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Abstract

Background: In vertebrate genomes, CpG sites can be clustered into CpG islands, and the amount of methylation in
a CpG island can change due to gene regulation processes. Thus, single regulatory events can simultaneously change
the methylation states of many CpG sites within a CpG island. This should be taken into account when quantifying the
amount of change in methylation, for example in form of a branch length in a phylogeny of cell types.

Results: We propose a probabilistic model (the IWE-SSE model) of methylation dynamics that accounts for
simultaneous methylation changes in multiple CpG sites belonging to the same CpG island. We further propose a
Markov-chain Monte-Carlo (MCMC) method to fit this model to methylation data from cell type phylogenies and
apply this method to available data from murine haematopoietic cells and from human cell lines. Combined with
simulation studies, these analyses show that accounting for CpG island wide methylation changes has a strong effect
on the inferred branch lengths and leads to a significantly better model fit for the methylation data from murine
haematopoietic cells and human cell lines.

Conclusion: The MCMC based parameter estimation method for the IWE-SSE model in combination with our MCMC
based inference method allows to quantify the amount of methylation changes at single CpG sites as well as on entire
CpG islands. Accounting for changes affecting entire islands can lead to more accurate branch length estimation in
the presence of simultaneous methylation change.
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Background
Epigenetic processes of DNA-methylation and - demethy-
lation are strongly associated with differential gene
expression and are essential during phenotypic devel-
opment in mammals [28]. The most frequent form of
methylation is the attachment of the methyl group at the
fifth carbon position on a CpG site, that is, a cytosine
nucleotide followed by a guanine nucleotide [7, 26, 28].
Regions in which more than 50% of the sites are either

G or C are called CpG islands if the number of CpGs is
greater than 60% of the expected number of CpG sites
by random order [26, 28]. These regions are typically
between a few hundred and two thousand base pairs in
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length [28]. CpG islands are involved in the regulation of
gene transcription [5]. Comparisons of methylation states
have been commonly applied and proved as a fruitful
avenue of analysis of cell haematopoiesis [2, 33]. Pairwise
comparison between cell types in different stages of differ-
entiation or comparison between malignant and healthy
cells during cancer development have provided insight
into areas of transcription [2] and enabled inference of
missing methylation states.
[4] have adapted phylogenetic methods to account for

the tree-shaped genealogy of cell types when analyzing
methylation changes during haematopoiesis. The branch
lengths of the genealogy, representing expected numbers
of methylation changes per site, were inferred via likeli-
hood maximization. A common simplifying assumption
in phylogenetics is that sequence positions evolve inde-
pendently of each other [20]. Analogously, [4] assume
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that the methylation processes at all CpG sites are, con-
ditioned on the genealogy, stochastically independent of
each other. This model assumption is violated when, for
example, methylation frequencies change in an entire
CpG island in the course of gene regulation [5, 28].
The CpG methylation-demethylation model of [29] is

based on the roles of the different DNA methylases in
methylation maintenance and de-novo methylation (see
also [1]). Also [16] take into account that methylation
dynamics of CpG sites depend on the methylation rate
in the surrounding DNA region, as well as other factors
such as chromatin marks. [22] extended the model of [29]
to account for the fact that the activity of enzymes that
maintain methylation or lead to de-novo methylation of
CpG sites depends on the methylation status of neigh-
boring CpG sites. Further extensions of this model have
been applied by [21] and [19] to disentangle the roles
of the different DNA methylases. Meyer and Lacey [24]
proposed another generalization of the model of [29], in
which the effect of the methylation state of a CpG sites
on other CpG sites depends on the distance between
the sites. Other recent attempts at modeling neighboring
methylation states made use of Ising models known from
statistical mechanics [17]. There sequences in genomic
regions are assumed to be subject to a model based likeli-
hood governed by few parameters, resulting in an accurate
characterization of methylation frequencies [17].
The models mentioned above have been very useful for

the understanding of molecular mechanisms and func-
tion of DNAmethylation. For the analysis of genome-wide
methylation data and phylogenetic analyses thereof, how-
ever, the size of data sets necessitates simpler models that
are compatible with efficient algorithms.
Our approach is to combine a model for indepen-

dent methylation state evolution in CpG sites (single-site
events, SSEs) with simultaneous changes of methylation
states and rates within CpG islands (island-wide events,
IWEs). The purpose of IWEs in our model is to cover
variations in methylation frequencies among CpG islands
as well as in time, that is among different cell types or
other taxa in the tree of interest. An interpretation of
an IWE could be, for example, that a CpG island in the
promoter region of a gene becomes widely methylated
or demethylated as part of gene regulation. For compu-
tational tractability, however, we neglect functional con-
straints in gene regulation that could lead to correlations
between methylation rates among some CpG islands. We
aim to both take simultaneous methylation changes into
account and to propose a model that is at the same time
simple enough for inference on large datasets with data
from several cell types. With this, we aim to fill the gap in
the literature where models have so far either just consid-
ered evolution of single sites [4], or concerned themselves
with inference on smaller scales [19, 21, 24].

