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Abstract In our previous paper “A unified approach to systemic risk measures via
acceptance sets” (Mathematical Finance, 2018), we have introduced a general class
of systemic risk measures that allow random allocations to individual banks before
aggregation of their risks. In the present paper, we prove a dual representation of a
particular subclass of such systemic risk measures and the existence and uniqueness
of the optimal allocation related to them. We also introduce an associated utility max-
imisation problem which has the same solution as the minimisation problem associ-
ated to the systemic risk measure. In addition, the optimiser in the dual formulation
provides a risk allocation which is fair from the point of view of the individual finan-
cial institutions. The case with exponential utilities which allows explicit computation
is treated in detail.
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1 Introduction

Consider a vector X = (X1, . . . ,XN) ∈ L0(�,F ,P;RN) of N random variables de-
noting a configuration of risky (financial) factors at a future time T associated to
a system of N financial institutions/banks. One of the first proposals in the frame-
work of risk measures to measure the systemic risk of X, see Chen et al. [16], was to
consider the map

ρ(X) := inf{m ∈R : �(X) + m ∈A}, (1.1)

where � : RN → R is an aggregation rule that aggregates the N -dimensional risk
factors into a univariate risk factor, and A ⊆ L0(�,F ,P;R) is an acceptance set
of real-valued random variables. As within the framework of univariate monetary
risk measures, systemic risk might again be interpreted as the minimal cash amount
that secures the system when it is added to the total aggregated system loss �(X),
given that �(X) allows a monetary loss interpretation. Note, however, that in (1.1),
systemic risk is the minimal capital added to secure the system after aggregating
individual risks. It might be more relevant to measure systemic risk as the minimal
cash amount that secures the aggregated system by adding the capital into the single
institutions before aggregating their individual risks. This way of measuring systemic
risk can be expressed by

ρ(X) := inf

{ N∑
i=1

mi : m = (m1, . . . ,mN) ∈ R
N, �(X + m) ∈ A

}
. (1.2)

Here, the amount mi is added to the financial position Xi of institution i ∈ {1, . . . ,N}
before the corresponding total loss �(X + m) is computed (we refer to Armenti et
al. [3], Biagini et al. [7] and Feinstein et al. [27]).

One of the main novelties of our paper [7] was the possibility of adding to X
not merely a vector m = (m1, . . . ,mN) ∈ R

N of deterministic cash amounts, but
more generally a random vector Y ∈ C for some given class C. In particular, the main
example considered in [7], and studied further in this paper, is given by choosing the
aggregation function

�(x) =
N∑

n=1

un(x
n) (1.3)

for utility functions un, n = 1, . . . ,N , the acceptance set

A = {Z ∈ L1(�,F ,P;R), E[Z] ≥ B}
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for a given constant B , and the class C such that

C ⊆ CR ∩L, where CR :=
{

Y ∈ L0(�,F ,P;RN) :
N∑

n=1

Yn ∈R

}
, (1.4)

where the subspace L ⊆ L0(�,F ,P;RN) will be specified later. Here, the notation∑N
n=1 Yn ∈ R means that

∑N
n=1 Yn is P-a.s. equal to some deterministic constant

in R, even though each single Yn, n = 1, . . . ,N , is a random variable. Under these
assumptions, the systemic risk measure considered in [7] takes the form

ρ(X) := inf

{ N∑
n=1

Yn : Y ∈ C ⊆ CR,E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
(1.5)

and can still be interpreted as the minimal total cash amount
∑N

n=1 Yn ∈R needed to-
day to secure the system by distributing the cash at the future time T among the com-
ponents of the risk vector X. However, while the total capital requirement

∑N
n=1 Yn

is determined today, contrary to (1.2), the individual allocation Y i(ω) to institution
i does not need to be decided today, but in general depends on the scenario ω re-
alised at time T . This total cash amount ρ(X) is computed today through the formula∑N

n=1 ρn(X) = ρ(X), where each ρn(X) ∈ R is the risk allocation of each bank, as
explained in Definition 1.2 below. Thus, one prominent example that can be modelled
by considering random allocations is the default fund of a CCP1 that is liable for any
participating institution. We come back to this mechanism in Sect. 5.

By considering scenario-dependent allocations, we are also taking into account
possible dependencies among the banks, as the budget constraints in (1.5) do not de-
pend only on the marginal distribution of X, as it would happen for deterministic Yn.

Definition 1.1 A scenario-dependent allocation YX = (Y n
X)n=1,...,N ∈ C is called a

systemic optimal allocation for ρ(X) defined in (1.5) if it satisfies ρ(X) = ∑N
n=1 Yn

X
and E[∑N

n=1 un(X
n + Yn

X))] ≥ B .

As two of the main results of the paper,

– we study in Sect. 3 the dual formulation of the systemic risk measure (1.5) as

ρ(X) = max
Q∈D

( N∑
n=1

EQn[−Xn] − αB(Q)

)
, (1.6)

where Q := (Q1, . . . ,QN), the penalty function αB and the domain D are specified
in Sect. 3. In particular, we establish existence and uniqueness of the optimiser
QX ∈D of (1.6).

1A central counterparty clearing house (CCP) is an entity that helps facilitate trading in various European
derivatives and equities markets in order to reduce risk for traders and introduce efficiency and stability
into various financial markets.



516 F. Biagini et al.

– we show in Sect. 4 existence and uniqueness of the systemic optimal allocation YX
for the systemic risk measure (1.5).

We now associate to the risk minimisation problem (1.5) a related utility maximi-
sation problem that plays a central role in this paper, namely

π(X) := sup

{
E

[ N∑
n=1

un(X
n + Yn)

]
: Y ∈ C ⊆ CR,

N∑
n=1

Yn ≤ A

}
. (1.7)

If we interpret
∑N

n=1 un(X
n + Yn) as the aggregated utility of the system after al-

locating Y, then π(X) can be interpreted as the maximal expected utility of the
system over all random allocations Y ∈ C such that the aggregated budget con-
straint

∑N
n=1 Yn ≤ A holds for a given constant A. In the following, we may write

ρ(X) = ρB(X) and π(X) = πA(X) to express the dependence on the minimal level
of expected utility B ∈R and maximal budget level A ∈R, respectively. We shall see
in Sect. 4.1 that B = πA(X) if and only if A = ρB(X), and in these cases, the two
problems πA(X) and ρB(X) have the same unique solution YX. From this, we infer
that once a level ρ(X) of total systemic risk has been determined, then

– the systemic optimal allocation YX for ρ maximises the expected system utility
among all random allocations of total cost less than or equal to ρ(X).

Once the total systemic risk has been identified as ρ(X), the second essential ques-
tion is how to allocate the total risk to the individual institutions.

Definition 1.2 We say that a vector (ρn(X))n=1,...,N ∈ R
N is a systemic risk alloca-

tion of ρ(X) if it fulfils
∑N

n=1 ρn(X) = ρ(X).

The requirement
∑N

n=1 ρn(X) = ρ(X) is known as the “full allocation” property;
see for example Brunnermeier and Cheridito [13]. In the case of deterministic alloca-
tions Y ∈ R

N , i.e., C = R
N , the optimal deterministic YX represents a canonical risk

allocation ρn(X) := Yn
X. For general (random) allocations Y ∈ C ⊆ CR, we no longer

have such a canonical way to determine ρn(X); however, we shall provide evidence
that a good choice is

ρn(X) := EQn
X
[Yn

X] for n = 1, . . . ,N, (1.8)

where QX is the optimiser of the dual problem (1.6). To this end, suppose a proba-
bility vector Q = (Q1, . . . ,QN) is given for the system and consider an alternative
formulation of the systemic utility maximisation problem in terms of the valuation
provided by Q, namely

πQ(X) = π
Q
A (X) := sup

{
E

[ N∑
n=1

un(X
n + Yn)

]
: Y ∈ L,

N∑
n=1

EQn[Yn] ≤ A

}
. (1.9)

Note that in (1.9) (as well as in (1.10) below), the allocation Y belongs to a vector
space L of random variables (introduced later) without requiring that Y ∈ CR (which
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would mean that the componentwise sum is equal to a deterministic quantity). Thus
for πQ(X), we maximise the expected systemic utility among all Y ∈ L satisfying
the budget constraint

∑N
n=1 EQn[Yn] ≤ A. Similarly, we can introduce a systemic

risk measure in terms of the vector Q of probability measures by

ρQ(X) = ρ
Q
B (X) := inf

{ N∑
n=1

EQn[Yn] : Y ∈ L,E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
. (1.10)

For ρQ(X), we thus look for the minimal systemic cost
∑N

n=1 EQn[Yn] among all
Y ∈ L under the acceptability constraint E[∑N

n=1 un(X
n + Yn)] ≥ B .

A priori, ρ and ρQ defined in (1.5) and (1.10) are quite different objects: even if
they both subsume the same systemic budget constraint, ρ is defined only through the
computation of the cash amount

∑N
n=1 Yn ∈R, while in ρQ the risk is defined by cal-

culating the value (or the cost) of the random allocations,
∑N

n=1 EQn[Yn]. A similar
comparison applies to π and πQ.

Remark 1.3 To better understand the above comparison, we make an analogy with
the classical (univariate) utility maximisation from terminal wealth in securities mar-
kets. Let K := {(H.S)T : H admissible}, where (H.S)T is the stochastic integral,
and let U(x) = sup{E [u(x + K)] : K ∈ K} be the utility from the initial wealth
x ∈ R when optimally investing in the securities S adopting admissible strategies
H . In this case, there is no need to introduce a cost operator, as we are investing in
replicable contingent claims having by definition initial value x. On the other hand,
UQ(x) = sup{E[u(x + K)] : EQ[K] ≤ 0} is the optimal utility function when a prob-
ability vector Q is given. A priori, the two problems are of different nature, unless one
shows (see [6]) that for a particular probability measure Qx , the two problems have
the same value and U(x) = UQx (x) = minQ∈M UQ(x), where M is the set of mar-
tingale measures. From the mathematical point of view, once the minimax martingale
measure Qx is determined, UQx (x) is easier to solve than U(x), and the solution to
UQx (x) can then be used to find the solution to U(x). Also for the financial applica-
tion, one may use Qx to compute the fair price (see [21] and [23, Remark 3.2.2]) of
a contingent claim C by computing EQx [C].

