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Abstract
Recent years have witnessed a revival of interest in the method of explication as 
a procedure for conceptual engineering in philosophy and in science. In the philo-
sophical literature, there has been a lively debate about the different desiderata that a 
good explicatum has to satisfy. In comparison, the goal of explicating the concept of 
explication itself has not been central to the philosophical debate. The main aim of 
this work is to suggest a way of filling this gap by explicating ‘explication’ by means 
of conceptual spaces theory. Specifically, I show how different, strictly-conceptual 
readings of explication desiderata can be made precise as geometrical or topologi-
cal constraints over the conceptual spaces related to the explicandum and the expli-
catum. Moreover, I show also how the richness of the geometrical representation 
of concepts in conceptual spaces theory allows us to achieve more fine-grained 
readings of explication desiderata, thereby overcoming some alleged limitations of 
explication as a procedure of conceptual engineering.

1 Introduction

In the last three decades, a renewal of interest in logical empiricism has led schol-
ars to question the received view of Carnap’s philosophy (Stein 1992; Friedman 
1999; Carsten and Awodey 2004; Friedman and Creath 2007). Thanks to this 
recent historical scholarship the concept of explication is now considered a pil-
lar of Carnap’s mature thought (Carus 2007; Wagner 2012). Explication has also 
been at the center of a lot of methodological discussions, especially in connection 
with the metaphilosophical field of ‘conceptual engineering’, i.e. the “enterprise 
of assessing and improving our representational devices” (Cappelen 2018, p. 3). 
Can explication, understood as a general procedure for conceptual engineering, 
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be useful for contemporary philosophy? If yes, how is this procedure exactly to 
be understood? What are the desiderata that a good explicatum has to satisfy?

In connection with these questions, a significant part of the philosophical 
debate over explication has focused on the desiderata that a good explicatum has 
to respect. However, it is still difficult to assess the usefulness of explication as 
a method of conceptual engineering. Many different criteria of adequacy have 
been proposed and discussed, but it is difficult to judge them due to the vagueness 
and ambiguity which sometimes characterize them. With the hope of improving 
this situation, in this paper I will propose a way of making precise the procedure 
of explication and its desiderata by means of the theory of conceptual spaces. 
Specifically, I will show how different readings of these desiderata can be made 
precise in terms of geometrical and topological constraints over the conceptual 
spaces of the explicandum and the explicatum.

My proposal relies on the theory of conceptual spaces (Gärdenfors 2000). 
Conceptual spaces have been successfully applied in different fields, proving 
themselves to be a powerful tool for representing different types of linguistic and 
conceptual phenomena, such as concept formation, metaphors, contextual effects, 
meanings (Gärdenfors 2000, 2014; Zenker and Gärdenfors 2015b). In philosophy, 
conceptual spaces have been used to account for vagueness-related phenomena 
for classificatory and comparative concepts and to model inductive inferences 
and other forms of conceptual manipulation (Douven et  al. 2013; Decock et  al. 
2013; Decock and Douven 2014; Gärdenfors 2000; Sznajder 2016). In philosophy 
of science, conceptual spaces have been used to model various types of theory-
change in physics as transformation of the related conceptual space(s) (Gärden-
fors and Zenker 2011, 2013; Zenker and Gärdenfors 2015a; Masterton et  al. 
2017).

It is surprising, thus, that the theory of conceptual spaces has not played a 
more significant role in the philosophical debate over conceptual engineering. 
Since they have already been used to model vagueness and concept formation, 
conceptual spaces naturally present themselves as a useful tool for representing 
procedures of conceptual engineering that focus on the preservation of concep-
tual aspects, such as Carnapian explication. I will argue that the richness of the 
representation of concepts by means of conceptual spaces is indeed very useful 
for explication. I will show how this richness allows us to have more fine-grained 
readings of desiderata that overcome some alleged limitations of explication as a 
procedure of conceptual engineering.

The main goal of this work is, then, two-fold: to explicate the Carnapian pro-
cedure of explication by making precise various readings of its desiderata and to 
show the usefulness of conceptual spaces as a tool for modeling procedures of 
conceptual engineering. Of course, since this work constitutes only a first step 
towards the effort of explicating the concept of explication itself, one should not 
expect to find in what follows a full guide to explicate ‘explication’ in all its rich-
ness and complexity. Moreover, the applicability of my explication of ‘explica-
tion’ to a given case of explication rests on two assumptions:
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Assumption 1 Both the explicandum and the explicatum are representable in con-
ceptual spaces. Moreover, if the explicandum and the explicatum are represented in 
two different conceptual spaces, a suitable structure-preserving mapping from the 
conceptual space of the explicandum to the conceptual space of the explicatum is 
available.

Assumption 2 In assessing the adequacy of the given explication, all the desiderata 
are strictly-conceptual ones, i.e. they impose constraints only on the intrinsic rela-
tions between the explicandum and the explicatum.

The purpose of Assumption 1 is to ensure that all the concepts involved in a 
given explication can be adequately represented in conceptual spaces. The ade-
quacy of conceptual spaces representation of concept formation and manipula-
tion has been empirically tested for many types of concepts (Gärdenfors 2000; 
Zenker and Gärdenfors 2015b), but the exact scope of applicability of the theory 
is still unclear. It may be that very abstract concepts, such as Truth for instance, 
whose representational content is dubious, cannot be adequately modeled using 
conceptual spaces. That said, the many applications of conceptual spaces in dif-
ferent scientific fields arguably show that this assumption is not too restrictive. 
Furthermore, in Sect. 5 I will show how my explication of ‘explication’ by means 
of conceptual spaces theory is applicable to two paradigmatic cases of explication 
from the history of science, adding more support to this assumption.

As for Assumption 2, conceptual spaces are a tool for conceptual representa-
tion and as such they can represent just the intrinsic relations between concepts. 
Thus, as I will stress case by case in Sect. 4, it would be unclear at the very least 
how to represent in the context of conceptual spaces theory some desiderata that 
pose limitations on the target theory in which the explicatum is defined (such 
as being defined in a consistent theory, for instance) or other more pragmati-
cal meta-theoretical virtues (such as predictive power) the scope of which is not 
restricted to the concepts involved in the explication. This assumption is required 
by the very nature of conceptual spaces theory. Nevertheless, I will support it in 
Sect. 4, showings how many different readings of explication desiderata proposed 
in the literature can be made precise by means of conceptual spaces theory.

In Sect.  2, I will present the concept of Carnapian explication, starting from 
Carnap’s remarks about it and surveying the related philosophical literature. I 
will focus on the desiderata that a good explicatum has to respect and on the 
different readings of them that have been proposed in the literature. I will also 
present some general critiques and alleged limitations of explication as a pro-
cedure of conceptual engineering and I will make methodologically more pre-
cise the goal of this paper, by distinguishing two senses of explicating ‘expli-
cation’. In Sect.  3, I will present the theory of conceptual spaces, both from a 
philosophical and a technical point of view. I will focus on some recent tech-
nical extensions of the theory, developed in order to treat vague and compara-
tive concepts in the framework of conceptual spaces. In Sect. 4, I will show how 
the procedure of explication can be made precise inside the theory of conceptual 
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spaces. Specifically, we will see how different readings of explication desiderata 
presented in the literature can be formalized as topological or geometrical con-
straints on the conceptual spaces related to the explicandum and the explicatum. I 
will also make evident how the representation of the explicandum and the expli-
catum in conceptual spaces allows us to state more fine-grained desiderata for the 
adequacy of an explication, which arguably show how explication can be suc-
cessfully defended against some recent critiques. In Sect. 5, I will show how two 
paradigmatic cases of successful explications from the history of science can be 
represented and assessed in the context of my explication of ‘explication’: the 
scientific concept of temperature and the morphological concept of fish. Finally, I 
will draw some general conclusion about the significance of the results contained 
in this work for explication as a procedure of conceptual engineering and related 
debates in philosophy.

2  The Carnapian Concept of Explication

In Carnap’s own words:

“By the procedure of explication we mean the transformation of an inexact, 
prescientific concept, the explicandum, into a new exact concept, the explica-
tum. Although the explicandum cannot be given in exact terms, it should be 
made as clear as possible by informal explanations and examples.” (Carnap 
1950, p. 3. Original emphases)

Explication is a procedure involving two concepts. On one side, we have the expli-
candum, belonging to natural language (or more generally an evolved language), the 
scope of which thus contains arguably an amount of vagueness and/or ambiguity. 
On the other side, we find the explicatum, belonging to a (more) precise language, 
the scope of which is characterized by explicit rules of use.

Explication is a two-step procedure. First, one has to clarify the explicandum, 
trying to explicitly state the intended meaning of the concept that one wants to expli-
cate. Since the concept is still expressed in a natural language, an exact definition 
is not required. What Carnap requires from the explicator, instead, is to state some 
positive and negative instances of the explicandum, together with some description 
or (partial) rules of use (Carnap 1950, pp. 3–5). The goal of this first step, called by 
Carnap the ‘clarification of the explicandum’, is to clarify and (if necessary) to dis-
ambiguate the concept that one seeks to explicate. Then, we have the second step of 
the explication, which is the formulation of the explicatum in a certain target theory 
via an explicit definition or by stating its rules of use.

The purpose of explication is the substitution, relative to a specific function-con-
text, of an inexact concept with a (more) precise one. In contemporary terms, expli-
cation is, then, a method of conceptual engineering.

A distinctive peculiarity of explication is that it is an inherently pragmatical pro-
cedure, i.e. its adequacy is not a matter of right or wrong, but of what is more or less 
satisfactory for the task that the explicator has in mind. Judging this adequacy is 
never an all or nothing matter; the explicator has always a certain degree of freedom 
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in choosing the explicatum for substituting a given concept. In Carnap’s late ter-
minology, as Stein stressed, questions about explication adequacy are thus external 
questions:

“The explicatum, as an exactly characterized concept, belongs to some formal-
ized discourse – some ‘framework’. The explicandum (...) belongs ipso facto 
to a mode of discourse outside that framework. Therefore any question about 
the relation of the explicatum to the explicandum is an ‘external’ question; 
this holds, in particular, of the question whether an explication is adequate – 
that is, whether the explicatum does in some appropriate sense fully represent, 
within the framework, the function performed (let us say) ‘presystematically’ 
by the explicandum.” (Stein 1992, p. 280)

Even though explication is not a matter of right or wrong, one can still judge 
whether an explication is good or bad. In fact, external questions for Carnap can still 
be objects of rational discourse, although of the pragmatic kind of rationality that 
is often called instrumental. Relative to a specific purpose or function, one can still 
state various pragmatic meta-principles that a good explicatum has to respect. Car-
nap stated four desiderata that a good explicatum has to satisfy (Carnap 1950, pp. 
5–8):

– Similarity: to the extent to which the other desiderata allow it, the explicatum 
ought to be as similar to the explicandum as possible (exact similarity, i.e. iden-
tity, is explicitly not required).

– Fruitfulness: the explicatum ought to be connected with other scientific concepts, 
in order to make as many generalizations as possible expressible within the the-
ory in which it is defined.

– Exactness: rules of use of the explicatum ought to be stated in an exact form (e.g. 
definitions, axioms).

– Simplicity: the explicatum ought to be as simple as the other desiderata allow it 
to be.

