International Journal on Software Tools for Technology Transfer (2020) 22:457-476
https://doi.org/10.1007/s10009-020-00560-5

FOUNDATION FOR MASTERING CHANGE l‘)

Check for
updates

Special Section REoCAS

The scenario coevolution paradigm: adaptive quality assurance
for adaptive systems

Thomas Gabor' - Andreas Sedimeier' - Thomy Phan' . Fabian Ritz' - Marie Kiermeier' - Lenz Belzner' -
Bernhard Kempter? - Cornel Klein? - Horst Sauer? - Reiner Schmid? - Jan Wieghardt? - Marc Zeller? -
Claudia Linnhoff-Popien'

Published online: 6 March 2020
© The Author(s) 2020

Abstract

Systems are becoming increasingly more adaptive, using techniques like machine learning to enhance their behavior on
their own rather than only through human developers programming them. We analyze the impact the advent of these new
techniques has on the discipline of rigorous software engineering, especially on the issue of quality assurance. To this end, we
provide a general description of the processes related to machine learning and embed them into a formal framework for the
analysis of adaptivity, recognizing that to test an adaptive system a new approach to adaptive testing is necessary. We introduce
scenario coevolution as a design pattern describing how system and test can work as antagonists in the process of software
evolution. While the general pattern applies to large-scale processes (including human developers further augmenting the
system), we show all techniques on a smaller-scale example of an agent navigating a simple smart factory. We point out new
aspects in software engineering for adaptive systems that may be tackled naturally using scenario coevolution. This work is a
substantially extended take on Gabor et al. (International symposium on leveraging applications of formal methods, Springer,
pp 137-154, 2018).

Keywords Adaptation - Self-adaptive systems - Software engineering - Quality assurance - Machine learning - Artificial

intelligence - Software evolution - Coevolution

1 Introduction

Until recently, the discipline of software engineering has
mainly tackled the process through which humans develop
software systems. In the last few years, current breakthroughs
in the fields of artificial intelligence and machine learn-
ing have opened up new possibilities that have previously
been considered infeasible or just too complex to tackle with
“manual” coding: Complex image recognition [40], natu-
ral language processing [15] or decision making as it is
used in complex games [38,39] are prime examples. The
resulting applications are pushing toward a broad audience
of users. However, as of now, they are mostly focused on
non-critical areas of use, at least when implemented with-

B Thomas Gabor
thomas.gabor@ifi.Imu.de

I LMU Munich, Oettingenstr. 67, 80538 Munich, Germany
2 Siemens AG, Otto-Hahn-Ring, 81739 Munich, Germany

out human supervision [2]. Software artifacts generated via
machine learning are hard to analyze, causing a lack of trust-
worthiness for many important application areas [26,42].
We claim that in order to reinstate levels of trustworthiness
comparable to well-known classical approaches, we need not
reproduce the principles of classical software tests but need to
develop a new approach toward software testing. We suggest
to develop a system and its test suite in a competitive setting
where each sub-system tries to outwit the other. We call this
approach scenario coevolution, which we introduce formally
and build the bridge to a practical application where it has
already shown benefit [24]. We hope that trust in such dynam-
ics can help to build a new process for quality assurance,
even for hardly predictable systems. In this work, we want
to analyze thoroughly how such an antagonist approach fits
into existing formal model for adaptivity, how it instantiates
current frameworks for machine learning and what impact it
might have on software engineering practices. We argue that
antagonist patterns such as scenario coevolution can work as

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00560-5&domain=pdf

458

T. Gabor

a unifying concept across all these domains and eventually
enable more powerful adaptive quality assurance.

In this paper, we substantially expand the work on this
topic presented in [23]. Section 2 provides a short overview
on related work on process models for the development of
adaptive software. Following a top-down approach, we start
with the description of our approach in Sect. 3 by extending
a formal framework for the description of systems first intro-
duced in [28] and augment it to also include the process of
software and system development. We use said framework
to first present a formal definition of an example domain
used in [24] in Sect. 4. Section 5 discusses state-of-the-art
algorithms to achieve adaptation and introduces the machine
learning pipeline, a process model specifically designed to
engineer machine learning components. From this, we derive
four core concepts for the engineering of adaptive systems in
Sect. 6. In order to integrate these with our formal framework,
Sect. 7 introduces our notion of scenarios and their applica-
tion to an incremental software testing process. In Sect. 8,
we apply this new notion to our example domain, formally
explaining the results of [24]. In Sect. 9, we discuss which
effects scenario coevolution has on a selection of practical
software engineering tasks and how it helps implement the
core concepts. Finally, Sect. 10 provides a brief conclusion.

2 Related work

Many researchers and practitioners in recent years have
already been concerned about the changes necessary to allow
for solid and reliable software engineering processes for
(self-)adaptive systems. Central challenges were collected in
[36], where issues of quality assurance are already mentioned
but the focus is more on bringing about complex adaptive
behavior in the first place. The later research roadmap of
[17] puts a strong focus on interaction patterns of already
adaptive systems (both between each other and with human
developers) and already dedicates a section to verification
and validation issues, being close in mind to the perspec-
tive of this work. We fall in line with the roadmap further
specified in [7,12,13].

While this work largely builds upon [28], there have been
other approaches to formalize the notion of adaptivity: [34]
discusses high-level architectural patterns that form multi-
ple interconnected adaptation loops. In [4], such feedback
loops are based on the MAPE-K model [29]. While these
approaches largely focus on the formal construction of adap-
tive systems, there have also been approaches that assume a
(more human-centric or at least tool-centric) software engi-
neering perspective [3,19,22,45]. We want to discuss two of
those on greater detail.

In the results of the ASCENS (Autonomous Service Com-
ponent ENSembles) project [46], the interplay between

@ Springer

human developers and autonomous adaptation has been for-
malized in a life cycle model featuring separate states for each
the development progress of each respective feedback cycle.
Classical software development tasks and self-adaptation (as
well as self-monitoring and self-awareness) are regarded as
equally powerful contributing mechanisms for the produc-
tion of software. Both can be employed in junction to steer
the development process. In addition, ASCENS built upon
a (in parts) similar formal notion of adaptivity [11,32] and
sketched a connection between adaptivity in complex dis-
tributed systems and multi-goal multi-agent learning [27].

ADELFE (Atelier de Développement de Logiciels a Fonc-
tionnalité Emergente) is a toolkit designed to augment current
development processes to account for complex adaptive sys-
tems [8,9]. For this purpose, the ADELFE process is based
on the Rational Unified Process (RUP) [31] and comes with
tools for various tasks of software design. From a more sci-
entific point of view, ADELFE is also based on the theory
of adaptive multi-agent systems. For ADELFE, multi-agent
systems are used to derive a set of stereotypes for compo-
nents, which ease modeling for according types of systems.
It thus imposes stronger restrictions on system design than
our approach intends to.

Besides the field of software engineering, the field of arti-
ficial intelligence research is currently (re-)discovering a lot
of the same issues the discipline of engineering for com-
plex adaptive systems faced: The highly complex and opaque
nature of machine learning algorithms and the resulting data
structures often forces black-box testing and makes possi-
ble guarantees weak. When online learning is employed, the
algorithm’s behavior is subject to great variance and test-
ing usually needs to work online as well. The seminal paper
[2] provides a good overview of the issues. When applying
artificial intelligence to a large variety of products, rigorous
engineering for this kind of software seems to be one of the
major necessities lacking at the moment.

3 Formal framework

In this section, we introduce a formal framework as a basis
for our analysis. We first build upon the framework described
in [28] to define adaptive systems and then proceed to reason
about the influence of their inherent structure on software
architecture. In the last subsection, we introduce an example
system and realize the formal definitions in its context.

3.1 Describing adaptive systems
We roughly adopt the formal definitions of our vocabulary

related to the description of systems from [28]: We describe a
system as an arbitrary relation over any given set of variables.

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 459

Definition 1 (System [28]) Let I be a (finite or infinite) set,
and let V = (V;);er be a family of sets. A system of type V
is a relation S of type V.

Note that from a formal point of view, this means that
basically any given relation or function can be regarded as a
system, so this is a rather weak definition logically and we
should think of it rather as a tag attached to those entities that
can be meaningfully regarded as systems rather than a for-
mal restriction derivation of the notion. Also note that while
maintaining logical consistency, we deviate a bit from the
wording used in [28]: There, the same definition is used also
for ensembles, a notion we forgo in favor of the word “sys-
tem” and components, which in our case a defined later to
be only systems which participate in composition (cf. Defi-
nition 2).

Given a system S, an element s € S is called the state of
the system. For practical purposes, we usually want to discern
various parts of a system’s state space. For this reason, parts of
the system relation of type V) given by anindexset J C I,i.e.,
(V}) jes, may be considered inputs and other parts given by a
different index set may be considered outputs [28]. Formally,
this makes no difference to the system. Semantically, we
usually compute the output parts of the system using the
input parts.

We introduce two more designated sub-spaces of the
system relation: situation and behavior. These notions corre-
spond roughly to the intended meaning of inputs and outputs
mentioned before. The situation is the part of the system state
space that fully encapsulates all information the system has
about its state. This may include parts that the system does
have full control over. The behavior encapsulates the parts of
the system that can only be computed by applying the system
relation. Likewise, this does not imply that the system has
full control over the values. Furthermore, a system may have
an internal state, which is parts of the state space that are
neither included in the situation nor in the behavior. When
we are not interested in the internal space, we can regard
a system as a mapping from situations to behavior, written

S=X & Y for situations X and behaviors Y, where Z is
the internal state of the system S. Using these notions, we
can more aptly define some properties on systems.

Further following the line of thought presented in [28],
we want to build systems out of other systems. At the core
of software engineering, there is the principle of reuse of
components, which we want to mirror in our formalism.

Definition 2 (Composition) Let S| and S, be systems of types
Vi = (V1.D)ien, and Vo = (Va,;)ic1,, respectively. Let R())
be the domain of all relations over V. A combination operator
® is a function such that S| ® $> € R(V) for some family of
sets V with Vi 1,..., Vi, Va1, ..., Vo, € V. The appli-
cation of a combination operator is called composition. The
arguments to a combination operator are called components.

In [28], there is a more strict definition on how the com-
bination operator needs to handle the designated inputs and
outputs of its given systems. Here, we opt for a more general
definition. Note that in accordance with [28], however, our
composition operator is “arbitrarily powerful” in the sense
that the resulting system just needs to contain the components
in some way but may add an arbitrary amount of new parts
and functionality that is present in neither of the components.
The reason it is still meaningful to talk about “composition”
in this case is that the combination operator guarantees that
we can at least project system states of the original types V»
and V) out of it.