In view of the analogy in the above remark, we also prove in this paper that

(i) the optimiser QX = (Q1
X, . . . ,QN

X ) of the dual problem (1.6) satisfies

ρB(X) = ρ
QX
B (X), πA(X) = π

QX
A (X);

(ii) all four problems have the same (unique) solution YX when A := ρB(X);
(iii) QX provides a systemic risk allocation (EQ1

X
[Y 1

X], . . . ,EQN
X
[YN

X ]) with

N∑
n=1

EQXn [Yn
X] = ρB(X); (1.11)
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(iv) and

ρB(X) = max
Q∈D

ρ
Q
B (X) = ρ

QX
B (X),

where the domain D is defined in (3.3) below and replaces, in analogy with
utility maximisation, the set of martingale measures.

Hence ρ
QX
B is a valid alternative to ρB (same value and solution), and this justifies its

use to compute the systemic risk. In addition, (1.11) shows that the operator assigned
by EQX [·] evaluates the risk component Yn

X of the optimal allocation according to

ρB (not only to ρ
QX
B ) and proves that the definition in (1.8) provides indeed a sys-

temic risk allocation for ρ(X). In Sect. 5, we further elaborate on this interpretation,
we study in detail the properties of the systemic risk probability vector QX, and we
provide in particular for the marginal risk contribution the formula

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

= −
N∑

n=1

EQn
X
[V n] for V ∈ L.

We also discuss certain properties inferred from the above results that argue for the
fairness of the systemic risk allocation.

Based on the above exposition, we structure the remaining part of the paper as
follows. In Sect. 2, we introduce the technical setting within Orlicz spaces and the
main assumptions, and we show that our optimisation problems are well posed. In
Sect. 3, we study the dual representation (1.6) of the systemic risk measure. Notably,
existence and uniqueness of the dual optimiser QX are proved in Proposition 3.1; see
also Corollary 4.13 in Sect. 4. In Sect. 4, we deal with existence and uniqueness of
solutions of the primal problems (1.5), (1.7) and (1.9), (1.10). To guarantee existence,
we need to enlarge the environment and consider appropriate spaces of integrable
random variables. In Sect. 5, we derive cash-additivity and risk marginal contribution
properties of the systemic risk measure ρ(X), and fairness properties of the optimal
allocations ρn(X). The case with exponential utilities and grouping of institutions is
treated in detail in Sect. 6, where additional sensitivity and monotonicity properties
are established as well.

We conclude this section with a literature overview on systemic risk. In Craig and
von Peter [20], Boss et al. [12] and Cont et al. [19], one can find empirical studies on
banking networks, while interbank lending has been studied via interacting diffusions
and a mean-field approach in several papers like Fouque and Sun [30], Fouque and
Ichiba [28], Carmona et al. [15], Kley et al. [37], Battiston et al. [5]. Among the many
contributions on systemic risk modelling, we mention the classical contagion model
proposed by Eisenberg and Noe [26], the default model of Gai and Kapadia [33], the
illiquidity cascade models of Gai and Kapadia [32], Hurd et al. [36] and Lee [39], the
asset fire sale cascade model by Cifuentes et al. [18] and Caccioli et al. [14], as well as
the model in Weber and Weske [45] that additionally includes cross-holdings. Further
works on network modelling are Amini et al. [1], Rogers and Veraart [43], Amini
et al. [2], Gleeson et al. [34], Battiston and Caldarelli [4], Detering et al. [24] and
Detering et al. [25]. See also the references therein. For an exhaustive overview on
the literature on systemic risk, we refer the reader to the recent volumes of Hurd [35]
and of Fouque and Langsam [29].
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2 The setting

We now introduce the setting and discuss some fundamental properties of our sys-
temic risk measures. Given a probability space (�,F ,P), we consider the space of
random vectors

L0 := L0(P;RN) := {X = (X1, . . . ,XN) : Xn ∈ L0(�,F ,P;R), n = 1, . . . ,N}.
The measurable space (�,F) is fixed throughout the paper and does not appear in
the notations. Unless we need to specify a different probability, we also suppress P

from the notations and simply write L0(RN). In addition, we sometimes suppress
R

d , d = 1, . . . ,N , in the notation of the vector spaces when the dimension of the
random vector is clear from the context. We assume that L0(RN) is equipped with
the componentwise order relation, i.e., X1 ≥ X2 if Xi

1 ≥ Xi
2 P-a.s. for i = 1, . . . ,N .

When Q = (Q1, . . . ,QN) is a vector of probability measures on (�,F), we
set L1(Q) := {X = (X1, . . . ,XN) : Xn ∈ L1(Qn),n = 1, . . . ,N}. Unless differently
stated, all inequalities between random vectors are meant to be P-a.s. inequalities.

A vector X = (X1, . . . ,XN) ∈ L0 denotes a configuration of risky factors at a
future time T associated to a system of N entities.

2.1 Orlicz setting

We consider systemic risk measures defined on Orlicz spaces; see Rao and Ren [40,
Chap. III, Sect. 3.4 and Chap. IV, Sects. 4.2 and 4.4] for further details on Orlicz
spaces. This presents several advantages. From a mathematical point of view, it is a
more general setting than L∞, but at the same time it simplifies the analysis since
the topology is order-continuous and there are no singular elements in the dual space.
Furthermore, it has been shown by Biagini and Frittelli [9] that the Orlicz setting is
natural to embed utility maximisation problems, as the natural integrability condition
E[u(X)] > −∞ is implied by E[φ(X)] < +∞; see below. Univariate convex risk
measures on Orlicz spaces have been introduced and studied by Cheridito and Li [17]
and Biagini and Frittelli [10].

Let u : R → R be a concave and increasing function with limx→−∞ u(x)
x

= +∞.
Consider φ(x) := −u(−|x|) + u(0). Then φ : R → [0,+∞) is a strict Young func-
tion, meaning that it is finite-valued, even and convex on R with φ(0) = 0 and
limx→+∞ φ(x)

x
= +∞. The Orlicz space Lφ and Orlicz heart Mφ are respectively

defined by

Lφ := {X ∈ L0(R) : E[φ(αX)] < +∞ for some α > 0},
Mφ := {X ∈ L0(R) : E[φ(αX)] < +∞ for all α > 0},

and they are Banach spaces when endowed with the Luxemburg norm. The topolog-
ical dual of Mφ is the Orlicz space Lφ∗

, where the convex conjugate φ∗ of φ defined
by φ∗(y) := supx∈R(xy − φ(x)), y ∈ R, is also a strict Young function. Note that

E[u(X)] > −∞ if E[φ(X)] < +∞. (2.1)
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Remark 2.1 It is well known that L∞(P;R) ⊆ Mφ ⊆ Lφ ⊆ L1(P;R). In addition,
from the Fenchel inequality xy ≤ φ(x) + φ∗(y), we obtain for any probability mea-
sure Q 
 P that

(α|X|)
(

λ
dQ

dP

)
≤ φ(α|X|) + φ∗

(
λ

dQ

dP

)
,

and we immediately deduce that dQ
dP

∈ Lφ∗
implies Lφ ⊆ L1(Q;R).

Given utility functions u1, . . . , uN : R → R satisfying the above conditions with
associated Young functions φ1, . . . , φN , we define

L = M� := Mφ1 × · · · × MφN , L� := Lφ1 × · · · × LφN . (2.2)

2.2 Assumptions and some properties of ρ

We consider systemic risk measures ρ : M� → [−∞,+∞] with

ρ(X) := inf

{ N∑
n=1

Yn : Y ∈ C ⊆ CR,E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
(2.3)

as in (1.5), where the notation E[∑N
n=1 un(X

n +Yn)] ≥ B also implicitly means that∑N
n=1 un(X

n + Yn) ∈ L1(P) and the linear space CR was introduced in (1.4). Note
that there is no loss of generality in assuming un(0) = 0 (simply replace B with
B − ∑N

n=1 un(0)).
The following are standing assumptions for the rest of the paper.

Assumption 2.2 1) C0 ⊆ CR and C = C0 ∩ M� is a convex cone which satisfies
R

N ⊆ C ⊆ CR.
2) For all n = 1, . . . ,N , un : R → R is increasing, strictly concave, differentiable

and satisfies the Inada conditions

u′
n(−∞) := lim

x→−∞u′
n(x) = +∞, u′

n(+∞) := lim
x→+∞u′

n(x) = 0.

3) B < �(+∞), i.e., there exists M ∈ R
N such that

∑N
n=1 un(M

n) ≥ B .
4) For all n = 1, . . . ,N , it holds for any probability measure Q 
 P that

E

[
vn

(
dQ

dP

)]
< ∞ if and only if E

[
vn

(
λ

dQ

dP

)]
< ∞, ∀λ > 0,

where vn(y) := supx∈R(un(x) − xy).

Also, from the Fenchel inequality un(X) ≤ X
dQ
dP

+ vn(
dQ
dP

) P-a.s., we immedi-

ately deduce that if X ∈ L1(Q) and E[vn(
dQ
dP

)] < ∞ for some probability measure
Q 
 P, then E[un(X)] < +∞. Some further useful properties of vn are collected in
Lemma A.5.
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Item 4) in Assumption 2.2 is related to the reasonable asymptotic elasticity condi-
tion on utility functions, which was introduced by Schachermayer [44]. The assump-
tion in 4), even though quite weak (see [8, Sect. 2.2]), is fundamental to guarantee the
existence of solutions to classical utility maximisation problems (see [44] and [8]).
In this paper, it is necessary in Sect. A.3 and for the results of Sect. 4.

Remark 2.3 Note that the duality results presented in Propositions 3.1 and 3.3 below
hold true even under the following weaker assumptions on the utility functions: For
all n = 1, . . . ,N , un is increasing, concave and limx→−∞ un(x)

x
= +∞.

The domain of ρ is defined by dom(ρ) := {X ∈ M� : ρ(X) < +∞}. The proof
of the following proposition, which exploits the behaviour of un at −∞, is given in
Appendix A.1.

Proposition 2.4 (a) For all X ∈ M�, we have ρ(X) > −∞. Moreover, the map
ρ : M� → R∪{+∞} defined in (2.3) is finite-valued, monotone decreasing, convex,
continuous and subdifferentiable on the Orlicz heart M� = dom(ρ).