These four desiderata hint at the theoretical virtues that a good explicatum must 
have, but they are too vague and ambiguous to constitute a practical guide for expli-
cating a certain concept. Carnap never attempted to further develop these criteria. 
He instead developed various practical examples of what he considered good expli-
cata for fundamental philosophical concepts, e.g. his works on logical probability as 
an explication of confirmation (Carnap 1950) or his efforts towards explicating our 
concepts of modality and analyticity (Carnap 1947). Using these and other exam-
ples, in science and philosophy, of formal notions that have replaced informal ones, 
various scholars have proposed refined and more precise versions of these. Indeed, 
explication has recently been proposed as one of the prominent methods of concep-
tual engineering. Let us survey this debate, then.
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2.1  Discussing Explication Desiderata

To better structure the discussion, let us treat Carnap’s four desiderata, one by one.
Similarity. This is perhaps the desideratum that has most attracted the attention 

of scholars, due to its pivotal role in distinguishing explication from other forms 
of conceptual engineering. Since, as we have seen, the explicandum is normally 
a vague, informal concept and the explicatum is instead a (more) precise, formal 
notion, exact similarity is not required.1 If, then, an explicatum is allowed to have a 
different extension than the explicandum, the question at issue is to which degree an 
explicatum has to be similar to the related explicandum.

Hanna argued that the explicatum has to agree with the explicandum in all clear-
cut cases where the latter can be applied (Hanna 1967, pp. 34–36). This strict read-
ing of the similarity requirement makes explication, as Hanna himself acknowl-
edges, just a procedure for eliminating any vagueness from our informal concepts 
and it thus makes the explicatum a precisification of the explicandum. This can be 
clearly seen in Hanna’s formal explication of ‘explication’ where the (formal notion 
that seeks to explicate the) explicatum is technically a precisification of the (formal 
notion that seeks to explicate the) explicandum (Hanna 1967, pp. 37–38).

Another strict reading of the similarity requirement is Quine’s “synonymy in 
favored contexts”, i.e. synonymy with respect to all the contexts where the use of 
the explicandum is clear and precise (Quine 1961, p. 25). Both these readings seem 
in direct contrast with Carnap’s own examples, e.g. the explication of the concept 
fish in (Carnap 1950, p. 6), where he allows explicata to be concepts that explicitly 
reject clear, non-defective, positive instances of the explicandum. They also appear 
too narrow for any general procedure of conceptual engineering for science and phi-
losophy. Often, in fact, as even Quine himself acknowledged later (Quine 1960, pp. 
258–260), scientists change meanings and uses of pre-theoretical concepts for purely 
theoretical reasons, despite how clear a certain use of an explicandum originally is.

Brun has recently argued for a more liberal reading of the similarity requirement, 
which he understands as requiring the explicatum to preserve all the context-depend-
ent instances of the explicandum (Brun 2016, pp. 1218–1219). The context is freely 
decided by the explicator in relation to the purpose for which the explicatum is 
expected to substitute the explicandum. Carnap also stressed the significance of the 
‘clarification of the explicandum’, i.e. an informal explanation and list of examples 
(both positive and negative) that helps one to grasp the intended meaning-context 
for the explication. A well-known example of this decision of context are Tarski’s 
opening remarks before his explication of the concept of truth, where he stated that 
he is interested in explicating the context of truth-assertions like “‘snow is white’ is 
true” and not in explicating uses such as “you are a true friend” (Tarski 1956). Thus, 
according to this interpretation, an explicatum is allowed to diverge from the scope 
of the explicandum even in clear-cut cases of application of the latter if they are not 
within the specific context freely chosen by the explicator.

1 Famously, this lack of exact similarity is the core of Strawson’s “subject-change” critique of explica-
tion as a philosophical method in (Strawson 1963).
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Brun also proposed, in a more recent work, to split the similarity requirement 
into two steps. The first step consists in adjusting the extension of the explicandum 
(implicitly fixing the context), thereby obtaining a sharpened ‘ explicandum2 . The 
second step requires what Goodman calls ‘extensional isomorphism’, i.e. an injec-
tion from the extension of explicandum2 to the extension of the explicatum (Brun 
2017, pp. 11–13). This two-step reading is connected with Brun’s more general pro-
posal of merging explication with (a particular interpretation of) Goodman’s method 
of reflective equilibrium. Brun acknowledges that the injection-requirement seem 
trivial for a single concept, but stresses its significance for explicating a system of 
concepts and overcoming some limitations of (what he takes to be) the linear-mono-
conceptual Carnapian picture of explication (Brun 2017).

Fruitfulness. Carnap vaguely described this desideratum in terms of relations to 
other concepts and generalization-power. He distinguished this generalization-power 
between two cases, i.e. “empirical laws in the case of a nonlogical concept, logical 
theorems in the case of a logical concept” (Carnap 1950, p. 7). This seems indeed 
a necessary condition for a good explication of certain kinds of concepts, but as a 
general rule, it seems not really useful (by itself). After all, every formal concept 
whatsoever can produce an infinity of generalizations and truths.2

Dutilh Novaes and Reck proposed to read fruitfulness, in a general Enlightenment 
liberation spirit à la Carus, as the improvement of the pragmatic and epistemic situ-
ation of an agent. They claimed that a fruitful explicatum has to make our reasoning 
more effective and more reliable, thereby proving itself to be a better cognitive tool 
(for a certain purpose) than the explicandum (Dutilh Novaes and Reck 2017,  pp. 
205–211).

Shepherd and Justus took fruitfulness to be, like similarity, a context-dependent 
desideratum, relative to the type of concept the explicandum is and the purpose that 
the explicatum has to perform (Shepherd and Justus 2015, pp. 395–400).

Exactness. Here the main question is whether exactness means (a certain level 
of) formal rigor. Formal frameworks were considered by Carnap, even after his tol-
erance turn, the benchmark of exactness and rigor. If one looks at his own efforts 
in explicating concepts like analyticity or confirmation, one finds always the expli-
catum defined in a formal framework. Should we therefore understand the exact-
ness requirement simply as the request of formulating the explicatum within a for-
mal framework? Hanna believes that this is not enough. He, in fact, claimed that a 
certain explicatum has always to have a perfectly clear extension, thereby (together 
with his aforementioned extensional reading of similarity) making the explicatum a 
complete precisification of the explicandum (Hanna 1967, p. 36).

These strictly-formal readings of the exactness requirement seem too narrow 
for a general procedure of conceptual engineering, especially considering the fact 
that Carnap (who was not exactly a sworn enemy of the use of formal methods in 
philosophy) warned against a strictly formal reading of the exactness requirement.3 

2 Dennett humorously stressed this point in his general critique of (some) contemporary analytic phi-
losophy. See (Dennett 2006).
3 “The use of symbolic logic and of a constructed language system with explicit syntactical and semanti-
cal rules is the most elaborate and most efficient method. For philosophical explications the use of this 
method is advisable only in special cases, but not generally” (Carnap 1963, p. 935).
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Therefore, the exactness requirement has been understood in a comparative way, 
relative to the explicandum (Dutilh Novaes and Reck 2017, p. 201), allowing a cer-
tain open-endedness in the offspring of the procedure of explicating a certain con-
cept. This comparative reading of exactness can be easily cashed-out in terms of 
vagueness, by requiring the explicatum to be less vague than the explicandum. Brun 
favored a weaker reading of comparative exactness, i.e. the explicatum should not 
be vaguer than the explicandum. Using as evidence Carnap’s aforementioned fish 
example, he argued that in some cases the explicatum is as vague as the explican-
dum (Brun 2016, pp. 1220–1221). He also stresses that Carnap hinted at an addi-
tional aspect of the exactness requirement in discussing the temperature example, 
namely, that usually quantitative concepts are preferable over qualitative and com-
parative ones because they allow us to make more fine-grained distinctions (Brun 
2017, p. 1220).

Simplicity. Last and explicitly least, this desideratum is often left aside in the 
discussion about explication. Carnap stresses that simplicity is only a last resort 
when the explicator has to choose between different explicata that fulfill to the same 
degree the other, more important, desiderata (Carnap 1950, p. 7). Therefore, there 
is not much debate over what the simplicity requirement means. To my knowledge, 
only Brun’s treatment of explication includes a discussion of simplicity. He stresses 
that simplicity has to be understood not in the ontological Occamian sense (i.e. onto-
logical parsimony) but as a syntactical-logical requirement on the definition of the 
explicatum and perhaps also on the overall structure of the target theory in which the 
explicatum is defined (Brun 2016, p. 1221).

Of course, one may add to these four desiderata other theoretical virtues that a 
good explicatum should possess. Perhaps, other possible desiderata could be general 
pragmatic and theoretic virtues that good scientific theories embody, such as explan-
atory power, predictive power, novelty, unification power, trans-theoretic coher-
ence, and so on. Another, interesting, possible desideratum is due to Karl Menger, 
to whom Carnap (Carnap 1950, p. 7) acknowledged a certain debt in developing the 
idea of explication, who in discussing geometrical definitions stresses that a good 
explicatum “should extend the use of the word by dealing with objects not known or 
not dealt with in ordinary language” (Menger 1943, p. 5).

2.2  Recent Critiques of Explication

The discussion about the desiderata that a good explicatum has to respect has also 
sparked a more general methodological discussion about the dignity of explication 
as a procedure of conceptual engineering. Apart from the aforementioned well-
known critique of Strawson, new critiques have emerged.4

For instance, Dutilh Novaes and Reck have recently argued that explication (and, 
more generally formalization) is an inherently paradoxical enterprise. Explication is 

4 For Strawson’s original take, see (Strawson 1963). Carnap responded eloquently in (Carnap 1963). For 
more recent responses see (Maher 2007; Justus 2012).
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paradoxical, according to them, because there is a tension between two of its most 
important desiderata, namely fruitfulness and similarity: similarity allegedly calls 
for a close relationship with the explicandum, while fruitfulness pushes the explica-
tum towards a more radical departure from the explicandum. They named this phe-
nomenon “the paradox of adequate formalization” (Dutilh Novaes and Reck 2017, p. 
211), claiming that it is nothing but another form of the well-known “paradox of 
analysis” (Beaney 2018).

Reck in another work stresses, in a Strawsonian fashion, that Carnapian explica-
tion has some blind spots, such as its strong focus on formal aspects, its strive for 
exactness, its unwillingness to take into account methodologically different alterna-
tives (Reck 2012, pp. 106–114). Reck acknowledges that these blind-spots are far 
from being impossible to be mitigated by a more pragmatic and liberal theory of 
explication, but he argues that such a theory would lead us back to philosophical 
disputes of the very kind that explication was meant to overcome.

Other two limitations of explication as a general procedure for conceptual engi-
neering are stressed, instead, by Brun, who argues that Carnapian explication is 
heavily limited by its focus on individual concepts (i.e. it does not take into account 
more complex entities such as systems of concepts) and by its linear structure that 
seems to describe a no-turning-back triumphant engineering from the explicandum 
to the explicatum, hiding thus the complexity of the dialectics between the two parts 
of explication.5 Brun argues that these two points can be mitigated via a more liberal 
recipe-approach to conceptual engineering, merging explication with Goodman’s 
reflective equilibrium.

2.3  Explicating ‘Explication’

I already stated that the main goal of this work is to give an explication of ‘expli-
cation’. What does it mean, then, to explicate the concept of explication itself? It 
seems to me that this phrase can be understood (at least) in two different ways.