Like [4] we assume that CpG sites are affected by SSEs
that change the state between unmethylated, methylated
and partially methylated. We assume that the equilibrium
probabilities of these three states and thus also the tran-
sition rates between them depend on the CpG island to
which the site belongs. Conditioned on the specific rates
within a CpG island, SSEs occur independently of each
other. Some sequence evolution models developed for
phylogenetic analyses allow that mutation rates change
at random time points, see e.g. [15]. Here, we adapt this
approach to CpG methylation-demethylation dynamics.
We assume that CpG islands are at certain rates affected
by events – the aforementioned IWEs – that change the
equilibrium probabilities for all sites in the CpG island.
We further assume that these events can simultaneously
change the methylation states of some CpG sites in the
island such that the new equilibrium probabilities apply
immediately to the sites in the affected CpG island. We
refer to our model allowing for both SSEs and IWEs as
IWE-SSE model.
We have implemented a reversible-jump MCMC infer-

ence scheme [11, 13, 30] to fit this model to Reduced
Restricted Bisulfite Sequencing (RRBS) methylation data
[2, 23]. We validated the accuracy of this scheme in a
simulation study. With RRBS data procured from mouse
haematopoiesis [2, 4] we demonstrate that accounting
for IWEs can lead to significantly different estimations
of branch lengths of cell type genealogies. We further
apply the inference scheme based on the IWE-SSE model
to experimental data monitoring the differentiation of
human germ cells in vitro [32]. We there compare it
with an inference scheme without IWEs and with the
lyne software package to gain independent evidence that
considering IWEs improves branch estimates.

Methods
Structure of our methylation-demethylation model
We take into account that several CpGs can form a CpG
island, which can be affected by CpG island wide events
(IWEs), in which methylation probabilities change and
some of the CpG sites in the CpG island can simultane-
ously change their state at the same time (see Fig. 1). Dif-
ferent CpG islands, however, are assumed to evolve inde-
pendently of each other. In addition to IWEs we allow for
single-site events (SSEs), which change the methylation
states of single CpG sites within CpG islands. Following
[4] we distinguish three possible states {u, p,m} of a CpG
site, denoting unmethylated, partially methylated and
methylated sites. When analyzing methylation sequenc-
ing data (see “Application to the murine haematopoietic
system” and “Application to in vitro cell differentiation
data” sections) we classify a site as unmethylated if it is
methylated in less than 10% of the reads overlapping the
site, partially methylated if it is detected as methylated in
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10 to 80% of the reads, and methylated if it is methylated
in more than 80% of the reads.
For a branch with h IWEs set t0 = 0, let th+1 be

the branch length, and let t1, . . . , th be the branch-length
distances of the IWEs to the parent node with

t0 ≤ t1 ≤ t2 ≤ · · · ≤ th ≤ th+1. (1)

Here we use h + 1 as index of the branch length, since
if there are h IWEs between a node and its parent, the
resulting number of time intervals along the branch is
h + 1. For each CpG position and each open interval
(tk , tk+1) there is a rate matrix Qk for the transitions
between the states u, p,m. Before we specify the details of
our model for the IWE process (“Process of island-wide
events (IWEs)” section) we first define our model for SSEs
between given IWEs.

Process of single-site events (SSEs)
Here we specify our model assumptions for SSEs affect-
ing CpG sites within a CpG islands between two IWEs
at time points tk and tk+1. In the open interval (tk , tk+1),
the methylation dynamics of CpGs of the same island are
independent of each other and the matrix Pk of transition
probabilities

Pk;i,j = Pr(Xtk+1 = j|Xtk = i) (2)

between the methylation states Xtk and Xtk+1 of a CpG at
time points tk and tk+1 can be calculated with the matrix
exponential

Pk = exp(Qk · (tk+1 − tk)). (3)

In analogy to the F81 sequence evolution model [9] we
focus here on rate matrices Qk that can be expressed as

Qk = R ·
⎡
⎣

−πp − πm πp πm
πu −πu − πm πm
πu πp −πu − πp

⎤
⎦ , (4)

where πu + πp + πm = 1, and each CpG has its own ran-
dom rate factor R ∈ R≥0. Starting from any state u, p orm
the form ofQk implies that in the case of an event the state
in the site becomes u, p ormwith probabilities πu,πp, and
πm, respectively. Note that this does not exclude the pos-
sibility that the state after the event is the same as before
at the affected site. Since the three probabilities sum up to
1, the rate factor R directly gives the expected number of
events per time unit.
The probabilities (πu,πp,πm) form the equilibrium dis-

tribution of Qk . Further, for fixed R the transition proba-
bilities (Pk)i,j fulfill

(Pk)i,j =
(
1 − eR·(tk−tk+1)

)
· πj, (5)

if j �= i, and

(Pk)i,j = πj + (1 − πj) · eR·(tk−tk+1) (6)

otherwise. We assume that in the root of the genealogy
each CpG island samples the equilibrium probability triple
(πu,πp,πm) from a uniform distribution (that is Dirich-
let(1,1,1)) independently of all other CpG islands. Like
in F81 and related models, the time scaling in our mod-
els can be interpreted as follows. At each CpG site with
the respective rate R, events occur that let the CpG sam-
ple a new state u, p or m according to the probabilities
(πu,πp,πm). We refer to these events as SSEs.