(b) Furthermore, we have for X ∈ dom(ρ) that

ρ(X) = ρ=(X) := inf

{ N∑
n=1

Yn : Y ∈ C, E

[ N∑
n=1

un(X
n + Yn)

]
= B

}
.

If there exists an optimal allocation YX = (Y 1
X, . . . , YN

X ) ∈ C0 ∩ M� of ρ(X), then it
is unique.

We complete this subsection by introducing one relevant example for the set of
admissible random elements, which we denote by C(n).

Definition 2.5 For h ∈ {1, . . . ,N}, let n := (n1, . . . , nh) ∈N
h satisfy nm−1 < nm for

m = 1, . . . , h, n0 := 0 and nh := N . Set Im := {nm−1 + 1, . . . , nm} for m = 1, . . . , h.
We now introduce the family of allocations C(n) = C(n)

0 ∩ M�, where

C(n)
0 =

{
Y ∈ L0(RN) : ∃ d = (d1, . . . , dh) ∈R

h with

∑
i∈Im

Y i = dm for m = 1, . . . , h

}
⊆ CR. (2.4)

Definition 2.5 models a cluster C = (C1, . . . ,Ch) of financial institutions which is
a partition of {X1, . . . ,XN }. The constraint on Y is that the components of Y must
sum up to a real number in each element Ci of the cluster, i.e.,

∑
j :Xj ∈Ci

Y j ∈R.

For a given n := (n1, . . . , nh), the values (d1, . . . , dh) may change, but the number
of elements in each of the h groups Im is fixed by n. It is then easily seen that C(n) is
a linear space containing R

N and closed with respect to convergence in probability.
We point out that the family C(n) admits two extreme cases:
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(i) The strongest restriction occurs when h = N , i.e., we consider exactly N

groups, and in this case C(n) = R
N corresponds to the deterministic case.

(ii) On the opposite side, we can have only one group, h = 1, and C(n) = CR ∩M�

is the largest possible class corresponding to an arbitrary random injection Y ∈ M�

with the only constraint
∑N

n=1 Yn ∈ R.

3 Dual representation of ρ

We now investigate the dual representation of systemic risk measures of the form
(2.3). When Z ∈ M� and ξ ∈ L�∗

, we set E[ξZ] := ∑N
n=1 E[ξnZn], and for

dQ
dP

∈ L�∗
+ , EQ[Z] = ∑N

n=1 EQn[Zn]. We frequently identify the density dQ
dP

with the
associated probability measure Q 
 P.

Proposition 3.1 For any X ∈ M�,

ρB(X) = max
Q∈D

( N∑
n=1

EQn[−Xn] − αB(Q)

)
, (3.1)

where the penalty function is given by

αB(Q) := sup
Z∈A

N∑
n=1

EQn[−Zn], (3.2)

with A := {Z ∈ M� : ∑N
n=1 E[un(Z

n)] ≥ B} and

D := dom(αB) ∩
{

dQ
dP

∈ L�∗
+ : Qn[�] = 1 for all n and

N∑
n=1

(EQn[Yn] − Yn) ≤ 0 for all Y ∈ C0 ∩ M�

}
,

(3.3)

where dom(αB) := {Q = (Q1, . . . ,QN) : Qn 
 P for all n and αB(Q) < +∞}.
(i) Suppose that for some i, j ∈ {1, . . . ,N}, i �= j , we have ±(ei1A − ej 1A) ∈ C

for all A ∈ F . Then

D = dom(αB) ∩
{

dQ
dP

∈ L�∗
+ : Qn[�] = 1 for all n,Qi = Qj and

N∑
n=1

(EQn[Yn] − Yn) ≤ 0 for all Y ∈ C
}
.

(ii) Suppose that ±(ei1A − ej 1A) ∈ C for all i, j and all A ∈F . Then

D = dom(αB) ∩
{

dQ
dP

∈ L�∗
+ : Q1[�] = 1 and Qn = Q1 for all n

}
.
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Proof The dual representation (3.1) is a consequence of Proposition 2.4, Theo-
rem A.2 and Propositions 3.9 and 3.11 in [31], taking into consideration that C is
a convex cone, the dual space of the Orlicz heart M� is the Orlicz space L�∗

and
M� = dom(ρ). Note that by Theorem A.2, the dual elements ξ ∈ L�∗

+ are positive,
but a priori not normalised. However, we get E[ξn] = 1 by taking Y = ±ej ∈ R

N

and using
∑N

n=1(ξ
n(Y n) − Yn) ≤ 0 for all Y ∈ C, so that ξj (1) − 1 ≤ 0 and

ξj (−1) + 1 ≤ 0 imply ξj (1) = 1. This shows the form of the domain D in (3.3).
(i) Take Y := ei1A − ej 1A ∈ C. From

∑N
n=1(EQn[Yn] − Yn) ≤ 0, we obtain

Qi[A] − 1A − Qj [A] + 1A ≤ 0, i.e., Qi[A] − Qj [A] ≤ 0 and similarly taking
Y := −ei1A + ej 1A ∈ C, we get Qj [A] − Qi[A] ≤ 0.

(ii) From (i), we obtain Qi = Qj . In addition, as
∑N

n=1 Yn ∈R, we get

N∑
n=1

(EQ[Yn] − Yn) = EQ

[ N∑
n=1

Yn

]
−

N∑
n=1

Yn = 0. �

Proposition 3.1 guarantees the existence of a maximiser QX to the dual problem
(3.1) and that αB(QX) < +∞. Uniqueness is proved in Corollary 4.13 below.

Definition 3.2 Fix any X ∈ M�. A solution of the dual problem (3.1) is a vector
QX = (Q1

X, . . . ,QN
X ) of probability measures verifying dQX

dP
∈D and

ρB(X) =
N∑

n=1

EQn
X
[−Xn] − αB(QX). (3.4)

A vector Q of probability measures having density in D could be viewed, in
the systemic N -dimensional one-period setting, as the counterpart of the notion
of (P-absolutely continuous) martingale measures. Indeed, because Y ∈ C0 ⊆ CR,∑N

n=1 Yn ∈ R is the total amount to be allocated to the N institutions, and then the
total cost or value

∑N
n=1 EQn[Yn] should at most be equal to

∑N
n=1 Yn, for any “fair”

valuation operator EQ[·], which is the case if dQ
dP

∈D.

There exists a simple relation among ρB , ρ
Q
B and αB(Q) defined in (2.3), (1.10)

and (3.2), respectively.

Proposition 3.3 We have

ρ
Q
B (X) = −

N∑
n=1

EQn[Xn] − αB(Q) (3.5)

and

ρB(X) = max
dQ
dP

∈D
ρ

Q
B (X) = ρ

QX
B (X), (3.6)

where QX is a solution of the dual problem (3.1).
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Proof We have

−αB(Q) = inf

{ N∑
n=1

EQn[Zn] : Z ∈ M� and
N∑

n=1

E[un(Z
n)] ≥ B

}

= inf

{ N∑
n=1

EQn[Xn + Yn] : Y ∈ M� and
N∑

n=1

E[un(X
n + Yn)] ≥ B

}

=
N∑

n=1

EQn[Xn] + ρ
Q
B (X),

which proves (3.5). Then from (3.5) and (3.4), we deduce that

ρ
QX
B (X) = −

N∑
n=1

EQn
X
[Xn] − αB(QX) = ρB(X),

and from (3.1) and (3.5), we get ρB(X) = maxQ∈D ρ
Q
B (X). �

Proposition 3.4 If αB(Q) < +∞, the penalty function in (3.2) can be written as

αB(Q) := sup
Z∈A

N∑
n=1

EQn[−Zn] = inf
λ>0

(
− 1

λ
B + 1

λ

N∑
n=1

E

[
vn

(
λ

dQn

dP

)])
, (3.7)

and E[vn(λ
dQn

dP
)] < ∞ for all n and all λ > 0. In addition, the infimum is attained in

(3.7), i.e.,

αB (Q) =
N∑

n=1

E

[
dQn

dP
v′
n

(
λ∗ dQn

dP

)]
, (3.8)

where λ∗ > 0 is the unique solution of the equation2

−B +
N∑

n=1

E

[
vn

(
λ

dQn

dP

)]
− λ

N∑
n=1

E

[
dQn

dP
v′
n

(
λ

dQn

dP

)]
= 0. (3.9)

Proof See Appendix A.2. �

Example 3.5 Consider the grouping of Definition 2.5. As C(n) is a linear space con-
taining R

N , the dual representation (3.1) applies. In addition, we have in each group
that ±(ei1A − ej 1A) ∈ C(n) for all i, j in the same group and for all A ∈ F . Therefore
in each group, the components Qi , i ∈ Im, of the dual elements are all the same, i.e.,

2Note that λ∗ will depend on B , (un)n=1,...,N and (
dQn
dP

)n=1,...,N .
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Qi = Qj for all i, j ∈ Im, and the representation (3.1) becomes

ρB(X) = max
Q∈D

( h∑
m=1

∑
k∈Im

(EQm [−Xk]) − αB(Q)

)

= max
Q∈D

( h∑
m=1

EQm[−Xm] − αB(Q)

)
, (3.10)

with

D := dom(αB) ∩
{

dQ
dP

∈ L�∗
+ : Qi = Qj for all i, j ∈ Im,Qi[�] = 1

}
(3.11)

and Xm := ∑
k∈Im

Xk . Indeed,

N∑
n=1

(EQn [Yn] − Yn) =
h∑

m=1

∑
k∈Im

(EQm [Y k] − Y k)

=
h∑

m=1

(
EQm

[ ∑
k∈Im

Y k

]
−

∑
k∈Im

Y k

)
= 0,

as
∑

k∈Im
Y k = dm ∈ R. If we have only one single group, all components of a dual

element Q ∈ D are the same. If Q = (Q1, . . . ,Qn)n=1,...,N is in D defined in (3.11),
then (EQ1 [Y 1

X], . . . ,EQN
[YN

X ]) is a systemic risk allocation as in Definition 1.2, i.e.,

N∑
n=1

EQn[Yn
X] =

h∑
m=1

∑
k∈Im

EQm[Y k
X] =

h∑
m=1

EQm

[ ∑
k∈Im

Y k
X

]
=

h∑
m=1

dm = ρ(X). (3.12)

Example 3.6 Consider un : R → R, un(x) = −e−αnx/αn, αn > 0, for each n and let
B < 0. Then v′

n(y) = 1
αn

lny. From the first order condition (3.9), we obtain that the

minimiser is λ∗ = −B
β

with β := ∑N
n=1

1
αn

. Therefore (3.8) gives

αB(Q) =
N∑

n=1

E

[
dQn

dP
v′
n

(
λ∗ dQn

dP

)]
=

N∑
n=1

1

αn

(
H(Qn|P) + ln

(
− B

β

))
, (3.13)

where H(Qn|P) := E[ dQn

dP
ln dQn

dP
] is the relative entropy.