First, explicating ‘explication’ could consist in formally or informally giving a 
specific method for substituting a certain explicandum with a certain explicatum. 
This is the sense in which Hanna proposed his explication of ‘explication’ (Hanna 
1967) and Brun recently gave us a recipe for explication (Brun 2016, 2017). Hanna’s 
explication is a formal procedure, Brun’s is stated as an informal method but both 
try to explicate ‘explication’ as a specific (formal/informal) procedure for replac-
ing a particular reading of explication and its desiderata. There are of course fur-
ther differences between the two proposals. As I said, Hanna is clearly explicating a 
very narrow, and very not Carnapian, sense of explication, while Brun gives a rec-
ipe for a very liberal clarification of what explication is. Nevertheless, for our cur-
rent methodological discussion, they both instantiate the same sense of explicating 

5 See his discussion in (Brun 2016,  pp. 1229–1232). A possible line of response, already stressed by 
Brun, can be found in Carus’ remarks about the dialectic between evolved and constructed languages in 
explication. See (Carus 2007, pp. 273–284).
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‘explication’. Let me refer to this sense of explicating ‘explication’ as the single-
explicatum sense.

Secondly, a more general sense in which the task of explicating ‘explication’ 
could be understood is as the task of providing a precise bridge-theory in which the 
explicandum and the explicatum could be represented, thereby allowing a (more) 
precise judgment of the adequacy of explication efforts and a (more) exact repre-
sentation of the (different readings of the) desiderata. This is what I will try to do 
using the theory of conceptual spaces in this work and, to my knowledge, is the first 
attempt of explicating ‘explication’ in this specific sense.6 This sense is more gen-
eral because it does not only explicate a given clarification of a subset of explication 
desiderata, but it proposes instead some kind of meta-theory in which different read-
ings of various desiderata of explication can be made precise. If the single-explica-
tum sense amounts to give a practical equivalent of a specific reading of explica-
tion, this more general sense of explicating ‘explication’ amounts to give a theory 
of explication. With the help of such a general explication of ‘explication’, exter-
nal questions about explication adequacy can then be represented in a more precise 
manner while still remaining subject to instrumental rationality and pragmatical fac-
tors. The outcome of this sense of explicating ‘explication’ is a bridge theory within 
which (certain kinds of) different readings of explication and its desiderata can be 
precisely compared and applied to specific cases of conceptual engineering. Let me 
call this sense the meta-theoretical sense of explicating ‘explication’.

In this work, I propose an explication of ‘explication’ in the meta-theoretical 
sense. I will also show some examples of possible explications in the single-explica-
tum sense that can be proposed within my framework, but I will not endorse anyone 
of them as the favored reading of explication and its desiderata.

3  Conceptual Spaces

The theory of conceptual spaces (Gärdenfors 2000, 2014) has to be understood as a 
theory of mental representation. According to it, we represent information at three 
different levels (in order of ascending complexity): subconceptual (e.g. neural net-
works), conceptual, and symbolic (e.g. Fodor’s language of thought). The concep-
tual level is where the categorization process takes place and where we construct 
properties, concepts, meanings, and categories. The main tenet of conceptual spaces 
theory is that we can model what happens at this level geometrically.

Pivotal in the theory of conceptual spaces is the notion of quality dimension. The 
idea is that a quality dimension represents a particular (aspect of a) quality with 
respect to which objects can be judged as more or less similar. The more similar two 
objects are with respect to that quality, the closer their related points in that quality 
dimension. Examples of familiar concepts that can be modeled as quality dimen-
sions include time, weight, size, and brightness. A quality dimension is a dimension 

6 Some remarks of Kuipers hinted towards a meta-explication of ‘explication’ in a sense similar to what 
I will try to do in this work. See his discussion in (Kuipers 2007, pp. viii–xviii).
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in a strict geometrical sense, i.e. every quality dimension is equipped with a specific 
geometrical or topological structure. Quality dimension often come with a metric, 
i.e. with a distance function, but also qualitative measures of distances are allowed. 
Neither dimensions or the metrics are arbitrary, but are usually determined on the 
basis of a large set of similarity judgments via suitable techniques such as multidi-
mensional scaling or principal component analysis (Douven and Gärdenfors 2019, p. 
5).

Quality dimensions can be integral or separable. Two dimensions are integral iff 
to assign a value to an object in one of them implies simultaneously assigning a 
value in the other one. Dimensions that are not integral are called separable. Color 
perception dimensions, such as saturation and hue, are a familiar example of inte-
gral dimensions. Dimensions of shape and weight are instead examples of separable 
dimensions. Quality dimensions appear often related together in stable groups. A set 
of integral dimensions that are separable from all the other ones is called a domain. 
Examples of domains are the color domain (constituted by the dimensions of hue, 
saturation, and brightness) and the space domain (height,width, and depth). A con-
ceptual space is, then, a collection of one or more domains.

A conceptual space is able to represent objects, properties, and concepts. Objects 
are represented as vectors. Properties are represented as certain kinds of regions in a 
domain. Natural properties are hypothesized to be (representable as) convex regions 
of a domain (Gärdenfors 2000, p. 71). Concepts, then, are certain kinds of sets of 
regions in a (possibly open-ended) number of domains. Natural concepts are sets 
of regions in a number of weighted domains equipped with information about how 
regions in different domains are correlated (Gärdenfors 2000, p. 105). It is then pos-
sible to distinguish between core and peripheral properties of concepts, by assigning 
different salience weights to different domains. In a similar fashion, singular dimen-
sions can be weighted in order to account for contextual effects of various kind.

Gärdenfors then takes convexity to be the pivotal feature of regions representing 
natural properties and concepts. The necessity of convexity as a criterion of natural-
ness in conceptual spaces has been criticized by various scholars. Mormann high-
lighted that convexity requires the underlining conceptual space to be metrical or 
linear and it therefore strongly restricts the possible structure of the conceptual space 
(Mormann 1993, p. 220). He instead favored a pluralist approach to naturalness cri-
teria, arguing that in many cases weaker topological notions such as connectedness 
or closedness are as good as convexity and they do not impose strong restrictions on 
the underlining structure of the space (Mormann 1993, pp. 226–239).

Recently, Hernández-Conde has strengthen the case against convexity as a natu-
ralness criterion, arguing that this constraint is problematic both from a theoreti-
cal and a practical perspective. He claimed that the main arguments that Gärdenfors 
gave for convexity either require very strong assumptions on the underlining struc-
ture of the space or they work also for weaker requirements such as star-shapedness 
(Hernández-Conde 2017). Moreover, he showed how convexity appears to be prob-
lematic also from the inner perspective of conceptual spaces theory (Hernández-
Conde 2017,  pp. 4027–4034). I remain neutral on whether convexity is the right 
criterion of naturalness in conceptual spaces. In Sect. 4, I will show how a plural-
ity of geometrical constraints can be used to make precise in conceptual spaces the 
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fruitfulness of an explication, but as I stated in Sect. 2 I will not endorse any reading 
of explication desiderata as the correct one.

3.1  Technicalities

In the theory of conceptual spaces the fundamental notion of a quality dimension 
has to be understood as a proper geometrical dimension. Axioms and primitive rela-
tions of any dimension can be of any kind. Minimal requirements can be defined in 
terms of the relations of betweenness (B(a, b, c) ) and equidistance (E(a, b, c, d) ). 
Since the most fundamental task of a quality dimension is the assessment of simi-
larities, what specifically characterizes a certain dimension is the notion of distance 
with which it is equipped. Dimensions can have either a qualitative (e.g. a notion of 
equidistance) or a quantitative (e.g. a certain metric) notion of distance. If a certain 
dimension is equipped with a quantitative distance function, it is then called a met-
ric space. A function d ∶ S × S ⇒ ℝ+

0
 is called a distance function iff ∀x, y, z ∈ S : 

d(x, y) ⩾ 0 , d(x, y) = 0 ↔ x = y , d(x, y) = d(y, x) , and d(x, y) + d(y, z) ⩾ d(x, z) . 
Examples of metrics, for a n-dimensional space, are the Euclidean metrics 
( dE(x, y) =

√
�i(xi − yi)

2 ) and the city-block metrics ( dC(x, y) = �i|xi − yi|).7 We 
can easily vary the scales of the different dimensions of a certain conceptual space 
by putting a weight wi on the distance function of the dimension i. Similarity is, 
then, an exponentially decaying function of distance (e.g. Shepard’s universal law of 
generalization sij = e−c⋅dij).

In a certain conceptual space S, consisting of a set of domains {D1,… ,Dn} , each 
made up of a set of integral dimensions {d1,… , dm} , we can represent objects as vec-
tors ⟨v1,… , vj⟩ . Properties, then, are represented by regions S of a domain. We can 
define a region of a space as a set of points that respect certain criteria that we impose 
on the primitive relation: C(X, Y) , X connects with Y is minimally constrained by 
symmetry and reflexivity. A possible criterion for defining a region is connectedness, 
i.e. X is connected iff ∀Y , Z(Y ∪ Z = X → C(Y , Z)) . A stronger criterion that can be 
imposed as a definition of region is star-shapedness relative to a point, i.e. X is star-
shaped relative to a point x0 iff ∀z,∀x ∈ X(B(x, z, x0) → z ∈ X) . An even stronger 

Fig. 1  A convex (a) and a star-shaped (b) region

7 For a survey of other possible metrics, see (Tversky et al. 1971-1989-1990, Volume 2, pp. 51–77).
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criterion is convexity, i.e. X is convex iff ∀z,∀x, y ∈ C(B(x, z, y) → z ∈ C)  (Fig. 1). 
Concepts are represented, then, as multi-domain bundles of properties X1,… ,Xn , 
together with salience weights wi on the domains and cross-domain correlations.

One of the most promising applications of conceptual space is concept formation 
and categorization. Gärdenfors proposes a very smooth combination of prototype 
theory (Rosch 1975) together with the spatial tessellation technique called Voronoi 
diagrams (Okabe et al. 2000). The basic tenet of prototype theory is that not every 
instance of a concept is equally representative, i.e. there is a (partial or total) order 
of representativeness amongst instances of the concept. The most representative 
instance of the concept is called a prototype. A Voronoi diagram, instead, is a tessel-
lation of a space that, provided with a set of points, divides the space in cells, each cell 
having as a center one of the points in the original set and containing all the points 
that lie closer to its center than to the centers of the other cells. More accurately, for 
any n-dimensional space and any set of pairwise distinct points of S P = {p1,… , pk} , 
the Voronoi diagram generated by P is the set V(P) = {v(pi)|pi ∈ P} , where v(pi) is 
the region v(pi) = {p|d(p, pi) ⩽ d(p, pj)∀j ∈ {1,… , k}} and it is called the Voronoi 
polygon/polyhedron associated with pi.

The theory of conceptual spaces has been recently extended in order to treat 
vague (Douven et al. 2013) and comparative concepts (Decock and Douven 2014; 
Dietz 2013; Decock et al. 2013).

The first step for dealing with vagueness in conceptual spaces is to substitute 
unique prototypes with prototypical areas, thereby making the generator set P 
become a set of regions. Then, the basic idea is to consider all the possible Voronoi 
diagrams that can be built from choosing a single point in each generator region. 
Intuitively, we treat vagueness in a way similar to the supervaluationist account, 
because every possible Voronoi diagram represents a possible completion of the tes-
sellation of the space and thus a possible way of deciding the borderline cases of the 
concept involved. Then, we project all these possible Voronoi diagrams onto each 
other. From the result of this projection, called a collated Voronoi diagram, we can 
define boundary regions of categorization in order to accurately represent borderline 
cases of concepts (Fig. 2).