Process of island-wide events (IWEs)
In each IWE a new triple of equilibrium methylation
frequencies (π ′

u,π ′
p,π ′

m) is sampled from a uniform dis-
tribution, and Qt is updated accordingly for time points
t after the IWE. Furthermore, we allow that CpG sites of
an island are methylated or demethylated simultaneously
in an IWE in a way such that the expected frequencies
of the states u, p and m match the new equilibrium dis-
tribution (π ′

u,π ′
p,π ′

m) right after the IWE. To specify the
transition probability matrixMk in an IWE at a time point
tk , we distinguish two cases. In the first case one of the
new expected frequencies is larger and the other two are
smaller after the IWE. If, without loss of generality, π ′

u >

πu, π ′
p < πp and π ′

m < πm, then the transition matrix is

Mk =

⎡
⎢⎢⎣

1 0 0
πp−π ′

p
πp

π ′
p

πp
0

πm−π ′
m

πm
0 π ′

m
πm

⎤
⎥⎥⎦ .

In the other case, one of the new expected frequencies
is smaller and both others are larger. If, again w.l.o.g.,
π ′
u < πu, π ′

p > πp and π ′
m > πm, the matrix of transition

probabilities is

Mk =
⎡
⎢⎣

π ′
u

πu

π ′
p−πp
πu

π ′
m−πm
πu

0 1 0
0 0 1

⎤
⎥⎦ .

Note that (πu,πp,πm) · Mk = (π ′
u,π ′

p,π ′
m) holds in both

cases. For given IWEs at time points t1, . . . , th between
time points t0 and th+1, the transition matrix between the
states {u, p,m} at time t0 and the states at time th+1 is

P0 ·
h∏

k=1
MkPk . (7)

Branch length in the iWE-SSE model
For R in equation 4 we assume an “invariant+gamma”
model [10, 34]. That is, R is 0 with probability r, and with
probability 1 − r the value of R comes from a discretized
gamma distribution with 3 categories, expectation value
1 and a shape parameter α. The probability to be in
each respective rate category, conditional on not being an
invariant site, is 1/3.
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Fig. 1 aWe consider cells to have evolved like species in a lineage tree. Instead of DNA we consider at methylation data, where we categorize CpG
sites as unmethylated, partially methylated and methylated. Sites are contained within CpG islands, which we assume to evolve independently. b
The IWE-SSE model is two stage model that considers both events that concern individual sites (SSEs), as well as events that change the probability
of methylation states (IWEs) in whole islands during evolution. c Location of IWEs and their corresponding probabilities are inferred by inserting
proposed IWEs in a tree, and then accepting the proposal with a Metropolis Hastings acceptance probability

Note that an expected fraction of

π2
u + π2

p + π2
m ≥ 1/3 (8)

of the SSEs will not change the current state of the CpG,
due to the probability of an SSE being in states u, p and
m respectively being πu,πpand πm, and the probability
of a switch to this state happening being again πu,πpand
πm. (The lower bound of 1/3 follows considering that
πu + πp + πm = 1 constitutes a plane in 3D space whose
closest distance to the origin is 3−1/2 and π2

u + π2
p + π2

m is
the square of the euclidean distance between (πu,πp,πm)

and the origin.)

We assume ER = 1, which implies that our time unit is
the expected number of SSEs per CpG (not conditioned
on R but averaged over the possible values of R). In the
following, branch lengths B := (l1, l2, . . . , lk) will refer to
this time scaling.
We assume that IWEs occur independently at each CpG

island at rate μ and change the parameters values πu, πp
and πm on the CpG island. For a branch of length l we
obtain an expected number of l SSEs per site and of μ · l
IWEs per CpG island. This implies that the branch length
l can also be expressed as

l = E[ S + W ]
n · μ + ∑n

i=1 ni
, (9)
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where n is the number CpG islands, ni is the number of
CpG sites on CpG island i with 1 ≤ i ≤ n and the ran-
dom variables S andW are the numbers of SSEs and IWEs
on a branch of length l. Note here that S counts all SSEs,
including those that do not change the methylation state
of the site.

