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Pancreatic ductal adenocarcinoma (PDAC) will soon belong to the top

three cancer killers. The only approved specific PDAC therapy targets the

epidermal growth factor receptor (EGFR). Although EGFR is a crucial

player in PDAC development, EGFR-based therapy is disappointing. In

this study, we evaluated the role of the EGFR ligand betacellulin (BTC) in

PDAC. The expression of BTC was investigated in human pancreatic

cancer specimen. Then, we generated a BTC knockout mouse model

by CRISPR/Cas9 technology and a BTC overexpression model. Both mod-

els were crossed with the Ptf1aCre/+;KRASG12D/+ (KC) mouse model

(B�/�KC or BKC, respectively). In addition, EGFR, ERBB2, and ERBB4

were investigated by the pancreas-specific deletion of each receptor using

the Cre-loxP system. Tumor initiation and progression were analyzed in all

mouse lines, and the underlying molecular biology of PDAC was investi-

gated at different time points. BTC is expressed in human and murine

PDAC. B�/�KC mice showed a decelerated PDAC progression, associated

with decreased EGFR activation. BKC mice developed severe PDAC with

a poor survival rate. The dramatically increased BTC-mediated tumor bur-

den was EGFR-dependent, but also ERBB4 and ERBB2 were involved in

PDAC development or progression, as depletion of EGFR, ERBB2, or

ERBB4 significantly improved the survival rate of BTC-mediated PDAC.

BTC increases PDAC tumor burden dramatically by enhanced RAS activa-

tion. EGFR signaling, ERBB2 signaling, and ERBB4 signaling are

involved in accelerated PDAC development mediated by BTC indicating

that targeting the whole ERBB family, instead of a single receptor, is a

promising strategy for the development of future PDAC therapies.
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1. Introduction

With a 5-year survival rate of 8% pancreatic ductal

adenocarcinoma (PDAC) is worldwide one of the

deadliest cancers. While mortality rates are declining

for many cancers due to early detection and improved

treatment, rates for PDAC are still rising (Siegel et al.,

2018), promoting PDAC to the top three cancer killers

within the next decade (Rahib et al., 2014). Standard

PDAC treatment includes surgical resection and adju-

vant chemotherapy with FOLFIRINOX or gemc-

itabine in combination with nab-paclitaxel providing

the most promising results (Aslan et al., 2018). How-

ever, systemic chemotherapy is associated with severe

side effects. There is an urgent need to find customized

therapies targeting aberrantly regulated molecules in

PDAC. Over 95% of PDAC patients harbor an acti-

vating point mutation in the Kirsten rat sarcoma viral

oncogene homolog (KRAS) gene (Bryant et al., 2014).

KRASG12D is the initiating mutation in PDAC being

detected in over 90% of pancreatic intraepithelial neo-

plasia (PanIN) (Fischer and Wood, 2018). Attempts to

target aberrant KRAS in PDAC were promising in

preclinical studies. However, their performance in clin-

ical trials was rather disappointing (Zeitouni et al.,

2016). A further challenge is the limited delivery of

therapeutics to the cancer cells in the stroma of

PDAC, which has a high extracellular matrix content

and shows poor vascularization (Olive, 2015). It was

shown that the epidermal growth factor receptor

(EGFR), acting upstream of KRAS, was required for

oncogenic KRAS-driven PDAC tumorigenesis in mice

with a wild-type tumor protein 53 (Tp53) background

(Ardito et al., 2012; Navas et al., 2012). Indeed,

EGFR is the only molecule approved for targeted

PDAC therapy in the clinic, albeit with marginal

improvement in survivalwith only a small subset of

patients responding. Surprisingly, the response rate to

erlotinib in PDAC patients is independent of the pan-

creatic EGFR expression status (Moore et al., 2007).

Thus, many questions concerning EGFR signaling in

PDAC remain to be addressed. EGFR belongs to the

family of the ERBB receptors as ERBB2 (HER2, neu),

ERBB3 (HER3), and ERBB4 (HER4). They homo- or

heterodimerize upon ligand-dependent activation in

order to induce cellular responses like proliferation,

migration, apoptosis, differentiation, and adhesion,

and with 28 possible receptor combinations (including

spliced receptors) and 11 ligands (Schneider and Wolf,

2009), the family is able to induce 611 different active

receptor/ligand combinations (Roskoski, 2014). Many

ERBB ligands like EGF and transforming growth

factor alpha (TGFA) (Wagner et al., 1998), amphireg-

ulin (AREG) (Wang et al., 2016), heparin-binding

EGF-like growth factor (HBEGF) (Ray et al., 2014),

and epiregulin (EREG) (Zhu et al., 2000) have been

associated with PDAC. While all of them bind EGFR,

a subset also binds ERBB4, indicating that EGFR

might not be the only candidate to mediate their

effects in PDAC. A further EGFR- and ERBB4-bind-

ing ligand, betacellulin (BTC) has also been associated

with PDAC. BTC mRNA was detected in human pan-

creatic cancer cell lines (hPaCaCells) and elevated in

human PDAC tissues (Yokoyama et al., 1995). BTC

was also revealed to be a potent mitogen in hPaCa-

Cells, while the transmitting receptors remained

unidentified (Kawaguchi et al., 2000). This is particu-

larly interesting since its designated receptor ERBB4

plays controversial roles in PDAC development and

progression (Graber et al., 1999; Kolb et al., 2007;

Mill et al., 2011). The role of ERBB4 seems to be con-

text-dependent, probably due to its—in contrast to its

ERBB relatives—ability to signal in form of its soluble

intracellular domain (ICD80) after undergoing regu-

lated intramembrane proteolysis (RIP) (Carpenter,

2003), induced by tumor necrosis factor alpha convert-

ing enzyme (Kenny and Bissell, 2007). However, in

another pancreatic disorder BTC transgenic mice were

protected against acute pancreatitis mediated by

ERBB4 signaling and independent of EGFR (Hedeg-

ger et al., 2019). This demonstrates the complexity of

the ERBB system and points out the versatile

responses to ERBB ligands in a tissue-specific manner.