Fig. 2  A normal (a) and a collated (b) Voronoi Diagram
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More formally, consider the restricted Voronoi polygon associated with 
pi , i.e. the region made of all points that lie strictly closer to pi than to the 
other central points: v(pi) = {p|d(p, pi) < d(p, pj)∀j ∈ {1,… , k}} . Then, let 
R = {r1,… , rk} be a set of pairwise distinct regions and consider the set 
�(R) =

∏k

i=1
ri = {⟨p1,… , pk⟩�pi ∈ ri} , i.e. the set of all sequences contain-

ing exactly one point out of each region of R. Consider, then, the set of all Voro-
noi diagrams generated by elements of �(R) , i.e. V(R) = {V(P)|P ∈ �(R)} ; the 
set of all Voronoi polygons associated with the various points in a region ri ∈ R , 
i.e. {v(p)}ri∈R ∶= {v(p)|p ∈ ri ∧ v(p) ∈ V(P) ∈ V(R)} ; and the set of all restricted 
Voronoi polygons associated with the various points in a region ri ∈ R , i.e. 
{v(p)}ri∈R ∶= {v(p)|p ∈ ri ∧ v(p) ∈ V(P) ∈ V(R)} . We can then construct the col-
lated Voronoi diagram generated by R, U(R) = {u(ri)|1 ⩽ i ⩽ k} , where each 
u(ri) =

⋂
{v(p)}ri∈R is the collated polygon associated with ri , i.e. the set of all 

points that lie in the restricted polygon of ri in all the possible Voronoi diagrams 
V(P) ∈ V(R) . Recovering our analogy with the supervaluationist treatment of 
vagueness, the notion of the collated polygon associated with a region corresponds 
to the notion of super-truth in supervaluationism. We also have the expanded 
polygon associated with a region u(ri) =

⋃
{v(p)}ri∈R , which is the dual notion of 

the restricted one and thus it is analogous to the supervaluationist notion of sub-
truth. Then, we can define the boundary region associated with a collated poly-
gon u(ri) ∈ U(R) as the set u(ri)⧵u(ri) , which is the set of all points that lie in the 
expanded polygon but not in the collated polygon associated with a given region.

The account of comparative concepts builds upon the vagueness framework, 
by adding to it an account of graded-membership in conceptual spaces. The infor-
mal idea for graded-membership in this account, which traces back to a proposal 
by Kamp and Partee, is that the degree to which an object falls under a concept is 
given by the amount of possible completions that group the object with the clear-cut 
instances of the concept (Kamp and Partee 1995). Extreme cases of graded member-
ship are, then, objects that always fall under the concept, which receive a degree of 
membership of 1, and objects that never fall under that concept, which get a degree 
of membership of 0.

In the conceptual spaces framework, elements of the set �(R) play the role of 
completions. The simplified idea (for concepts with a finite amount of prototypes) 
behind the membership function for a given object is to calculate the ratio between 
the k-tuples of �(R) that generates Voronoi diagrams including the object into 
the scope of the concept and the number of elements in �(R) . The general idea 
for constructing a membership function for prototypical areas containing an infinite 
number of prototypical instances is to measure the set of positive completions for 
a given object in terms of the volume occupied by the related coordinates in the 
related product space. More formally, we represent each completion by means of a 
m × k-tuple ⟨x11 ,… , x1m ,… , xk1 ,… , xkm⟩ of real numbers, where ⟨x1,… , xk⟩ ∈ �(R) 
and xi1 ,… , xim are the spatial coordinates of a prototypical instance pi . Then we can 
build for any point a, any concept Ci with prototypical area ri , and any distance func-
tion d the proportions of completions Sa,i (volume of positive completions), relative 
to the set �(R):
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Where �(Sa,i) measures the set of positive completions, i.e. :

and �(�(R)) measures the set of all possible completions, i.e.

We can then define the membership function of an object a relative to a concept 
Ci as MCI

(a) = �∗(Sa,i) . Thanks to this function we obtain a very smooth treat-
ment of comparative concepts defining, for two individuals i, i′ , i is C-er than i′ iff 
MC(i) > MC(i

�) . Comparative concepts of different types, such as ‘a is more typi-
cally C then b’ or ‘a is more C-ish then b’, can be defined more easily in terms of the 
Hausdorff distance (a general way of calculating the distance between sets of points) 
(Decock et al. 2013, pp. 76–77).

4  Explication in Conceptual Spaces

The general idea behind my proposal is the following, namely, to explicate ‘expli-
cation’ in the meta-theoretical sense (see Sect.  2) by means of conceptual spaces 
theory. Thus, I have to show how representing the explicandum and the explicatum 
in conceptual spaces allows a more precise judgment of the adequacy of a given 
explication. As presented in Sect.  2, the adequacy of an explication is judged by 
the satisfaction of certain pragmatic meta-principles that a good explicatum has to 
satisfy, i.e. the desiderata. In this section, I show how many readings of explication 
desiderata that have been proposed in the literature can be made precise in terms of 
geometrical or topological constraints on the conceptual spaces representations of 
the two concepts, on their conceptual space(s), and on the transition from the (repre-
sentation of the) explicandum to the (representation of the) explicatum. I also show 
how the richness of conceptual spaces representation of concepts allows us more 
fine-grained readings of some desiderata that a good explicatum has to satisfy.

As I will show in Sect. 5, applying this meta-theoretical explication of ‘explica-
tion’ to a given case of explication is then a three-step procedure. First, one needs 
to represent the explicandum and the explicatum in conceptual spaces. Then, one 
needs to choose one’s favorite reading of explication desiderata. Finally, the ade-
quacy of the explication can be mathematically assessed. The first two steps of this 
applicability make use of Assumptions 1 and 2 (see Sect. 1). These two assumptions 
guarantee that both the explicandum and the explicatum are representable in con-
ceptual spaces, that (if needed) there exists a suitable way of mapping the elements 
of the first conceptual space onto the elements of the second, and that, in assessing 

�∗(Sa,i) =
�(Sa,i)

�(�(R))

{⟨x11 ,… , x1m ,… , xk1 ,… , xkm⟩�d(a, ⟨xi1 ,… , xim⟩)
< d(a, ⟨xj1 ,… , xjm⟩)∀⟨xj1 ,… , xjm⟩ ∈ rj s.t. i ≠ j}

∫ I�(R)(⟨x11 ,… , x1m ,… , xk1 ,… , xkm⟩)dx11 … dxkm .
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the adequacy of the given explication, all the desiderata are understood as strictly-
conceptual ones.

Before getting started, let me stress that in what follows I use conceptual spaces 
theory with a somewhat deflationary caution. Gärdenfors, as I already mentioned, 
conjoins conceptual spaces with a strong cognitivist view of concepts and proper-
ties, together with a lot of other semantical and epistemological claims. Instead, 
even though I take conceptual spaces to be a fine-grained reliable tool of conceptual 
representation, I want to remain neutral in this work about which kind of entities 
concepts are. The use of a geometric representation of concepts is fundamental for 
my proposal, but I assign no ontological or metaphysical weight to my use of con-
ceptual spaces, using them just as a tool for concept representation.

Then, let the ExplicanDum be a given concept (in the intuitive sense of the term), 
represented in a conceptual space CSED by a certain concept (in the technical sense 
of conceptual spaces teory) CED = {rED1

,… , rEDk
} . Assume also that any region rEDi

 
of the concept is obtained from a prototypical region prEDi

.8 Similarly, let the Expli-
caTum be represented in a conceptual space CSET by a certain concept 
CET = {rET1 ,… , rETt} . Any given region rETj of the concept is then obtained from a 
prototypical region prETj . Note that in the definitions we have not required that the 
explicandum and the explicatum are represented in the same conceptual space. As a 
matter of fact, I will argue that often it is not the case. In order to make precise many 
explication desiderata we will need a mapping from the elements of CSED to the ele-
ments of CSET . Assumption 1 (see again Sect. 1) guarantees the existence of such an 
adequate mapping, call it � (� ∶ CSED → CSET ).9

In order to structure more clearly this section, I will use for every reading of a 
desideratum the following format. First, when it is needed, I will informally dis-
cuss the desideratum and the strategy for representing it in conceptual spaces, then 
I will give the informal norm behind the desideratum. Then, I will draw a picture 
of a two-dimensional toy-case of an explicandum and/or an explicatum represented 
in conceptual spaces in order to show how the desideratum can be understood in 
conceptual spaces. Finally, as promised, I will present a formalized version of the 
desideratum. Consider, then, the following representation of explication desiderata 
in conceptual spaces theory.

4.1  Similarity

(S1) Clear-cut extension preservation (Hanna).
Hanna requires the explicatum to preserve the clear-cut extension of the expli-

candum. In conceptual spaces, the clear-cut extension of a possibly vague concept 
is given by all the collated polygons (the notion mirroring the super-truth of super-
valuationism) associated with its regions. We can then see in the toy-example below 

8 For the sake of brevity, I am only considering here the case of categorical concepts. Nonetheless, the 
different desiderata can also be applied to comparative concepts as I will show in Sect. 5.
9 Note, thus, that the requirements that use the mapping function are not technically norms, but scheme 
of norms over a given mapping.
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(Fig. 3) how the explicatum preserves the clear-cut extension and the anti-extension 
of the explicandum while deciding part of its borderline region. Since I will use the 
same format for all the toy-pictures in this section, here is a little guide for under-
standing them: in a given picture, the inner-polygon represents the clear extension 
of a concept, the outer polygon (when is present) represents the borderline region of 
that concept, the rest of the space is the anti-extension of the concept; for simplic-
ity, in these toy-cases I always assume that the explicandum and the explicatum live 
in the same conceptual space, namely the two-dimensional one represented by the 
pictures.

Norm: The clear-cut extension of the explicandum ought to be preserved by the 
explicatum.

Formalization: For the simple case in which the set of elements of CSED is a subset 
of the one of CSET , the requirement is simply: ∀a,∀i,∃j ∶ a ∈ u(rEDi

) → a ∈ u(rETj ) 
and a ∉ u(rEDi

) → a ∉ u(rETj ).
For the general case, in which we do not assume this relation between the base sets 

of the two spaces, we have to rely on the mapping � : 
∀a,∀i,∃j ∶ a ∈ u(rEDi

) → �(a) ∈ u(rETj ) and a ∉ u(rEDi
) → �(a) ∉ u(rETj ).

(S2) Favored-contexts preservation (Quine).
Quine’s reading of similarity can be represented in the same way of Hanna’s, rel-

ativizing the requirement to favored (i.e. non-deficient) contexts of the explicandum. 
Assume that a favor context rFCEDl

 is a subset of one of the regions belonging to the 
clear-cut extension of the explicandum, i.e. FCED = {rFCED1

,… , rFCEDt
} where 

∀l ⩽ k,∃i ∶ rFCEDl

⊆ rEDi
 . We can see, then, in the picture below (Fig.  4) how the 

Fig. 3  The explicatum (b) preserves the clear-cut extension (the inner-polygon) and the anti-extension 
(what is not in the outer polygon) of the explicandum (a), while deciding the borderline cases (what is in 
the outer polygon, but not in the inner one)

Fig. 4  The explicatum (b) preserves the favored contexts (FC) and the anti-extension of the explicandum 
(a), while changing some parts of its non-favored extension (inner polygon not in FC) and deciding its 
borderline region
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explicatum preserves the favored-context and the anti-extension of the explicandum, 
while changing its non-favored clear-extension and the borderline cases.

Norm: The clear-cut extension of the explicandum in favored contexts ought to be 
preserved by the explicatum.