Likelihood calculations
We summarize the global model parameters as θ :=
(r,α,μ). As we assume that CpG islands evolve indepen-
dently of each other, we obtain Prθ ,B(D) = ∏

i Prθ ,B(Di),
where Di is the data from CpG island i and B is the vector
of branch lengths of the tree. For CpG island i letWi be the
configuration of IWEs and the mutation model parame-
ters πu,πp,πm around them. That is,Wi can be written as

Wi = (t1,πu1,πp1,πm1, . . . , tni ,πuni ,πpni ,πmni), (10)

where the tk parameter refers to the position of an IWE
and πuk ,πpk ,πmk refer to its associated equilibrium fre-
quencies. Here ni constitutes the total number of IWEs
that happen in the tree in island i. Conditioned on the con-
figuration Wi, the CpGs within the island become inde-
pendent and we obtain Prθ ,B(Di|Wi) = ∏

j Prθ ,B(Dij|Wi),
where Dij is the data from the j-th CpG in CpG island i.

Prθ ,B(Dij|Wi) =∑
x

Prθ ,B(Dij|Wi,Rij = x) · Prθ ,B(Rij = x) (11)

where x is iterated over the four possible values of the
rate factor Rij for the CpG position. Prθ ,B(Rij = x) is r
for x = 0 and (1 − r)/3 for the three values of x that are
possible according to the discretized gamma distribution.
To calculate Prθ ,B(Dij|Wi,Rij = x) we used a recursive
scheme derived from Felsenstein’s pruning algorithm [8,
10]. For this, let D(b)

ij be the part of Dij that stems from the
descendants of branch b. Let there be h IWEs on branch b
affecting island i, with time intervals indexed by k between
1 to h+1. For an island indexed i and a CpG site indexed j,
any branch b, state y ∈ {u, p,m} and k ≥ 1 we now define
the partial likelihood ωk,b(y)

ωk,b(y) := Prθ ,B(D(b)
ij |Wi,Rij, y), (12)

where D(b)
ij is the partial data, and y denotes the state

that CpG site j is in just before IWE k (or the child node
of b if k = h + 1, where h is the number of IWEs
on b affecting island i). For k ≥ 0 let �ωk be the col-
umn vector (ωk,b(u),ωk,b(p),ωk,b(m))T . Let �ω0 be defined
accordingly, but given that the state of CpG i in the parent
node of the branch b is y. With the transition proba-
bility matrices Pk and Mk as defined in “Process of sin-
gle-site events (SSEs)” and “Process of island-wide events

(IWEs)” sections we obtain

�ω0 = P0 ·
⎛
⎝

k−1∏
j=1

Mj · Pj
⎞
⎠ · �ωk (13)

for any k ∈ {1, . . . , h+1}. The case k = h+1 is sufficient
for likelihood calculations, but the formula is also used for
other values of k for updating likelihoods whenMk−1 and
Pk−1 are changed in an MCMC step, see online appendix
section B.1.
If the child node of b is a tip (an external node that is

not the root) of the genealogy, we obtain ωh+1,b(y) = 1 if
y ∈ {u, p,m} is the state of the jth CpG site at the child
node, and otherwise ωh+1,b(y) = 0. If b ends in a node
with two daughter branches b′ and b′′, we obtain

ωh+1,b(y) = ω0,b′(y) · ω0,b′′(y) (14)

for all y ∈ {u, p,m}. In our application examples below, all
methylation states are known not only for the tips of the
tree, but also for the internal nodes and the root. In this
case equation (14) holds only if y is the state of the jth CpG
site at b’s child node, and otherwise ωh+1,b(y) = 0. For the
branch r that starts in the root we apply Prθ ,B(Dij|Wi,Rij =
x) = πz,r · ω0,r(z), where z is the state of the CpG in
the root node and πz,r is its probability according to the
equilibrium distribution in the root.

MCMC implementation
To approximate Prθ ,B(Di) we have to average the con-
ditional probabilities Prθ ,B(Di|Wi) over possible configu-
rations of Wi. For this we apply a Metropolis-Hastings
MCMC method [14, 30]. Given the current configuration
of Wi in the MCMC procedure, the proposed W ′

i for the
next step can either lack one of the IWEs in Wi or have
an additional IWE on some branch (see Fig. 1). Let l be
the length of a branch b. As the IWE locations according
to Wi are a priori a Poisson point process with inten-
sity μ, the prior probability that Wi includes n IWEs on
branch b is Poisμ·l(n) = (μl)ne−μl/n!. When the proposed
W ′

i differs from the current Wi by an additional IWE on
branch b and n is the current number of IWEs on this
branch, theMetropolis-Hastings acceptance probability is
the minimum of 1 and

Prθ ,B(Di|W ′
i ) · Poisμl(n + 1)

Prθ ,B(Di|Wi) · Poisμl(n)
= Prθ ,B(Di|W ′

i )

Prθ ,B(Di|Wi)
· μ · l
n + 1

(15)