There is an urgent need to unravel the intricate ERBB

network in pancreatic cancer to better understand not

only the role of EGFR, but also to show the potential

significance of its relatives in order to establish more

efficiently targeted therapies. To investigate BTC in

pancreatic cancer, we generated a BTC knockout

mouse model (BTC�/�) and overexpressed BTC in a

transgenic mouse model (Btctg/+). Both models were

crossed in a PDAC mouse model, and to assess the

receptor dependency, BTC-transgenic mice were also

crossed with PDAC mouse lines with pancreas-specific

EGFR, ERBB2, or ERBB4 deletions.

2. Materials and methods

2.1. Human samples

For ERBB receptor immunohistochemistry (IHC), pri-

mary PDACs that were resected between 2008 and

2013 at the Klinikum rechts der Isar, Technische
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Universit€at M€unchen, were used after written informed

consent was obtained. Pancreatic samples from nondis-

eased pancreas served as controls. The use of this

patient cohort for biomarker analysis has been

approved by the ethics commission of the Klinikum

Rechts der Isar, Technische Universit€at M€unchen

(403/17S), and the study methodologies conformed to

the standards set by the Declaration of Helsinki.

2.2. Animals

All animal experiments were approved by the author’s

institutional committee on animal care and carried out

in accordance with the German Animal Protection

Law with permission from the responsible veterinary

authority (Az.:55.2-1-54-2532-26-2014). Mice carrying

floxed Egfrfl/fl (Egfrtm1Dwt) (Lee and Threadgill, 2009),

Erbb2fl/fl(Garratt et al., 2000), Erbb4fl/fl (B6;129-Erb-

b4tm1Fej/Mmucd) (Long et al., 2003), and KrasG12D/+

(B6.129S4-Krastm4Tyj/J)(Jackson et al., 2001) alleles or

expressing Cre recombinase under the pancreas-specific

transcription factor 1 alpha (Ptf1a-Cre) (Ptf1atm1(cre)

Hnak) (Nakhai et al., 2007) promoter have been

described previously. Transgenic mouse lines ubiqui-

tously overexpressing BTC under the control of the

chicken-beta-actin gene promoter (Btctg/+) have been

described elsewhere (Schneider et al., 2005). We cross-

mated Btctg/+;Ptf1aCre/+;KrasG12D/+ (herein referred to

as BKC) mice and Btctg/+;Ptf1aCre/+;KrasG12D/+;Egfrfl/

fl, Btctg/+;Ptf1aCre/+;KrasG12D/+;Erbb2fl/fl, and Btctg/+;

Ptf1aCre/+;KrasG12D/+;Erbb4fl/fl mice (herein referred to

as E1KO;BKC, E2KO;BKC, and E4KO;BKC, respec-

tively) to delete the designated ERBB receptor pan-

creas-specifically using the Cre-loxP-system. The

genotypes of all mice were verified by PCR (Qiagen,

Hilden, Germany), employing genomic DNA from tail

tips by using the oligonucleotides listed in Table S1.

Mice were maintained in the C57BL/6N background

and housed under specific pathogen-free conditions in

the closed barrier facility of the Gene Center Munich

at 23 °C, 50% humidity, and with a 12-h light/dark

cycle (lights on at 7 AM). They had free access to

water and a standard rodent diet (V1534, Ssniff, Soest,

Germany). Mice were weighed weekly until the age of

6 months and afterwards, still weekly or every

2 weeks. Mice were killed at the designated time points

or, for survival analysis, were left alive and killed as

soon as they became moribund.

2.3. Generation of BTC knockout mice (BTC�/�)

For CRISPR/Cas9-assisted Btc gene disruption using

a single guide RNA (sgRNA) specific for exon 2

sequence 50-GTCTTGCAATTCTCCACTGTG-30, a

corresponding oligonucleotide was cloned into the

pEX-A-U6-gRNA vector as described previously

(Dahlhoff et al., 2017). Cas9 mRNA and sgRNA were

in vitro-transcribed by using the Ambion Maxiscript

SP6 kit (Thermo Fisher Scientific, Waltham, MA,

USA). C57BL/6N zygotes were injected with Cas9

mRNA (50 ng�µL�1) and sgRNA (100 ng�µL�1), and

embryos were transferred into recipient NMRI mice.

Potential founders were identified by PCR using the

primers listed in Table S1. Based on the detected

mutations, a PfiMI restriction fragment length poly-

morphism assay was established, yielding fragments of

210 and 290 bp for wild-type Btc and a single frag-

ment of 500 bp for the mutated Btc sequence. Two

founder animals with monoallelic insertions of 1 bp

were identified. The insertion of 1 bp leads to a shift

in the reading frame in Btc exon 2. The mutated Btc

transcripts encode 27 amino acids (aa) of the extracel-

lular BTC domain, followed by a 31 aa missense

sequence and a premature termination codon after 58

aa (Fig. S1).

2.4. Pancreas preparation

Mice were sacrificed by cervical dislocation at the age

of 1 week, 8 weeks, 12 months, or when moribund.

The pancreas was isolated, blotted dry, and weighed

to the nearest milligram. Parts of the head, tail, and

central part of the pancreas were dissected, pooled,

frozen on dry ice, and stored at �80 °C. The remain-

ing tissue was fixed in 4% para-formaldehyde (PFA,

in PBS, pH 7.4) overnight and subsequently embedded

in paraffin for histopathological examination. From

mice sacrificed at the age of 1 week, the whole pan-

creas was either frozen on dry ice or immediately

homogenized in total in RLT buffer (Qiagen), freshly

supplemented with 1% beta-mercaptoethanol (Roth,

Karlsruhe, Germany) and shock-frozen in liquid nitro-

gen for RNA isolation, or incubated as a whole in 4%

PFA overnight and embedded in paraffin.