Formalization: For the simple case when the set of elements of CSED is a subset 
of the one of CSET : ∀a,∀l,∃j ∶ a ∈ u(rFCEDl

) → a ∈ u(rETj ) and 
∀a,∀i,∃j ∶ a ∉ u(rEDi

) → a ∉ u(rETj ).
For the general case: ∀a,∀l,∃j ∶ a ∈ u(rFCEDl

) → �(a) ∈ u(rETj ) and 
∀a,∀i,∃j ∶ a ∉ u(rEDi

) → �(a) ∉ u(rETj ).
(S3) Extension adjusting + injection (Brun).
Brun’s two-steps reading of similarity requires first that the extension of the 

freely created mid-level concept (call it explicandum2 ) overlaps with the extension 
of the original explicandum. Assuming that explicandum2 is represented by the con-
cept CED2 = {rED21 ,… , rED2j} , we require the intersection of the collated polygons 
associated with regions of the two concepts not to be empty  (Fig. 5). Then, Brun 
requires an injection from the extension of this mid-level concept to the one of the 
explicatum. The most straightforward way of representing this step of the desidera-
tum would be to require an injective mapping f from the set of clear-cut instances of 
explicandum2 to the clear-cut extension of the explicatum  (Fig.  5).10 It is easy to 
note that this injection requirement is rather trivially satisfied by almost every case 
of conceptual engineering that one can imagine.11 A possible stronger requirement 
would be that every mapping from explicandum2 to the explicatum be injective.

Norm: A subset of the clear-cut extension of the explicandum must be preserved 
by the mid-level concept. Furthermore, there ought to be an injection from the 
extension of this mid-level concept to the extension of the explicatum.

Formalization: (Step 1) u(rEDi
)
⋂

u(rED2i� ) ≠ �.
(Step 2) There exists an injective function finj from u(rED2i� ) to u(rETj ).
(Alternative, stronger, Step 2) All the possible functions f from u(rED2i� ) to u(rETj ) 

are injective.
(S4) Contextual quasi-isometry
Thanks to the malleability of conceptual spaces and the adoption of a prototypical 

view of concepts, more fine-grained readings of the similarity desideratum are pos-
sible. I would like to propose, as an example, a reading of the similarity requirement 

10 Assuming, of course, the existence of such a mapping. If one favors Brun’s reading of similarity, one 
has to slightly change our Assumption 1 (see again Sect. 1), assuming the existence of a mapping from 
the conceptual space of the explicandum2 to the conceptual space of the explicatum.
11 As already mentioned in Sect.  2, Brun acknowledges this triviality, but he claims that the require-
ment becomes more significant if we take into consideration a system of connected notions instead of 
a single concept. This alternative requirement can be straightforwardly explicated in the present frame-
work. Alternatively, Brun, in private conversation, suggested that another way of formalizing his similar-
ity requirement could be a combination of Quine’s (S2) reading of similarity and a mapping assumption 
similar to the one contained in my Assumption 1.



1 3

Explicating ‘Explication’ via Conceptual Spaces  

which is philosophically particularly interesting. The informal idea behind it is 
that the similarity requirement is not adequately understood in terms of extension 
or intension, but should be modeled instead as the preservation of the large-scale 
conceptual structure of the explicandum. Under this reading, the explicator can thus 
change quite freely single instances of the explicandum, but she ought to preserve 
its general conceptual structure. In order to make precise this idea of large-scale 
structure preservation, I am going to use the concept of quasi-isometry (Bridson 
2008, pp. 443–444). A function f from one metric space (M1, d1) to another metric 
space (M2, d2) is called a quasi-isometry, let us write fQI , if there exist constants 
A ⩾ 1,B ⩾ 0,C ⩾ 0 such that: 

(1) ∀x, y ∈ M1 ∶
1

A
d1(x, y) − B ⩽ d2(f (x), f (y)) ⩽ Ad1(x, y) + B

(2) ∀z ∈ M2,∃x ∈ M1 ∶ d2(z, f (x)) ⩽ C.

Informally, condition 1 tells us that the second metric space is allowed to dis-
tort sufficiently large distances by (at most) a constant factor, while condition 2 
instead consists of a sort of ‘quasi-surjection’, i.e. it tells us that every element of 
the second metric space is close to the image of an element of the first one. We 
can, then, make precise this idea of large-scale preservation by imposing some 
contextual restrictions on the three constants used in the weak-inequalities of the 
quasi-isometry. We can, for instance, restrict the constants relative to the diameter 
diam(X) ∶ sup{d(x, y) ∶ x, y ∈ X} , i.e. the maximal distance between two elements 
of a metrical spaces, of the related conceptual spaces. The intuitive idea behind this 
restriction is that the explicatum should not distort too much the conceptual struc-
ture of the explicandum, where too much is cashed out in terms of the diameter of 
the conceptual spaces where the two concepts are represented.12

Norm: The large-scale conceptual structure of the extension of the explicandum 
ought to be preserved (Fig. 6). 

Fig. 5  In a, the explicandum2 (ED2) overlaps with the original explicandum (ED). In b there is an exam-
ple of an explicatum that satisfies the injection requirement of the second step of Brun’s reading of simi-
larity

12 Many alternative ways of making this idea of large-scale structure preservation are of course avail-
able. For instance, other intuitive ways of restraining the constants of the quasi-isometry would be to 
require a strict isometry for the prototypical regions or to have graded constraints for different parts of 
the space. Again, this desideratum, like the others, should be considered just an example of the kind of 
readings of explication desiderata that conceptual spaces allow.
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Formalization: There exists a quasi-isometric function fQI from CSED to CSET 
with A + B ≤ sup{diam(CSED), diam(CSET )} and C ≤ diam(CSET ).

4.2  Fruitfulness

As we have seen in Sect. 2, the fruitfulness of a given explicatum is often under-
stood in terms of generalization power and connections with other parts of science 
and philosophy. Under this reading fruitfulness is not a strictly-conceptual desid-
eratum and therefore an explication of its possible readings is outside the scope of 
the present proposal. That said, I believe that it is possible to propose some strictly-
conceptual readings of fruitfulness, looking at some characteristics of the represen-
tation of the concept by means of conceptual spaces that make an explicatum a good 
candidate for being a fruitful notion.

(F1) Convexity
The main idea is to use Gärdenfors’ “criterion P” for natural properties as a nor-

mative and theoretical benchmark of (alleged) fruitfulness. Both from a point of 
cognitive fruitfulness, in the sense of Dutilh Novaes and Reck, and of general con-
ceptual fruitfulness, it seems natural to take as good candidates for fruitfulness con-
cepts the conceptual structure of which resembles the one of our natural concepts. 
After all, if one takes the engineering metaphor seriously, to require the explica-
tum to have a conceptual space similar to the ones of natural concepts is just like to 
require user-friendly products to engineers. We can then require the regions compos-
ing the extension of our explicatum to be convex.

Norm: The conceptual-structure of the explicatum ought to resemble the one of 
our natural concepts (Fig. 7).

Formalization: ∀x, y ∈ u(rETj ),∀z ∶ B(x, z, y) → z ∈ u(rETj ).
(F2) Star-shapedness relative to a prototype region
As mentioned earlier in Sect. 3, there are various reasons for thinking that con-

vexity is too strong as a criterion for natural concept. Thus, one may also want to 
have a weaker geometrical reading of fruitfulness. The concept of star-shapedness 

Fig. 6  The explicatum (a) 
distorts the space of the expli-
candum (b), while preserving its 
large-scale conceptual structure

Fig. 7  A non-convex (a) and a convex (b) explicatum
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relative to a point p, i.e. convexity relative to a given point, seems to share many 
attractive feature of convexity without imposing so many restrictions on the under-
ling structure of the space (Hernández-Conde 2017). We can then require the 
regions of the explicatum to be star-shaped relative to the prototypes of the concept. 
Since arguably the explicatum can also have boundaries which are not sharp and 
thus have not a unique prototype, it seems natural to define the star-shapedness 
requirement in relation to the set of prototypical instances of the explicatum, i.e. 
prETj.

Norm: The conceptual structure of the explicatum ought to resemble the one of 
our natural concepts (Fig. 8).

Formalization: ∀x ∈ u(rETj ),∀y ∈ prETj ,∀z ∶ B(x, z, y) → z ∈ u(rETj ).
(F3) Connectedness
Another, even weaker alternative to convexity that has been discussed in the 

debate over the right naturalness criterion in conceptual spaces is connectedness 
(Mormann 1993). We can then use it as another possible reading of fruitfulness, by 
imposing it as a requirement for the regions of the explicatum.

Norm: The conceptual structure of the explicatum ought to resemble the one of 
our natural concepts (Fig. 9).

Formalization: ∀j,∀s, t ∶ (s ∪ t = u(rETj ) → C(s, t)).

4.3  Exactness

(E1) Clear extension (Hanna).
A concept with a clear extension is a concept that does not have any bound-

ary case, i.e. without what we have called boundary regions. Thus, we can easily 
make precise this reading of the exactness desideratum by requiring the boundary 
region(s) of the explicatum to be empty.

Fig. 8  A non-star-shaped (a) and a star-shaped (b) explicatum

Fig. 9  A non-connected (a) and a connected (b) explicatum
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Norm: The explicatum ought to have a sharp extension with no borderline 
cases (Fig. 10).

Formalization: ∀j ∶ u(rETj )⧵u(rETj ) = �.
(E2) Vagueness reduction
Similarly, a concept is less vague than another one when the first has fewer 

boundary cases than the latter. For the simple case in which the explicatum is suf-
ficiently similar (i.e. it has the same clear-cut extension) to the explicandum, we 
can define this requirement in a qualitative way, requiring the boundary regions 
of the explicatum to be a proper subset of the ones of the explicandum. However, 
the explicatum, according to various liberal readings of the similarity require-
ment, can change even the clear-cut extension of the explicandum. Thus, in the 
general case, we need a quantitative way of comparing the vagueness of the two 
concepts. What we need is to add a proper measure to the conceptual spaces 
of the two concepts, thereby technically making them two measure spaces. Of 
course, according to the peculiarities of the given conceptual spaces, one has to 
choose an adequate measure. Generally speaking, assuming a non-negative meas-
ure � on both the conceptual space of the explicandum and the one of the expli-
catum, we require the measure of the boundary regions of the explicandum to be 
strictly bigger than the one of the boundary regions of the explicatum.

Norm: The explicatum ought to be less vague than the explicandum (Fig. 11).
Formalization: (simple case) ∀i,∃j ∶ u(rEDi

)⧵u(rEDi
) ⊃ u(rETj )⧵u(rETj ).

(general case)
𝜇({u(rEDi

)⧵u(rEDi
)|1 ⩽ i ⩽ k}) > 𝜇({u(rETj )⧵u(rETj )|1 ⩽ j ⩽ t}).

(E3) No addition of vagueness
If one wants, following Brun, to read the exactness desideratum as the require-

ment for the explicatum to be not vaguer than the explicandum, it suffices to weaken 
the precedent desideratum in the obvious way.

Norm: The explicatum ought not to be vaguer than the explicandum (Fig. 12).

Fig. 10  A non-sharp (a) and a sharp (b) explicatum

Fig. 11  The explicatum (b) has a smaller boundary region than the explicandum (a) and it is therefore 
less vague
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Formalization: (simple case) ∀i,∃j ∶ u(rEDi
)⧵u(rEDi

) ⊇ u(rETj )⧵u(rETj ).
(general case)
�({u(rEDi

)⧵u(rEDi
)|1 ⩽ i ⩽ k}) ⩾ �({u(rETj )⧵u(rETj )|1 ⩽ j ⩽ t}).