(see online appendix B.1). If, conversely, W ′
i with n + 1

IWEs on b is the current state, and Wi with one IWE
less on b is proposed, the acceptance probability is the
minimum of 1 and the inverse of any side of Eq. 15.
For the branch lengths we apply Metropolis-Hastings

acceptance steps on the log scale. If � = log(l) is the
(natural) logarithm of the current length of a branch,
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the proposed �′ = log(l′) is drawn from a Gaussian
mixture proposal distribution with density g�(�′) that is
centered around �. The proposal distribution is symmet-
ric, that is g�(�′) = g�′(�). The prior distribution of �

is a normal distribution. Let p(�) denote its density (see
online appendix A). When a new log length �′ is proposed
for a branch of log length �, we obtain the acceptance
probability

α(�′, �) = min
{
1,

LD(l′)
LD(l)

l′n

ln
· e−μN(l′−l) · p(�

′)
p(�)

}
,

(16)

where n is the current number of IWEs on the branch,
μ is the rate of IWEs, N is the number of CpG islands,
LD(l′) and LD(l) are the conditional probabilities of the
data given the proposed and the current trees.
In further Metropolis-Hastings steps, the methylation

state frequencies (πu,πp,πm) for any CpG island can be
updated. Further information about priors and proposal
densities can be found in online appendix A.

Null model without iWEs
We test our model against a null model without IWEs. In
the null model we still assume that each island has distinct
equilibrium frequencies, which are sampled at the root
from a Dirichlet(1,1,1) distribution and do not change
during sequence evolution. When new branch lengths are
sampled, the acceptance probability (16) in this model
simplifies to

min
{
1,

LD(l′)
LD(l)

· p(l
′)

p(l)

}
. (17)

The parameters of the null model are the logarithms of
branch lengths, the logarithm of the shape parameter of
the gamma distribution of site specific rate factors, the
fraction of invariant sites, and for each CpG island the
equilibrium probabilities at the root states.

Application to the murine haematopoietic system
We tested our approach with methylation data that were
gained by [2] with RRBS from murine cells at various
stages of haematopoiesis (Fig. 2). The data overlap most
murine CpG islands and consist of reads that are 36 base
pairs long. To associate information of reads with CpG
islands we used the mmp9 mapping of CpG islands from
the USCL genome browser [18]. We sampled 2000 CpG
islands at random, 1970 of which contained reads over-
lapping CpGs within the island. CpGs were categorized as
unmethylated (u), partially methylated (p) or methylated
(m) if less than 0.1, between 0.1 and 0.8, or more than 0.8
of the reads were detected as methylated. For Fig. 3 we
categorized whole CpG islands as unmethylated if more
than 50% of its CpG sites were in state u, or as methylated

Fig. 2 Genealogy of haematopoietic cell stages [2, 4]

if more than 50% of its CpG sites were m. All other CpG
islands were classified as partially methylated.

Application to in vitro cell differentiation data
In [32] human epiblast-like cells (hEpiLCs) were differen-
tiated to primordial germ cells (hPGCs) over a twelve day
period. Data about methylation levels on days 1, 2, 3 and
4 were present for hEpiLCs, as well as data for hPGCs on
days 4, 5, 8 and 12. Reads were assigned to islands using
mmp9 mapping and the hg37 mapping from the USCL
genome browser. We randomly sampled 200 CpG islands
and categorized CpG sites as explained in “Application
to the murine haematopoietic system” section. We then

Fig. 3 Change of Island Methylation States. States of islands are
categorized as methylated (black, top) if more than 50% of sites are in
statem and as unmenthylated (white, bottom) if more than 50% of
sites are in state u. Otherwise, islands are categorized as partially
methylated (grey, middle). Vertical rectangles are proportional in size
to the respective number of islands in each state for each cell type.
Light grey transitions have a width proportional to the relative amount
islands that transition between the states indicated by the rectangles
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inferred parameters based on the SSE model, based on the
IWE-SSE model and with lyne as well. To evaluate how
well the branch lengths inferred with each of the models
reflected the temporal distance between the samples, we
fitted a linear regression model without intercept between
estimated branch lengths and sampling time differences
(using the lm command in R [25]) and computed the frac-
tion of explained variance (adjusted R2) as indicator of
model fit. We adjusted ground truth time differences for
the fact that in vivo the differentiation of hPGCs takes up
to 10 days instead of 4 as it did in the induced transition
cells in the in vitro environment [32].

Application to single cell methylation data
To evaluate whether the IWE-SSE inference program
behaves notably different on single cell data as opposed to
bulk data, we used a dataset procured by [35].
Therein human zygotes and cells at the two cell stage

where sequenced and treated with bisulfite to produce
single cell data about their methylation states. Since the
cell samples were not taken from the same individual, we
decided to pool the zygotes into an ancestral mean popu-
lation and to then infer branch lengths between this mean
population and the single cells in the 2 cell stadium. To
pool the zygote data we calculated the mean methyla-
tion of each site across samples and then categorized this
mean into unmethylated, partially methylated or methy-
lated. For the cells in the 2 cell stadium we categorized
sites as either methylated or unmethylated depending on
their methylation state. We used 100 randomly chosen
CpG islands.

