardin & Limnios, 2018 as a basic reference for stochastic
processes). The idea was originally introduced by Holland and Leinhardt (1977). In their work,
changes in the network are not occurring at discrete time points but as a continuously evolv-
ing process, where only one tie can be toggled at a time. This framework was extended by Butts
(2008) to model behavior, which is understood as a directed event at a specific time that potentially
depends on the past. Correspondingly, the observations in this section are behaviors that are given
as triplets 𝜔 = (i, 𝑗, t̃) and encode sender i, receiver j, and exact time point t̃. This fine-grained
temporal information is often called time-stamped or time-continuous; we adopt the latter name.
Furthermore, we only regard dyadic events in this article, that is, a behavior only includes one
sender and receiver.

The concept of behavior, hereinafter called event, generalizes the classical concept of binary
relationships based on graph theory as promoted by Wasserman and Faust (1994). This event
framework does not intrinsically assume that ties are enduring over a specific time frame (Butts,
2009; Butts & Marcum, 2017). For example in an email exchange network, sending one email at
a specific time point is merely a brief event, which does not convey the same information as a
durable relationship. Therefore, the time-stamped information cannot adequately be represented
in a binary adjacency matrix without having to aggregate the relational data at the cost of informa-
tion loss (Stadtfeld, 2012). Nevertheless, a friendship between actors i and j at a given time point
can still be viewed as an event that has a one-to-one analogy to a tie in the classical framework.

The overall aim of relational event models (REMs, Butts, 2008) is to understand the dynamic
structure of events conditional on the history of events (Lerner, Bussmann, Snijders, & Brandes,
2013). This dynamic structure, in turn, controls how past interactions shape the propensity of
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future events. To make this model feasible, we leverage results from the field of time-to-event
analysis or survival analysis, respectively (see, e.g., Kalbfleisch & Prentice, 2002, for an overview).

The central concept of the REM can be motivated by the introduction of a multivariate
time-continuous counting process

N(t̃) = (Ni𝑗(t̃)|i, 𝑗 ∈ {1, … ,n}), (12)

where Ni𝑗(t̃) counts how often actors i and j interacted in [0, t̃). Note that we indicate continuous
time t̃ with a tilde to distinguish from the discrete time setting with t = 1, 2, … ,T assumed in the
previous section. Process (12) is characterized by an intensity function 𝜆i𝑗(t̃) for i ≠ j, which is
defined as

𝜆i𝑗(t̃) = lim
dt↓0

ℙ(Ni𝑗(t̃ + dt) = Ni𝑗(t̃) + 1)
dt

.

This is the instantaneous probability of observing a jump of size “1” in Ni𝑗(t̃), which indicates
observing the event (i, 𝑗, t̃). Because we assume that there are no self-loops 𝜆ii(t̃) ≡ 0 ∀ i = 1,
… ,n holds.

4.2 Time-continuous observations
Butts (2008) introduced the REM to analyze the intensity 𝜆i𝑗(t̃) of process (12) when
time-continuous data on the events are available. He assumed that the intensity is constant over
time but depends on time-varying relational information of past events and exogenous covariates.
Vu, Hunter, Smyth, and Asuncion (2011) extended the model by postulating a semiparametric
intensity similar to Cox (1972):

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃) = 𝜆0(t̃) exp{𝜃Tsi𝑗
(

N(t̃), x(t̃)
)
}, (13)

where 𝜆0(t̃) is an arbitrary baseline intensity, 𝜃 ∈ ℝp is the parameter vector, and si𝑗(N(t̃), x(t̃)) is
a statistic that depends on the (possibly time-continuous) covariate process x(t̃) and the counting
process just prior to t̃.