4.4  Simplicity and Other Desiderata

Simplicity, like fruitfulness, seems prima facie a desideratum that cannot arguably 
be expressed in terms of intrinsic relations amongst the concepts used in the explica-
tion, i.e. not a strictly-conceptual desideratum. It could be clarified in terms of the 
simplicity of the syntax of the target theory in which the explicatum is defined or 
perhaps in terms of parsimony of new formal tools (i.e. cognitive simplicity for sci-
entists or philosophers). Either way, these readings cannot be made precise with the 
help of conceptual spaces theory alone. Nevertheless, as in the case of fruitfulness, 
the structure of the conceptual space of the explicatum can indicate the simplicity 
of that concept and thus allow for a strictly-conceptual reading of this desideratum.

Furthermore, I will present two other possible desiderata that a good explicatum 
has to satisfy in conceptual spaces theory. Intuitively, it seems natural to require that 
the conceptual offspring of a good explication must tell us something more than 
what was contained in the original explicandum. Two ways in which this aspect of 
the novelty of the explicatum can be made precise are the extension or preservation 
of the conceptual scope and the augmentation of discrimination power.

(O1) Simplicity
As we have seen in Sect. 3, a concept is represented in conceptual spaces theory 

as a set of regions and each one of these regions has a certain shape. Similarly to the 
case of fruitfulness, one can take the simplicity of the regions of a given explicatum 
as a sign for its overall conceptual simplicity (as a kind of cognitive economy 
notion). A simple idea is to count the minimum number of points that are needed to 
draw the polyhedron �i the surface of which is (sufficiently) close to the surface of a 
given region rETj , obtaining a positive natural number � that we can call the simplic-
ity coefficient of a region.13

Fig. 12  The boundary region of the explicatum (b) has the same size as the region of the explicandum 
(a), thereby making the explicatum at most as vague as the explicandum

13 If a given region has already the shape of a polyhedron, we can take directly its shape. If instead, the 
given region has curved boundaries, we can easily construct a polyhedron whose surface overlaps with 
the surface of the region everywhere but for a small arbitrary extent.
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We can calculate the simplicity coefficient of a given concept C = {r1,… , rn} , by 
calculating the medium coefficient of its regions:

�(C) =
�(r1),…,�(rn)

n
 . Then, assuming that we have a set of n different explicata 

{ET ,ET1,… ,ETn} such that everyone of them equally satisfies the other (more 
important) desiderata, we can require our explicatum ET to be the one with the 
smallest simplicity coefficient (Fig. 13).

Norm: Being all the other desiderata equally satisfied, the explicator ought to 
choose the simplest explicatum.

Formalization: ∀x ∶ ETx ∈ {ET ,ET1,… ,ETn} → �(ET) ⩽ �(ETx).
(O2) Scope extension
Menger stressed that a good explicatum has to be applicable to new cases, thereby 

having a wider scope than the original explicandum. We can then make this idea 
precise by requiring the set of clear-cut instances of the explicatum to be strictly 
bigger than the one of the explicandum, using the same tools that we used for the 
vagueness-reduction requirement.

Norm: The scope of the explicandum ought to be extended by the explicatum 
(Fig. 14).

Formalization: (simple case) ∀i,∃j ∶ u(rEDi
) ⊂ u(rETj )

(general case) 𝜇({u(rEDi
)|1 ⩽ i ⩽ k}) < 𝜇({u(rETj )|1 ⩽ j ⩽ t})

(O3)Scope preservation
Just like for the vagueness-reduction case, we can also weaken the scope exten-

sion requirement in the following way.
Norm: The scope of the explicandum ought to be preserved by the explicatum 

(Fig. 15).
Formalization: (simple case) ∀i,∃j ∶ u(rEDi

) ⊆ u(rETj ).
(general case) �({u(rEDi

)|1 ⩽ i ⩽ k}) ⩽ �({u(rETj )|1 ⩽ j ⩽ t}).

Fig. 13  Amongst these explicata, our explicator ought to choose ET1

Fig. 14  The clear-cut extension of the explicatum (b) is bigger than the one of the explicandum (a)
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(O4) Further discrimination power
Another way in which we can cash-out Menger’s idea of novelty is the augmenta-

tion of discrimination power. Our engineered conceptual tools must chart the world 
in a more fine-grained way than their intuitive ancestors. Conceptual spaces offer a 
natural way of making this idea precise in terms of the similarity function of a given 
metric space. Since similarity is an exponentially decaying function of distance, 
the augmentation of discriminatory power implies a weakening of object similarity 
from the explicandum to the explicatum. Relying on our mapping � , we can then 
require the similarity between two given objects in the conceptual space of the expli-
candum to be bigger than the one between their images in the conceptual space of 
the explicatum.

Norm: The explicatum ought to have a more fine-grained conceptual structure 
than the explicandum (Fig. 16).

Formalization: ∀x, y ∈ CSED ∶ sED
ab

> sET
𝜙(a)𝜙(b)

.

4.5  Single‑Explicatum Explications and Replies to Recent Critiques of Explication

Now that we have seen multiple examples of different readings of desiderata rep-
resented by means of conceptual spaces theory, it is easy to picture various ways 
of adding them together, thereby creating possible explications of ‘explication’ in 
the single-explicatum sense. Generally speaking, any consistent way of mixing these 
(readings of) desiderata holds a formal explicatum of a particular reading of expli-
cation. As stated in Sect. 2, the aim of this paper is to explicate ‘explication’ in the 
meta-theoretical sense, giving a bridge-theory that allows a more precise judgment 
of explication adequacy. In what follows, I will give a couple of examples of how 
different desiderata made precise in my framework can be put together to make spe-
cific readings of explication precise. But by no means I am endorsing anyone of 
these examples as the favored reading of explication desiderata.

Fig. 15  The clear-cut extension of the explicatum (b) has the same size than the one of the explicandum 
(a)

Fig. 16  The distances in the space of the explicatum (b) are bigger than the ones in the space of the 
explicandum (a)
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An example of single-explicatum explication that can be made precise within my 
framework is Hanna’s explication of ‘explication’. This specific reading of explica-
tion is made precise by putting together the clear-cut extension preservation read-
ing of the similarity desideratum and the clear extension reading of the exactness 
desideratum:

(Hanna’s explication of ‘explication’) [S1 + E1]:
∀a,∀i,∃j ∶ a ∈ u(rEDi

) → �(a) ∈ u(rETj ) and a ∉ u(rEDi
) → �(a) ∉ u(rETj );

∀j ∶ u(rETj )⧵u(rETj ) = �.
As another example, I will add Menger’s scope preservation desideratum to some 

technically interesting readings of the three more important desiderata that Carnap 
stated, i.e. the quasi-isometry reading of similarity, the convexity reading of fruitful-
ness, and the vagueness-reduction reading of exactness:

(CCVS explication of ‘explication’) [S4 + F1 + E2 + O3]:
There exists a quasi-isometric function fQI from CSED to CSET with 

A + B ≤ sup{diam(CSED), diam(CSET )} and C ≤ diam(CSET );
∀x, y ∈ u(rETj ),∀z ∶ B(x, z, y) → z ∈ u(rETj );
𝜇({u(rEDi

)⧵u(rEDi
)|1 ⩽ i ⩽ k}) > 𝜇({u(rETj )⧵u(rETj )|1 ⩽ j ⩽ t});

�({u(rEDi
)|1 ⩽ i ⩽ k}) ⩽ �({u(rETj )|1 ⩽ j ⩽ t}).

This explication of ‘explication’ in the single explicatum sense shows how using 
conceptual spaces theory allows us to understand explication desiderata in a more 
fine-grained way. All the readings of the different desiderata make use of the rich-
ness of conceptual space representation of concepts. This CCVS explication is also 
truly Carnapian in spirit: the similarity and exactness desiderata pose liberal but pre-
cise constraints on the large-scale conceptual structure of the explicandum and the 
explicatum, while the fruitfulness and the scope extension require the explicatum to 
show specific improvements in its extension.

The CCVS explication exemplifies how more fine-grained readings of explication 
desiderata are able to account for certain (alleged) problems of Carnapian explica-
tion as a general methodology for conceptual engineering. Take, for instance, the 
alleged inherent paradoxical tension between similarity and fruitfulness recently 
stressed by Dutilh Novaes and Reck, i.e. what they call the paradox of adequate for-
malization (Dutilh Novaes and Reck 2017, pp. 211–213). The similarity requirement 
in the CCVS explication is spelled out as a large-scale constraint on the conceptual 
structures of the explicandum and the explicatum. Fruitfulness is instead understood 
as a specific constraint on the conceptual parts of the explicatum. There is no ten-
sion whatsoever between these readings of these two desiderata, namely because 
they have different scopes. If, in fact, the quasi-isometry between the two conceptual 
spaces requires the explicatum to preserve the large-scale conceptual structure of 
the explicandum, the convexity requirement calls for a sharpening of the extension 
of the explicatum. It is true that the explicator has at the same time to carefully pre-
serve the structure of the explicandum and to craft the explicatum to be as fruitful 
as possible, but that does not mean that this effort is paradoxical. The key to solve 
this alleged paradox is then to acknowledge that explication is a very fine-grained 
procedure of conceptual engineering and that the similarity that explication requires 
between the explicandum and the explicatum is not really about single conceptual 
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instances but it focuses instead on the more general conceptual structure of the con-
cept. Thus, the CCVS explication shows how the geometrical representation of con-
cepts allows us to capture both the large scale and the small-scale structure of the 
explicandum and the explicatum, thereby giving us the tools to overcome this appar-
ent tension between these two desiderata.

On a more general note, the meta-theoretical explication of ‘explication’ here 
proposed can be used to defend explication against the other recent critiques that 
we have discussed in Sect. 2. By meta-theoretically explicating ‘explication’ we are 
able to make our external discussions on the adequacy of a given explicatum more 
precise and clear. Thanks to this meta-conceptual engineering we are thus able to 
have liberal readings of explication desiderata, such as the quasi-isometry reading of 
similarity, without giving up rigor on the pragmatic altar. This amounts to a way out 
for the explicator from the impasse described by Reck of having to choose between 
an implausible strictly rigorous explication and a not-very-Carnapian pragmatic and 
liberal explication. Moreover, conceptual spaces, thanks to their malleability and 
their very detailed representation of concepts, seem also a promising tool for mod-
eling any dialectical and multi-conceptual desideratum version of explication desid-
erata, thereby offering a solution to the limitations of the received view of explica-
tion stressed by Brun.

5  Two Case‑Studies: Temperature and Fish

In order to make my framework clearer, I will show how two paradigmatic examples 
of successful explication can be represented in my framework and can be shown to 
satisfy the four different desiderata of the CCVS explication. Again, let me stress 
one more time that I do not endorse this particular reading of explication desiderata 
as the correct one. It should be understood just as an example of the applicability of 
my proposal. For historical pleasure, I will use as case-studies Carnap’s examples in 
(Carnap 1950): the scientific concept of temperature and the morphological concept 
of fish.