4 Existence of solutions

In this section, we deal with existence and uniqueness of optimal allocations for
ρB(X) and the other related primal optimisation problems introduced in Sect. 1.
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Throughout this section, we assume X ∈ M� and that Q = (Q1, . . . ,QN) satis-
fies Qn 
 P, dQ

dP
∈ L�∗

and αB(Q) < +∞, or equivalently ρ
Q
B (X) > −∞. Recall

from Proposition 3.4 that this implies E[vn(λ
dQn

dP
)] < +∞ for all n and all λ > 0.

Set

L1(P,Q) := (
L1(P;RN) ∩ L1(Q;RN)

) ⊇ L� ⊇ M�, (4.1)

where the inclusions follow from Remark 2.1 and dQ
dP

∈ L�∗
.

Without loss of generality, we may assume that ui(0) = 0, 1 ≤ i ≤ N , and observe
that then

ui(x) = ui(x
+) + ui(−x−). (4.2)

When the utility functions un are of exponential type, the Orlicz heart M� is suffi-
ciently large and contains the optimal allocation YX to ρB(X); see Sect. 6. This of
course also happens for general utility functions on a finite probability space.

As shown in Sect. 4.3, in general, we cannot expect to find the solution YQ for

the problem ρ
Q
B (X) in the space M�, but only in the larger space L1(Q), and this

motivates the introduction of several extended problems. Let B ∈ R and define

ρ̃
Q
B (X) := inf

{ N∑
n=1

EQn[Yn] : Y ∈ L1(P,Q),E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
,

ρ̂
Q
B (X) := inf

{ N∑
n=1

EQn[Yn] : Y ∈ L1(Q),E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
,

ρ̃B(X) := inf

{ N∑
n=1

Yn : Y ∈ C0 ∩ L1(P,QX),E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
.

Analogously, we define π̃
Q
A (X), π̂

Q
A (X) and π̃A(X) for A ∈ R by using the optimi-

sation (1.9). We show in (4.8) and (4.9) below that these extensions from M� to
integrable random variables do not change the optimal values.

In order to prove the existence of an optimal allocation for ρ̃B(X), we proceed in
several steps. In Theorem 4.10, we first prove the existence of a solution ŶQ ∈ L1(Q)

for ρ̂
Q
B (X). Then in Proposition 4.11, we show that when it exists, the optimiser to

ρB(X) or to ρ̃B(X) coincides with ŶQX ∈ L1(QX). The next key step is to show the
existence of Y ∈ L1(P) which is, as specified in Theorem 4.14, a candidate solution
to the extended problem and then to prove that Y ∈ L1(QX). In a final step (see
Theorem 4.19, Proposition 4.22 and Corollary 4.23), we prove that ρB(X) = ρ̃B(X)

and that the above Y ∈ L1(P,QX), hereafter denoted with ỸX, is an optimiser of the
extended problem ρ̃B(X) and hence coincides with ŶQX .

4.1 On ρB(X) and πA(X)

Recall that under Assumption 2.2, C is a convex cone so that if Y ∈ C, then Y + δ ∈ C
for every deterministic δ ∈R

N . Note that ρ
Q
B (X) < +∞ and π

Q
A (X) > −∞.
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Proposition 4.1 (a) B = πA(X) if and only if A = ρB(X).
(b) If B = π̃A(X), then A = ρ̃B(X).
(c) If A = ρB(X) and there exists a solution to one of the two problems πA(X) or

ρB(X), then it is the unique solution to both problems.

Proof (a) “⇐” Let A = ρB(X) and suppose first that πA(X) > B . Then there exists
Ỹ ∈ C0 ∩ M� such that

∑N
n=1 Ỹ n ≤ A and E[∑N

n=1 un(X
n + Ỹ n)] > B . The conti-

nuity of un and E[un(Z
n)] > −∞ for all Z ∈ M� imply that there exist ε > 0 and

Ŷ := Ỹ − ε1 ∈ C0 ∩ M� such that E[∑N
n=1 un(X

n + Ŷ n)] ≥ B and
∑N

n=1 Ŷ n < A.
This is in contradiction to A = ρB(X).

Suppose now that πA(X) < B . Then there must exist δ > 0 such that we have
E[∑N

n=1 un(X
n + Yn)] ≤ B − δ for all Y ∈ C0 ∩ M� such that

∑N
n=1 Yn ≤ A. As

A = ρB(X), for all ε > 0, there exists Yε ∈ C0 ∩M� such that
∑N

n=1 Yn
ε ≤ A+ ε and

E[∑N
n=1 un(X

n + Yn
ε )] ≥ B . For any η ≥ ε ≥ ∑N

n=1 Yn
ε − A, we get

N∑
n=1

(
Yn

ε − η

N

)
≤ A + ε − η ≤ A.

Due to E[un(Z
n)] > −∞ for all Z ∈ M� and the continuity of un, we may select

ε > 0 and η ≥ ε small enough so that E[∑N
n=1 un(X

n + Yn
ε − η

N
)] > B − δ. As

Ŷ := (Y n
ε − η

N
)n ∈ C0 ∩ M�, we obtain a contradiction.

“⇒” Let B = πA(X) and suppose first that ρB(X) < A. Then there must ex-
ist Ỹ ∈ C0 ∩ M� such that E[∑N

n=1 un(X
n + Ỹ n)] ≥ B and

∑N
n=1 Ỹ n < A. Then

there exist ε > 0 and Ŷ := Ỹ + ε1 ∈ C0 ∩ M� such that
∑N

n=1 Ŷ n ≤ A and
E[∑N

n=1 un(X
n + Ŷ n)] > B . This is in contradiction to B = πA(X).

Suppose now that ρB(X) > A. Then there must exist δ > 0 such that we have∑N
n=1 Yn ≥ A + δ for all Y ∈ C0 ∩ M� such that E[∑N

n=1 un(X
n + Yn)] ≥ B . As

B = πA(X), for all ε > 0, there exists Yε ∈ C0 ∩ M� such that
∑N

n=1 Yn
ε ≤ A and

E[∑N
n=1 un(X

n + Yn
ε )] > B − ε. Define

ηε := inf

{
a > 0 : E

[ N∑
n=1

un

(
Xn + Yn

ε + a

N

)]
≥ B

}

and note that ηε ↓ 0 if ε ↓ 0. Take ε > 0 such that ηε < δ. Then for any
0 < β < δ − ηε , we have

∑N
n=1(Y

n
ε + ηε+β

N
) ≤ A + ηε + β < A + δ as well as

E[∑N
n=1 un(X

n + Yn
ε + ηε+β

N
)] ≥ B . As (Y n

ε + ηε+β
N

) ∈ C0 ∩ M�, we obtain a con-
tradiction.

(b) This follows in the same way as “⇒” in (a), replacing M� with L1(P,QX).
(c) Suppose there exists Y ∈ C0 ∩ M� which is a solution to problem (1.5). As

A := ρB(X), then
∑N

n=1 Yn = A and the constraint in problem (1.7) is fulfilled for
Y. By (a), B = πA(X) ≥ E[∑N

n=1 un(X
n + Yn)] ≥ B and we deduce that Y is a

solution to problem (1.7). Suppose there exists Y ∈ C0 ∩ M� which is a solution
to problem (1.7) and set B := πA(X). Then E[∑N

n=1 un(X
n + Yn)] = B and the

constraint in problem (1.5) is fulfilled for Y. By (a), A = ρB(X) ≤ ∑N
n=1 Yn ≤ A
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and we deduce that Y is a solution to problem (1.5). As ρB(X) admits at most one
solution by Proposition 2.4, the same must be true for πA(X). �

Proposition 4.2 (a) B = π
Q
A (X) if and only if A = ρ

Q
B (X).

(b) If B = π̃
Q
A (X), then A = ρ̃

Q
B (X). Similarly, if B = π̂

Q
A (X), then A = ρ̂

Q
B (X).

(c) If A = ρ
Q
B (X) and B = π

Q
A (X) and there exists a solution to one of the two

problems π
Q
A (X) or ρ

Q
B (X), then it is the unique solution to both problems.

(d) In (c), we may replace π
Q
A , ρ

Q
B with π̃

Q
A , ρ̃

Q
B or with π̂

Q
A , ρ̂

Q
B .

Proof Use step by step the same arguments as in the proof of Proposition 4.1, re-
placing

∑N
n=1 Yn with

∑N
n=1 EQn[Yn]. The uniqueness in (c) is a consequence of

Remark 4.9. �

When using Q = QX, we have already proved that ρB(X) = ρ
QX
B (X). Similarly:

Corollary 4.3 Let A := ρB(X). Then πA(X) = π
QX
A (X).