Additional methods to estimate branch length
To evaluate the performance of our inference method,
we compared it to two alternative approaches to esti-
mate branch lengths. The first alternative was to use the
Hamming distance which is often applied in hierarchical
clustering. The second approach we took was to compute
the mean methylation of the islands in each sequence.
We then computed the euclidean distance between the
vectors of mean values.

Simulation study
To assess the accuracy of our MCMC implementation, we
simulated 150 data sets, each consisting of 100 islands.
The numbers of CpG sites in the islands were chosen ran-
domly from a uniform distribution between 10 and 400.
At the start of each simulation we sampled the logarithm
of branch lengths, the logarithm of the shape parameter
α, the invariant probability, and the IWE rate μ from their
priors (online appendix A). For the root node we sampled
equilibrium frequencies from a Dirichlet(1,1,1) distribu-
tion. Then we sampled IWEs uniformly positioned along
branches, where the number of sampled IWEs on a branch

was Poisson distributed with mean μNl, where N is the
number of CpG islands and l is the branch length. The
equilibrium frequencies associated with an IWE were
sampled from a Dirichlet(1,1,1) distribution. We gener-
ated the sequence at the root node by drawing each state
in each island from the equilibrium frequency at the root
node in this island. Sequences in the other nodes were
generated iteratively going from the root to the tips of
the cell lineage tree using transition probabilities between
states as detailed in Process of island-wide events (IWEs).
We then used our inference method on the generated

sequences to find posterior distributions of the simulated
data sets with known ground truths sampled from priors.
Here the MCMC runs were started from the means of the
priors for all parameters other than the number of IWEs,
where we started without IWEs to avoid long convergence
times in the case of many misplaced IWEs in the initial
configuration. We used a burn-in of 105 Metropolis Hast-
ing steps. In addition to our full model we also fitted a null
model without IWEs to the data.

Test for cpG-island-wide events (IWEs)
To test the relevance of IWEs for the data of [2], we sim-
ulated 150 data sets according to this null model using
1970 islands with the same number of CpG sites as in the
restricted data set we used for initial inference. These sim-
ulations were conducted with the same procedure as in the
simulation study, with the starting parameters being sam-
pled from the posterior distribution of the null model and
the IWE rate being restricted to 0. We then fitted the full
model with IWEs to these simulated sequences and esti-
mated posterior number of IWEs inferred in the adapted
model.

Comparison with the r software package lyne
We conducted further simulations to compare the results
of our IWE-SSE inference to results obtained with the
R package lyne, which is associated to [4] and is avail-
able from the Kostka lab website1. We simulated branch
lengths for the simplest tree that is accepted as input by
lyne. This directed tree consists of a root whose sole off-
spring has two offspring nodes (tips). The length of the
branch adjacent to the root was drawn from a log-normal
distribution with mean exp(−2) and σ = 2. Another log-
normally distributed value was simulated and used the
(equal) lengths of the branches adjacent to the tips, using
the same distribution. The other model parameters were
sampled from their priors (online appendix A). We per-
formed 150 simulations according to the lynemodel and
150 simulations following the IWE-SSE model. For the
Capra-Kostka model simulations we assumed 10,000 CpG
sites, which were for the purposes of IWE-SSE inference

1https://www.kostkalab.net/software.html

https://www.kostkalab.net/software.html
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randomly sampled into islands of uniformly distributed
random sizes between 10 and 200 CpG sites (but the
island structure had no influence on methylation states).
The IWE-SSE model simulations used 100 islands with
sizes between 10 and 200 CpG sites. In silico data pro-
duced in this way was analyzed with both Kostka’s lyne
package and our implementation of the IWE-SSE infer-
ence method.

Results
Application to methylation data from haematopoietic cells
We applied our method to 1970 randomly chosen CpG
islands from the methylation data of murine haematopoi-
etic cells [2, 4]. Using first the null model without IWEs
(μ = 0), we obtained a very long branch between MEP
and Eryth indicating many changes in methylation of
single CpGs (Fig. 4). Note that branch lengths are propor-
tional to the expected number of SSEs or, in other words,
to the product of cell divisions and SSE rate per cell divi-
sion. We generated data following this fitted null model
in 150 simulations and estimated parameters according to
the model with IWEs for the null model simulations. Esti-
mated total numbers of IWEs never exceeded 30 in any
of these inferences and the inferred percentage of islands
carrying an IWE along an edge was a most 0.07%. When
we analyzed the data set of [2] with the IWE model (μ ≥
0), theminimum number of IWEs after the burn-in period
of 106 Metropolis-Hasting steps was 3488, andwe inferred
high levels of enrichment of IWEs on all branches (Fig. 5).
With the null model we estimated branch lengths simi-

lar to estimated lengths in the literature on these branches,
e.g. between MEP and Eryth 4.56 units by Capra and