2.5. Immunohistochemistry

Immunohistochemistry was performed, using specific

antibodies for detection of murine (m) mBTC,

mTGFA, mAREG, mEREG, mACTA2, mEGFR,

cleaved caspase-3, and human (h) hBTC, hEGFR,

hERBB2, hERBB3, and hERBB4 in sections of PFA-

fixed, paraffin-embedded pancreatic tissue. For all

immunostainings, the slides were boiled in a pressure

cooker for 15 min in 10 mM sodium citrate buffer pH

6.0 or EDTA pH 9, blocked in 3% H2O2 for 30 min

1655Molecular Oncology 14 (2020) 1653–1669 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

K. Hedegger et al. BTC increases PDAC burden



and in 5% of the appropriate serum for another

30 min. Primary antibodies were incubated over night

at 4 °C. After washing in PBS, the slides were incu-

bated with the appropriate secondary antibodies for

1 h at room temperature, and the signal was amplified

using the VECTASTAIN� ABC HRP kit (Vector,

Burlingame, CA, USA) for 30 min at room tempera-

ture. As chromogen, ImmPACTTM DAB peroxidase

substrate kit (Vector) was used and the sections were

counterstained with hematoxylin (Roth) for 3 min. A

list of primary and secondary antibodies with the cor-

responding dilutions is provided in Table S2. Appro-

priate negative control sections (omission of the first

antibodies) were carried along in all IHC experiments.

2.6. Histopathology and morphometric analyses

For histological analyses, the PFA-fixed and paraffin-

embedded pancreas was serially sectioned and four

sections with a distance of nine sections between were

sampled and stained with hematoxylin and eosin

(H&E), and Masson’s trichrome, respectively. The sec-

tions were independently analyzed by two researchers

in a blinded fashion. (Pre-) neoplastic pancreas alter-

ations were classified, using established histomorpho-

logical criteria (Distler et al., 2014; Hruban et al.,

2004). For quantification of lesions, the relative section

areas of altered tissue in the pancreas were determined.

The fractional area of the total ‘reactive tissue’ (com-

prising fibrosis, inflammation, preneoplastic lesions,

including acinar-to-ductal metaplasia (ADM) and

PanIN of grades 1-3, as well as PDAC) in the pan-

creas was quantified in digital images covering the

complete area of all pancreas sections (2009 magnifi-

cation) of n = 4 mice of 8 weeks of age per group,

using LAS software version 3.8.0 (Leica Microsystems,

Wetzlar, Germany).

Additionally, the area density of acinar cell section

profiles, ADM, PanIN1-3, PDAC, and fibrosis in the

pancreas of 12-month-old mice (n = 4/group) was sep-

arately determined by point counting (Howard and

Reed, 2004; Weibel, 1979). For this, digital images of

H&E or Masson’s trichrome-stained sections were

superimposed with a grid of equally spaced crosses

(117 crosses/2 cm2), using NETSCOPE VIEWER software

(Net-Base Software GmbH, Freiburg, Germany).

Crosses hitting section profiles of the respective struc-

ture were counted and related to the number of crosses

hitting pancreas tissue in all examined sections per

case. On the average, 111 � 7 points were counted per

case. Data were analyzed by Student’s t-test, respec-

tively, by 2-way ANOVA and plotted as column bar

plots in GRAPHPAD PRISM (GraphPad Prism version 5.0

for Windows, GraphPad Software, San Diego, CA,

USA).

2.7. RAS activity assay

To evaluate pancreatic RAS activity, the Active Ras

Detection Kit (Cell Signaling, Frankfurt, Germany)

was used according to the manufacturer’s instructions.

In brief, dissected, frozen pancreas was homogenized

in lysis/binding/wash buffer, freshly supplemented with

phenylmethanesulfonyl fluoride, and 300 µg total pro-

tein was incubated with the GST-Raf1-Ras-binding

domain for 1 h at 4 °C, washed and eluted under

denaturing conditions and applied to an SDS-gel elec-

trophoresis using Mini-PROTEAN� TGX Stain-

FreeTM Precast Gels (BIO-RAD, Hercules, CA, USA)

and subsequent Western blot analysis detecting mRAS.

Total protein was quantified using Image Lab 6.0.1

(Bio-Rad), and the amount of active RAS was refer-

enced to total protein and plotted in GRAPHPAD PRISM.

Data were analyzed by Student’s t-test.

2.8. Co-immunoprecipitation

Pancreata were homogenized in a TRIS-based buffer

(50 mM Tris, 150 mM NaCl, 1% NP-40, 10% glycerol,

1 M EDTA; freshly supplemented with protease, and

phosphatase inhibitors), and 350 µg of protein was

immunoprecipitated by targeting EGFR. For this, the

lysate was incubated with 1 µg of EGFR antibody

(Santa Cruz, SC-03, Heidelberg, Germany) or 1 µg of

normal IgG antibody (R&D Systems, Minneapolis,

MN, USA) at 4 °C overnight and incubated with

50 µL of protein A-coated magnetic beads (Cell Sig-

naling) for 30 min at room temperature. After wash-

ing, the precipitate was eluted under denaturing

conditions and applied to a western blot detecting

ERBB2 (Santa Cruz, SC-284), ERBB3 (Santa Cruz,

SC-285), and EGFR as control.

2.9. Western blot analysis

Pancreas of animals was homogenized in Laemmli-ex-

traction buffer as described previously (Dahlhoff et al.,

2015). Protein samples with equal concentrations were

electrophoresed on 10% polyacrylamide–sodium dode-

cyl sulfate gels and blotted to polyvinylidene difluoride

membranes (GE Healthcare, Munich, Germany). The

membranes were blocked with 5% milk and incubated

with the primary antibodies overnight at 4 °C. After

washing, the membranes were incubated in the appro-

priate horseradish peroxidase-conjugated secondary

antibody. Immunoreactive bands were visualized by
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chemiluminescence with an ECL Kit (GE Healthcare

or Thermo Scientific). Antibodies and dilutions are

supplied in Table S3. Densitometrical analyses were

performed with IMAGEJ 1.52a (http://rsb.info.nih.gov/ij)

and plotted in GRAPHPAD PRISM (GraphPad Prism ver-

sion 5.0).