Proof As A = ρB(X) ∈ R, Proposition 3.3 gives A = ρB(X) = ρ
QX
B (X). By Propo-

sition 4.1 (a), respectively Proposition 4.2 (a), we deduce that B = πA(X), resp.
B = π

QX
A (X), hence πA(X) = π

QX
A (X). �

4.2 On the optimal values

The main contribution of this section is to show that the optimal values coincide, see
(4.8) and (4.9) below, and that, see (4.11) below,

π
Q
A (X) = max∑N

n=1 an=A

N∑
n=1

Un(a
n), A ∈R,

where

Un(a
n) := sup{E[un(X

n + W)] : W ∈ Mφn,EQn[W ] ≤ an} (4.3)

and a ∈ R
N . In the sequel, we write U

Qn
n (an) when we need to emphasise the

dependence on Qn. Note that E[un(X
n + W)] ≤ un(E[Xn + W ]) < +∞ for

all Xn,W ∈ Mφn ⊆ L1(P;R). The conditions Xn,W ∈ Mφn imply that we have
E[un(X

n + W)] > −∞, from which it follows that Un(a
n) > −∞. As dQ

dP
∈ L�∗

,
W ∈ Mφn implies W ∈ L1(Qn) and the problem (4.3) is well posed. Due to the
monotonicity and concavity of un, the function Un is monotone increasing, concave
and continuous on R and we may replace in its definition the inequality with an
equality sign. However, in general, the solution to (4.3) only exists on a larger do-
main, as suggested by the well-known result reported in Proposition A.6. This leads
us to introduce the auxiliary problems

Ûn(a
n) := sup{E[un(X

n + W)] : W ∈ L1(Qn),EQn[W ] ≤ an},
Ũn(a

n) := sup{E[un(X
n + W)] : W ∈ L1(P,Qn),EQn [W ] ≤ an},
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where L1(P,Qn) is defined as in (4.1). The following proposition is a multi-dimen-
sional version of well-known utility maximisation problems. Its proof is based on the
extended Namioka–Klee theorem and deferred to Appendix A.4.

Proposition 4.4 We have that

Un(a
n) = Ũn(a

n) = Ûn(a
n) < +∞, (4.4)

if Un(a
n) < un(+∞), then Un : R →R is differentiable,

Un(−∞) = −∞,U ′
n > 0,U ′

n(−∞) = +∞,U ′
n(+∞) = 0, (4.5)

and

Un(a
n) = inf

λ>0

(
λ(EQn[Xn] + an) +E

[
vn

(
λ

dQn

dP

)])
. (4.6)

We now show that the optimal values are the same.

Lemma 4.5 Let A := ρ
Q
B (X) and π

Q
A (X) < +∞. Then

π
Q
A (X) = sup

{
E

[ N∑
n=1

un(X
n + Yn)

]
: Y ∈ M�,

N∑
n=1

EQn[Yn] = A

}

=: πQ,=
A (X) (4.7)

and

π
Q
A (X) = sup∑N

n=1 an=A

N∑
n=1

Un(a
n) = π̃

Q
A (X) = π̂

Q
A (X), (4.8)

ρ
Q
B (X) = ρ̃

Q
B (X) = ρ̂

Q
B (X). (4.9)

Proof Clearly, +∞ > π
Q
A (X) ≥ π

Q,=
A (X). By way of contradiction, suppose that

π
Q
A (X) > π

Q,=
A (X) and take ε > 0 such that π

Q
A (X) − ε > π

Q,=
A (X). By the def-

inition of π
Q
A (X), there exists Y ∈ M� satisfying

∑N
n=1 EQn[Yn] < A as well

as E[∑N
n=1 un(X

n + Yn)] > π
Q
A (X) − ε. Take Ỹ n = Yn + δ, δ ∈ R+, such that∑N

n=1 EQn[Ỹ n] = A. Then

π
Q,=
A (X) ≥ E

[ N∑
n=1

un(X
n + Ỹ n)

]
≥ E

[ N∑
n=1

un(X
n + Yn)

]

> π
Q
A (X) − ε > π

Q,=
A (X),

which is a contradiction. Hence (4.7) holds true. Note that

M� = {Y = a + Z : a ∈R
N and Z ∈ M� such that EQn[Zn] = 0 for each n}.
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Indeed, take Y ∈ M� and let an := EQn [Yn] ∈ R and Zn := Yn − an ∈ Mφn . Then

π
Q
A (X) = sup

{
E

[ N∑
n=1

un(X
n + Yn)

]
: Y ∈ M�,

N∑
n=1

EQn[Yn] = A

}

= sup∑N
n=1 an=A,Zn∈Mφn,EQn [Zn]=0∀n

E

[ N∑
n=1

un(X
n + an + Zn)

]

= sup∑N
n=1 an=A

N∑
n=1

sup
Yn∈Mφn,EQn [Yn]=an

E[un(X
n + Yn)]

= sup∑N
n=1 an=A

N∑
n=1

Un(a
n), (4.10)

which shows the first equality in (4.8). Then π
Q
A (X) = π̃

Q
A (X) = π̂

Q
A (X) are con-

sequences of (4.4) and the decompositions analogous to the one just obtained for
π

Q
A (X) in (4.10). If A := ρ

Q
B (X) > −∞, then B = π

Q
A (X) by Proposition 4.2 (a).

Hence B = π
Q
A (X) = π̃

Q
A (X) = π̂

Q
A (X), and from Proposition 4.2 (b), we obtain

A := ρ̃
Q
B (X) = ρ̂

Q
B (X), hence (4.9). �

Proposition 4.6 Let A := ρ
Q
B (X) and π

Q
A (X)<+∞. There exists a solution a∗∈ R

N

to problem (4.8), namely

π
Q
A (X) = sup

a∈RN with
∑N

n=1 an=A

N∑
n=1

Un(a
n) =

N∑
n=1

Un(a
n∗ ) and

N∑
n=1

an∗ = A. (4.11)

Proof Fix δ > 0 and let am = (a1
m, . . . , aN

m )m∈N be an approximating sequence for

the supremum in (4.11). Then
∑N

n=1 Un(a
n
m) ≥ π

Q
A (X) − δ =: C and

∑N
n=1 an

m = A

for large enough m. Then (4.11) is a consequence of the continuity of Un and of
Lemma 4.7 below, which guarantees that am belongs to a compact set in R

N . �

Lemma 4.7 Set K := {a ∈ R
N : ∑N

n=1 an ≤ A,
∑N

n=1 Un(a
n) ≥ B} for arbitrary

constants A, B ∈ R. Then K is a bounded closed set in R
N .

Proof See Appendix A.4. �

We now turn to the uniqueness of the solution to problem (3.2). The proof is in
Appendix A.4 and uses the same arguments as in the proof of Proposition 2.4.

Lemma 4.8 The penalty function can be written as

αB(Q) = sup

{ N∑
n=1

EQn[−Zn] : Z ∈ M�,

N∑
n=1

E[un(Z
n)] = B

}

= sup

{ N∑
n=1

EQn[−Zn] : Z ∈ L1(P,Q),E

[ N∑
n=1

un(Z
n)

]
≥ B

}
, (4.12)
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and there exists at most one Z ∈ L1(P,Q) satisfying

αB(Q) =
N∑

n=1

EQn[−Zn] and
N∑

n=1

E[un(Z
n)] ≥ B. (4.13)

Remark 4.9 From (4.9) and (3.5), we have

ρ̂
Q
B (X) = ρ̃

Q
B (X) = ρ

Q
B (X) = −

N∑
n=1

EQn[Xn] − αB(Q).

Hence with a proof similar to the one of Lemma 4.8, we may replace the inequality
with an equality sign in the budget constraint in the definition of ρ

Q
B (X), ρ̃

Q
B (X) and

ρ̂
Q
B (X), and show the uniqueness of the optimiser Y in ρ

Q
B (X), ρ̃

Q
B (X) and ρ̂

Q
B (X).

4.3 On the solution of ρ̂Q and comparison of solutions

Theorem 4.10 Suppose αB(Q) < +∞. Consider the random vector ŶQ given by

Ŷ n
Q := −Xn − v′

n

(
λ∗ dQn

dP

)
,

where λ∗ is the unique solution to (3.9). Then Ŷ n
Q ∈ L1(Qn), un(X

n + Ŷ n
Q) ∈ L1(P),

E[∑N
n=1 un(X

n + Ŷ n
Q)] = B and

ρ
Q
B (X) = inf

{ N∑
n=1

EQn[Yn] : Y ∈ M�,E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}

=
N∑

n=1

EQn[Ŷ n
Q] (4.14)

= min

{ N∑
n=1

EQn[Yn] : Y ∈ L1(Q),E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}

= ρ̂
Q
B (X), (4.15)

so that ŶQ is the solution for ρ̂
Q
B (X).

Proof Note that ρ
Q
B (X) > −∞ as αB(Q) < +∞. The integrability conditions hold

thanks to the results stated in Appendix A.3. From (3.5) and the expression (3.8) for
the penalty, we compute

ρ
Q
B (X) = −

N∑
n=1

EQn[Xn] − αB(Q)

=
N∑

n=1

EQn

[
−Xn − v′

n

(
λ∗ dQn

dP

)]
=

N∑
n=1

EQn[Ŷ n
Q].
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We show that Ŷ n
Q satisfies the budget constraint

N∑
n=1

E[un(X
n + Ŷ n

Q)] =
N∑

n=1

E

[
un

(
− v′

n

(
λ∗ dQn

dP

))]

=
N∑

n=1

E

[
vn

(
λ∗ dQn

dP

)]
− λ∗

N∑
n=1

EQn

[
v′
n

(
λ∗ dQn

dP

)]

= B

due to u(−v′(y)) = v(y) − yv′(y) by Lemma A.5 and (3.9). Finally, from (4.9), it
follows that ρ

Q
B (X) = ρ̂

Q
B (X), and Remark 4.9 implies uniqueness. �

When solutions to both problems ρB(X) and ρ
QX
B (X) exist, they coincide.

Proposition 4.11 Let YX ∈ C0 ∩ M� be the optimal allocation for ρB(X) and QX a
solution to the dual problem (3.1). Then YX = ŶQX , i.e.,

Yn
X = Ŷ n

QX
:= −Xn − v′

n

(
λ∗ dQn

X

dP

)
.