Composition is not only important to model software
architecture within our formalism, but it also defines the for-
mal framework for interaction: Two systems interact when
they are combined using a combination operator & that
ensures that the behavior of (at least) one system is recog-
nized within the situation of (at least) one other system.

Definition 3 (Interaction) Let S = S1 ® S> be a composition
of type V of systems S1 and > of type V| and V», respectively,
using a combination operator ®. If there exista V| € V; and
aV, € V, and a relation R € Vi x V; so that for all states
s € S, (proj(s, V1), proj(s, V2)) € R, then the components
S1 and §; interact with respect to R.

Note that (given a state s of system S of type V and a dif-
ferent type V' with V' C V) we use the notation proj(s, V')
for the projection of s into the type V', i.e., we cast system
state s to a system state for a system of type V' by dropping
all dimensions that are not part of V.

We can model an open system S as a combination § =
C ® E of acore system C and its environment E, both being
modeled as systems again.

Hiding some of the complexity described in [28], we
assume we have a logic £ in which we can express a sys-
tem goal y. For example, if £ is zeroth-order logic, y could
be made up as a Boolean expression on binary system state
observation, or if £ is first-order logic, y could be a predicate
that is given the system s as a parameter. We assume that we
can always decide if y holds for a given system, in which
case we write S |= y. Based on [28], we can use this concept
to define an adaptation domain:

Definition 4 (Adaptation Domain [28]) Let S be a system.
Let £ be a set of environments that can be combined with S
using a combination operator ®. Let I” be a set of goals. An
adaptation domain Aisaset A C € x I'. § can adapt to A,
written S |- Aiff forall (E, y) € Aitholdsthat SQ E = y.

Definition 5 (Adaptation Space [28]) Let £ be a set of envi-
ronments that can be combined with S using a combination
operator ®. Let I be set of goals. An adaptation space 2 is
asetACPE, T).

@ Springer

460

T. Gabor

Note that we thus define an adaptation space to be any
set of adaptation domains. We can now use the notion of an
adaptation space to define a preorder on the adaptivity of any
two systems.

Definition 6 (Adaptation [28]) Given two systems S and §’,
S’ is at least as adaptive as S, written § T S’ iff for all
adaptation spaces A € 2 it holds that § IF 4 = §' I A.

Both Definitions 4 and 5 can be augmented to include soft
constraints or optimization goals. This means that in addition
to checking against Boolean goal satisfaction, we can also
assign each system S interacting with an environment E a
fitness (S @ E) € F, where F is the type of fitness values.
We assume that there exists a preorder < on F, which we can
use to compare two fitness values. We can then generalize
Definitions 4 and 5 to respect these optimization goals.

Definition 7 (Adaptation Domain for Optimization) Let S be
asystem. Let £ be a set of environments that can be combined
with § using a combination operator @. Let I be a set of
Boolean goals. Let F' be a set of fitness values and < be
a preorder on F. Let @ be a set of fitness functions with
codomain F. An adaptation domain Aisaset A C € x I' x
@. S can adapt to A, written S |- A iff for all (E, y,¢) € A
itholdsthat S® E = y.

Note that in Definition 7, we only augmented the data
structure for adaptation domains but did not actually alter
the condition to check for the fulfillment of an adaptation
domain. This means that for an adaptation domain .4, a sys-
tem needs to fulfill all goals in .4 but is not actually tested on
the fitness defined by ¢. We could define a fitness threshold
f we require a system S to surpass in order to adapt to A
in the formalism. But such a check, written f < ¢(S ® E),
could already be included in the Boolean goals if we use a
logic that is expressive enough.

Instead, we want to use the fitness function as soft con-
straints. We expect the system to perform as well as possible
on this metric, but we do not (always) require a minimum
level of performance. However, we can use fitness to define
a fitness preorder on systems.

Definition 8 (Optimization) Given two systems S and S’ as
well as an adaptation space A, S’ is at least as optimal as
S, written S < 4 &', iff for all (E, y, ¢) € A it holds that
P(S®E) 2 ¢(S'®E).

Definition 9 (Adaptation with Optimization) Given two sys-
tems S and §’, S’ is at least as adaptive as S with respect to
optimization, written S C* S iff for all adaptation domains
A e Qitholds that S IF A== S’ IF Aand S <4 5.

In Fig. 1, we introduce a visual representation of systems
and the relation of adaptivity given in Definition 9. Note that

@ Springer

behavior

situations

Fig. 1 Illustration of adaptivity according to Definition 9. When the
x-axis spans over all possible situations and the y-axis over all possible
behaviors, a system like S| = X| ~+ Y| (orange) or S» = X2 ~» Yo
(red) can be drawn as an area of all the behaviors of S; or S so that
S1 = y or $2 = y, respectively. For each situation, we show the ideal
behavior subject to the fitness ¢ via the dashed black line. S is at least
as adaptive as S» because it covers at least as many situations as S
and performs as least as close to the optimal fitness as S, (colour figure
online)

so far our notions of adaptivity and optimization are purely
extensional, which originates from the black-box perspective
on adaptation assumed in [28].

3.2 Constructing adaptive systems

We now shift the focus of our analysis a bit away from the
question “When is a system adaptive?” toward the question
“How is a system adaptive?”. This refers to both questions
of software architecture (i.e., which components should we
use to build an adaptive system?) and questions of soft-
ware engineering (i.e., which development processes should
we use to develop an adaptive system?). We will see that
with the increasing usage of methods of machine learning,
design-time engineering and run-time adaptation increas-
ingly overlap [46].

Definition 10 (Adaptation Sequence) A series of |1 | systems
S = (Si)ies with index set I with a preorder < on the ele-
ments of / is called an adaptation sequence iff foralli, j € 1
itholds thati < j = §; C* §;

Note that we used adaptation with optimization in Defini-
tion 10 so that a sequence of systems (S;);<; that each fulfill
the same hard constraints (y within a singleton adaptation
space /U = {{(E, y, ¢)}}) can form an adaptation sequence
iff for all i, j € [itholdsthati < j = ¢(S; ® E) =<
¢ (S; ® E). This is the purest formulation of an optimization
process within our formal framework. Strictly speaking, an
optimization process would further assume there exists an
optimization relation o from systems to systems so that for

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 461

alli, j € Iitholdsthati < j = 0(S;, ;). Butfor simplic-
ity, we consider the sequence of outputs of the optimization
process a sufficient representation of the whole process.
Such an adaptation sequence can be generated by con-
tinuously improving a starting system Sp and adding each
improvement to the sequence. Such a task can both be
performed by a team of human developers or standard opti-
mization algorithms as they are used in artificial intelligence.
Only in the latter case, we want to consider that improvement
happening within our system boundaries. Unlike the previ-
ously performed black-box analysis of systems, the presence
of an optimization algorithm within the system itself does
have implications for the system’s internal structure. We will
thus switch to a more “gray box” analysis in the spirit of [11].

Definition 11 (Self-Adaptation) A system Sy is called self-
adaptive iff the sequence (S;);en,i<n for some n € N with
Si = So®Si—1 for0 < i < nand some combination operator
® is an adaptation sequence.

Please note that we use the term “adaptation’ here to mean
the improvement in adaptivity as defined in [28]. This is
different from some notions of adaptation which allow for
a reduction in adaptivity during adaptation as well [1,10].
In our case of adaptation, we can imagine that the system
is always able to go back to previous configuration, thus
every adaptation only adds to its overall capabilities. To some
extent, this already anticipates the perspective of eternal sys-
tems which is discussed later in Sect. 9.3 [33].

Note that we could define the property of self-adaptation
more generally by again constructing an index set on the
sequence (S;) instead of using N, but chose not to do so to
not further clutter the notation. For most practical purposes,
adaptation is going to happen in discrete time steps anyway. It
is also important to be reminded that despite its notation, the
combination operator ® does not need to be symmetric and
likely will not be in this case, because when constructing
So ® Si—1, we usually want to pass the previous instance
S;—1 to the general optimization algorithm encoded in Sp.
Furthermore, itis important to note that the constant sequence
(S)ien is an adaptation sequence according to our previous
definition and thus every system is self-adaptive with respect
to a combination operator X ® ¥ =g4.f X. However, we
can construct non-trivial adaptation sequences using partial
orders and < instead of C and <. As these can easily
be constructed, we do not further discuss their definitions in
this paper. In [28], a corresponding definition was already
introduced for .

The formulation of the adaptation sequence used to prove
self-adaptivity naturally implies some kind of temporal struc-
ture. So basing said structure around N implies a very simple,
linear and discrete model of time. More complex temporal
evolution of systems is also already touched upon in [28]. As
noted, there may be several ways to define such a temporal

structure on systems. We refer to related and future work for
a more intricate discussion on this matter.

So, non-trivial self-adaptation does imply some structure
for any self-adaptive system S of type V = (V;);cs: Mainly,
there needs to be a subset of the type V' C V that is used
to encode the whole relation behind S so that the already
improved instances can sufficiently be passed on to the gen-
eral adaptation mechanism.

For a general adaptation mechanism (which we previously
assumed to be part of a system) to be able to improve a
system’s adaptivity, it needs to be able to access some repre-
sentation of its goals and its fitness function. This provides
a gray-box view of the system. Remember that we assumed
a system S could be split into situation X, internal state Z

and behavior Y, written S = X Loy If Sis self-adaptive,
it can form a non-trivial adaptation sequence by improving
on its goals or its fitness. In the former case, we can now
assume (that there exists some relation G € X U Z so that
SEy <= G [y fora fixed y in a singleton-space
adaptation sequence. In the latter case, we can assume that
there exists some relation /¥ C X U Z so that ¢(S) = ¢ (F)
for a fixed ¢ in a singleton-space adaptation sequence. Effec-
tively, if we employ a general mechanism for self-adaptation,
as it is commonly done in current applications of machine
learning, it is necessary that the result of the adaptation is
passed back into the system.

Obviously, when we want to construct larger self-adaptive
systems using self-adaptive components, the combination
operator needs to be able to combine said sub-systems G
and/or F as well. In the case where the components’ goals
and fitnesses match completely, the combination operator can
just use the same sub-system twice. However, including the
global goals or fitnesses within each local component of a
system does not align with common principles in software
architecture (such as encapsulation) and does not seem to be
practical for large or open systems (where no process may
ensure such a unification). Thus, constructing a component-
based self-adaptive system requires a combination operator
that can handle potentially conflicting goals and fitnesses.
We again define such a system for a singleton adaptation
space %A = {{(E, v, ¢)}} and leave the generalization to all
adaptation spaces out of the scope of this paper.