2.10. Reverse transcriptase–PCR

RNA was extracted from different organs with TRI-

zol reagent (Invitrogen, Darmstadt, Germany), and

3 µg of RNA was reverse-transcribed in a final vol-

ume of 30 µL using RevertAid reverse transcriptase

(Thermo Scientific, Schwerte, Germany) according to

the manufacturer’s instructions. To show the qualita-

tive mRNA expression of Btc-KO mice, reverse tran-

scription–PCR (RT–PCR) was performed by using

reagents from Qiagen. The final reaction volume was

20 µL, and cycle conditions were 94 °C for 5 min,

followed by 35 cycles of 94 °C for 1 min, 58 °C for

1 min, and 72 °C for 1 min. The amplicon for Btc

was digested by PflMI (NEB, Frankfurt, Germany)

for 90 min at 37 °C and subject to agarose elec-

trophoresis to reveal the mutation side. Gapdh was

used as reference mRNA. The used primers are listed

in Table S1.

2.11. Hematoxylin and eosin (H&E) and

Masson’s trichrome staining

H&E-stainings (histological standard stain) and Mas-

son’s trichrome stainings (demonstration of collage-

nous connective tissue) were performed on sections of

PFA-fixed and paraffin-embedded pancreas tissue,

using standard protocols.

2.12. Cell culture and stimulation experiments

PANC-1 and BcPC-3 cells were purchased from CLS

(Cell Lines Service, Eppelheim, Germany) 4 months

before the experiments were performed. All human

permanent cell lines in the CLS cell bank were authen-

ticated by using the STR DNA profiling analysis.

Mycoplasma testing was done every 6 months for all

cultured cells, using a Mycoplasma Detection Kit

(PlasmoTest; InvivoGen, Toulouse, France). Both can-

cer cell lines were maintained at 37 °C and 5% CO2.

PANC-1 cells were cultured in Dulbecco’s modified

Eagle Medium (Merck, Darmstadt, Germany), BxPC-3

cells in Roswell Park Memorial Institute 1640 medium

(RPMI; Merck), both supplemented with 10% FBS

(Merck) and 1% Penicillin/Streptomycin (Merck). At a

confluence of 90%, cells were starved overnight (1%

FBS) and stimulated the next day with 50 ng�mL�1 of

recombinant human BTC (rhBTC; R&D Systems

#261-CE) for 5 and 15 min. Cells were then lysed in a

Tris-based buffer [50 mM Tris, 150 mM NaCl, 1% NP-

40, 10% glycerol, 1 M EDTA; freshly supplemented

with protease and phosphatase inhibitors (Roche,

Penzberg, Germany)] and subject to western blot anal-

ysis detecting phosphorylation and total expression of

the ERBB receptors.

2.13. 3D primary cell culture

3D primary cell cultures of pancreatic acini were pre-

pared according to a modified protocol of Qu and

Konieczny (2013). For isolation of acini, freshly dis-

sected pancreata of 3-week-old wild-type mice were

washed twice in sterile ice-cold PBS and immediately

minced and digested twice in collagenase P solution

(Hanks Balanced Salt Solution; Sigma, Taufkirchen,

Germany), 5% FBS, 0.2 mg�mL�1 soybean trypsin

inhibitor (STI; Sigma), 0.2 mg�mL�1 Collagenase P

(Roche) at 37 °C for 10 min. The pancreatic tissue

was gently pressed and washed through a 100-µm cell

strainer and incubated in red blood cell lysis buffer

(Roth) for 10 min at 37 °C. The acini recovered for

1 h in 3D culture medium [RPMI 1640, 1% FBS, 1%

Penicillin/Streptomycin, 1 mg�mL�1 STI, 1 µg�mL�1

dexamethasone (Sigma)]. Prior to cell seeding, the cul-

ture dishes were coated with a matrix of rat tail colla-

gen I (Invitrogen, Carlsbad, CA, USA) and RPMI

medium, supplemented with NaHCO3 for at least 1 h

at 37 °C. For seeding, the cell suspension was mixed

with the collagen I coating gel in a ratio 1 : 3, gently

placed into the coated dishes, and solidified for 1 h at

37 °C, 5% CO2. The matrix was then coated with

warm 3D culture medium and stimulated or left

untreated. For stimulation experiments, 3D culture

medium was supplemented with rhBTC or rhTGFA or

left untreated and investigated under a light micro-

scope at days 0, 4, and 5 after treatment. The number

of transdifferentiated cells was estimated by two

researchers, independently.

2.14. Statistics

Data are presented as means � SEM and compared

by two-tailed unpaired Student’s t-test, and in the case

of more than two groups by analysis of variance

(ANOVA) and Tukey’s multiple comparison test. All

data were analyzed with GRAPHPAD PRISM (GraphPad

Prism version 5.0 for Windows, GraphPad Software,

San Diego, CA, USA). P-values < 0.05 were consid-

ered statistically significant.
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3. Results

3.1. BTC and the ERBB receptors are expressed

in human pancreas, PDAC samples, PDAC cell

lines, and in pancreata of PDAC mice

Betacellulin was detected by IHC predominantly in the

islets of Langerhans and in ducts and acini of normal

human pancreas (hNP), in all examined human PDAC

samples (6/6), in cancer cells, and the adjacent stroma

(Fig. 1A). Western blot analysis revealed BTC expres-

sion in 5/6 hPaCaCells (Fig. 1C). Furthermore, all

ERBB receptors were detected by IHC in human

PDAC (Fig. 1E). Since BTC can activate all ERBB

receptors, either directly or indirectly, we evaluated the

phosphorylation status of all ERBB receptors upon

BTC stimulation in two hPaCaCells. Stimulation of

PANC-1 (with KRAS mutation) and BxPC-3 (with

wild-type KRAS) cells with hBTC led to the activation

of all receptors at 5 and 15 min, while ERBB3 was

constitutively activated in both cell lines (Fig. 1D).

These data indicate that BTC and the ERBB receptors

are associated with human PDAC. The pancreata of

Ptf1acre/+;KrasG12D/+ (herein referred to as KC) mice

revealed a strong positive immunostaining for endoge-

nous BTC expression in low- and high-grade PanIN in

5/6 samples (Fig. 1B).