Proof Note that YX satisfies

E

[ N∑
n=1

un(X
n + Yn

X)

]
≥ B, (4.16)

N∑
n=1

Yn
X = ρB(X), (4.17)

N∑
n=1

EQn
X
[Yn

X] ≤
N∑

n=1

Yn
X, (4.18)

as YX ∈ C and QX ∈D. From (4.14), (3.5), (3.4) and (4.17), we deduce that

N∑
n=1

EQn
X
[Ŷ n

QX
] = ρ

QX
B (X) = −

N∑
n=1

EQn
X
[Xn] − αB(QX)

= ρB(X) =
N∑

n=1

Yn
X. (4.19)

As YX satisfies (4.16), the definition of ρ
QX
B (X) gives

N∑
n=1

Yn
X = ρB(X) = ρ

QX
B (X) ≤

N∑
n=1

EQn
X
[Yn

X],
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which shows together with (4.18) that

N∑
n=1

Yn
X =

N∑
n=1

EQn
X
[Yn

X]. (4.20)

From (4.19) and (4.20), we then deduce that

αB(QX) = −
N∑

n=1

EQn
X
[Xn + Ŷ n

QX
],

αB(QX) = −
N∑

n=1

(EQn
X
[Xn] + Yn

X) = −
N∑

n=1

EQn
X
[Xn + Yn

X].

As both X + YX and X + ŶQX satisfy the budget constraints associated to αB(QX)

in (4.13), this implies that αB(QX) is attained by both X + YX and X + ŶQX . The
uniqueness shown in Lemma 4.8 allows us to conclude that YX = ŶQX . �

Remark 4.12 Theorem 4.19 below proves the existence of ỸX ∈ C0 ∩ L1(P,QX)

satisfying (4.16)–(4.18) with ỸX instead of YX. Then the above proof shows that

ỸX = ŶQX . Similarly, Corollary 4.13 below holds for such ỸX ∈ C0 ∩ L1(P,QX).

We now show that the maximiser of the dual representation is unique.

Corollary 4.13 Suppose there exists an optimal allocation YX to ρB(X). Then the
solution QX = (Q1

X, . . . ,QN
X ) of the dual problem (3.1) is unique.

Proof Suppose Q1, Q2 are two optimisers of the dual problem (3.1). Then we
have αB(Q1) < +∞, αB(Q2) < +∞ and by Proposition 4.11 and Remark 4.12, for
each n,

−Xn − v′
n

(
λ∗

1
dQn

1

dP

)
= Ŷ n

Q1
= Yn

X = Ŷ n
Q2

= −Xn − v′
n

(
λ∗

2
dQn

2

dP

)
P-a.s.

As v′
n is invertible, we conclude that λ∗

1
dQn

1
dP

= λ∗
2

dQn
2

dP
P-a.s., which then implies

Qn
1 = Qn

2 as E[ dQn
1

dP
] = E[ dQn

2
dP

] = 1. �

4.4 On the existence of the optimal allocation for ρ̃B

4.4.1 A first step

We first show that ρB reaches its infimum at some Y ∈ L1(P;RN).
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Theorem 4.14 For C ⊆ CR ∩ M� and for any X ∈ M�, there exist Y in L1(P;RN)

such that

N∑
n=1

Yn ∈ R, E

[ N∑
n=1

un(X
n+Yn)

]
≥ B,

ρB(X) := inf

{ N∑
n=1

Zn : Z ∈ C,E

[ N∑
n=1

un(X
n+Zn)

]
≥ B

}
=

N∑
n=1

Yn

and a sequence (Yk)k∈N ⊆ C with E[∑N
n=1 un(X

n+Yn
k )] ≥ B and Yk → Y P-a.s.

Remark 4.15 We note that the random vector Y in Theorem 4.14 satisfies all the con-
ditions for being the optimal allocation for ρB(X), except for the integrability con-
dition Y ∈ M�, which is replaced by Y ∈ L1(P;RN). Furthermore, Y = limk→∞ Yk

P-a.s. for Yk ∈ C0 ∩ M�. If we assume that C0 is closed in L0(P), which is a rea-
sonable assumption and holds true if C = C(n), in which case C(n)

0 is defined in (2.4),
then Y also belongs to C0, but in general not to C (as M� is in general not closed
for P-a.s. convergence). A special case is when the cardinality of � is finite and the
set C is closed for P-a.s. convergence; under these assumptions, Y belongs to C and
Y = YX = ŶQX . In Sect. 4.4.2, we show when Y also belongs to C0 ∩ L1(QX;RN).

Proof of Theorem 4.14 Take a sequence (Vk)k∈N ∈ C ⊆ CR ∩M� ⊆ L1(P;RN) such
that R � ck := ∑N

n=1 V n
k ↓ ρB(X) as k → ∞ and E[∑N

n=1 un(X
n+V n

k )] ≥ B . The se-
quence (Vk)k∈N is bounded for the L1(P;RN)-norm if and only if so is the sequence
(X + Vk)k∈N. Given the decomposition into positive and negative parts

N∑
n=1

E[|Xn+V n
k |] =

N∑
n=1

E[(Xn+V n
k )+] +

N∑
n=1

E[(Xn+V n
k )−], (4.21)

we define the index sets

N+∞ =
{
n ∈ {1, . . . ,N} : lim sup

k→∞
E[(Xn+V n

k )+] = +∞
}
,

N+
b =

{
n ∈ {1, . . . ,N} : lim sup

k→∞
E[(Xn+V n

k )+] < +∞
}

and similarly N−∞ and N−
b for the negative parts. We can split (4.21) as

∑
n∈N+∞

EP[(Xn+V n
k )+] +

∑
n∈N+

b

EP[(Xn+V n
k )+]

+
∑

n∈N−∞

EP[(Xn+V n
k )−] +

∑
n∈N−

b

EP[(Xn+V n
k )−].

If the sequence (X + Vk)k∈N is not L1(P;RN)-bounded, then one of the sets N+∞
or N−∞ must be nonempty and then, because of the constraint

∑N
n=1 V n

k = ck , both
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N+∞ and N−∞ must be nonempty. From Lemma A.1 (a), Jensen’s inequality and (4.2)
give

B ≤
N∑

n=1

E[un(X
n+V n

k )] ≤
N∑

n=1

un(E[Xn+V n
k ])

=
N∑

n=1

un

(
E[(Xn+V n

k )+]) +
N∑

n=1

un

( −E[(Xn+V n
k )−])

≤ b

( ∑
n∈N+∞

E[(Xn+V n
k )+] +

∑
n∈N+

b

E[(Xn+V n
k )+]

)

−2b

( ∑
n∈N−∞

E[(Xn+V n
k )−] +

∑
n∈N−

b

E[(Xn+V n
k )−]

)
+ const.

= b

(
ck +

N∑
n=1

E[Xn]
)

+ const.

−b

( ∑
n∈N−∞

E[(Xn+V n
k )−] +

∑
n∈N−

b

E[(Xn+V n
k )−]

)
,

which is a contradiction as the second sum in the last term is not bounded from above.
Hence our minimising sequence (Vk)k∈N has bounded L1(P;RN)-norm and we may
apply a Komlós compactness argument as in [22, Theorem 1.4]. Applying this to
the sequence (Vk)k∈N ⊆ C, we can find for all k some Yk ∈ conv(Vi , i ≥ k) ⊆ C,
as C is convex, such that (Yk) converges P-a.s. to some Y ∈ L1(P;RN). Observe
that by construction,

∑N
n=1 Yn

k is P-a.s. a real number, and as a consequence, so

is
∑N

n=1 Yn. As E[∑N
n=1 un(X

n+V n
k )] ≥ B , also the Yk satisfy this constraint and

therefore ρB(X) ≤ ∑N
n=1 Yn

k .

Recall that Yk = ∑
i∈Jk

λk
i Vi ∈ conv(Vi , i ≥ k); so there are convex weights

(λk
i )i∈Jk

with λk
i > 0 and

∑
i∈Jk

λk
i = 1, where Jk is a finite subset of {k, k + 1, . . . }.

For any fixed k, we compute

N∑
n=1

Yn
k =

N∑
n=1

( ∑
i∈Jk

λk
i V

n
i

)
j

=
∑
i∈Jk

λk
i

( N∑
n=1

V n
i

)

=
∑
i∈Jk

λk
i ci ≤ ck

( ∑
i∈Jk

λk
i

)
= ck, (4.22)

and from ρB(X) ≤ ∑N
n=1 Yn

k ≤ ck , we then deduce that
∑N

n=1 Yn = ρB(X).
We now show that Y also satisfies the budget constraint. If all utility func-

tions are bounded from above, this is an immediate consequence of Fatou’s lemma
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since

N∑
n=1

E[−un(X
n+Yn)] =

N∑
n=1

E

[
lim inf
k→∞

(−un(X
n+Yn

k )
)]

≤ lim inf
k→∞

N∑
n=1

E[−un(X
n+Yn

k )] ≤ −B.

In the general case, recall first that the sequence (Vk) is bounded in L1(P;RN), and
the argument used in (4.22) shows that

‖X + Yk‖1 ≤ ‖X‖1 + sup
k∈N

‖Vk‖1,

hence supk∈N ‖X + Yk‖1 < ∞. We now need to exploit the Inada condition at +∞.
Applying Lemma A.1 (b) to the utility functions un, assumed null in 0, we get

−un(x) + εx+ + b(ε) ≥ 0, ∀x ∈ R.

Plugging X + Y into the expression above and applying Fatou’s lemma, we have

E

[ N∑
n=1

−un(X
n+Yn) + ε(Xn+Yn)+ + b(ε)

]

= E

[
lim inf
k→∞

( N∑
n=1

−un(X
n+Yn

k ) + ε(Xn+Yn
k )+ + b(ε)

)]

≤ lim inf
k→∞

N∑
n=1

E[−un(X
n+Yn

k ) + ε(Xn+Yn
k )+ + b(ε)]

≤ −B + ε
(

sup
k∈N

‖X + Yk‖1

)
+ b(ε).

As the term b(ε) cancels in the above inequality, we conclude that for all ε > 0,

E

[ N∑
n=1

−un(X
n+Yn)

]
≤ −B + ε

(
sup
k∈N

‖X + Yk‖1 −
N∑

n=1

E[(Xn+Yn)+]
)

,

and since supk∈N ‖X + Yk‖1 < ∞, we obtain E[∑N
n=1 −un(X

n+Yn)] ≤ −B so that
Y satisfies the constraint. �

4.4.2 Second step: the optimal allocation is in L1(QX)

We now prove further integrability properties of the random vector Y in Theo-
rem 4.14.