5.1  Temperature

Let me start with the scientific concept of temperature, seen as an explicatum of our 
ordinary concepts of warm and cold.14

Let us assume, following Carnap, that our intuitive way of talking about tempera-
ture uses classificatory concepts like warm and cold, together with the related intui-
tive comparative concepts ‘warmer than’ and ‘colder than’, intuitively understood as 

14 Using the scientific concept of temperature as a case-study for explication does not mean that I intend 
to write history nor that I am claiming that explication faithfully represent the actual thoughts and 
aims of the scientists in the development of this scientific concepts. I only want to stress how, suitably 
abstracting from history, the scientific concept of temperature can be seen as an example of a good expli-
catum for the related intuitive concept(s). For an historically informed take, see (Chang 2004).
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‘object a is warmer/colder than object b iff a is perceptually judged warmer/colder 
than b’. In order to build a conceptual space for these concepts, we will construct 
perceptive judgments out of a fictional toy-experiment. Assume that a person is 
asked to compare the warmth of ten buckets of water (alphabetically labeled from 
a to j), by dipping her arms into two buckets at a time and then judging whether the 
water contained in one bucket is warmer than the one in the other. Let us assume 
that, after many of these trials, we can organize the results in the following diagram:

We can read the diagram upwards as a partial order from the coldest sample of 
water e to the warmest h, with two couples of incomparable buckets (d, a) and (c, i) 
for which the person’s intuitive judgment was not accurate enough to feel any sig-
nificant difference in the temperature of the water and thus to discriminate them. 
We can easily represent this diagram as a simple one-dimensional conceptual space 
M1 = {E1, �1} where E1 = {a, b, c, d, e, f , g, h, i, j} is the set of elements and �1 is 
a non-standard graph-theory-like simple metric on the diagram that counts every 
bottom-up step between two nodes of the graph.15 Hence, for instance, �1(e, d) = 1 
because from node e to node d there is only one step, while instead �1(a, j) = 4 . Note 
that only bottom-up steps are taken into consideration and thus this metric assigns 
0 to the two couples of nodes (a, d) and (c, i) , thereby technically mapping them in 
the same way and signaling that we cannot perceptually discriminate between them. 
We can define our concept of ‘warmer than’ in terms of distance from node e: for 
all x, y ∈ E1 we say that x is warmer than y iff 𝛿1(e, x) > 𝛿1(e, y) . Conversely, we can 
define x is colder than y iff y is warmer than x.

Assume now that the person in the experiment is asked to classify the ten buckets 
of water using four different categorical concepts: cold, tepid, warm, hot. Assume 
that the person’s judgments are as follows: e is cold; f is tepid; b and j are warm; g 
and h are hot. Two couples of samples are not categorically judged by the person in 

15 Note that here (and also in the next subsection) I am using for simplicity a discrete conceptual space 
and not a continuous one, like the examples in the previous section. My proposal is equally applicable to 
discrete and continuous spaces.
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the experiment, due to her impossibility to decide to which categorical concept they 
belong: a and d are both cold and tepid, c and i are both tepid and warm. Then, in 
the same conceptual space we can easily define also these four intuitive categorical 
concepts. We can use e, f, b, h as prototypical instances, respectively, of cold, tepid, 
warm, and hot. Our concepts are then defined in terms of distance to the related 
prototype, thus tessellating our conceptual space. Let us define for all x ∈ E1 the 
concept cold C(x) iff ∀y ∈ {e, f , b, h} ∶ �1(e, x) ⩽ �1(y, x) . Hence, it follows that 
C = {e, a, d} . In the same way, we define the concepts tepid Te(x) , warm W(x) , 
and hot H(x) relative respectively to the prototype f, b, h. Note that these definitions 
respect all the intuitive judgments of the person in the experiment and make the two 
couples a, d and c, i borderline cases of (respectively) the couples of concepts cold-
tepid and tepid-warm, just as we wanted. These four categorical concepts, together 
with the two comparative concepts previously defined, are then our explicanda.

As our explicata, we can take the comparative concepts derived from the Cel-
sius scale and the Kelvin scale of temperature. Following Stevens’ theory of scales 
of measurement (Stevens 1946), the Celsius scale is an example of an interval 
scale, while the Kelvin scale is a ratio scale. Interval scales are unique up to all 
linear transformations, a fact which makes the zero point just a matter of conven-
tion, i.e. we can add to it any constant whatsoever without changing the scale. Ratio 
scales, instead, are unique only up to multiplication, which implies that they have 
an actual zero point as the absolute zero of Kelvin scale exemplifies. Technically, 
in theory of measurement, the scales are defined in terms of groups of transfor-
mations of relational structures. Interval scales are isomorphic to a real structure 
⟨ℝ+,≥⟩ whose automorphisms are the affine group: x → rx + s r > 0 (Tversky et al. 
1971-1989-1990, Volume 3, pp. 115–126). We can then straightforwardly repre-
sent a subset of this scale in a one-dimensional conceptual space M2 = {E2, �2} , 
where E2 = {o, a, b, c, d, e, f , g, h, i, j,… , t} is an extension of E1 isomorphic to a 
subset of R+ of 101 elements, totally ordered from o to t.16 Assigning natural num-
bers from 0 to 100 to the elements respecting their total order, so that N(o) = 0 and 
N(t) = 100 , we have the following distance function: �2(x, y) ∶= |N(x) − N(y)| . We 
can then assume that o represents the zero point of our scale. We define the tem-
perature of a certain object as the distance between o and its corresponding point 
in the conceptual space: ∀x ∶ T(x) ∶= �2(o, x) . Related to this conceptual space, 
we can also define a pair of comparative concepts warmer◦ and colder◦ , defined as 
binary relations in terms of higher/lower temperature: ∀x, y ∈ E2 warmer◦(x, y) and 
colder◦(y, x) iff T(x) > T(y).

Then, going back to our toy-experiment, assume that we measure with a cel- 
sius-thermometer the temperature of the water contained in each bucket and that  
this measurement holds the following results: T(e) = 10◦, T(d) = 15◦, T(a) = 16◦,

T(f ) = 25◦, T(c) = 34◦, T(i) = 35◦, T(b) = 50◦, T(j) = 61◦, T(g) = 68◦, T(h) = 80◦  . 

16 Note that here, instead of mapping directly the objects to an interval of reals like is customary in 
measure theory, I am using these 101 elements isomorphic to a subset of an interval as another layer of 
representation. This is only done for simplicity sake, in order to have a base set that extends the one of 
the first conceptual space, and it will pay off in the possibility of having qualitative simpler version of 
(some) CCVS desiderata but it is by no means necessary for my proposal.
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We can then represent these judgments in the conceptual space of our explicata, in 
terms of temperature related to our zero-point o :

Of course, we can also tessellate this space with categorical concepts, thereby 
offering explicata for our four categorical explicanda. We can then define for 
all x ∈ E2 the concepts C◦(x) iff T(x) < 20 , Te◦(x) iff 20 ⩽ T(x) ⩽ 40 , W◦(x) iff 
40 < T(x) ⩽ 65 , and H◦(x) iff T(x) > 65.

We can now assess the adequacy of our explicata, showing how the different 
desiderata of the CCVS reading of explication are satisfied. Remember that we have 
four desiderata that our explication has to satisfy, namely quasi-isometry, convexity, 
vagueness-reduction, and scope preservation.

In order to fulfill the quasi-isometry requirement we need a func-
tion f ∶ (E1, �1) → (E2, �2) , for which there exist constants 
A + B ≤ sup{diam(E1), diam(E2)} and C ≤ diam(E2) such that: 

(1) ∀x, y ∈ E1 ∶
1

A
�1(x, y) − B ⩽ �2(f (x), f (y)) ⩽ A�1(x, y) + B;

(2) ∀z ∈ E2,∃x ∈ E1 ∶ �2(z, f (x)) ⩽ C.

The diameter of the conceptual space of our explicanda is �1(e, h) = 7 , while the 
space of our explicata is �2(o, t) = 100 . We can then choose as our f the function that 
maps elements of the first conceptual space to the elements in the second concep-
tual spaces representing the temperature of the related bucket: f (x) = T(x) . The first 
weak-inequality is always satisfied by choosing, for instance, A = 10 and B = 20 : 
∀x, y ∈ E1 ∶

1

10
�1(x, y) − 20 ⩽ �2(f (x), f (y)) ⩽ 10�1(x, y) + 20 . For satisfying the 

second weak-inequality, we have to put C = 20 (considering that the maximal dis-
tance between an element of the second space and an image of an element of the 
first one is the one between t and h, which is equal to 20).

Fig. 17  Representation of the categorical explicanda (a) and the related categorical explicata (b)



1 3

Explicating ‘Explication’ via Conceptual Spaces  

For the convexity desideratum note that E2 is isomorphic to a subset of reals 
and that we have defined T(x) in terms of the order relation between elements of 
this subset. Thus, we have ∀x, y, z ∈ E2 : if B(x,  z,  y) then T(x) < T(z) < T(y) 
or T(y) < T(z) < T(x) . We can then easily see that all the explicata are rep-
resented by convex regions in this conceptual space. For instance, our 
explicatum of cold, C◦(x) ∶= T(x) < 20 , is represented by the region 
C◦ = {o,… , e,… , d, a,…} , the elements of which are the first 20 elements of our 
base set, ordered in terms of distance and therefore of temperature. We then have 
∀x, y ∈ C◦,∀z ∈ E2 ∶ B(x, z, y) → z ∈ C◦ , as requested. The same holds for the other 
explicata, as it is shown by picture (b) (Fig. 17).

For the last two requirements, we have to split the discussion between categori-
cal and comparative explicata. For our two comparative explicata, we have to look 
at the two product spaces E1 × E1 and E2 × E2 in which the comparative expli-
canda and explicata are defined. For the vagueness-reduction requirement, in the 
first space we have two pairs of elements for which our explicanda ‘warmer/colder 
than’ are not defined: u(rED)⧵u(rED) = {(a, d), (c, i)} , because �1(e, a) = �1(e, d) and 
�1(e, c) = �1(e, i) . Our explicata are instead sharp, so that we have no equivalent 
case of vagueness and thus the boundary regions consists only of the empty set: 
u(rET )⧵u(rET ) = {�} . Then, the requirement is trivially satisfied by noting that the 
empty set is a subset of the boundary region of the first metric space.

As for the scope-preservation requirement, we just notice that all posi-
tive instances of our explicanda, u(rED) , are all positive instances 
of our explicata, u(rET ) , so that we have (for the ‘warmer than’ 
case):u(rED) = {(h, g), (h, j),… , (g, j), (g, b),…} ⊂ u(rET ) = {(h, g), (h, j),… , (g, j), (g, b),…} 
. For the case of categorical concepts, these two requirements are similarly satisfied. 
Take for instance our explicandum cold, C(x) : its clear-cut extension is {e} and its 
borderline region is {a, d} . The extension and the borderline region of the related 
explicatum cold◦ are, respectively, {o,… , e,… , d, a,…} and {�} . We can then 
notice that the extension of our explicandum is preserved by our explicatum and that 
the borderline region of our explicatum, i.e. the empty set, is trivially a subset of the 
borderline region of our explicandum.