Definition 12 (Multi-Agent System) Given a system S =
S ®---® S, that adapts to A = {(E, y, ¢)}. Iff for each
1 <i <nwithi,n € N,n > 1thereis an adaptation domain
Ai = {(Ei,vi,¢i)}sothat (DE; =EQSI®---®S1Q
Si+1® - ® Sy and (2) i # y or ¢; # ¢ and (3) S; adapts
to A;, then S is a multi-agent system with agents Sy, ..., S,.

It is important to note here that the combination operator
® may again be arbitrarily complex and does not need to
work the same way for the construction of S and the con-
struction of E; above. The definition of a multi-agent system

@ Springer

462

T. Gabor

Fig.2 Illustration of the emergence of an (implicit) multi-agent system
in a fictitious architecture of software components. Adaptive com-
ponents interact by manipulating their environment to achieve their
individual goals

only requires the decomposability of the respective systems
with respect to some ®. Obviously, the notion then varies
in expressiveness and explanatory power depending on the
choice of ®.

For practical purposes, we usually want to use the notion
of multi-agent systems in a transitive way, i.e., we can call
a system a multi-agent system as soon as any part of it is a
multi-agent system according to Definition 12. Formally, S is
a multi-agent system if there are systems components S’, R
sothat § = S’ ® R and S’ is a multi-agent system. We argue
that this transitivity is not only justified but a crucial point
for systems development of adaptive systems: Agents tend
to utilize their environment to fulfill their own goals and can
thus “leak” their goals into other system components (see
Fig. 2). Note that Condition (2) of Definition 12 ensures that
not every system constructed by composition is regarded a
multi-agent system; it is necessary to feature agents with (at
least slightly) differing adaptation properties.

For the remainder of this paper, we will apply Defini-
tion 12 “backwards.” Whenever we look at a self-adaptive
system S, whose goals or fitnesses can be split into several
sub-goals or sub-fitnesses, we can regard S as a multi-agent
system. Using this knowledge, we can apply design patterns
from multi-agent systems to all self-adaptive systems with-
out loss of generality. Furthermore, we need to be aware that
especially if we do not explicitly design multi-agent coordi-
nation between different sub-goals, such a coordination will
be done implicitly. Essentially, there is no way around gen-
eralizing software engineering approaches for self-adaptive
systems to potentially adversarial components.

4 Example domain
To illustrate the definitions of the previous section, we intro-

duce an example system called Grid World Smart Factory,
which has also been used and implemented in [24]. How-

@ Springer

ever, we first introduce a formal definition of a system for
this domain.

4.1 Setup

An instance of the smart factory domain contains a number
of items that have to be processed at workstations of differ-
ent types, while avoiding collisions with dynamically placed
obstacles. The system is tasked with navigating a robotic
agent through the smart factory in order to eventually pro-
cess all the items.

In our example, the smart factory uses a discrete grid of
size 7 x 8, as shown in Fig. 3. Thus, possible positions for
entities of any kind within the factory are all p € P, where
P=A{l,....,7} x{1,...,8}.

Five workstations W C P are placed at fixed positions
so that W = {wy, ..., ws} = {(1,5), 4, 7), (5, 1), (6, 3),
(6, 7)}. Each workstation w is assigned a fixed type f(w), ¢ :
W — {red, green, blue}, sothatt(w;) = blue, t (wy) = red,
t(w3) = red, t(wg) = green, t(ws) = green.

The domain is parametric on the position of four obstacles
O ={01,07,03,04} C Psothat O N W = (.

A robotic agent r is given via its current position r € P.
Note that the starting position of the robot always is r =
(1, 1). The robotic agent is able to execute four movement
actions v € V = {va, U, Vg, g}, v : P — P, where for
all o € {A, >, v, <}, we define

v (v, x) ifvi(y,x) € P\ (WU O)
Vo (y, x) = . ey
(y, x) otherwise
Mobile robot Worlstation Obstacle
T[T
0,0 il

L3 x

i;a

X

LR
b
Ll

%

Fig. 3 Visualization of the smart factory domain. A mobile robot can
travel north, east, south and west on the grid. It needs to visit worksta-
tions in order to retrieve items and then needs to visit other workstations
in order to process these items. Attempting to walk out of the grid, into
a workstation or into an obstacle is penalized. Obstacle positions vary
according to the setting of the scenario x

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 463

where all v/, are naturally defined as v}, (v, x) = (y — 1, x),
vp (3, x) = (v, x + D, vo (v, x) = (v + Lx), vg(n,x) =
(y,x — 1). Note that any action that returns using the
otherwise branch in Eq. 1 is called illegal. Any action that is
not illegal is called legal. It follows that when the agent posi-
tion r is only altered via the application of actions, it always
holds that {r}, O, and W are fully disjunct.

Given a position p € P, we define the neighborhood of p
as N : P — P(P) with

N(y,x) ={vs(y,x) : o€ {A, >, v, <} (2)
Since all actions are reversible, N(y, x) both contains all
position that can be reached from (y, x) and all position that
(v, x) can be reached from.

We call an instance of the smart factory domain valid iff
the agent can reach new positions from its initial position and
all workstations can be reached, i.e.,

Ve € rfUW : N(e) # 0. 3)

Note that this simple test suffices since we only have four
obstacles and no two workstations are next to each other, so
the only way to make any of them inaccessible is to place all
four obstacles around it.

We define an item as a tuple m containing a current posi-
tion and a series of workstation types, i.e., m = (p, (ti)ics)
where p € P and [is an index set and for all i € I it holds
that #; € {red, green, blue}. Semantically, an item needs to
visit workstations of all the given types #; in the given order in
order to be fully processed. As long it is not fully processed,
it poses a task to the system. Our system is tasked to produce
five items M = {m1, ..., ms}. When all of these are fully
produced, the domain instance is finished successfully. Note
that initially, items are placed at workstations. We thus define
the current position of an item m as c(m) withc : M — P.
Furthermore, up to one item can be carried by the mobile
agent so that c(m) = r. Note that it always holds for all
m € M that c(m) € {r} U W, i.e., no items can be left on
the factory floor. We also define the function b : W — (M),
which is given a workstation and returns a sequence of items
so that for all workstations w € W and all items m € b(w)
it holds that c(m) = w. The first item of that sequence is the
one that can be picked up next at the respective workstation.

In our setup, we use the items

m1 = ((1,5), (green, red)),

my = ((1,5), (green)),

m3 = ((4,7), (red, blue, green)),
my = ((1,5), (green, blue)),

ms = ((6, 3), (red)).

Of course, we now need to augment our previously

defined set of movement actions V = {va, vy, vy, Vq)
to allow for interaction with items. We thus define the set
of actions A = {aa,ay,ay,aq, am, ag} so that for all
o€ {A>,v,<,H,H} and a, : P x P(P x (T)) —
P x P(P x (T)) it holds that
a.(r, M) =

(,(r), M) ifoe{A >, v.<,)

and al.(r) € P\ (WU 0)
ifo=H

and c(m) € N(r)

andVm € M : c(m) #r)

(r. {mfg} UM \ m)

(r,{mg}UM\m) ifo=8
andc(m) =r
and t(w) = t;
(r, M) otherwise
where m = (p,(t;,...,t,)) is any element from M, w

is any element from W N N(r) and subsequently m’EE =
(r,{(t1,...,t;)) and m/E, = (w, (t2, ..., ty)). We implic-
itly quantify existentially over all m € M. The function
a, still remains deterministic only because the conditions
are formulated so that at most one m € M fits them in
our setup. In the more general setup, it would be valid to
pick any arbitrary option. For w € W N N(r), again, we
implicitly quantify, although it only matters in the third case.
Again, this quantification can yield at most one element as
no two workstations of the same type have shared neighbor-
ing positions in our setup. For the more general case, we can
simply pick a w at random should multiple assignments val-
idate this condition here. Finally, note that when an item is
fully processed, we assume m’E = (w, ()) for some position
w € P, i.e., we keep all the processed items “lying around”
with an empty task list. We could also choose to remove
fully processed items entirely from the system by specify-
ing ao(r, M) = (r, M \ m) in that case. Since we used the
power set P(T x (T')) or the type of a,, we are flexible in that
choice. For ease of definition, we will later fix the amount
of items present in the adaptive system, favoring the “lying
around” approach.

Again, every action that results from taking the otherwise
branch of a, is called illegal. The action agm is called pick-up
and the action ag is called drop-off.

4.2 Adaptive system

Having defined the complete setup of our smart factory
domain, we can now proceed to define the adaptation domain.

@ Springer

464

T. Gabor

We define the system S = X Z Y where X is a list of
elements (x;)0<;<, With the maximum execution length n €
N (and likewise for Y). Note that without loss of generality,
we can assume that all execution traces are of the same length
n by simply setting 7 to the maximum length and filling up
shorter paths with “nil” elements. We set

X = (r, M;, Oy) (5)

with robot position r; € P, item list M; € (P X (T))5 and
obstacles O, € P*. Note that we specify a fixed amount of 5
items that may thus be present in the system. We also specify

yr = {ar) (6)

with action a; € f{ana,ay,ay,aq,am,ag). The legal
elements for X and Y are defined by the type of the
system’s policy IT (P x (P x (T))? x PH" —
{an, as, ag, aq, am, ag}" where n € N is the maximum
execution time of the system so that

Y = (IT(X)). @)

We omit any further specification on the policy & at hand
(and accordingly for the internal state Z) as the policy is the
core of the system’s implementation, which we discuss in
more detail in Sects. 5 and 8 .

However, we can use the given definition of the system’s
interface to specify its adaptation domain. We define a static
environment E, which means that once a system S ® E is
composed, the environment does not change or react to the
system’s actions. In our example, the environment consists
of the obstacles’ position, so

E = {01, 02, 03, 04} ®)

witho; € P foralli = 1, .., 4. Note that we could also write
E =0 ~~ ({01, 02, 03, 04})0<s<n to adhere to the previously
introduced notation. We then define the composed system
S ® E to use the obstacles given by E to set all respective
inputs X so that for all x; in X = (x;)o<s<, it holds that
x; = {ry, My, {01, 02, 03, 04}) for some r;, M;.

At this stage, we might just as well-define a dynamic
environment that could change the obstacles’ positions over
time by setting E = @ ~ ({014, 02,1, 03,1, 04,})1<1<n
with o;; depending on the current step of system exe-
cution 7. A reactive environment £ = (r)jciep ~
({01,1,02.t, 03,1, 04})1<r<n Mmight even change any obsta-
cle’s position o; ;, for example with respect to the robot
position r according to some environment policy p : P X
N — P so that 0; ; = p(r;, i). However, we will omit fur-
ther considerations on dynamic environments for brevity and

@ Springer

will resort to a static environment for the running example in
this paper.