Generally, similar statistics as already introduced in Section 3 can be included in si𝑗(N(t̃), x(t̃)).
Solely, the differing level of the model needs to be accounted for because model (13) takes a local
time-continuous point of view to understand the relational nature of the observed events. This
necessitates defining the statistics si𝑗(N(t̃), x(t̃)) from the position of specific ties, in contrast to the
globally defined statistics s(yt, yt−1, xt) in (2). To give an example, the tie-level version of reciprocity
for the event (i, j) is defined as

si𝑗,reciprocity(N(t̃), x(t̃)) = 𝟙(N𝑗i(t̃) > 0),

where 𝟙(·) is the indicator function. It only regards, whether already having observed the event
(j, i) prior to t̃ has an effect on 𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃), in comparison to the network level version (3) of
delayed reciprocity that counted all reciprocated ties between the networks yt and yt−1.

Degree statistics can be specified as either sender- or receiver-specific. If we, for example, want
to control for the out-degree of the sender, the corresponding tie-oriented statistic is

si𝑗,SOD(N(t̃), x(t̃)) =
n∑

h=1
𝟙(Nih(t̃) > 0).

The in-degree of the receiver can be formulated accordingly.
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Clustering in event sequences may be captured by different types of nested two-path configu-
rations. For instance, the tie-oriented version of directed two-paths, henceforth called transitivity,
is given by

si𝑗,TRA(N(t̃), x(t̃)) =
n∑

h=1
𝟙(Nih(t̃) > 0)𝟙(Nh𝑗(t̃) > 0).

The inclusion of monadic and dyadic exogenous covariates becomes straightforward by setting
si𝑗,dyadic

(
N(t̃), x(t̃)

)
equal to the covariate values of interest. Because the effect of a past event at

time 𝛿, say, on a present event at time t̃ may vary according to the elapsed time t̃ − 𝛿, Stadt-
feld and Block (2017) introduced windowed effects, which only regard events that occurred in a
prespecified time window, for example, a year. We will come back to this point in the next section.

If time-continuous observations are available, each dimension of the observed counting pro-
cess is conditionally independent given the past. This, in turn, enables the construction of a
likelihood, which can subsequently be maximized. Assuming that Ω is the set of all observed
events and  is the interval of observation, the likelihood can be written as:

(𝜃) = ∏
(i,𝑗,t̃)∈Ω

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃) exp
⎧⎪⎨⎪⎩
−∫



n∑
k,h=1

𝜆kh(u|N(u), x(u), 𝜃)du
⎫⎪⎬⎪⎭
. (14)

It is straightforward to maximize the likelihood in the case of a parametric baseline intensity 𝜆0(t),
for example, Butts (2008) assumes 𝜆0(t) = 𝛾0. Alternatively, Butts (2008) analyzed events with
ordinal temporal information. In this setting, the likelihood is equal to the partial likelihood intro-
duced by Cox (1972) for estimating parameters of semiparametric intensities as in (13). Letting
Ut denote the set of all possible events that could have occurred at time point t but did not, the
partial likelihood for continuous event data is defined as

cont(𝜃) =
∏

(i,𝑗,t̃)∈Ω

𝜆i𝑗(t̃|N(t̃), x(t̃), 𝜃)∑
(k,h)∈Ut̃

𝜆kh(t̃|N(t̃), x(t̃), 𝜃)
. (15)

Consecutively,Λ0(t) = ∫ t
0 𝜆0(u)du can be estimated with a Nelson Aalen estimator (see Kalbfleisch

& Prentice, 2002, for further details on the estimation).
When dealing with large amounts of event data, the main obstacle is evaluating the sum over

the intensities of all possible ties in (15) (Butts, 2008). One exact option is to trade a longer running
time for a slimmer memory footprint by means of a coaching data structure. Vu et al. (2011) exploit
this by saving prior values of the sum and subsequently changing it event-wise by elements of
Ut̃ whose covariates changed. Alternatively, Vu et al. (2015) proposes approximate routines that
utilize case-control sampling and stratification for the Cox model (Langholz & Borgan, 1995).
More precisely, the sum is only calculated over a sampled subset of possible events in addition
to stratification. Lerner and Lomi (2019) go one step further and sample events out of Ω for the
calculation of (𝜃) in (15).