We have, thus, seen how the CCVS explication of explication shows how the sci-
entific concept of temperature holds satisfactory explicata for our intuitive categori-
cal and comparative notions of temperature. Conceptual spaces, integrating crucial 
aspects of measure-theory in their representation of concepts (Zenker 2014, p. 8), 
make transparent the conceptual advantages of the scientific concept of tempera-
ture with respect to its intuitive counterpart. The scientific categorical concepts, in 
fact, extend the scope of our intuitive way of talking beyond any everyday possi-
ble experience, while simultaneously allowing us more fine-grained, quantitative 
discriminations. A philosophically significant consequence of this improved power 
of discrimination is that our scientific notion of temperature-indiscriminability 
is transitive, in contrast to the arguable non-transitivity of our phenomenal one.17 

17 The non-transitivity of our phenomenal notion of indiscriminability is the center of (Williamson 
1990). For a more recent defense of this position, see (De Clercq and Horsten 2004).
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Furthermore, the scientific concept makes it possible to define on the temperature 
scale sharp categorical concepts that make our communication effective and precise.

The same desiderata are equally satisfied by the pair of explicata warmer∗ and 
colder∗ (and related categorical concepts), defined in relation to the Kelvin scale in 
the same way of our six explicata. In addition to them, though, the Kelvin scale 
allows a further discrimination power and, being a ratio scale, it has the technical 
advantage of having a smaller class of equivalence and thus to be empirically more 
testable (Gärdenfors and Zenker 2013, pp. 1049–1050).

5.2  Fish

Let us turn our attention to another example that Carnap gave, namely the scientific 
concept of fish seen as an explicatum of our intuitive conception of what a fish is.18 
As our explicandum we can take the intuitive concept of fish, understood as “an 
animal that lives in the water”. As our explicatum we take instead the scientific con-
cept of fish, which we will call (following Carnap) piscis, understood as “an aquatic 
vertebrate with gills and with limbs in the shape of fins” (Helfman et al. 2009, p. 3).

In order to build a conceptual space for these concepts, let us construct a fictional 
toy-example. Assume that a person who knows nothing about biology is asked to 
classify the animals of a (very) small zoo in order to decide whether a given animal 
is a fish or not. Assume that the zoo contains the following nine animals: a tuna, a 
whale, a shark, a mudskipper, a fire-salamander, a crocodile, a zebra, a lion, and a 
hippo. The person is then instructed to observe the animals for a certain period of 
time, after which she has to decide whether a given animal is a fish, according to our 
intuitively ecological explicandum. Thus, the person would look at which animals 
in the zoo live in the water. Assume that, on a scale from 0 (never in the water) to 
10 (always in the water), the results are the following: 0 (zebra, lion), 2 (hippo), 4 
(crocodile, fire-salamander), 5 (mudskipper), 9 (whale), 10 (tuna, shark) (Fig. 18):

We can then easily represent this diagram in a one-dimensional conceptual 
space M1 = {E1, �1} where E1 = {z, l, h, c, f ,m,w, t, s} and �1(x, y) = |R(x) − R(y)| , 
R(x) being a positive integer from 0 to 10, i.e. the result of the experiment. Thus, 
for instance, we have �1(z, c) = 4 and �1(w,m) = 4 . We can then suppose to define 

Fig. 18  The conceptual space of 
the explicandum fish 

18 Again, the same historical disclaimer of the temperature example applies here as well. In what fol-
lows, I do not want to write ichthyology or history of biological taxonomy. For a recent complete account 
of the biological understanding of fishes, see (Helfman et al. 2009).
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the concepts of fish and not-fish using as prototypes t (or s) and z (or l), tessel-
lating therefore the conceptual space in two parts. We then define for all x ∈ E1 
the concept fish F(x) iff �1(t, x) ⩽ �1(z, x) and the concept not-fish NF(x) iff 
�1(z, x) ⩽ �1(t, x) . Hence, we have F = {w, t, s,m} (whale, tuna, shark, mudskipper) 
, NF = {z, l, h, c, f ,m} (zebra, lion, hippo, crocodile, fire-salamander, mudskipper). 
The mudskipper (m) is then a borderline case.19 We thus have a conceptual space 
representation of our explicandum fish.

We turn now to our explicatum piscis. Returning to our toy-experiment, assume 
now that the same person is asked to classify the animals in the small zoo accord-
ing to their morphology. After having collected morphological data, the person has 
to classify again the animals according to our explicatum. Remember that, in order 
to qualify as a piscis an animal has to be “an aquatic vertebrate with gills and with 
limbs in the shape of fins”. Then, two major taxonomic changes naturally present 
themselves in our toy-experiment: the whale and the mudskipper. The whale, who 
was a clear-cut case of a fish (living exclusively in the water), is not a piscis but 
instead it is classified as a mammal. Looking closely at the internal and external 
morphology of the whale, the person in our experiment realizes that it is completely 
different from the one exemplified by a paradigmatic fish. Whales, in fact, do not 
have gills, they have lungs, they reproduce like mammals, and so on. The mudskip-
per, who instead was a borderline case of fish (due to its ability of spending short 
periods of time outside the water), it qualifies as a clear instance of piscis, due to 
its internal morphology. Mudskippers have in fact gills and fins, just like other non-
amphibious fishes.

Assume then, that the person in the experiment is asked to judge whether the 
animals in the zoo are pisces or tetrapods, judging by their morphology. The results 
of this new classification are the following: Pisces (shark, tuna, mudskipper), Tet-
rapods (fire-salamander, crocodile, whale, zebra, hippo, lion). We can add another 
sub-level of classification distinguishing pisces between cartilaginous-fishes (shark) 
and bony-fishes (tuna,mudskipper) and tetrapods between amphibians (fire-salaman-
der), reptiles (crocodile), and mammals (whale, zebra, hippo, lion):

We can, then, easily read this tree as a conceptual space M2 = {E2, �2} , 
where E2 = E1 = {z, l, h, c, f ,m,w, t, s} and �2 is a simple metric that counts 

19 The mudskipper presents itself naturally as a borderline case of the intuitive concept of fish due to its 
ability of surviving out of the water for short periods of time. Fishes like the mudskipper are popularly 
known as ‘walking fishes’. See (Helfman et al. 2009, pp. 60–65).
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the number of nodes of the tree between one element and the other. Thus, for 
instance, �2(s, t) = 1 , �2(t,m) = 0 , �2(t, f ) = 3 , �2(m,w) = 3 . Using as our proto-
type of a piscis s (or t or m) and as our prototype of a tetrapod z (or any other tet-
rapod, for what it matters) we can define for all x ∈ E2 our explicatum piscis P(x) 
iff 𝛿2(s, x) < 𝛿1(z, x) and the concept of tetrapod T(x) iff 𝛿2(z, x) < 𝛿1(t, x).

We can now, as we did in the temperature example, assess the adequacy of 
the CCVS explication of ‘explication’ by checking whether the conceptual space 
representation of this example of explication satisfy all its requirements. The first 
requirement is the existence of a quasi-isometry between the two metric spaces 
M1 and M2 : fQI ∶ (E1, �1) → (E2, �2) with A + B ≤ sup{diam(CSED), diam(CSET )} 
and C ≤ diam(CSET ) . The diameter of the first conceptual space is �1(z, s) = 10 
and the one of the second space is �2(s, l) = 3 . Considering that the two base 
sets contain the same elements, the simple trivial mapping f (x) = x would do 
the trick. For instance, fixing the constants A = 2 , B ⩾ 5 (in order to account for 
the drastic change of the classification of whales), C = 0 , the following weak-
inequalities always hold: 

(1) ∀x, y ∈ E1 ∶
1

2
�1(x, y) − 5 ⩽ �2(f (x), f (y)) ⩽ 2�1(x, y) + 5;

(2) ∀z ∈ E2,∃x ∈ E1 ∶ �2(z, f (x)) ⩽ 0.

The second requirement is instead the convexity of the region representing our 
explicatum piscis: ∀x, y ∈ P ∶ B(x, z, y) → z ∈ P . It is easy to see that the region 
P = {s, t,m} is convex, being it a self-contained part of our taxonomic tree. Our 
third requirement consists of a reduction of vagueness from the explicandum to 
the explicatum. In the conceptual space of our explicandum we have only one 
borderline case: m (mudskipper). In the second conceptual space, our concept pis-
cis has instead sharper boundaries and the set of borderline case is empty. Thus, 
also the vagueness reduction is satisfied. Finally, our last requirement consists 
in the explicatum preserving the scope of the explicandum. Being our base sets 
finite, comparing the number of elements that clearly fall under the two concepts 
will suffice. We can then see how both the clear-cut extension of the explican-
dum fish F = {w, t, s} and the extension of the explicatum piscis P = {s, t,m} have 
three elements, satisfying the scope-preservation requirement.

As in the first case-study, conceptual spaces, in virtue of the measure-theoretic 
consideration that they incorporate, allow us to see the conceptual improvements 
of our explicatum in comparison to the intuitive explicandum. The concept piscis 
allows us to make sharper taxonomic distinctions, offering more objectivity of 
judgment in comparison to an intuitively ecological concept like fish. Not only 
the concept piscis allows us a more fruitful reclassification of many instances 
of the concept fish, such as whales, it also permits more fine-grained discrimi-
nations, such as the one between different kinds of pisces. Then, of course, the 
concept piscis has many other non-strictly-conceptual advantages, such as allow-
ing us more generalizations (thanks to its morphological criteria), extending the 
scope of the concept to non-observable animals (e.g. fossils, etc.), and so on.
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Thus, we have seen how the morphological concept of piscis, despite its re-
classification of clear-cut cases of the intuitive concept of fish, satisfy all the 
desiderata of the CCVS explication. Together with the previous example of the 
scientific concept of temperature, this example shows how successful explications 
from the history of science can be represented in conceptual spaces and shown 
to satisfy all the fine-grained readings of the desiderata grouped in the CCVS 
explication.

6  Conclusion

Let me recall the main steps of the present work. Analyzing and discussing the vari-
ous readings of explication desiderata in the related literature, we have seen various 
ways of clarifying the different readings a good explicatum has to satisfy. Using con-
ceptual spaces as a tool for concept representation, I have then proposed an explica-
tion of ‘explication’ in what I have called the meta-theoretical sense. Specifically, 
I have shown how different strictly-conceptual desiderata can be made precise in 
terms of topological and geometrical constraints over the conceptual spaces repre-
senting the concepts involved in the explication. This proposal allows a more precise 
understanding of the subtle differences between different readings of explication 
desiderata, thereby contributing to dissolve a lot of vagueness and ambiguity often 
contained in philosophical discussions about explication. Moreover, thanks to the 
richness of the conceptual spaces representation of concepts, it is possible to define 
more fine-grained desiderata that arguably allow explication to overcome some of its 
alleged limitations, such as the so-called ‘paradox of adequate formalization’.

After all these steps, one could perhaps ask how satisfactory is this meta-theoreti-
cal explication of ‘explication’. We can assess this explication by judging how much 
it satisfies Carnap’s three main desiderata for an explication: similarity, fruitfulness, 
and exactness. The two examples of Sect. 5 show how paradigmatic cases of explica-
tions are also perfectly satisfactory explications according to the present proposal. 
It seems, then, that this meta-theoretical explication of ‘explication’ is sufficiently 
similar to Carnap’s original ideas. My proposal seems also quite fruitful. In fact, we 
have seen at the end of Sect. 4 how conceptual spaces allow us to have more fine-
grained readings of explication desiderata that help us to overcome recent critiques 
of explication. Moreover, having developed this explication of ‘explication’ within 
the framework of conceptual spaces, one can arguably expect many fruitful interac-
tions between the present proposals and the various applications of conceptual spaces 
in science and philosophy. Finally, the exactness of the present proposal is evident in 
the way in which different strictly-conceptual readings of explication desiderata dis-
cussed in the literature can be made (more) precise as geometrical/topological con-
straints over the conceptual spaces of the explicandum and the explicatum.
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