Kostka, compared to a distribution mean of 5.94 SSE
units with our null model. Here, an SSE unit refers to
the expected number of SSEs per CpG, whereas Capra an
Kostka’s unit refers to the expected number of methyla-
tion state changes per CpG. As at least a third of the SSEs
do not change the state of a CpG, and 5.94 · 2/3 = 3.96,
our estimation of the length of the MEP-Eryth branch is
smaller than that of Capra and Kostka, but the values are
not directly comparable because the model of Capra and
Kostka is more general than our null model without IWEs.
When we allowed for IWE events, we found con-

siderably less variation among the inferred branch
lengths (Fig. 5). Regarding the number of IWEs, the
formation of the first multipotent progenitor cells
from haematopoietic stem cells and the formation of
erythrocytes showed an increased frequency of such
events, explaining the methylation changes between
MEP and Eryth by simultaneous methylation changes
in IWEs rather than by many independent single-site
events.

Evidence that iWE rate vary among branches
In the tree that we inferred with the IWE model
(Fig. 5), the estimated numbers of IWEs vary among
the branches more than the branch lengths. Indeed,
credibility intervals of the log-transformed numbers of
IWEs per branch length unit (Fig. 6) suggest that the
IWE rate is substantially increased during the transitions
from HSC to MPP1, from MPP1 to MPP2 and from
MEP to Eryth. This is indicative of pronounced regu-
larly activity along these transitions in particular (see also
Fig. 3).

Fig. 4 Estimates without IWEs. Tree resulting from estimates without modeling IWEs. The logarithmic branch lengths are the means of the MCMC
samples after a burn in phase of 106 steps



Grosser and Metzler BMC Bioinformatics          (2020) 21:115 Page 9 of 13

Fig. 5 Estimates IWE-SSE model. Tree resulting from estimates modeling IWEs. The logarithmic branch lengths (above branches) and percentages of
CpG islands affected by IWEs (below branches) are the means of the MCMC samples after a burn in phase of 106 steps

Application to in vitro cell differentiation data
We applied our method to 200 randomly chosen CpG
islands from the methylation data of human cell cultures
[32]. Here we found that branch lengths in the EpiLCs
were overestimated by all three inference approaches,
whether we were using adjusted or experimental time

spans for this stage (Fig. 7). The R2 values (that is, frac-
tions of explained variance) we found with branch lengths
were 0.40, 0.24 and 0.18 for the IWE-SSE, SSE only and
lyne inference respectively. Fits improved, with the IWE-
SSE model again giving the best results, after adjusting
for the induced differentiation taking less time than the

Fig. 6Multiple testing corrected 95% intervals of the ratio of estimated number of events to the estimated branch length
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in vivo differentiation by multiplying the EpiLC branch
lengths by 2.5 (since differentiation takes 10 days under
natural conditions instead of 4 days). The R2 values we
found with adjusted branch lengths were 0.80, 0.67 and
0.57 for the IWE-SSE, SSE only and lyne inference
respectively. Nonetheless there was still considerable devi-
ation from linearity, with the lengths in the EpiLC stages
being overestimated for all inferences. We further applied
the nonparametric Hamming distance and the euclidean
mean difference for this analysis as described in “Addi-
tional methods to estimate branch length” section (see
online appendix Fig. 7). Using the same linear compar-
ison approach to a linear model without intercept, the
adjusted R2 were 0.55 and 0.68 for Hamming distance and
euclidean mean distance respectively.

Application to single cell embryonic data
we applied our method to single cell data procured by
[35]. We found that the estimated branch lengths were all
very similar in length, as expected from their phylogenetic
position (online appendix Fig. 8).

Simulation experiments
To validate the accuracy of our inference method, we
simulated 150 data sets with parameters values drawn
from the prior distributions (see MCMC implementation
and online appendix A). Each of the simulated data sets

Fig. 7 Cumulative relative length of estimates compared to known
ground truth during the transition of hEpiLCs on day 1 to hPGCs on
day 12. Branches in the hEpiLC stage are underestimated by all three
inference tools, even though they were adjusted to match in vivo
conditions

contained 100 CpG islands with sizes varying uniformly
between 10 and 400. For each of the simulated data sets
we inferred the posterior distribution of the parameters.
In Fig. 8 we compare the MCMC-sampled parameter
values and credibility intervals to the actual parameter
values underlying the simulations. To validate our imple-
mentation we computed the 95% credibility intervals and
verified that the ground truth was within these intervals
in approximately 95% of the cases. This was done for indi-
vidual branch lengths, all branch lengths, the rate of IWEs
and the shape parameter of rate heterogeneity. Indeed,
credibility intervals overlapped the true branch length in
93 to 98% of the cases. Overall, 95% of the credibility
intervals contained the true value. True values were in the
credibility intervals in 96% of the cases for IWE rates and
in 94% for the shape parameter.