Numerous extensions of this model that build on already well-established methods in social
networks and time-to event analysis have been proposed. Perry and Wolfe (2013) used a strati-
fied Cox model in (13). Stadtfeld, Hollway, and Block (2017) adopted the SAOM to events. DuBois
and Smyth (2010) and DuBois, Butts, and Smyth (2013) extended the stochastic block model
for time-stamped relational events. Furthermore, DuBois, Butts, McFarland, and Smyth (2013)
adopted a Bayesian hierarchical model to event data when information is only available in smaller
groups.
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4.3 Time-clustered observations
Generally, the approach discussed above requires time-continuous network data, meaning that
we observe the precise time points of all events. To give an instance, in the first data example,
this means that we need the exact time point t̃ of an arms trade between countries i and j. Often,
such exact time-stamped data are not available and, in fact, trading between states can hardly be
stamped with a single time point t̃. Indeed, we often only observe the time-continuous network
process at discrete time points t = 1, … ,T. In such setting, we may assume a Markov structure
in that we do not look at the entire history of the process N(t̃) but just condition the intensity (13)
on the history of events from the previous observation t − 1 to t̃. Technically, this means that N(t)
is adapted to Ỹ (t̃) ∶= N(t̃) − N(t − 1) and x(t̃) for t̃ ∈ [t − 1, t]. We then reframe (13) as

𝜆i𝑗(t̃|Ỹ (t̃), x(t̃), 𝜃) = 𝜆0(t̃) exp{𝜃Tsi𝑗(Ỹ (t̃), x(t̃))}. (16)

In other words, we assume that the intensity of events between t − 1 and t does not depend
on states of the multivariate counting process (12) prior to t − 1. For this reason, all endoge-
nous statistics introduced in Section 4.2 are now evaluated on Ỹ (t̃) instead of N(t̃). This is a
reasonable assumption, if one is primarily interested in short-term dependencies between the
individual counting processes. It enables a meaningful comparison to the models from Section
3 that assume an analog discrete Markov property. However, we want to emphasize that this
dependence structure is not vital to inferential results.

If we observe the continuous process at discrete time points, it is inevitable that we observe
time-clustered observations, meaning that two or more events happen at the same time point.
Under the term tied observations, this phenomenon is well known in time-to-event analysis and
treated with several approximations. One option is the so-called Breslow approximation (see
Breslow, 1974; Peto, 1972). Let therefore

Ot = {(i, 𝑗) | Ni𝑗(t) − Ni𝑗(t − 1) > 0},

where element (i, j) is replicated Nij(t) − Nij(t − 1) times in Ot, that is, if an event between i and
j occurred multiple times in the interval from t − 1 to t, then (i, j) appears respective times in Ot.
Given that we have not observed the exact time point of an event, we also get no information on the
baseline intensity𝜆0(t̃) in (13) for t̃ ∈ [t−1, t] so that the model simplifies to a discrete choice model
structure (see, e.g., Train, 2009), which resembles the partial likelihood (15) and is defined as

clust(𝜃) =
T∏

t=1

∏
(i,𝑗)∈Ot

exp{𝜃Tsi𝑗(Ỹ (t), x(t))}(∑
(k,h)∈Ut

exp{𝜃Tskh(Ỹ (t), x(t))}
)nt

, (17)

where nt = |Ot|. Alternatively, one can replace the denominator in (17) by considering all
possible orders of the unobserved events in Ot giving the average likelihood as introduced by
Kalbfleisch and Prentice (2002). Because this can be a combinatorial and, hence, numerical chal-
lenge, random sampling of time point orders among the time-clustered observations can be used
with subsequent averaging, which we call Kalbfleisch–Prentice approximation (see Kalbfleisch
& Prentice, 2002). Further techniques to deal with unknown time ordering are augmenting the
clustered events into possible paths of ordered events and adapting the maximum likelihood esti-
mation proposed for the SAOM by Snijders, Koskinen, and Schweinberger (2010) or using random
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sampling of the ordering. This can be legitimized in cases where we may assume indepen-
dence among events happening in one year because the events take a long time to materialize
(Snijders, 2017).