Lemma 4.16 The random vector Y in Theorem 4.14 satisfies Y− ∈ L1(QX).
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Proof Using (4.2) and φj (x) := −uj (−|x|) for fixed 1 ≤ j ≤ N gives

0 ≤ E
[
φj

(
(Xj + Y j )−

)] ≤
N∑

n=1

E
[
φn

(
(Xn + Yn)−

)]

=
N∑

n=1

E
[ − un

( − (Xn + Yn)−
)]

=
N∑

n=1

E[un(X
n + Yn)+] −

N∑
n=1

E[un(X
n + Yn)]

≤
N∑

n=1

un

(
E[(Xn + Yn)+]) − B < ∞, (4.23)

where we used Jensen’s inequality and X + Y ∈ L1(P;RN). This yields

(Xj + Y j )− ∈ Lφj ⊆ L1(Q
j

X).

From Y j = (Xj + Y j )+ − (Xj + Y j )− − Xj ≥ −(Xj + Y j )− − Xj , we get
0 ≤ (Y j )− ≤ (−(Xj + Y j )− − Xj)− = ((Xj + Y j )− + Xj)+. Since by assump-
tion, Xj ∈ Mφj ⊆ L1(Q

j

X), then also ((Xj + Y j )− + Xj)+ ∈ L1(Q
j

X) and so

(Y j )− ∈ L1(Q
j

X),1 ≤ j ≤ N . �

Lemma 4.17 The random vector Y in Theorem 4.14 satisfies Y+ ∈ L1(QX).

Proof In Theorem 4.14, we have proved the existence of Y ∈ L1(P;RN) satisfy-
ing ρB(X) = ∑N

n=1 Yn ∈ R with E[∑N
n=1 un(X

n+Yn)] ≥ B and Y is the P-a.s. limit
of a sequence (Yk) in C ⊆ CR ∩ M� such that

∑N
n=1 Yn

k → ρB(X) as k → ∞,∑N
n=1 E[un(X

n + Yn
k )] ≥ B and

∑N
n=1 EQn

X
[Yn

k ] ≤ ∑N
n=1 Yn

k . By passing to a subse-

quence, we may assume that
∑N

n=1 Yn
k ↓ ρB(X). Let j ∈ {1, . . . ,N}. Fatou’s lemma

gives

E
Q

j

X
[(Y j )+] ≤ lim inf

k→∞ E
Q

j

X
[(Y j

k )+] ≤ sup
k∈N

E
Q

j

X
[Y j

k ] + sup
k∈N

E
Q

j

X
[(Y j

k )−]. (4.24)

First we show that supk∈NE
Q

j

X
[Y j

k ] < ∞. Put an
k = EQn

X
[Yn

k ]. Then we obtain that∑N
n=1 an

k ≤ Ã := ∑N
n=1 Yn

k ≤ ∑N
n=1 Yn

1 and

N∑
n=1

U
Qn

X
n (an

k ) ≥
N∑

n=1

E[un(X
n + Yn

k )] ≥ B

for all k ∈ N. Thus by Lemma 4.7, (ak)k∈N lies in a bounded set in R
N and thus

sup
k∈N

E
Q

j

X
[Y j

k ] < ∞. (4.25)
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Next we show supk∈NE
Q

j

X
[(Y j

k )−] < ∞. As in (4.23), we obtain that for all k ∈ N

0 ≤ E
[
φj

(
(Xj + Y

j
k )−

)] ≤
N∑

n=1

un

(
E[(Xn + Yn

k )+]) − B.

From the proof of Theorem 4.14, we know that (Xn + Yn
k )k∈N is L1(P)-bounded for

all n = 1, . . . ,N , and thus

0 ≤ sup
k∈N

E
[
φj

(
(Xj + Y

j
k )−

)] ≤
N∑

n=1

un

(
sup
k∈N

E[(Xn + Yn
k )+]

)
− B < ∞.

By Remark 2.1, it then follows that (Xj + Y
j
k )−

k∈N is L1(Q
j

X)-bounded. Moreover,

Y
j
k = (Xj + Y

j
k )+ − (Xj + Y

j
k )− − Xj ≥ −(Xj + Y

j
k )− − Xj gives

0 ≤ (Y
j
k )− ≤ ( − (Xj + Y

j
k )− − Xj

)− = (
(Xj + Y

j
k )− + Xj

)+
,

and thus

sup
k∈N

E
Q

j

X
[(Y j

k )−] ≤ sup
k∈N

E
Q

j

X
[(Xj + Y

j
k )−] +E

Q
j

X
[|Xj |] < ∞, (4.26)

where we recall that by assumption, Xj ∈ Mφj ⊆ L1(Q
j

X). From (4.25) and (4.26)
together with (4.24), the claim follows. �

4.4.3 The final step

For our final result on existence, we need one more assumption.

Definition 4.18 We say that C0 is closed under truncation if for each Y ∈ C0, there
exists mY ∈N and cY = (c1

Y , . . . , cN
Y ) ∈R

N such that

N∑
n=1

cn
Y =

N∑
n=1

Yn =: cY ∈ R

and for all m ≥ mY , we have

Ym := YI∩N
n=1{|Yn|<m} + cY I∪N

n=1{|Yn|≥m} ∈ C0. (4.27)

Note that in Definition 2.5, the set C(n)
0 is closed under truncation.

Theorem 4.19 Let C = C0 ∩ M� and suppose that C0 ⊆ CR is closed for conver-
gence in probability and closed under truncation. For any X ∈ M�, there exists
ỸX ∈ C0 ∩ L1(P,QX) such that

N∑
n=1

Ỹ n
X ∈R, E

[ N∑
n=1

un(X
n+Ỹ n

X)

]
≥ B,

N∑
n=1

(EQn
X
[Ỹ n

X] − Ỹ n
X) = 0
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and

ρB(X) = inf

{ N∑
n=1

Yn : Y ∈ C0 ∩ M�, E

[ N∑
n=1

un(X
n+Yn)

]
≥ B

}
=

N∑
n=1

Ỹ n
X

= min

{ N∑
n=1

Yn : Y ∈ C0 ∩ L1(P,QX), E

[ N∑
n=1

un(X
n+Yn)

]
≥ B

}

= ρ̃B(X),

so that ỸX is the solution to the extended problem ρ̃B(X).

Proof Take as ỸX the vector Y in Theorem 4.14, which belongs to L1(P,QX)

by Theorem 4.14 and Lemmas 4.16 and 4.17, and to C0 as C0 is closed for con-
vergence in probability and Y = limm→∞ Ym P-a.s. and (Ym) ⊆ C0. Comparing
Theorem 4.19 with Theorem 4.14, we see that it remains to prove ρB = ρ̃B and∑N

n=1(EQn
X
[Ỹ n

X] − Ỹ n
X) ≤ 0; this is done in Propositions 4.22 and 4.20 below and

requires the truncation assumption on C0. The opposite inequality

N∑
n=1

Ỹ n
X = ρB(X) = ρ

QX
B (X) ≤

N∑
n=1

EQn
X
[Ỹ n

X]

holds as ỸX fulfils the budget constraints of ρ
QX
B (X). �

Proposition 4.20 Suppose that C0 is closed under truncation. Then

N∑
n=1

EQn
X
[Yn] ≤

N∑
n=1

Yn for all Y ∈ C0 ∩ L1(QX;RN).

Proof Fix Y ∈ C0 ∩L1(QX;RN) and consider Ym for m ∈ N as in (4.27), where with-
out loss of generality, we assume mY = 1. Note that

∑N
n=1 Yn

m = cY (= ∑N
n=1 Yn).

By boundedness of Ym and (4.27), we have Ym ∈ C0 ∩ M� for all m ∈N. Further,
Ym → Y QX-a.s. for m → ∞ and thus, since |Ym| ≤ max{|Y|, |cY |} ∈ L1(QX;RN)

for all m ∈N, also Ym → Y in L1(QX;RN) for m → ∞ by dominated convergence.
We then obtain

N∑
n=1

EQn
X
[Yn] = lim

m→∞

N∑
n=1

EQn
X
[Yn

m] ≤ lim
m→∞

N∑
n=1

Yn
m = cY =

N∑
n=1

Yn. �

The map ρ̃B is defined on M�, but the admissible claims Y belong to the set
C0 ∩ L1(P,QX) not included in M�. As L1(P,QX) ⊆ L1(P;RN) by the same ar-
gument as in the proof of Proposition 2.4, we can show that ρ̃B(X) > −∞ for all
X ∈ M�. By the same argument as in the proof of Proposition 2.4 and by (2.1), we
also deduce that ρ̃B(X) < +∞ for all X ∈ M�, so that the function ρ̃B : M� → R is
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convex and monotone decreasing on its domain dom(ρ̃) = M�. From Theorem A.2,
we then know that the penalty functions of ρB and ρ̃B are defined as

αB(Q) : = sup

{ N∑
n=1

EQn[−Xn] − ρB(X) : X ∈ M�

}
,

α̃B(Q) : = sup

{ N∑
n=1

EQn[−Xn] − ρ̃B(X) : X ∈ M�

}
.

Lemma 4.21 If C0 is closed under truncation, then α̃B(QX) = αB(QX).

Proof Recall from (1.3) that E[�(X + Z)] = E[∑N
n=1 un(X

n+Zn)]. We then have
that

α̃B(QX) = sup

{ N∑
n=1

EQn
X
[−Xn] − ρ̃B(X) : X ∈ M�

}

= sup
X∈M�

( N∑
n=1

EQn
X
[−Xn]

+ sup

{
−

N∑
n=1

Zn : Z ∈ C0 ∩ L1(P,QX), E[�(X + Z)] ≥ B

})

= sup

{ N∑
n=1

EQn
X
[−Xn] −

N∑
n=1

Zn : Z ∈ C0 ∩ L1(P,QX),

X ∈ M�,E[�(X + Z)] ≥ B

}

≤ sup

{ N∑
n=1

EQn
X
[−Xn] −

N∑
n=1

Zn : Z ∈ C0 ∩ L1(P,QX),

X ∈ L1(P;QX),E[�(X + Z)] ≥ B

}

= sup

{ N∑
n=1

EQn
X
[−Wn] +

N∑
n=1

EQn
X
[Zn] −

N∑
n=1

Zn : Z ∈ C0 ∩ L1(P,QX),

W ∈ L1(P,QX),

E [�(W)] ≥ B

}

= sup

{ N∑
n=1

EQn
X
[−Wn] : W ∈ L1(P,QX),E[�(W)] ≥ B

}

+ sup

{ N∑
n=1

(EQn
X
[Zn] − Zn) : Z ∈ C0 ∩ L1(P,QX)

}

≤ sup

{ N∑
n=1

EQn
X
[−Wn] : W ∈ L1(P,QX),E[�(W)] ≥ B

}
= αB(QX),
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because
∑N

n=1(EQn
X
[Zn] − Zn) ≤ 0 for all Z ∈ C0 ∩ L1(P,QX) as shown in Proposi-

tion 4.20. The last equality follows from (4.12). The opposite inequality is trivial as
ρ̃B ≤ ρB implies that

α̃B(QX) = sup

{ N∑
n=1

EQn
X
[−Xn] − ρ̃B(X) : X ∈ M�

}

≥ sup

{ N∑
n=1

EQn
X
[−Xn] − ρB(X) : X ∈ M�

}
= αB(QX). �

Proposition 4.22 If C0 is closed under truncation, then

ρB(X) = ρ̃B(X) = inf
Y∈L1(P,QX)

{ N∑
n=1

Yn : Y ∈ C0,E

[ N∑
n=1

un(X
n+Yn)

]
≥ B

}
.