3.2. Lack of BTC in KC mice results in a

reduction of tumor burden and decreased EGFR

phosphorylation

To evaluate the function of BTC in PDAC develop-

ment, we generated a BTC knockout mouse (BTC�/�)
by CRISPR/Cas9 (clustered regularly interspaced short

palindromic repeats/CRISPR-associated 9) technology

(Fig. S1A). BTC�/� mice were viable and showed no

macroscopic phenotype, and bred in a Mendelian ratio

(data not shown). RT–PCR analysis confirmed the fra-

meshift in exon 2 of the Btc gene (Fig. S1B), and the

loss of BTC was confirmed by IHC (Fig. S1D).

Crossed into the KC background (herein referred to as

B�/�KC mice), B�/�KC mice showed no differences in

body and relative pancreas weight at the age of

8 weeks and 12 months, respectively (Fig. S1C). All

B�/�KC animals remained clinically unremarkable to

the time of dissection at 12 months, while KC mice

started deceasing already at 7 months (Fig. 2A). The

fractional section area of reactive tissue (fibrosis,

inflammation, ADM, PanIN) in the pancreas was

determined in 8-week-old mice. At this age, B�/�KC

mice showed a significant 10-fold decrease in area

densities of reactive tissue in the pancreas as compared

to KC mice (Fig. 2B,C), indicating a decelerated

PDAC development. In pancreata of 12-month-old

mice, we observed decreased PDAC progression upon

BTC depletion. Compared to KC mice, B�/�KC mice

displayed higher area densities of preneoplastic lesions

(ADM, PanIN1-2) in the pancreas, whereas the frac-

tional section areas occupied by PDAC were signifi-

cantly decreased (Fig. 2F,G). Western blot analysis

revealed reduced EGFR expression and phosphoryla-

tion in pancreata of 8-week-old (Fig. 2D,E) and

reduced EGFR phosphorylation in 12-month-old

(Fig. 2H,I) B�/�KC mice compared to age-matched

KC mice. These data indicate that the depletion of

BTC attenuates tumor initiation and progression by

downregulating EGFR signaling, which results in a

prolonged survival.

3.3. Overexpression of BTC in KC mice leads to

early onset of PDAC and a high mortality

To investigate how BTC influences PDAC, we over-

expressed BTC in a murine PDAC model. We

crossed ubiquitously overexpressing BTC mice into

the KC background (Ptf1acre/+;KrasG12D/+;Btctg/+,

herein referred to as BKC mice). BKC mice devel-

oped cachexia after 6 weeks and lost up to 25% of

their body weight within the following 2 weeks

(Fig. 3A). The major cohort of BKC mice (13/18)

was dead at 2 months (median survival: 2.75 months),

whereas KC mice had a median survival of

11 months (Fig. 3B). H&E staining of pancreata of

1-week-old mice of both groups appeared normal

(Fig. 3C). Already at the age of 4 weeks, up to two

thirds of the BKC pancreata were covered by inflam-

mation, fibrosis, ADM, and low-grade PanIN, while

these structural abnormalities were rarely observed in

age-matched KC pancreata (Fig. 3C). At 8 weeks of

age, reactive lesions occupied only a minor portion of

pancreas sections in KC mice (Fig. 3C). In contrast,

the pancreas parenchyma of age-matched BKC mice

was consistently replaced completely by low- and

high-grade PanIN and invasive carcinoma accompa-

nied by a marked desmoplastic reaction. Desmoplasia

was indicated by alpha-smooth-muscle-actin (ACTA2)

staining (Fig. 3D), detecting activated pancreatic stel-

late cells and by Masson’s trichrome staining reveal-

ing massive amounts of collagen fibers in BKC

animals compared to age-matched KC mice (Fig. 3E).

75% of KC mice developed high-grade PanIN and

carcinoma during their lifetime, while all BKC mice

had developed carcinomas already at the age of

8 weeks.
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3.4. BTC activates ERBB receptors, enhances

RAS activity, and induces ADM

We investigated ERBB receptor phosphorylation by

Western blot analysis upon BTC overexpression in KC

mice at the age of 1 week, when pancreatic tissue

sections of KC mice did not yet exhibit histomorpho-

logical evidence of ADM alterations and displayed a

homogenous cellular composition. BTC overexpression

in KC mice resulted in the activation of EGFR,

ERBB2, and ERBB4. ERBB3 phosphorylation was

not detected in both groups. ERBB expression levels
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Fig. 2. Characterization of B�/�KC mice. (A) Kaplan–Meier curve demonstrating the survival of KC and BKC mice. (B) Representative H&E

stainings of pancreata of 8-week-old B�/�KC mice compared to age-matched KC littermates, typical lesions are indicated by arrowheads. (C)

Morphometric analysis of reactive tissue in the pancreas of 8-week-old B�/�KC and KC mice. Data were analyzed by Student’s t-test. (D)
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were similar in both groups (Fig. 4A,B). To evaluate

the receptor dimerization behavior upon BTC activa-

tion, we performed co-immunoprecipitations. In BKC

mice, EGFR bound ERBB2, but not ERBB3. KC

mice had much less EGFR/ERBB2 dimers, even when

the reduced amount of pulled-down EGFR protein

was considered. Due to the high heterogeneity of tissue

composition in pancreata of BKC mice at the age of

8 weeks, we compared tumors of 8-week-old BKC

mice with tumors of 12-month-old KC mice, which

presented a similar tumor burden. The amount of

EGFR/ERBB2 dimers in KC pancreata was again

lower compared to BKC mice (Fig. 4C). ERBB3 did

not bind to EGFR at any age. There are several ways

for BTC to accelerate PDAC development. KRASG12D

is the initiating mutation in PDAC, but the latency for

tumor development is very long, and often additional

stimuli are necessary to induce RAS-dependent trans-

formation of normal tissue (Carriere et al., 2009; Hin-

gorani et al., 2003; Ji et al., 2009). We assumed that

BTC could be a driver of RAS activity to accelerate

tumor development. A RAS-activity assay of

pancreata of 8-week-old KC mice and BKC mice

revealed that BKC mice harbor a significantly higher

amount (threefold) of active RAS compared to KC

mice (Fig. 4D,E). To investigate which receptors trans-

mit BTC-induced RAS activation, we studied RAS

activity in the pancreata of BKC mice with a depletion

of either EGFR (E1KO;BKC), ERBB2 (E2KO;BKC),

or ERBB4 (E4KO;BKC). Notably, BTC-mediated

RAS activity was exclusively transmitted by EGFR

(Fig. 4F). Also crucial for PDAC is ADM develop-

ment. Since it is known that BTC regulates (trans-)