4.4 Model assessment
In comparison to the assessment for models operating in discrete time, widely accepted methods
dealing with relational event data are scarce. The proposals either stem from time-to-event anal-
ysis or regard link prediction, which is the task of predicting the most likely next event given the
history of past events (Liben-Nowell & Kleinberg, 2007). One example of the former option is the
usage of Schönfeld residuals by Vu, Asuncion, Hunter, and Smyth (2011) to check the assumption
of proportional intensities, which is central to semiparametric models as the one proposed by
Cox (1972). For the latter approach, we need to define a predictive measure that quantifies how
well the next event is predicted. Vu et al. (2011) proposed the recall measure that estimates the
percentage of test events, which are in the list of K most likely next events according to a given
model. Evaluating this percentage for different values of K permits a visualization of the predic-
tive capabilities of the model. The strength of the predicted intensity allows the ordering of events
according to the probability of being observed next. If we model the propensity of time-clustered
events that represent binary adjacency matrices, one can alternatively adopt the analysis of the
ROC and PR curve introduced in Section 3.3.

5 APPLICATION

When it comes to software, there exist essentially three main R packages that are designed for
fitting TERGMs and STERGMs. Most important is the extensive statnet library (Goodreau,
Handcock, Hunter, Butts, & Morris, 2008) that allows for simulation-based fitting of ERGMs.
The library contains the package tergm with implemented methods for fitting STERGMs using
MCMC approximations of the likelihood. However, currently the package tergm (version 3.5.2)
does not allow for fitting STERGMs with time-varying dyadic covariates for more than two time
periods jointly. The package btergm (Leifeld et al., 2018) is designed for fitting TERGMs using
either maximum pseudolikelihood or MCMC maximum likelihood estimation routines. In order
to obtain Bayesian Inference in ERGMs, the package bergm by Caimo and Friel (2014) can be
used. Besides implementations in R, the stand-alone program PNet (Wang, Robins, & Pattison,
2006) allows for simulating, fitting, and evaluating (T)ERGMs. In order to ensure comparable
estimates, we estimate the TERGM, as well as the STERGM, with the statnet library, using
MCMC-based likelihood estimation techniques. We use the package ergm and include delayed
reciprocity and the repetition of previous ties as dyadic covariates. The STERGM is fitted using
the tergm package.

Marcum and Butts (2015) implemented the R package relevent (version 1.0-4) to estimate
the REM for time-stamped data. It was followed by the package goldfish (version 1.2) by Stadt-
feld and Hollway (2018) for modeling event data with precise and ordinal temporal information
with an actor- and tie-oriented variant of the REM. Furthermore, it is highly customizable in
terms of endogenous and exogenous user terms and will be used in the following applications.

We want to remark that the STERGM coefficients are implicitly dynamic, whereas in the
TERGM, all network statistics except the lagged network and delayed reciprocity terms are eval-
uated on the network in t. All covariates of the REM are continuously updated and the intensity



290 FRITZ ET AL.

at time point t̃ ∈ [t − 1, t] only depends on events observed in [t − 1, t̃). Like the building period
proposed by Vu et al. (2011), the events in t − 1 are only used for building up the covariates
and not directly modeled. Moreover, the coefficients of the REM affect the intensity of a specific
event on the tie level. For the (S)TERGM, the estimates can be interpreted as the effect of a global
statistic s(yt, yt−1, xt) on the probability of observing the network yt. They also allow for a tie-level
interpretation based on the so-called change statistics (Cranmer & Desmarais, 2011). Due to no
compositional changes, we did not scale any statistics.

5.1 Data set 1: International arms trade
The results obtained for the arms trading data section are displayed in Table 2. For a detailed
interpretation of effects focusing on political, social, and economic aspects, we refer to the relevant
literature (e.g., Thurner et al., 2019). Here, we want to comment on a few aspects only. While
we do not have time stamps for the arms trades, the longitudinal networks can still be viewed as
time-clustered observations enabling the techniques from Section 4.3.