However, please note that we can still generate many dif-
ferent static environments to be part of the adaptation domain.
This will require the system to be able to handle various
configurations of non-moving obstacles but not require the
system to be able to handle moving obstacles.

We can now define a simple system goal such as

y(S) <= 3t : VYm € M, : finished(m) 9)

where M; is given via x; = (r;, My, O;) (coming from § =
X ~ Y and X = (xt)0<r<n) as in Eq. 5 and finished :
P x (T') — Bis given via

finished(pos, tasks) <= tasks = (). (10)

Semantically, y(S) holds iff at some point during the
execution, all items in the system have been processed.
Note that we use a very raw formulation for a property
that might be more fittingly expressed in some temporal
logic. But using simple predicate logic is sufficient for the
present running example. A different goal function might be
to never execute an illegal action, which might be written as
y'(§) & WVt —illegal(a;). For the running example,
we will focus on the single goal function y, though.

The definitions made in this subsection now allow us
to finally define an adaptation domain such as A =
{(((2,5), (4,4), (5,5), (6,5)),)}, which defines the envi-
ronment setup shown in Fig. 3 and the goal function of Eq. 10.
For our running example, we want the system to work for any
arbitrary (legal) configuration of obstacle position so that we
define

A={((01,02,03,04),y) 1 i=1,...,4,
oi € PAWN{, D}}. A
We can now further augment this declaration to include an
optimization target (as given in Definitions 7 and 8). Using N
as the space of the fitness values and > as a preorder (meaning
that me minimize the fitness value) we can define a fitness
function
¢(S®E)=min {t e N| Vm € M, : finished(im)} (12)
where M; is given via x; = (r;, My, O;) (coming from § =
X ~ Y and X = (xt)0<r<n) as in Eq. 5 and finished :
P x (T') — B is given via Eq. 10. The fitness function ¢ as
defined in Eq. 12 then returns the amount of time steps the
system took to reach the finished predicate, i.e., the time it
took to fully process all items. This would be a typical target
for minimization. Note that in this case, there exists a clear
correspondence between the goal function y and the fitness

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 465

function ¢ as only systems that fulfill y have a finite value
for ¢.

Different reasonable fitness functions exist: For exam-
ple, we may want to get rid of the goal function entirely
and instead formulate a fitness function that maximizes the
amount of that are fully processed (instead if enforcing that
all of them are eventually fully processed always). Or we may
want to optimize an entirely different goal like minimizing
the turns of direction the agent is taking.

In the end, setting the right y and ¢ for the adaptation
domain is a decision to be made in system design and is
crucial to fulfilling the initial requirements. In particular, the
interaction between the goal and the fitness function is to be
considered.

Having given an adaptation domain, we can write S |- A
iff the system S can adaptto A, i.e., S fulfills the goal function
for all respective environments in 4. We can also trivially
define a singleton adaptation space

A = {A}, (13)

which shall suffice for the example given here.

5 Implementation of adaptation

So far we constructed a framework to compare the degree
of adaptivity of two given systems. In this section, we dis-
cuss how to give these adaptive systems. This boils down
to the problem: Given a system S, how can its adaptivity be
improved, i.e., how can we generate a system S’ so that § C
S’. The art of generating (software) systems is called (soft-
ware) engineering. Traditionally, we would specify higher
adaptivity as a requirement and task a group of software
developers to improve the system S. They would then write
code to cover additional adaptation domains (within the given
adaptation space) or improve the system’s performance on
a given fitness function (when considering optimization) as
follows from Definition 9.

5.1 Adaptation via machine learning

Newer methods in software engineering aim to automate
(parts of) that process [7,12,46]. The most trivial means of
automation is probably stochastic search. For this, we require
a variation operator vary : R(}V) — R(V) where R(V) is
the domain of all relations over V and V is a type of sys-
tem and S € R(V) (see Definition 1). Note that vary is not
a function but vary(S) returns a random variant of a given
system S any time it is executed. Usually, vary(S) will not
generate new systems from scratch but reuse almost all parts
of S and just implement small changes to it. We can then run
a stochastic search process as shown in Algorithm 1. Note

Algorithm 1 Stochastic Search
Require: system S

1: while —termination_criterion do
2: S < vary(S)

3 if ST S’V chance(s) then
4: S«

5: endif
6:

7.

end while
return S

Algorithm 2 Stochastic Search in Parameter Space

Require: system S, initial parameter 6

1: 6 < 6y

2: while —termination_criterion do

0" < vary(9)

if S0 ES®O V chance(e) then
9 <6

end if

7: end while

8: return S ® 6

AN AN

that aside from the vary operator, we also need to provide a
termination_criterion that allows us to stop the search once a
sufficient solution has been found or we have spent too much
time on searching. The operator chance : [0; 1] C R — B
can be defined generally to return true only with the given
chance and false otherwise. Further note that computing
S C S’ can become very expensive or even infeasible for suf-
ficiently complex systems S, S’. We later show in Sects. 7 and
8 how to construct a set of more concrete test cases against
which such properties can be evaluated more efficiently, but
only while losing out on the exactness of the result. In general,
sampling is usually employed to approximate such properties
on large domains.

What makes stochastic search of this form generally infea-
sible is that more adaptive systems are typically very rare
among all system variants that can be generated via vary.
We thus need to restrict the possible variations to somewhat
meaningful systems at least. Most commonly, we do this
by fixing most components of the system S and introducing
a parameterization 6 of some type @ describing important
aspects of the system’s behavior. Stochastic search then only
needs to search the much more abstract parameter space ©.
When given a variation operation vary : ® — © and a
(usually random) initial value 6y € ®, we can rewrite Algo-
rithm 1 to search for the correct parametrization as seen in
Algorithm 2. In a machine learning setting, the system §
could typically include a neural network whose weights are
encoded in 6. This way, the weights space is relatively small
compared to altering the whole system but as long as the neu-
ral network’s outputs are important to the system behavior,
it can be heavily influenced by just changing the weights.

Obviously, we can still spend a lot of time sampling ran-
domly varied settings for 6 without ending up with any good
solutions. We can usually shorten the search process if we

@ Springer

466

T. Gabor

Algorithm 3 Gradient Descent in Parameter Space

Require: system S, initial parameter 0y, update rate o
1: 0 < 6y

2: while —termination_criterion do

3 O <«—a-Vo

4: end while

5: return S ® 6

can compute a gradient for a specific point 0 in the parameter
space. Note that this is generally not the case in our setting:
We want to improve the system’s adaptivity by following
the “at least as adaptive as” relation T, which is defined
on subset inclusion and thus naturally discrete. Intuitively,
we can recognize if system S’ is at least as adaptive as S,
but we have no notion of how much more adaptive it is.
However, we can resort to the case of adaptation with opti-
mization (see Definition 9): On some fitness value types F,
we can define a gradient. In the case of neural networks,
e.g., F = R”" for some n € N and for a given fitness value
f = ¢(S ® 0) with fitness function ¢, we can compute the
gradient VO = V¢ (S ® 6).

In order to find a good setting for the parameter 6, we
can then use a more direct approach to search like gradient
descent. As shown in Algorithm 3, when we can compute
the gradient, we can use it to update the parameter 6 to the
most promising direction. The update rate « € (0; 1) C R
controls how far along the gradient we go with each iteration.

Backpropagation is a variant of gradient descent specifi-
cally fitted to update the weights of neural networks. For more
details on the method, we refer to other work [20,35,37].

Of course, computing ¢ (S ® 0) tends to be non-trivial. If
we have a precise model of what makes the system perform
well according to ¢, we can usually just build this behavior
into the system and do not require elaborate and expensive
search algorithms. It is important to note that, in the general
case, no search algorithm can effectively beat random search.
This is called the No Free Lunch Theorem [47]. However, we
can always build into the search as much knowledge about
the structure of the problem as we have, which then allows us
to get better results for problems matching that knowledge.
In the typical use case for machine learning, we do not have
complete knowledge about how a good system should look
like but we have single evaluation points far and between,
telling us about concrete instantiations for 6 and the respec-
tive value of ¢ (S®86). Machine learning is the task of building
a model from these data points.

For example, let us consider a visual system that needs
to recognize if a given picture x contains a cat or not. This
system might use a neural network with weights 6 and we are
looking for a @ € @ that makes the system recognize images
of cats. For that search, we need a set of training data D =
{{x1, ¥1), ..., (xn, yn)} where for all i € [1; n] C Nitholds
that x; is a image from the set of all images X and y; = 1 iff

@ Springer

Algorithm 4 Gradient Descent with Sampling in Parameter
Space
Require: system S, initial parameter 0y, update rate o,
training data set D
1: 6 < 6y
2: while —termination_criterion do
3: x,y < sample(D)
4: O <« a-VO(x,y)
5: end while
6: return S ® 6

X; contains a cat, y; = 0 otherwise. We can then compute the
fitness

n

PS®0) =Y [Y(x;)— yil (14)

i=1

where Y (x;) is given via § ® 0 = x; ~» Y(x;). When the
set of training data is large and diverse enough, we assume
that the parameter 6 that works best on the training data, also
works best (or at least well) on new, unseen data.

Note that typically, we do not evaluate each solution
candidate for 6 on the whole training set but for perfor-
mance reasons opt for a more gradual process as shown
in Algorithm 4, where VO(x,y) = ¢(S ® 6,x,y) and
¢:)V x X xY — Fisgiven via

P(S®0,x,y) =Y(x) =yl (15)

where Y (x) is defined as for Eq. 14. When doing so, we
usually need more iterations of the whole process (i.e., a
more lenient termination_criterion) but each evaluation of
¢ is much less computationally expensive. This approach
represents the common ground for techniques like supervised
machine learning or reinforcement learning [20,41].

Methods as shown in Algorithms 1-4 have implications
for software engineering: When applying machine learning,
we are not certain of the exact system that we will end up with,
which, in fact, is the whole purpose of machine learning:
to not exactly figure out the full system. This buys some
immense possibilities to create complex behavior and adapt
to a wide range of situations. However, it also introduces new
tasks into the workflow of programming systems.

5.2 Software engineering for machine learning

Figure 4 shows an engineering process for machine learn-
ing. At the top blue level, we see typical phases used in
process models for classical software engineering. They
provide an orientation about what activities new machine
learning tasks can be compared to. Note that we assume
an agile development process anyway: The whole process
shown in Fig. 4 is not necessarily run in sync with the

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems

467

Operation Data

[

Req. Transformation]

Reg. Validation

Reward Engineering

[Hyperparameter Optimization

=

Testing Operation

Domain Distribution

Data/ Select
: Accept Model Use
Bomain Algorithm P Policy
I A
Loss/ | Select | —— Specialize
Reward . Model/Policy Model/Policy
T 4 V- A‘ *
L Monitor
Objective Assess Q0S Qos

Concrete Domain

S —

Fig.4 Machine learning pipeline. Split between classical phases of system development, we can see the central activities necessary for the successful

application of machine learning

development process of the rest of the system (which we
still assume to be programmed in a mostly classical way).
Instead, the process of engineering machine learning could
be run several times (as a sprint, e.g.,) within a single activity
in a surrounding development process. This is why we will
put observations made during the operation of the result-
ing system (called “operation data” here) into the case and
requirement phases of the next iteration of the machine learn-
ing pipeline (as symbolized by the large blue arrow).