Comparison with lyne
When data was simulated according to the model of
[4], we observed a slight bias for overestimation in the
IWE-SSE inference (online appendix Fig. 6). The lyne
estimates showed no obvious bias but were less accu-
rate for longer branches. When data was produced with
the IWE-SSE model, lyne substantially over-estimated
branch lengths, especially for the leaf-adjacent branches,
while IWE-SSE inference was very accurate (Fig. 9).

Discussion
Our simulation results and the application example with
methylation states of haematopoietic cells suggest that
the possibility of CpG-island wide methylation changes
should be taken into account when analysing methylation
dynamics. For the single-site methylation changes (SSEs)
we assume in our current model that the new methylation
state (unmethylated, partially methylated, or methylated)
is independent of the state before the SSE. A possible
extension of our model would be to allow for the SSEs
and for state-changes within IWEs the class of models
proposed by [4], who consider all reversible 3 × 3 rate
matrices for the three states. One could further consider
Ising model based constraints on regions or islands [17],
since the resulting likelihoods can also be calculated in
linear time and the number of parameters per region is
just three. The efficiency of our method, however, relies
on the conditional independence of CpG sites given the
IWE state of the CpG island because this allows us to
carry out MCMC steps only for entire CpG islands and
calculate marginal likelihoods for the CpG sites with an
efficient dynamic programming approach. Allowing that
SSEs depend additionally on the current states of neigh-
boring CpG sites would require separate MCMC steps
for all CpG sites. This would substantially slow down
our MCMC method, especially if more than just the two
directly neighbored CpGs have to be evaluated in each of
these MCMC steps [21, 22, 24].
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Fig. 8 Comparison between estimated logarithms of branch lengths and target values in simulation study. Dotted lines indicate 95% credibility
intervals

Even though we assumed a priori a constant IWE rate
in our model, we obtained clear evidence that the num-
ber of IWEs per branch length unit (which summarizes
expected numbers of IWEs and SSEs) varies among the
branches (Fig. 6). Further, our results suggest that overall
methylation frequencies vary among the branches (Fig. 3).
Also this is not explicitly taken into account in our model,
as we assume that IWEs have their probabilities sampled
from the same Dirichlet distribution across the tree. How-
ever, compound Poisson based models [15] of genome
wide change are natural extensions to our framework.
Thus, we could allow for genome-wide events that modify
the IWE rate and the parameters of the Dirichlet dis-
tribution from which the methylation state distribution
are sampled in IWEs. An alternative approach, in analogy
to some relaxed molecular-clock models in phylogenetics
[6], would be to assume that IWE rates or other parame-
ters are sampled from a prior distribution independently
for each branch.
Further comparisons of the performance of the IWE-

SSE model on data procured in vitro experiments of germ
cell differentiation suggested that inference with the IWE-
SSE model is more accurate than inference without IWEs
or inference with the lyne software package, as esti-
mates were closer to a linear model of ground truth time
spans. However all inferences produced a deviation from

proportionality, by overestimating branch lengths in the
early stages of the experiment when cells were in the
EpiLC stage.
We went on to further estimate branch lengths in this

datasets using the Hamming distance and an euclidean
mean based distance. Both were outperformed by the
IWE-SSE inference tool.
In the application example with the data of [2], the

tree topology and the methylation states at the inter-
nal nodes were given. Our computational approach for
the IWE-SSE model can also be adapted to reconstruct
genealogies when methylation states are given only for the
tips of the tree and combined with methods to explore
possible tree topologies [10]. A potential application area
could then be the inference of genealogies of cells sam-
pled from neoplasms, e.g. to reconstruct the growth and
mutation history of cancer clones [3, 31]. Accounting
for IWEs may not only improve the accuracy of inferred
cell genealogies but also allow for a better detection of
aberrant methylations, which are a known hallmark of
cancer [12]. The best possible data for reconstructing
cell genealogies from methylation patterns would obvi-
ously be single-cell methylation data. To our knowledge,
however, it is not yet possible to generate such data.
Therefore the possibility of inferring single cell genealo-
gies from long-read methylation data, which are now
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Fig. 9 Comparison between inferred branch lengths by lyne (a and b) and the IWE-SSE inference (c and d) when data was simulated according to
the IWE-SSE model. Plots a and c refer to the branches that are adjacent to the leaves and plots b and d to the branches that are adjacent to the root

becoming available [27], constitutes a promising avenue of
research.

Conclusion
We found that the model with CpG-island wide methy-
lation rate changes (IWEs) fit the methylation data from
murine haematopoietic cells significantly better than a
model without IWEs. Furthermore, the IWE-SSE model
detected certain developmental phases in haematopoiesis
that many CpG islands were affected by IWEs, which
may indicate enhanced activity in gene regulation. Our
simulations comparing the inference methods based on
the IWE-SSE model to inference method that assume
independence between CpG sites show the necessity of
modeling simultaneous changes of methylation states in
CpG islands in addition to single-site changes. This view
is further affirmed by comparison between ground truth
times in cultured cells with estimated branch lengths. The
IWE-SSEmodel produces a better proportional fit than do
models not accounting for IWEs.
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