TABLE 2 Arms trade network: Comparison of parameters obtained from the TERGM (first column),
STERGM (formation in the second column, dissolution in the third column), and REM (fourth column)

TERGM STERGM REM
Formation Dissolution

Repetition 3.671∗∗∗ − − 2.661∗∗∗

(0.132) − − (0.143)
Edges −15.632∗∗∗ −17.186∗∗∗ −16.987∗∗∗ −

(1.809) (2.168) (3.587) −
Reciprocity −0.258 −0.620 −0.058 −0.109

(0.306) (0.436) (0.619) (0.181)
In-degree (GWID) −1.823∗∗∗ −2.106∗∗∗ −0.412 0.060∗∗ In-degree receiver

(0.278) (0.379) (0.442) (0.015)
Out-degree (GWOD) −3.220∗∗∗ −4.126∗∗∗ −0.326 0.010∗∗ Out-degree sender

(0.304) (0.462) (0.533) (0.004)
GWESP 0.050 0.076 0.150 0.010 Transitivity

(0.066) (0.071) (0.126) (0.029)
Polity score (absolute difference) −0.024∗ −0.028∗ −0.016 −0.016

(0.010) (0.014) (0.017) (0.009)
log(GDP) sender 0.313∗∗∗ 0.394∗∗∗ 0.323∗∗∗ 0.395∗∗∗

(0.048) (0.054) (0.088) (0.039)
log(GDP) receiver 0.165∗∗∗ 0.135∗ 0.327∗∗∗ 0.192∗∗∗

(0.043) (0.054) (0.087) (0.032)
Log likelihood −949.833 −675.327 −258.425
AIC 1,917.666 1,366.654 532.849∑

AIC 1,917.666 1,899.503

Note. Standard errors in brackets and stars according to p values smaller than 0.001 (∗∗∗), 0.05 (∗∗), and 0.1 (∗). The decay
parameter of the geometrically weighted statistics is set to log(2) and the Kalbfleisch–Prentice approximation was used with
100 random orderings of the events to find the estimates of the REM. TERGM = temporal exponential random graph model;
STERGM = separable temporal exponential random graph model; REM = relational event model; GWID = geometrically
weighted in-degree distribution; GWOD = geometrically weighted out-degree distribution; GWESP = geometrically weighted
edge-wise shared partners; GDP = gross domestic product; AIC = Akaike information criterion.
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FIGURE 5 Arms trade network: ROC (left) and PR (right) curves from the TERGM (dotted line), STERGM
(dot-dashed line), and REM (solid line). The AIC values of the respective curves are indicated in brackets.
ROC = receiver-operator-characteristic; PR = precision-recall; TERGM = temporal exponential random graph
model; STERGM = separable temporal exponential random graph model; REM = relational event model;
AIC = Akaike information criterion

Both the TERGM (column 1) and the REM (column 4) identify the repetition of previ-
ous ties as a driving force in the dynamic structure of the network. Degree-related covariates,
which are GWID and GWOD in the (S)TERGM and the in- and out-degrees in the REM, cap-
ture centrality in the network. The coefficients of the GWID and GWOD are negative and have
low p values in the TERGM. This stands in contrast to the STERGM, where these effects are
only pronounced in the formation model (column 2); however, they are insignificant effects
in the dissolution model (column 3). Hence, these effects suggest a centralized pattern in the
formation network, which is also captured by the TERGM. In the REM, an analogous pattern
can be detected because a higher in-degree of the receiver increases the respective intensity; thus;
spurs trade relations. Similar interpretations hold for the out-degree of the sender. Overall, coun-
tries that have a high out-degree are more likely to send weapons and countries with a high
in-degree to receive them, which again results in a centralized network structure as indicated by
the estimates in the TERGM and STERGM. This example illustrates how seemingly contrasting
coefficients of the (S)TERGM and REM can still imply a similar interpretation in terms of the
implied global network characteristics.

Lastly, consistent effects among the models were also found for the exogenous covariates. Con-
sider, for instance, the coefficient of the logarithmic GDP of the importing country. The TERGM
assigns a significantly higher probability to observe in-going ties to countries with a high GDP
just like the REM. However, disentangling the model towards formation and dissolution, we see
strongly significant coefficients in the dissolution model, whereas the effect for the formation
model is weakly significant.