At the bottom blue level, we discern show the domain
within which the individual tasks take place. The first parts
of the machine learning pipeline operate on a domain distri-
bution, i.e., they are not specialized on a single instance of a
use case but are designed to find models and solutions gen-
eral enough to work on a range of similar tasks. Even when
we only target a single domain eventually, having a decent
amount of diversity during training is crucial to the success of
machine learning [6,24,43]. During deployment, we switch
from the more general distribution of possible domains to
a more concrete instantiation fed with all the information
we have about the deployed system and the environment
it is deployed in. Again, whenever we observe our origi-
nal assumptions on the distribution of domains to be flawed,
we feed back gained knowledge into the next iteration of the
machine learning pipeline.

This handling of domains closely mirrors the definition
of the adaptation space 2(: Recall that in order to build a
more adaptive system S, it needs to be able to adapt to larger
subset of the adaptation space (or adapt to the same subset

better) as stated in Definition 9. Thus, when designing the
autonomous adaptation mechanisms in the first part of the
machine learning pipeline, we in fact operate on the whole
adaptation space 2. However, when it comes to building a
concrete system, we will only face a single adaptation domain
A € 2 at once, perhaps in succession.

We will now briefly discuss each task appearing in
the machine learning pipeline (again cf. Fig. 4). They are
depicted by the white boxes with a blue border. Some of
them are grouped into logical phases using orange boxes.
Data/domain In order to even begin a case description, we
need to assure that we have a sufficiently detailed description
of the domain we want to use the system in (as given by the
definition of environments £ within the adaptation space 2
as shown in Sect. 4.1). Also note that many machine learning
algorithms require large amount of high-quality data, which
then needs to be provided alongside or instead a full domain
description.

Loss/reward This artifact is also included in the adaptation
space. The definition and usage of the fitness function ¢ maps
exactly to the use of loss or reward functions in most machine
learning approaches. It needs to be defined accurately at the
beginning of the machine learning pipeline.

Objective This artifact maps to the goals y within the adapta-
tion space 2. As discussed, in many cases, the fitness function
will be derived from the goals or at least altered to support
their fulfillment. However, there also often are additional
goals which cannot be expressed in the fitness function alone,
for example, because they are hard constraints on system

@ Springer

468

T. Gabor

safety that cannot be opened up to optimization. In this case,
the goals y need to be derived from the fitness function.
Select model/policy In this task, we need to define what parts
of the system should actually be adapted using machine learn-
ing techniques. In case of supervised learning, we are usually
speaking of a model representing the data; in the case of rein-
forcement learning, we use the word policy to refer to a way
to encode behavior. Either way, the definition of the model
(for example, using a policy network returning the next action
of the system) is the biggest influence on the choice of the
parameter space ® (cf. Sect. 5.1).

Select algorithm Knowing which parameter space @ is to
be optimized often aids in the choice of a (possibly highly
specialized) optimization algorithm. A choice of (concrete
instances of) Algorithms 1-4 might be made here.

Train During the training task, the algorithm selected is
applied to optimize the parameters 6 € @ for the selected
model or policy. In (hopefully) all cases, this task will be
performed automatically by a computer. However, it is usu-
ally very resource-intensive and thus requires a lot of manual
tweaking: Setting up the right hardware/software platforms,
choosing the right meta-parameters (maximum run-time,
minimum success, parallelization, etc.) and so on.

Assess QoS Usually, reward yield or loss reduction are used
as metrics during training automatically. However, most
machine learning algorithms are highly stochastic in nature.
Thus, we suggest a separate task for the assessment of the
quality of service provided by the automatically trained sys-
tem. At this stage, we may filter out (and/or redo) bad runs or
and check if our problem formulation and selection of algo-
rithms and data structures were sufficient to get the desired
quality of a solution.

Accept model As shown in Fig. 4, the tasks involved in the
selection of models/policies, training and assessing the qual-
ity of the returned solutions form a typical feedback loop.
Part of the accept model task is to decide when to break
this loop and what model/policy (usually represented by the
parameters 6) to return. Usually, we will return the best pol-
icy according to the quality of service assessment, but there
may be cases where we want to return multiple policies (like
a Pareto front, e.g.,).

Use policy Once a suitable model/policy has been found,
we assume that deployment happens the same way as for
classical systems. At this task, we are thus ready to execute
the behavior of the system as given by the model/policy. Note
that formally, executing the system S with model/policy 6 in
a concrete domain A corresponds to computing S ® 6 IF A.
Specialize model/policy As previously discussed, the training
loop has not been executed on the deployed domain .A but on
a distribution of domains drawn from the adaptation space
2A. When we recognize that A is not going to be subject to
substantial changes any more, it makes sense to specialize
on the concrete domain instance. This can be done through

@ Springer

classical means (adding specialized behavior, removing now
inaccessible program parts) or through means of machine
learning (re-running a training feedback loop but based on
the experiences generated in A instead of). In the latter
case, we could actually enter a complete other instantiation
of the machine learning pipeline.

Monitor QoS Even when training and assessment have shown
that our system S ® 6 does fulfill our quality goals, it is most
important to continually monitor that property throughout
operations. Mistakes in the definition of (the parts of) 2 or
general changes in the domain, including subtle phenomena
like drift, may cause the trained system to be incapable of fur-
ther operation. In order to prevent this and re-train as early as
possible, we need not only to monitor the defined metrics of
quality of service directly, but also keep an eye out for indi-
cators of upcoming changes in quality, for example through
means of anomaly detection [30].

It is clear that the machine learning pipeline discussed in
this section has no claim of completeness. Many tasks could
be changes or added to it. We introduced the pipeline to show
that while some necessary changes to the software engineer-
ing process closely mirror tasks for classical systems, others
introduce entirely new challenges and shift the focus where
the main work of software developers should fall. We will
use this analysis as a foundation to sum up the major changes
into core concepts in the following section.

6 Core concepts of adaptive software
engineering

Literature makes it clear that one of the main issues of
the development of self-adapting systems lies with frust-
worthiness. Established models for checking systems (i.e.,
verification and validation) do not really fit the notion of
a constantly changing system. However, these established
models represent all the reason we have at the moment to
trust the systems we developed. Allowing the system more
degrees of freedom thus hinders the developers’ ability to
estimate the degree of maturity of the system they design,
which poses a severe difficulty for the engineering progress,
when the desired premises or the expected effects of classical
engineering tasks on the system-under-development are hard
to formulate.

To aid us control the development/adaptation progress
of the system, we define a set of core concepts, which are
basically patterns for process models. They describe the
paradigm shifts to be made in the engineering process for
complex, adaptive systems in relation to more classical mod-
els for software and systems engineering.

Concept 1 (System and Test Parallelism) The system and its
test suite should develop in parallel from the start with con-

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 469

trolled moments of interchange of information. Eventually,
the test system is to be deployed alongside the main system so
that even during run-time, on-going online tests are possible
[14]. This argument has been made for more classical sys-
tems as well and thus classical software test is, too, no longer
restricted to a specific phase of software development. How-
ever, in the case of self-learning systems, it is important to
focus on the evolution of test cases. The capabilities of the
system might not grow as experienced test designers expect
them to compare to systems entirely realized by human engi-
neering effort. Thus, it is important to conceive and formalize
how tests in various phases relate to each other.

Concept 2 (System vs. Test Antagonism) Any adaptive sys-
tems must be subject to an equally adaptive test. Overfitting
is a known issue for many machine learning techniques. In
software development for complex adaptive systems, it can
happen on a larger scale. Any limited test suite (we expect
our applications to be too complex to run a complete, exhaus-
tive test) might induce certain unwanted biases. Ideally, once
we know about the cases our system has a hard time with,
we can train it specifically for these situations. For the so-
hardened system, the search mechanism that gave us the hard
test cases needs to come up with even harder ones to still beat
the system-under-test. Employing autonomous adaptation at
this stage is expected to make that arms race more immediate
and faster than it is usually achieved with human developers
and testers alone.

Concept 3 (Automated Realization) Since the realization of
tasks concerning adaptive components usually means the
application of a standard machine learning process, a lot of
the development effort regarding certain tasks tends to shift
to an earlier phase in the process model. The most devel-
oper time when applying machine learning techniques, e.g.,
tends to be spent on gathering information about the problem
to solve and the right setup of parameters to use; the train-
ing of the learning agent then usually follows one of a few
standard procedures and can run rather automatically. How-
ever, preparing and testing the component’s adaptive abilities
might take a lot of effort, which might occur in the design
and test phase instead of the deployment phase of the system
life cycle.

Concept 4 (Artifact Abstraction) To provide room for and
exploit the system’s ability to self-adapt, many artifacts pro-
duced by the engineering process tend to become more
general in nature, i.e., they tend to feature more open parame-
ters or degrees of freedom in their description. In effect, in the
place of single artifacts in a classical development process,
we tend to find families of artifacts or processes generat-
ing artifacts when developing a complex adaptive system.
As we assume that the previously only static artifact is still
included in the set of artifacts available in its place now,

we call this shift “generalization” of artifacts. Following this
change, many of the activities performed during develop-
ment shift their targets from concrete implementations to
more general artifact, i.e., when building a test suite no longer
yields a series of runnable test cases but instead produces a
test case generator. When this principle is broadly applied,
the development activities shift toward “meta development.”
The developers are concerned with setting up a process able
to find good solutions autonomously instead of finding the
good solutions directly.

7 Scenarios

We now want to include the issue of testing adaptive systems
in our formal framework. To this end, we first introduce the
notion of scenarios as the basis upon which we define tests
for our system. We then include that notion in our descrip-
tion of software development. Finally, we extend our running
example with software testing.

7.1 Describing scenarios

We recognize that any development process for systems
following the principles described in Sect. 3 produces two

central types of artifacts. The first one is a system § = X Z
Y with a specific desired behavior Y so that it manages to
adapt to a given adaptation space. The second is a set of sit-
uations, test cases, constraints, and checked properties that
this system’s behavior has been validated against. We call
artifacts of the second type by the group name of scenarios.