differentiation in numerous cells (Li et al., 2005; Paz

et al., 2011; Yoshida et al., 2002), we assumed that

BTC might be involved in transdifferentiating acinar

to duct cells, thereby promoting the accelerated onset

of PDAC observed in BKC mice. We isolated wild-

type murine acinar cells, embedded them into a 3D

collagen matrix and stimulated with BTC or TGFA

for 5 days. While wild-type cell clusters did not show

signs of transformation, the majority of BTC-stimu-

lated cells transformed into a duct-like shape

(Fig. 4G).
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3.5. ERBB2 and ERBB4 affect the tumor burden

in BKC mice

Betacellulin signaling is mediated by EGFR-activated

RAS activity, but it remains unknown whether ERBB2

and ERBB4 are involved in BTC-mediated develop-

ment of PDAC. We therefore generated BKC mice

with a pancreas-specific knockout of ERBB2 or of

ERBB4 (E2KO;BKC and E4KO;BKC, respectively).

The lack of pancreatic ERBB2 or ERBB4 expression

in the BKC mouse showed distinct effects: While all

groups grew similarly until week 6 after birth, E2KO;

BKC mice had a significantly reduced body weight

compared to BKC mice, and E4KO;BKC mice showed
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a significantly increased body weight compared to

BKC littermates (Fig. 5A), predicting a better outcome

for mice with an ERBB4 depletion. Indeed, the

Kaplan–Meier curve depicts, with a median survival of

15 months, the longest survival in E4KO;BKC mice.

Also E2KO;BKC mice present—with a median sur-

vival of 12.5 months—a significantly prolonged sur-

vival compared to BKC mice (median survival:

2.75 months) (Fig. 5B), indicating oncogenic functions

for both receptors. The relative pancreatic weight of

E2KO;BKC mice was decreased compared to that of

BKC mice at the age of 8 weeks (P = 0.059) (Fig. 5C,

left panel) and was similarly lower in moribund mice

(Fig. 5C, right panel). The H&E (Fig. 5D, left panel)

and Masson’s trichrome (Fig. 5D, right panel) staining

of E4KO;BKC pancreata revealed a penetration of

cancer cells similar to BKC mice, presenting with

fibrosis, PanIN, and carcinoma, while the lack of

ERBB2 rather resembled atypical flat lesions mixed

with ADM and low-grade PanIN, with an equal

amount of fibrosis in BKC pancreata, but with

decreased area of (pre-)neoplastic tissue, and remain-

ing acinar tissue was frequently observed. Western blot

analysis revealed that the loss of ERBB4-induced

changes in the ERBB signaling network (Fig. 5E,F).

The lack of ERBB4 resulted in significantly decreased

EGFR and ERBB2 phosphorylation, and it induced

enhanced ERBB3 activation. Further, the lack of

ERBB4 resulted in a significant downregulation of

mitogen-activated protein kinase 1/3 (MAPK) and

stress-activated protein kinase (SAPK) signaling. In 1-

week-old mice, EGFR activation was significantly

enhanced in E4KO;BKC pancreata, and also MAPK

activation was increased (Fig. S2A,B). Compared to

the knockout of ERBB4, the lack of ERBB2 only

resulted in significantly decreased SAPK signaling and

in decreased EGFR phosphorylation (P = 0.055).

However, no significant compensation of other ERBB

receptors was observed (Fig. S3A,B). Despite

decreased SAPK signaling, acinar cells of E2KO;BKC

mice demonstrated cleaved caspase-3 positivity in

immunostainings (Fig. S3C).

3.6. The loss of EGFR almost fully rescues the

BTC-mediated phenotype in 8-week-old KC mice

We deleted EGFR (E1) specifically in the pancreas

and revealed that EGFR-depleted BKC mice (E1KO;

BKC) had increased body weights, indicating a better

physical condition at the age of 2 and 12 months com-

pared to BKC mice (Fig. 6A, left panel). 100% of

E1KO;BKC mice were still clinically unremarkable at

the time of dissection (12 months), indicating a

drastically prolonged survival compared to BKC mice

(data not shown). Their relative pancreas weights were

significantly decreased in 8-week-old and increased in

12-month-old mice compared to BKC mice (Fig. 6A,

right panel), implying a better physical condition. His-

tology analysis revealed only moderate alterations in

E1KO;BKC mice, comprising multiple foci presenting

ADM (H&E, Fig. 6B), but with a complete lack of

fibrosis, shown by Masson’s trichrome staining to pan-

creata of BKC mice (Fig. 6B). ADM in 8-week-old

mice did not occur due to incomplete homologous

recombination of the EGFR locus, as observed in

Ardito et al. (2012) and Navas et al. (2012), as we veri-

fied this possibility in the negative immunostaining tar-

geting EGFR (Fig. 6E). However, ADM was positive

for ERBB2, ERBB3, and ERBB4 (Fig. 6E). Interest-

ingly, Western blot analysis revealed that the lack of

EGFR is accompanied by a decrease in phosphoryla-

tion and expression of ERBB2, ERBB3, and full-

length ERBB4 (Fig. 6C,D). However, we revealed that

the ICD of ERBB4 was highly phosphorylated in the

pancreata of E1KO;BKC mice compared to BKC mice

indicating compensatory ERBB4 signaling for ADM

development upon the loss of EGFR (Fig. 6C,D).