Based on the independence assumption in (9), we can sum up the two AIC values and see
that the AIC value of the STERGM is smaller than of the TERGM. Furthermore, the ROC and
PR curves of all three models are shown in Figure 5. Again, both measures indicate that the
STERGM provides a slightly improved fit when compared to the TERGM and REM. The results
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of the simulation-based model assessment of the (S)TERGM can be found in the Supplementary
Material.

5.2 Data set 2: European research institution email correspondence
As already indicated by the descriptive statistics in Table 1, the email network seems to be
driven by three major structural influences: repetition, reciprocity, and transitive clustering. The
estimates from Table 3 demonstrate that all models were able to identify these forces.

According to the REM (column 4), the event network of email traffic in the research insti-
tution is not centralized and primarily based on collaboration between coworkers. We can draw
those conclusions from insignificant estimates of degree-related statistics and highly significant
estimates regarding reciprocity and repetition. In the TERGM (column 1), we find a positive and
significant effect of GWID, whereas no effect can be found in the STERGM (columns 2 and 3).
The estimates of repetition and reciprocity in the REM and TERGM are very pronounced. For
instance, the estimates of the REM imply that a reciprocated event is 19.6 times more likely than
an event with the same covariates only not being reciprocated. Interestingly, the STERGM detects
a lower effect of GWESP in the formation and dissolution than the TERGM. The effect of the
delayed reciprocity in the TERGM is less relevant than reciprocity in the formation and dissolu-
tion model. This strongly differing effect size results from the mathematical formulation of the
statistics given in Equations (3) and (11).

Contrasting the AIC values of the TERGM and STERGM shows that the dynamic structure of
the email network is again better explained by the STERGM. In the Supplementary Material, we

TABLE 3 Email exchange network: Comparison of parameters obtained from the TERGM (first
column), STERGM (formation in the second column, dissolution in the third column), and REM
(fourth column)

TERGM STERGM REM
Formation Dissolution

Repetition 1.367∗∗∗ − − 2.27∗∗∗

(0.107) − − (0.084)
Edges −5.755∗∗∗ −4.853∗∗∗ −2.237∗∗∗ −

(0.237) (0.247) (0.224) −
Reciprocity 0.398∗∗∗ 2.498∗∗∗ 2.586∗∗∗ 1.655∗∗∗

(0.112) (0.157) (0.226) (0.075)
In-degree (GWID) 1.060∗∗ 1.349∗ 0.709 −0.004 In-degree receiver

(0.333) (0.648) (0.415) (0.003)
Out-degree (GWOD) 0.031 −0.411 −0.369 −0.0001 Out-degree sender

(0.312) (0.431) (0.397) (0.003)
GWESP 1.560∗∗∗ 0.655∗∗∗ 0.429∗∗∗ 0.070∗∗∗ Transitivity

(0.110) (0.111) (0.086) (0.008)
Log likelihood −1,723.732 −1,000.506 −505.431
AIC 3,459.464 2,011.012 1,020.862∑

AIC 3,459.464 3,031.874

Note. Standard errors in brackets and stars according to p values smaller than 0.001 (∗∗∗), 0.05 (∗∗), and 0.1 (∗).
Decay parameter of the geometrically weighted statistics is set to log(2). TERGM = temporal exponential random
graph model; STERGM = separable temporal exponential random graph model; REM = relational event model;
GWID = geometrically weighted in-degree distribution; GWOD = geometrically weighted out-degree distribu-
tion; GWESP = geometrically weighted edge-wise shared partners; GDP = gross domestic product; AIC = Akaike
information criterion.
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give the results of model assessment for the (S)TERGM and REM, as well as an application of the
TERGM and STERGM to multiple time points.