Definition 13 (Scenario) Let § = X Z Ybea system and
A ={(E, y, ¢)} asingleton adaptation domain. A tuple ¢ =
(X,Y,g,f),g e{T, 1}, f €ecod(¢p) withg =T <+
S®E Eyand f = ¢(S® E) is called scenario.

Note that if we are only interested in the system’s per-
formance and not how it was achieved, we can redefine a
scenario to leave out Y. Semantically, scenarios represent the
experience that has been gained about the system’s behav-
ior during development, including both successful (S F y)
and unsuccessful (§ # y) testruns. As stated above, since we
expect to operate in test spaces we cannot cover exhaustively,
the knowledge about the areas we did cover is an important
asset and likewise result of the systems engineering process.

Effectively, as we construct and evolve a system S, we
want to construct and augment a set of scenarios C =
{c1,...,cn} alongside with it. C is also called a scenario
suite and can be seen as a toolbox to test S’s adaptation abil-
ities with respect to a fixed adaptation domain A.

@ Springer

470

T. Gabor

While formally abiding to Definition 13, scenarios can be
encoded in various ways in practical software development,
such as:

Sets of data points of expected or observed behavior Given
a system S = X’ ~» Y’ whose behavior is desirable (for
example a trained predecessor of our system or a watchdog
component), we can create scenarios (X', Y’, g/, f') with
§ =T & S QE vy ad ' = ¢ (S ® E;) for
an arbitrary amount of elements (E;, y;, ¢;) of an adaptation
domain A = {(E}, V1,015 ooy (Eny Vi)}

Test cases the system mastered In some cases, adaptive sys-
tems may produce innovative behavior before we actively
seek it out. In this cases, it is helpful to formalize the pro-
duced results once they have been found so that we can ensure
that the system’s gained abilities are not lost during further
development or adaptation. Formally, this case matches the
case for “observed behavior” described above. However, here
the test case (X, Y, g, f) already existed as a scenario, so we
just need to update g and f (with the new and better values)
and possibly Y (if we want to fix the observed behavior).
Logical formulae and constraints Commonly, most con-
straints can be directly expressed in the adaptation domain.
Suppose we build a system against an adaptation domain
A = {(E1,v1,$1), ..., (Eyn, Vn, ¢n)}. We can impose a
hard constraint ¢ on the system in this domain by con-
structing a constrained adaptation domain A" = {(Ey, y1 A
Z,91)s ..o (Eny v AE, @)} given that the logic of yq, .. .,
¥n, ¢ meaningfully supports an operation like the logical
“and” A. Likewise a soft constraint ¢ can be imposed via
A = ((Ey, y1, max(@1, ¥),), - -, (En, v max(en, ¥)))
given the definition of the operator max that trivially fol-
lows from using the relation < on fitness values. Scenarios
(X', Y', g, f") can then be generated against the new adap-
tation domain .A by taking preexisting scenarios (X, Y, g, f)
and setting X' = X, Y =Y, g = T,f = ¥(X ~
Y)® E).

Requirements and use case descriptions (including the sys-
tem’s degree of fulfilling them) If properly formalized, a
requirement or use case description contains all the infor-
mation necessary to construct an adaptation domain and can
thus be treated as the logical formulae in the paragraph above.
However, use cases are in practical development more prone
to be incomplete views on the adaptation domain. We thus
may want to stress the point that we do not need to update
all elements of an adaptation domain when applying a con-
straint, i.e., when including a use case. We can also just add
the additional hard constraint ¢ or soft constraint ¥ to some
elements of A.

Predictive models of system properties For the most general
case, assume that we have a prediction function p so that
p(X) ~ Y, i.e., the function can roughly return the behavior
S = X ~» Y will or should show given X. We can thus con-
struct the predicted system S’ = X ~» p(X) and construct a

@ Springer

scenario (X, p(X), g, /) withg =T <— S QFE =y
and f = ¢(S' Q E).

All of these types of artifacts will be subsumed under
the notion of scenarios. We can use them to further train and
improve the system and to estimate its likely behavior as well
as to perform tests (and ultimately verification and validation
activities).

7.2 Constructing scenarios

Scenario coevolution describes the process of developing a
set of scenarios to test a system during the system-under-
tests’s development. Consequently, it needs to be designed
and controlled as carefully as the evolution of system behav-
ior [5,21].

Definition 14 (Scenario Hardening)Letc) = (X1, Y1, g1, f1)
and ¢; = (X2, Y2, g1, f2) be scenarios for a system S and an
adaptation domain .A. Scenario c¢; is at least as hard as cy,
written ¢ < ¢2,iff g1 =T =— g =T and f1 < f>.

Definition 15 (Scenario Suite Order) Let C = {c1, ..., ¢}
andC’ = {c], ..., ¢} be sets of scenarios, also called scenar-
i0s suites. Scenario suite C’ is at least as hard as C, written
C C (/, iff for all scenarios ¢ € C there exists a scenario
¢ e C’'sothatc <.

Definition 16 (Scenario Sequence) Let S = (Si)ier, I =
{1, ..., n} be an adaptation sequence for a singleton adapta-
tion space 2 = {A}. A series of sets C = (C;);e; is called a
scenario sequence iff foralli € I,i < n itholds that C; isa
scenario suite for S; and A and C; T Cj4 1.

Note that we define the hardness of scenarios in parallel to
the adaptivity of systems (cf. Definition 9). Figure 5 provides
a visual representation.

We expect each phase of development to further alter the
set of scenarios just as it does alter the system behavior. The
scenarios produced and used at a certain phase in develop-
ment must match the current state of progress. Valid scenarios
from previous phases should be kept and checked against
the further specialized system. When we do not delete any
scenarios entirely, the continued addition of scenarios will
ideally narrow down allowed system behavior to the desired
possibilities. Eventually, we expect all activities of system
test to be expressible as the generation or evaluation of sce-
narios. New scenarios may simply be thought up by system
developers or be generated automatically.

Finding the right scenarios to generate is another opti-
mization problem to be solved during the development of
any complex adaptive system. Scenario evolution represents
a cross-cutting concern for all phases of system development.
Treating scenarios as first-class citizen among the artifacts
produced by system development thus yields changes in tasks
throughout the whole process model.

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 471

‘‘‘‘‘‘‘‘‘

behavior
/

. situations *

Fig. 5 Illustration of the hardness of scenarios according to Defini-
tion 14. In the same plot as in Fig. 1, scenarios from two different
scenario suites Cy (green) and C; (purple) can be depicted as points
within the space of behavior where certain inputs need to be matched to
certain outputs. Various scenario generators may cover different areas
of the space of situations (shapes at the bottom of the plot). Although
the depicted system S = X ~- Y fulfills both scenario suites, C; is at
least as hard as C» because its scenarios cover the same situations and
require at least as close to optimal performance (colour figure online)

8 Example application

We now return to the Grid World Smart Factory domain intro-
duced in Sect. 4. For an instance of that domain, an instance
of scenario coevolution was applied in [24]. Without human
involvement, a reinforcement learning agent adapting the
system’s behavior and an evolutionary algorithm adapting
the scenario suite have been put together. [24] has shown that
the paradigm yields better results per computation time, argu-
ing in favor of using scenario coevolution even in this fully
automated form. In this section, we provide formal definition
of the involved artifacts and processes fitting into the formal
framework we introduced so far. We thus abstract from the
dichotomy between human developers and automated adap-
tation and open up the paradigm of scenario coevolution to
both and (most importantly) hybrid approaches.

Recall that actions in the Grid World Smart Factory as
defined in Eq. 4 can be entirely simulated (although full
brute force simulations of all possible actions sequences is
infeasible). However, that means we can use a simulation to
generate training data. And since the simulation is complete
(it can simulate any situation that we defined to be able to
occur within the domain), we do not need to worry about any
other source of training data. In practical real-world appli-
cations, coming up with a high-fidelity simulation is usually
pretty hard or expensive. Complete simulations can often be
substituted with learned simulations, with are the result of
machine learning themselves.

1000

0777 N

2
o
b
o —1000
o
o
: /
>
© —2000

—3000

ScoE
—— Random
—4000 t
0 2000 4000 6000 8000 10000

episodes

Fig.6 Scores achieved by SCoE and standard “random” reinforcement
learning during training over 10,000 episodes. Scores are averages of
running the current agent against 1000 randomly generated test scenar-
ios.. Image taken from [24] (colour figure online)

We derived the fitness function to be used in this applica-
tion in Eq. 12. It allows us to steer the system toward fully
producing as many items as possible. Using this fitness func-
tion, we expect the system to learn to fulfill the overall system
goal of fully producing all the requested items, as defined in
Egs. 9 and 10 .

The system’s behavior is defined by the actions it chooses
for each consecutive time step. In [24], we chose to program
the system to execute (when in state s; at time step i) the
action

Q(si,a) (16)

max
acfap,a,ay,a4,am,05)

a; =
where Q(s;, a) is the so-called Q-value of action a in state
si. The Q-value is derived from Q-learning [41,44] and rep-
resents the expected reward when executing an action in a
given state. To estimate that value, we call a neural network
with weights 6.

The network weights 6 are then optimized via rein-
forcement learning, variant of gradient descent as given in
Algorithm 4. The training process runs for a fixed compu-
tational budget. For more details on the implementation in
this case or any other part of the pipeline, please see [24].
For the quality of service of the trained system, we discern
between the fitness function and the actual goal function.
The network is trained to improve the average fitness, i.e.,
the average amount of items produced per run, but the user
is only interested in the overall success rate, i.e., the amount
of runs that are fully produced. The “random” (blue) plots in
Figs. 6 and 7 show the difference: The score in Fig. 6, i.e., the
value of the fitness function ¢ (S ® 6), increases slower and
on a different scale than the amount of correct runs where
S ® 0 = y shown in Fig. 7. While the network trains on the
former, we assess its quality (and accept the model) using the
latter.

@ Springer

472

T. Gabor

100

80 1

60

40 1

successful tests (%)

20 1

—— Random Training

< %, [&
0 2, 2, 2,
% % % %

episodes

Fig. 7 Percentage of successfully solved test scenarios by SCoE and
standard “random” reinforcement learning. The values are calculated
from a randomly generated set of 1000 scenarios.. Image taken from
[24] (colour figure online)

The learned policy is deployed on multiple independent
runs. As defined in Eq. 8, these independent runs (only) dif-
fer in the position of the obstacles in the domain. For the
“random” (blue) plots in Figs. 6 and 7, we generated domain
instances with random obstacles. Figures 6 and 7 also show
“SCoE” (orange) plots where the environments were not gen-
erated at random but by applying scenario coevolution.