4. Discussion

While EGFR is crucial for the development of onco-

genic KRAS-induced PDAC development (Ardito

et al., 2012; Navas et al., 2012), targeting EGFR is

beneficial only for a small subset of patients (Moore

et al., 2007). Since EGFR is only one member of a

family of four receptor tyrosine kinases, either working

autonomously or as partner of ERBB2, ERBB3, or

ERBB4, we assumed that the remaining ERBB recep-

tors may have been underestimated in recent years and

could also play an important role in PDAC, particu-

larly, because ERBB ligands specific for ERBB4 have

been implicated in PDAC development or progression

(Chaturvedi et al., 2007; Ito et al., 2001; Ray et al.,

2014; Zhu et al., 2000). To assess the role of ERBB

ligands in PDAC, we deleted BTC in the KC mouse

model and revealed that the initiation and progression

of PDAC was decelerated. A 100% rate of viable B�/

�KC mice at the age of 12 months also suggests

increased survival rates. The benefits of BTC deletion

might stem from decreased EGFR expression and

phosphorylation levels observed in B�/�KC pancreata

at 8 weeks and decreased EGFR phosphorylation at

12 months. It was quite unexpected that the deletion

of a single ERBB ligand can modulate EGFR regula-

tion and PDAC progression to such an extent, as in

human and in murine PDAC almost all seven EGFR
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ligands are expressed abundantly and could arguably

compensate the loss of one single ligand. At the age of

8 weeks, BKC pancreata presented PDAC and desmo-

plasia and BKC mice displayed a decrease in the med-

ian survival of almost 9 months compared to KC

mice. Our study shows that besides TGFA (Siveke

et al., 2007) and HBEGF (Ray et al., 2014), BTC is

also highly involved in PDAC development and pro-

gression. KC mice have a long latency to develop

tumors and although all pancreatic cells are equipped

with mutated KRAS, only a subset of cells develops

lesions and, at low frequency, invasive PDAC (Hingo-

rani et al., 2003). Numerous studies suggest that the

additional loss of tumor suppressors (Hingorani et al.,

2005) or that other secondary events, for example,

pancreatitis (Carriere et al., 2009) or incidences

increasing KRASG12D activity above a certain thresh-

old (Ji et al., 2009) are required to initiate tumorigene-

sis. BTC could be such a factor which enhances RAS

activation, thereby possibly accelerating the onset and
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Fig. 6. The lack of EGFR in BKC mice revealed major changes in body weight, histology, and ERBB signaling. (A) Body and relative

pancreas weights of E1KO;BKC mice compared to BKC mice. Data were analyzed by ANOVA and Tukey’s multiple comparison test.

(B) Representative H&E (left panel) and Masson‘s trichrome (right panel) stainings of pancreata of BKC mice and E1KO;BKC mice. (C)

Western blot analysis and (D) corresponding densitometrical analysis showing the phosphorylation and expression of ERBB2, ERBB3, and

full-length ERBB4, and the phosphorylation of the ERBB4-ICD. CDH1 served as reference protein. Data were analyzed by ANOVA and

Tukey’s multiple comparison test. (E) Immunohistochemical detection of EGFR, ERBB2, ERBB3, and ERBB4 of pancreas samples of 8-

week-old E1KO;BKC mice. Scale bars: 100 µm. ***P < 0.001.

Fig. 5. ERBB2 and ERBB4 affect the tumor burden in BKC mice. (A) Body weight curves all groups. Data were analyzed by 2-way ANOVA.

(B) Kaplan–Meier curve depicting the survival of E2 KO;BKC and E4 KO;BKC mice compared to BKC mice. Data were analyzed by log-rank

test. (C) Relative pancreatic weight of all groups of 8-week-old mice (left panel) and of 12-month-old mice (right panel) compared to E2KO;

BKC, E4KO;BKC, and KC mice. Data were analyzed by ANOVA and Tukey’s multiple comparison tests. (D) Histology of BKC mice compared

to E2KO;BKC and E4KO;BKC mice at 8 weeks represented by H&E (left panel) and Masson’s trichrome staining (right panel). (E) Western

blot analysis with (F) corresponding densitometrical analysis comparing pancreata of 8-week-old BKC mice to E4KO;BKC littermates. Data

were analyzed by ANOVA and Tukey’s multiple comparison tests. *P < 0.05, **P < 0.01, ***P < 0.001. Scale bars: 100 µm.
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progression of PDAC. Although BTC activates

EGFR, ERBB2, and ERBB4, the increase in RAS

activity is mediated by EGFR only, indicating a

dependency of RAS activity on EGFR-homodimeriza-

tion instead of heterodimerization with ERBB2 or

ERBB4. It is not surprising that EGFR is a crucial

player in KRAS-mediated tumorigenesis, since it was

previously shown that mice do not develop oncogenic

KRAS-driven PDAC in an EGFR-depleted back-

ground (Ardito et al., 2012; Navas et al., 2012). EGFR

is crucial for acinar cells to transdifferentiate into duct

cells. The EGFR ligands TGFA and HBEGF have

been previously implicated in this process (Ray et al.,

2014). BTC has a differentiation potential in many

other cell types (Li et al., 2005; Mashima et al., 1996;

Paz et al., 2011; Watada et al., 1996; Yoshida et al.,

2002), and we found that BTC is also able to transdif-

ferentiate wild-type acinar cells into duct cells. How-

ever, BTC transgenic mice never developed ADM at

any age. Thus, we consider BTC is not an oncoprotein

per se; however, it seems to act primarily as a trigger

for tumorigenesis in the examined mouse models.

While the importance of EGFR in PDAC is well-

established, the role of ERBB2 and ERBB4 is dis-

cussed controversially. ERBB2 mRNA was reported to

be expressed in 100% of PDAC samples with

increased protein expression compared to normal pan-

creas (Kolb et al., 2007), but another study reported

overexpression of ERBB2 in PDAC only at low fre-

quencies (Yan et al., 2014). Although ERBB2 amplifi-

cation was not associated with the outcome of PDAC

in a meta-analysis (Li et al., 2016), another study cor-

related the overexpression of ERBB2 with an aggres-

sive phenotype (Thybusch-Bernhardt et al., 2001).