6 CONCLUSION

6.1 Further models
Snijders (1996) formulated a two-stage process model operating in a continuous-time framework.
The dynamics are considered to evolve according to unobserved microsteps. At first, a sender out
of all eligible actors gets the opportunity to change the state of all his outgoing ties. Consecutively,
the actor needs to evaluate the probability of changing the present configuration with each pos-
sible receiver, which entails each actor's knowledge of the complete graph whenever he has the
possibility to toggle one of his ties. Lastly, the decision is randomly drawn relative to the proba-
bilities of all possible actions. In general, the SAOM is a well-established model for the analysis
of social networks, which was successfully applied to a wide array of network data, for example,
in sociology (Agneessens & Wittek, 2012; de Nooy, 2002), political science (Bichler & Franquez,
2014; Kinne, 2016), economics (Castro, Casanueva, & Galán, 2014), and psychology (Jason, Light,
Stevens, & Beers, 2014). Estimation of this model variant is predominantly carried out with the R
package RSiena (Ripley, Boitmanis, & Snijders, 2013).

Another notable model that can be regarded as a bridge between the ERGM and
continuous-time models is the longitudinal ERGM (LERGM; Koskinen, Caimo, & Lomi, 2015;
Snijders & Koskinen, 2013). In contrast to the TERGM, the LERGM assumes that the network
evolves in microsteps as a continuous-time Markov process with an ERGM being its limiting
distribution. Similar to the SAOM, the model builds on randomly assigning the opportunity to
change, followed by a function that governs the probability of a tie change. This model is still
tie-oriented, meaning that dyadic ties instead of actors are chosen and then have the option to
change the current network.

6.2 Summary
In this article, we emphasize tie-oriented dynamic network models. Comparisons between these
models can be drawn on the level at which each implied generating mechanism works and
how time is perceived. The overall aim in the TERGM is to find an adequate distribution of the
adjacency matrix Yt conditioning on information of previous realizations of the network. In the
separable extension, the aim remains unchanged, only splitting Yt into two subnetworks that
include all possible ties that were and were not present in Yt−1 separately. While the (S)TERGM
proceeds in discrete time, the REM tackles modeling the intensity on the tie level in continuous
time conditional on past events. Therefore, the (S)TERGM takes a global and REM a local point
of view. Even though this results in substantially different interpretations of the estimates, they
can still be related to one another by focusing on how the global effects of the (S)TERGM can be
emergent from tie-level effects treated in the REM. Furthermore, our discussion exposed how the
model assessment of the REM focuses on analogies with time-to-event analysis, that is, looking
at the adequate behavior of the model on the tie-level, and the (S)TERGM on simulation-based
procedures, which regards the capabilities of the model to capture global characteristics.

Finally, the typically required data structure differs between the model classes. While the
time-discrete generating mechanism of the (S)TERGM naturally processes network data that were
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observed at discrete time points, the REM is based on time-continuous data. Of the two analyzed
data sets, the international arms trade network represents the former data structure, whereas the
email traffic data are an example of the latter. By extending the REM to time-clustered observa-
tions and aggregating events to binary adjacency matrices, a meaningful comparison between the
STERGM, TERGM, and REM is enabled.
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APPENDIX

ADDITIONAL DESCRIPTIVES

Figures A1 and A2 depict the distributions of in- and out-degrees in the two networks. Building
on the in- and out-degrees of all nodes, these distributions represent the relative frequency of
all possible in- and out-degrees in the observed networks, which is calculated with the igraph
package in R (Csardi & Nepusz, 2006).

In the arms trade network, a strongly asymmetric relation is revealed, indicating that about
70% of the countries do not export any weapons, whereas a small percentage of countries account
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FIGURE A1 Arms trade network: Bar plots indicating the distribution of the in- and out-degrees. Black bars
indicate the values of year 2016 and the grey bars, year 2017
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FIGURE A2 Email exchange network: Bar plots indicating the distribution of the in- and out-degrees. Black
bars indicate the values of Period 1 and the grey bars, Period 2

for the major share of trade relations. The distribution of the in-degree is not that extreme, but
still, we have roughly one third of all countries not importing at all.

The email exchange network shows a different structure. Here, many medium-sized
in-degrees can be found, and only roughly 10% of all nodes have received no emails. For the
out-degree, this number doubles (roughly 20% have not sent emails). Furthermore, the distribu-
tion of the out-degree is more skewed than the one for the in-degree.
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