For this, we need to define scenarios in the Grid World
Smart Factory domain (also see Definition 13). We reduce
complexity by not expecting specific outputs. We set no fixed
requirement on goal fulfillment or fitness. The set of all pos-
sible scenarios C can then be given as

C={(p.0g f):peP'ge(T, L}, fecod@)
(17)

To train the system, we try to choose the hardest scenarios
from C, i.e., we try to optimize for
min (S ® 06, c, ¥). (18)
ceC
It is important to note that as 6 changes, i.e., as the system
learns, our notion for which scenarios are hard also changes.
To continually come up with hard scenarios, we thus need
to continually optimize for them. We do so by employing
an evolutionary algorithm, which is an instance of stochastic
search as given in Algorithm 1. We thus form a scenario
sequence where a learning system using reinforcement and
a set of scenarios generated by an evolutionary algorithm
coevolve. Ideally, as the scenarios get harder, the system gets
better, and as the system gets better, the scenarios get harder.
Figures 6 and 7 show that employing scenario coevolution
in this fully automated form already yields a benefit to the
results. As discussed in [24], this benefit even upholds when
considering total computational effort spent. Figure 8 depicts
an overview of how the various parts of the system interact.
Within the machine learning pipeline, the search for hard
scenarios represents an instantiation of the task for the spe-
cialization of the model/policy by selecting specific instances
in which the model/policy is to be evaluated. However, note
that while a single scenario represents a concrete domain,
the whole suite of generated scenarios forms a distribution
of domains and is thus an ideal artifact to use for the next
iteration of the machine learning pipeline, i.e., the next gen-
eration of coevolution. Scenario coevolution as a paradigm
thus instantiates the whole feedback loop constituting the
machine learning pipeline.

9 Patterns for scenario coevolution

Having both introduced a formal framework for adaptation
and the testing of adaptive systems using scenarios, we show

Fig.8 Schematic representation
of the scenario coevolution
process for the Grid World
Smart Factory application. A
population of test scenarios is
first generated at random and
then improved via evolution.
Between evolutions, the test
scenario population is fully
utilized as training data for the
reinforcement learning agent,
which causes the agent to

-

Random -
Generator O

Test

) 4)

improve in parallel to the test
scenario population.. Image
taken from [24]

reinforce

update

—

@ Springer

reinforce

Test
evolve
) o T \/
i einforce
reinforce
\ 4 update update

Agent

—>| Agent |—>

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 473

in this section how these frameworks can be applied to aid
the trustworthiness of complex adaptive systems for practical
use.

9.1 Criticality focus

It is very important to start the scenario evolution pro-
cess alongside the system evolution, so that at each stage
there exists a set of scenarios available to test the system’s
functionality and degree of progress (see Concept 1). This
approach mimics the concept of agile development where
between each sprint there exists a fully functional (however
incomplete) version of the system. The concept of scenario
evolution integrates seamlessly with agile process models.
In the early phases of development, the common artifacts
of requirements engineering, i.e., formalized requirements,
serve as the basis for the scenario evolution process. As long
as the adaptation space 2 remains constant (and with it the
system goals), system development should form an adapta-
tion sequence. Consequently, scenario evolution should then
form a scenario sequence for that adaptation sequence. This
means (according to Definition 16), the scenario suite is aug-
mented with newly generated scenarios (for new system goals
or just more specialized sub-goals) or with scenarios with
increased requirements on fitness. Note that every change in
2 starts new sequences. Ideally, the scenario evolution pro-
cess should lead the learning components on the right path
toward the desired solution. The ability to re-assign fitness
priorities allows for an arms race between adaptive system
and scenario suite (see Concept 2).
Augmenting requirements Beyond requirements engineering,
it is necessary to include knowledge that will be generated
during training and learning by the adaptive components.
Mainly, recognized scenarios that work well with early ver-
sion of the adaptive system should be used as checks and tests
when the system becomes more complex. This approach imi-
tates the optimization technique of importance sampling on
a systems engineering level. There are two central issues that
need to be answered in this early phase of the development
process:

— Behavior Observation: How can system behavior be gen-
erated in a realistic manner? Are the formal specifications
powerful enough? Can we employ human-labeled expe-
rience?

— Behavior Assessment: How can the quality of observed
behavior be adequately assessed? Can we define a model
for the users’ intent? Can we employ human-labeled
review?

Breaking down requirements A central task of successful
requirements engineering is to split up the use cases in atomic
units that ideally describe singular features. In the dynamic

world, we want to leave more room for adaptive system
behavior. Thus, the requirements we formulate tend to be
more general in notion. It is thus even more important to
split them up in meaningful ways in order to derive new sets
of scenarios. The following design axes (without any claim
to completeness) may be found useful to break down require-
ments of adaptive systems:

— Scope and Locality: Can the goal be applied/checked
locally or does it involve multiple components? Which
components fall into the scope of the goal? Is emergent
system behavior desirable or considered harmful?

— Decomposition and Smoothness: Can internal (possibly
more specific) requirements be developed? Can the over-
all goal be composed from a clear set of sub-goals? Can
the goal function be smoothened, for example by pro-
viding intermediate goals? Can sub-goal decomposition
change dynamically via adaptation or is it structurally
static?

— Uncertainty and Interaction: Are all goals given with full
certainty? Is it possible to reason about the relative impor-
tance of goal fulfillment for specific goals a priori? Which
dynamic goals have an interface with human users or
other systems?

9.2 Adaptation cool-down

We call the problem domain available to us during system
design the off-site domain. It contains all scenarios we think
the system might end up in and may thus even contain contra-
dicting scenarios, for example. In all but the rarest cases, the
situations one single instance of our system will face in its
operating time will be just a fraction the size of the covered
areas of the off-site domain. Nonetheless, it is also common
for the system’s real-world experience to include scenarios
not occurring in the off-site domain at all; this mainly hap-
pens when we were wrong about some detail in the real world.
Thus, the implementation of an adaptation technique faces
a problem not unlike the exploration/exploitation dilemma
[16], but on a larger scale: We need to decide, if we opt for a
system fully adapted to the exact off-site domain or if we opt
for a less specialized system that leaves more room for later
adaptation at the customer’s site. The point at which we stop
adaptation happening on off-site scenarios is called the off-
site adaptation border and is a key artifact of the development
process for adaptive systems.

In many cases, we may want the system we build to be
able to evolve beyond the exact use cases we knew about dur-
ing design time. The system thus needs to have components
capable of run-time or online adaptation. In the wording of
this work, we also talk about on-site adaptation stressing that
in this case we focus on adaptation processes that take place
at the customer’s location in a comparatively specific domain

@ Springer

474

T. Gabor

instead of the broader setting in a system development lab.
Usually, we expect the training and optimization performed
on-site (if any) to be not as drastic as training done dur-
ing development. (Otherwise, we would probably have not
specified our problem domain in an appropriate way.) As the
system becomes more efficient in its behavior, we want to
gradually reduce the amount of change we allow. In the long
run, adaptation should usually work at a level that prohibits
sudden, unexpected changes but still manages to handle any
changes in the environment within a certain margin. The rec-
ognized need for more drastic change should usually trigger
human supervision first.

Definition 17 (Adaptation Space Sequence) Let S be a sys-
tem. A series of |I| adaptation spaces A = (;);c; with
index set I with a preorder < on the elements of [is called
an adaptation domain sequence iff for all i, j € I,i < j it
holds that: S adapts to 21 ; implies that S adapts to 2.

System development constructs an adaptation space
sequence (cf. Concept 4), i.e., a sequence of increasingly
specific adaptation domains. Each of those can be used to
run an adaptation sequence (cf. Definition 10) and a scenario
sequence (cf. Definition 16, Concept 2) to test it.

For the gradual reduction of the allowed amount of adap-
tation for the system, we use the metaphor of a “cool-down”
process. The adaptation performed on-site should allow for
less change than off-site adaptation. And the adaptation
allowed during run-time should be less than what we allowed
during deployment. This ensures that decisions that have
once been deemed right by the developers are hard to change
later by accident or by the autonomous adaptation process.

9.3 Eternal deployment

For high trustworthiness, development of the test cases used
for the final system test should be as decoupled from the
on-going scenario evolution as possible, i.e., the data used in
both processes should overlap as little as possible. Of course,
following this guideline completely results in the duplica-
tion of a lot of processes and artifacts. Still, it is important
to accurately keep track of the influences on the respective
sets of scenarios. A clear definition of the off-site adapta-
tion border provides a starting point for when to branch off
a scenario evolution process that is independent of possi-
ble scenario-specific adaptations on the system-under-test’s
side. Running multiple independent system tests (cf. ensem-
ble methods [18,25]) is advisable as well. However, the space
of available independently generated data is usually very lim-
ited.

For the deployment phase, it is thus of key importance to
carry over as much information as possible about the genesis
of the system we deploy into the run-time, where it can be
used to look up the traces of observed decisions. The reason

@ Springer

to do this now is that we usually expect the responsibility
for the system to change at this point. Whereas previously,
any system behavior was overseen by the developers who
could potentially backtrack any phenomenon to all previous
steps in the system development process, now we expect on-
site maintenance to be able to handle any potential problem
with the system in the real world, requiring more intricate
preparation for maintenance tasks (cf. Concept 3). We thus
need to endow these new people with the ability to properly
understand what the system does and why.

Our approach follows the vision of eternal system design
[33], which is a fundamental change in the way to treat
deployment: We no longer ship a single artifact as the result
of a complex development process, but we ship an image of
the process itself (cf. Concept 4). As a natural consequence,
we can only ever add to an eternal system but hardly remove
changes and any trace of them entirely. Using an adequate
combination operator, this meta-design pattern is already
implemented in the way we construct adaptation sequences
(cf. Definition 10): For example, given a system S; we could

construct Sj+1 = X 4 Y in a way so that §; is included in
Si+1’s internal state Z.

As of now, however, the design of eternal systems still
raises many unanswered questions in system design. We thus
resort to the notion of scenarios only as a sufficient system
description to provide explanatory power at run-time and
recommend to apply standard “destructive updates” to all
other system artifacts.

10 Conclusion

We have introduced a new formal model for adaptation and
test processes using our notion of scenarios. We connected
this model to concrete challenges and arising concepts in
software engineering to show that our approach of scenario
coevolution is fit to tackle (a first few) of the problems when
doing quality assurance for complex adaptive systems. We
have put our approach into context by applying it to an exam-
ple application and deriving a pipeline for the development
of machine learning components from it.

As already noted throughout the text, a few challenges
still persist. Perhaps most importantly, we require an ade-
quate data structure both for the coding of systems and for
the encoding of test suites and need to prove the practical
feasibility of an optimization process governing the software
development life cycle. For performance reasons, we expect
that some restrictions on the general formal framework will
be necessary. In this work, we also deliberately left out the
issue of meta-processes: The software development life cycle
can itself be regarded as system according to Definition 1.
While this may complicate things at first, we also see poten-

The scenario coevolution paradigm: adaptive quality assurance for adaptive systems 475

tial in not only developing a process of establishing quality
and trustworthiness but also a generator for such processes
(akin to Concept 4).