However, to our knowledge, no functional studies

regarding ERBB2 in PDAC exist, and attempts to tar-

get ERBB2 were rather disappointing (Harder et al.,

2012). The deletion of Erbb2 in BKC mice resulted in

a significantly prolonged survival, which can be

explained by decelerated PDAC development. Since

ERBB2 heterodimerizes with EGFR, it is not surpris-

ing that ERBB2 depletion has a beneficial effect in

BKC mice. The delay in PDAC progression might be

explained by a decrease in EGFR and SAPK signal-

ing. SAPK activity was decreased in ERBB2-depleted

BKC mice, albeit it cannot be associated with

decreased apoptosis rates, since cleaved caspase-3 posi-

tivity rather indicated enhanced apoptosis compared to

BKC mice. Possibly, decreased SAPK signaling acts

via transcriptional regulation rather than by regulating

apoptosis.

The ambivalence of ERBB4 in PDAC, as in many

other cancers, has emerged from studies assessing

tumor-suppressive functions for the receptor, in that

ERBB4 expression was low in PDAC tissues and hPa-

CaCells (Kolb et al., 2007) and decreased in non-

metastatic tumors (Graber et al., 1999). Other studies

showed that a constitutively active ERBB4 homodimer

mutant inhibited colony formation in a pancreatic can-

cer cell line (Mill et al., 2011), and classified ERBB4 as

a potential oncogene, after revealing enhanced anchor-

age-independent growth of hPaCaCells by the stimula-

tion of ectopic ERBB4 expression (Mill et al., 2011).

We also attribute ERBB4 an oncogenic function, since

its knockout prolonged the survival of BKC mice

enormously. The majority of BKC mice lacking

ERBB4 showed histopathological pancreatic lesion

patterns comparable to BKC mice, which is not in line

with the survival outcome. ERBB4-depleted BKC mice

revealed decreased EGFR activity, MAPK-, and

SAPK-signaling. Decreased MAPK activation is not

simply explained by decreased EGFR signaling, since

this pathway was not affected by the loss of ERBB2,

where we also detected reduced EGFR activity. Thus,

these changes must be specific to ERBB4 depletion.

Considering that E4KO;BKC mice did not show a

reduction in RAS activity, it is surprising that they

show reduced MAPK signaling, which acts down-

stream of RAS. The ERBB4 depletion might result in

a considerable change in the downstream targets of

RAS. The reduction in MAPK signaling might result

in a reduced transcriptional activity of its target genes,

thereby acting in an antitumorigenic way. In 1-week-

old mice, we detected enhanced EGFR and MAPK

activity in ERBB4-depleted BKC mice, indicating that

EGFR/MAPK is involved in PDAC induction rather

than in PDAC progression. This also supports the the-

sis of EGFR-dependency in tumorigenisis in KC mice,

but the compensatory mechanism indicates a role for

ERBB4 in PDAC initiation, too. It furthermore sug-

gests the causality of EGFR and MAPK activity in an

ERBB4-dependent manner. Possibly, MAPK signaling

is preferably regulated by EGFR/ERBB4 heterodi-

mers, independent of ERBB2. Although EGFR signal-

ing was decreased, apparent histopathologic changes

were not detected. Increased ERBB3 activation possi-

bly compensates, in part, the loss of EGFR/ERBB4

signaling.

The deletion of EGFR resulted in a nearly complete

reversion of the BKC phenotype. However, in 8-week-

old BKC mice lacking EGFR, ADM lesions were

observed multifocally and were verified to be EGFR-

negative, but ERBB2-, ERBB3-, and ERBB4-positive,

indicating that, when the receptor family is challenged,

other receptors take over to induce ADM. Interest-

ingly, the lack of EGFR was accompanied by the
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downregulation of ERBB2, ERBB3, and full-length

ERBB4, but it induced ERBB4-ICD signaling, indicat-

ing a compensatory mechanism upon the loss of

EGFR. Possibly, the ERBB4-ICD is responsible for

ADM development in EGFR-depleted BKC mice,

since all remaining receptors expressed in the ADM

lesions were less phosphorylated. These findings are in

line with a study that associated BTC with resistance

to EGFR treatment in breast cancer cell lines (Kong

et al., 2008). The treatment with tyrosine kinase inhibi-

tors led to acute BTC expression, induction of

ERBB2/ERBB4 dimers, and ERBB4 cleavage, thereby

evading EGFR inhibition and reactivating EGFR-me-

diated signaling cascades. This is partially in line with

our results regarding ERBB4 activation and ERBB4-

RIP upon BTC activation in an EGFR-depleted

PDAC mouse model. This compensational mechanism

of the ERBB family could possibly play a role in the

resistance of an EGFR inhibitor therapy in PDAC

patients and in attenuated PDAC development in

EGFR/TP53-depleted KC mice (Ardito et al., 2012;

Navas et al., 2012).

5. Conclusions

We have shown that the depletion of BTC ameliorates

the outcome of PDAC and, conversely, that BTC

overexpression deteriorates PDAC prognosis in KC

mice. BTC involves not only EGFR activation, but it

also harnesses its ’partners in crime’ to induce acceler-

ated PDAC development and progression. BTC

enhances RAS activity, thereby potentially transform-

ing acinar to duct cells. The partial disease rescue

upon loss of ERBB2 and ERBB4 implies that both

receptors are potent oncogenes in PDAC. Especially,

enhanced ERBB4-ICD activation upon EGFR deple-

tion points to a compensatory behavior of the ERBB

family, thus emphasizing their role as co-targets for

combinatorial EGFR-targeted therapies. Our data

endorse that the pan-ERBB inhibitor dacomitinib exhi-

bits stronger antitumor effects than conventional sin-

gle-receptor targeting of PDAC cells (Momeny et al.,

2019). We suggest that targeting the complete ERBB

family, instead of a single receptor, might be promising

for future custom PDAC therapy development.
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