Aside from the evolution of scenarios, we see further
potential in the application of coevolution to software engi-
neering processes. Cooperative coevolution could be used
as means to break down global goals into local ones and
thus coordinate various roles in a (possibly emergent) multi-
agent system. Competitive coevolution as used in the scenario
coevolution paradigm could also be further generalized and,
for example, performed between multiple parties (instead of
just two antagonists) to represent multiple different aspects
of software testing (like robustness, security, data quality) by
different types of scenario-like artifacts.

Systems with a high degree of adaptivity and, among
those, systems employing techniques of artificial intelligence
and machine learning will become ubiquitous. If we want to
trust them as we trust engineered systems today, the methods
of quality assurance need to rise to the challenge: Quality
assurance needs to adapt to adaptive systems!

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: Sota: Towards
a general model for self-adaptive systems. In: 2012 IEEE 21st Inter-
national Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, pp. 48-53. IEEE (2012)

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman,
J., Mané, D.: Concrete Problems in Al Safety. arXiv preprint
arXiv:1606.06565 (2016)

3. Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A.,
Inverardi, P., Vogel, T.: Software engineering processes for self-
adaptive systems. In: De Lemos, R., Giese, H., Miiller, HA., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems II, pp.
51-75. Springer (2013)

4. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyzing
MAPE-K feedback loops for self-adaptation. In: Proceedings of
the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE Press (2015)

5. Arcuri, A., Yao, X.: Coevolving programs and unit tests from their
specification. In: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, pp. 397—400.
ACM (2007)

6. Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior
of several methods for balancing machine learning training data.
ACM SIGKDD Explor. Newsl. 6(1), 20-29 (2004)

7. Belzner, L., Beck, M.T., Gabor, T., Roelle, H., Sauer, H.: Soft-
ware engineering for distributed autonomous real-time systems.
In: Proceedings of the 2nd International Workshop on Software
Engineering for Smart Cyber-Physical Systems, pp. 54-57. ACM
(2016)

8. Bernon, C., Camps, V., Gleizes, M.P,, Picard, G.: Tools for self-
organizing applications engineering. In: Di Marzo Serugendo, G.,
Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) International
Workshop on Engineering Self-Organising Applications, pp. 283—
298. Springer (2003)

9. Bernon, C.,Camps, V., Gleizes, M.P,, Picard, G.: Engineering adap-
tive multi-agent systems: the ADELFE methodology. In: Giorgini,
P., Henderson-Sellers, B. (eds.) Agent-Oriented Methodologies,
pp. 172-202. IGI Global (2005)

10. Brun, Y., Serugendo, G.D.M., Gacek, C., Giese, H., Kienle, H.,
Litoiu, M., Miiller, H., Pezze, M., Shaw, M.: Engineering self-
adaptive systems through feedback loops. In: Cheng, B.H.C., de
Lemos, R., Giese, H., Inverardi, P. , Magee J. (eds.) Software Engi-
neering for Self-adaptive Systems, pp. 48—70. Springer (2009)

11. Bruni, R., Corradini, A., Gadducci, F., Lafuente, A.L., Vandin, A.:
A conceptual framework for adaptation. In: International Confer-
ence on Fundamental Approaches to Software Engineering, pp.
240-254. Springer (2012)

12. Bures, T., Weyns, D., Berger, C., Biffl, S., Daun, M., Gabor, T., Gar-
lan, D., Gerostathopoulos, 1., Julien, C., Krikava, F., et al.: Software
engineering for smart cyber-physical systems—towards a research
agenda: report on the first international workshop on software engi-
neering for smart CPS. ACM SIGSOFT Softw. Eng. Notes 40(6),
28-32 (2015)

13. Bures, T., Weyns, D., Schmer, B., Tovar, E., Boden, E., Gabor,
T., Gerostathopoulos, 1., Gupta, P., Kang, E., Knauss, A., et al.:
Software engineering for smart cyber-physical systems: challenges
and promising solutions. ACM SIGSOFT Softw. Eng. Notes 42(2),
19-24 (2017)

14. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.:
Self-adaptive software needs quantitative verification at runtime.
Commun. ACM 55(9), 69-77 (2012)

15. Conneau, A., Schwenk, H., Barrault, L., Lecun, Y.: Very Deep
Convolutional Networks for Natural Language Processing. arXiv
preprint arXiv:1606.01781 2 (2016)

16. érepinéek, M., Liu, S.H., Mernik, M.: Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR)
45(3), 35 (2013)

17. De Lemos, R., Giese, H., Miiller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T.,
et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: De Lemos, R., Giese, H., Miiller, HA., Shaw,
M. (eds.) Software Engineering for Self-Adaptive Systems II, pp.
1-32. Springer (2013)

18. Dietterich, T.G., et al.: Ensemble methods in machine learning.
Mult. Classif. Syst. 1857, 1-15 (2000)

19. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for
engineering self-tuning self-adaptive software systems. In: Pro-
ceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM (2010)

20. Engelbrecht, A.P.: Computational Intelligence: An Introduction.
Wiley, Hoboken (2007)

21. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans.
Softw. Eng. 39(2), 276-291 (2013)

22. Gabor, T., Belzner, L., Kiermeier, M., Beck, M.T., Neitz, A.: A
simulation-based architecture for smart cyber-physical systems. In:
2016 IEEE International Conference on Autonomic Computing
(ICAC), pp. 374-379. IEEE (2016)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.01781

476

T. Gabor

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Gabor, T., Kiermeier, M., Sedlmeier, A., Kempter, B., Klein, C.,
Sauer, H., Schmid, R., Wieghardt, J.: Adapting quality assurance to
adaptive systems: the scenario coevolution paradigm. In: Interna-
tional Symposium on Leveraging Applications of Formal Methods,
pp. 137-154. Springer (2018)

Gabor, T., Sedlmeier, A., Kiermeier, M., Phan, T., Henrich, M.,
Pichlmair, M., Kempter, B., Klein, C., Sauer, H., Schmid, R.,
Wieghardt, J.: Scenario co-evolution for reinforcement learning on
a grid-world smart factory domain. In: Proceedings of the Genetic
and Evolutionary Computation Conference. ACM (2019)

Hart, E., Sim, K.: On constructing ensembles for combinatorial
optimisation. Evol. Comput. 26, 1-21 (2017)

Holzinger, A., Biemann, C., Pattichis, C.S., Kell, D.B.: What
Do We Need to Build Explainable Al Systems for the Medical
Domain? arXiv preprint arXiv:1712.09923 (2017)

Holzl, M., Gabor, T.: Reasoning and learning for awareness and
adaptation. In: Wirsing, M., Holzl, M., Koch, N., Mayer, P. (eds.)
Software Engineering for Collective Autonomic Systems, pp. 249—
290. Springer (2015)

Holzl, M., Wirsing, M.: Towards a system model for ensembles. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors,
Open Systems, Biological Systems, pp. 241-261. Springer (2011)
Kephart, J.O., Chess, D.M.: The vision of autonomic computing.
Computer 36(1), 41-50 (2003)

Kiermeier, M., Werner, M., Linnhoff-Popien, C., Sauer, H.,
Wieghardt, J.: Anomaly detection in self-organizing industrial sys-
tems using pathlets. In: 2017 IEEE International Conference on
Industrial Technology (ICIT), pp. 1226-1231. IEEE (2017)
Kruchten, P.: The Rational Unified Process: An Introduction.
Addison-Wesley Professional, Boston (2004)

Nicola, R.D., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach
to autonomic systems programming: the SCEL language. ACM
Trans. Auton. Adaptive Syst. (TAAS) 9(2), 7 (2014)

Nierstrasz, O., Denker, M., Girba, T., Lienhard, A., Rothlisberger,
D.: Change-enabled software systems. In: Wirsing, M ., Banatre,
J.P,,Holzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems
and New Computing Paradigms, pp. 64—79. Springer (2008)
Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson,
G., Medvidovic, N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An
architecture-based approach to self-adaptive software. IEEE Intell.
Syst. Their Appl. 14(3), 54-62 (1999)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal
representations by error propagation. California Univ San Diego
La Jolla Inst for Cognitive Science, Tech. rep. (1985)

@ Springer

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and
research challenges. ACM Trans. Auton. Adaptive Syst. (TAAS)
4, 1-42 (2009)

Schmidhuber, J.: Deep learning in neural networks: an overview.
Neural Netw. 61, 85-117 (2015)

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, 1., Panneershel-
vam, V., Lanctot, M., et al.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484 (2016)
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang,
A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.:
Mastering the game of Go without human knowledge. Nature
550(7676), 354 (2017)

Simonyan, K., Zisserman, A.: Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556 (2014)

Sutton, R.S., Barto, A.G., et al.: Introduction to Reinforcement
Learning, vol. 135. MIT Press, Cambridge (1998)

Wachter, S., Mittelstadt, B., Floridi, L.: Transparent, explainable,
and accountable Al for robotics. Sci. Robot. 2(6), eaan6080 (2017)
Wang, R., Lehman, J., Clune, J., Stanley, K.O.: Paired Open-ended
Trailblazer (Poet): Endlessly Generating Increasingly Complex and
Diverse Learning Environments and Their Solutions. arXiv preprint
arXiv:1901.01753 (2019)

Watkins, C.J., Dayan, P.: Machine learning. Q-learning 8(3—-4),
279-292 (1992)

Weyns, D.: Software engineering of self-adaptive systems: an
organised tour and future challenges In: Handbook of Software
Engineering (2017)

Wirsing, M., Holzl, M., Koch, N., Mayer, P.: Software Engineering
for Collective Autonomic Systems: The ASCENS Approach, vol.
8998. Springer, Berlin (2015)

Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1(1), 67-82 (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1712.09923
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1901.01753

	The scenario coevolution paradigm: adaptive quality assurance for adaptive systems
	Abstract
	1 Introduction
	2 Related work
	3 Formal framework
	3.1 Describing adaptive systems
	3.2 Constructing adaptive systems

	4 Example domain
	4.1 Setup
	4.2 Adaptive system

	5 Implementation of adaptation
	5.1 Adaptation via machine learning
	5.2 Software engineering for machine learning

	6 Core concepts of adaptive software engineering
	7 Scenarios
	7.1 Describing scenarios
	7.2 Constructing scenarios

	8 Example application
	9 Patterns for scenario coevolution
	9.1 Criticality focus
	9.2 Adaptation cool-down
	9.3 Eternal deployment

	10 Conclusion
	Acknowledgements
	References