(4.28)

Proof We know that ρ̃B : M� → R is convex and monotone decreasing. By defini-
tion, ρ̃B ≤ ρB . Under the truncation assumption, Lemma 4.21 shows that we have
α̃B(QX) = αB(QX). Then by Theorem A.2,

ρ̃B(X) = sup

{ N∑
n=1

EQn[−Xn] − α̃B(Q) : dQ
dP

∈ L�∗
}

≥
N∑

n=1

EQn
X
[−Xn] − α̃B(QX)

=
N∑

n=1

EQn
X
[−Xn] − αB(QX) = ρB(X). �

Corollary 4.23 Under the assumptions of Theorem 4.19, we have

ρB(X) = ρ
QX
B (X) = ρ̃

QX
B (X) = ρ̂

QX
B (X) = ρ̃B(X), (4.29)

πA(X) = π
QX
A (X) = π̃

QX
A (X) = π̂

QX
A (X), (4.30)

for A := ρB(X), and the unique solutions to the extended problems ρ̃
QX
B (X), ρ̂QX

B (X),

ρ̃B(X) and π̂
QX
A (X), π̃

QX
A (X) exist and coincide with

ỸX = ŶQX =
(

− Xn − v′
n

(
λ∗ dQn

X

dP

))
n=1,...,N

∈ C0 ∩ L1(P,QX),

and QX is the unique solution to the dual problem (3.1).

Proof From (4.28), (4.9), (4.8), (3.6) and Corollary 4.3, we already know that (4.29)
and (4.30) hold true when A := ρB(X). By Theorem 4.19, there exists a solution
ỸX ∈ C0 ∩L1(P,QX) to ρ̃B(X) and by Proposition 4.11 and Remark 4.12, it coincides
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with the unique solution ŶQX for ρ̂
QX
B (X). By (4.15),

ρ̃
QX
B (X) = ρ̂

QX
B (X) =

N∑
n=1

EQn
X
[Ŷ n

QX
]

and then ŶQX = ỸX ∈ C0 ∩ L1(P,QX) proves that ỸX is also the solution for

ρ̃
QX
B (X). From (4.29) and (4.30), we know that B = π̃

QX
A (X) = π̂

QX
A (X) and

A = ρ̃
QX
B (X) = ρ̂

QX
B (X). Therefore Proposition 4.2 (d) shows that ỸX is the unique

solution to π̃
QX
A (X) and π̂

QX
A (X). �

5 Additional properties of QX and fair risk allocation

In this section, we provide additional properties for the systemic risk measure ρ(X)

from (1.5) and for the systemic risk allocations ρn(X) = EQn
X
[Yn

X], n = 1, . . . ,N ,
from (1.8). We argue that the choice of QX as systemic vector of probability measures
is fair from the point of view of both the system and the individual banks.

5.1 Cash-additivity and marginal risk contribution

In this section, we provide a sensitivity analysis of ρ(X) with respect to changes in
the positions X, which also shows the relevance of the dual optimiser QX. We first
show that ρ(X) is cash-additive. Recall � from (1.3).

Lemma 5.1 Define WC := {Z ∈ CR : Y ∈ C ⇐⇒ Y − Z ∈ C} ∩ M�. Then the risk
measure ρ is cash-additive on WC , i.e.,

ρ(X + Z) = ρ(X) −
N∑

n=1

Zn for all Z ∈ WC and X ∈ M�,

and it satisfies

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

= −
N∑

n=1

V n (5.1)

for all V such that εV ∈WC for all ε ∈ (0,1].
Proof Let Z ∈WC . Then W := Z + Y ∈ C ⊆ CR for any Y ∈ C. For any X ∈ M�,

ρ(X + Z) = inf

{ N∑
n=1

Yn : Y ∈ C,E[�(X + Z + Y)] ≥ B

}

= inf

{ N∑
n=1

Wn −
N∑

n=1

Zn : W ∈ C,E[�(X + W)] ≥ B

}

= ρ(X) −
N∑

n=1

Zn.

In particular, ρ(X+εV) = ρ(X) − ε
∑N

n=1 V n for εV ∈WC and (5.1) follows. �
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Example 5.2 For the set C(n) in Definition 2.5, ρ is cash-additive on WC(n) = C(n).
The latter equality holds because we are not imposing any restrictions on the vector
d = (d, . . . , dm) ∈R

m which determines the grouping.

Remark 5.3 Under Assumption 2.2, we have R
N ⊆ WC and then (5.1) holds for all

V ∈R
N .

The marginal risk contribution d
dε

ρ(X+εV)|ε=0 was also considered in [13] and
[3] and is an important quantity which describes the sensitivity of the risk of X with
respect to the impact V ∈ L0(RN). The property (5.1) cannot be immediately gener-
alised to the case of random vectors V as

∑N
n=1 V n /∈ R in general. In the following,

we obtain the general local version of cash-additivity, which extends (5.1) to a ran-
dom setting.

Proposition 5.4 Let X and V ∈ M�. Let QX be the solution to the dual problem
(3.1) associated to ρ(X) and assume that ρ(X+εV) is differentiable with respect to
ε at ε = 0, and that dQX+εV

dP
→ dQX

dP
in σ(L�∗

,M�) as ε → 0. Then

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

= −
N∑

n=1

EQn
X
[V n]. (5.2)

Proof As the penalty function αB does not depend on X, (3.4) yields

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

= d

dε

( N∑
n=1

EQn
X+εV

[−Xn−εV n] − αB(QX+εV)

)∣∣∣∣
ε=0

= d

dε

( N∑
n=1

EQn
X+εV

[−Xn] − αB(QX+εV)

)∣∣∣∣
ε=0

+
N∑

n=1

d

dε
(εEQn

X+εV
[−V n])

∣∣∣∣
ε=0

(5.3)

= 0 +
N∑

n=1

lim
ε→0

EQn
X+εV

[−V n] =
N∑

n=1

EQn
X
[−V n], (5.4)

where the equality between (5.3) and (5.4) is justified by the optimality of QX and
the differentiability of ρ(X+εV), while the last equality is guaranteed by the conver-
gence of (

dQX+εV
dP

). �

Remark 5.5 We emphasise that the generalisation (5.2) of (5.1) holds because we
are computing the expectation with respect to the vector QX. The assumptions of
Proposition 5.4 are satisfied for exponential utility functions, which are considered in
Sect. 6.

5.2 Interpretation and implementation of ρ(X)

Going back to the definition (1.5), we see that ρ(X) represents the minimal total cash
amount needed to make the system acceptable at time T . For notational simplicity,
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we write in the sequel YX for the solution of ρB(X), i.e., do not distinguish YX and
ỸX. As already mentioned in Sect. 1 and as a result of Proposition 4.1, one economic
justification for ρ is that the optimal allocation YX of ρ(X) maximises the expected
system utility among all random allocations of cost less than or equal to ρ(X).

We notice also that the class C may determine the level of risk sharing (as ex-
plained below in (b)) between the banks, ranging from no risk sharing in the case
C = R

N of deterministic allocations to the case C = CR of full risk sharing, and other
constraints in between as in the Definition 2.5 of grouping. We now discuss two fea-
tures of our systemic risk measure.

Implementation of the scenario-dependent allocation
(a) In practice, the scenario-dependent allocation can be described as a default

fund as in the case of a CCP (see [3]). The amount ρ(X) is collected at time 0
according to some systemic risk allocation ρn(X), n = 1, . . . ,N , which satisfies∑N

n=1 ρn(X) = ρ(X). Then at time T , this exact same amount is redistributed among
the banks according to the optimal scenario-dependent allocations Yn

X satisfying∑N
n=1 Yn

X = ρ(X), so that the fund acts as a clearing house, assuming that each bank
fulfils its commitment.

(b) An alternative interpretation and implementation of the scenario-dependent
allocation more in the spirit of monetary risk measures is in terms of capital require-
ments together with a risk sharing mechanism. Consider again a given systemic risk
allocation ρn(X), n = 1, . . . ,N . At time 0, a capital requirement ρn(X) is imposed
on each bank n = 1, . . . ,N . Then at time T , a risk sharing mechanism takes place:
each bank provides (if negative) or collects (if positive) the amount Yn

X − ρn(X),
assuming as before that each bank fulfils its commitment. Note that in sum, the fi-
nancial position of bank n at time T is Xn + ρn(X) + (Y n

X − ρn(X)) = Xn + Yn
X as

required. This risk sharing mechanism is made possible by the clearing property∑N
n=1(Y

n
X − ρn(X)) = 0, which follows from

∑N
n=1 Yn

X = ρ(X) and the full risk al-

location requirement
∑N

n=1 ρn(X) = ρ(X). The incentive for a single bank to enter
in such a mechanism is made clear below after we introduce the choice of a fair risk
allocation in Sect. 5.3.

Total risk reduction and dependence structure of X
From a system-wide point of view, considering the optimal random allocation YX
implies a reduction of the total amount needed to secure the system (compared with
the optimal deterministic allocation). This reduction is also a consequence of our
framework of scenario-dependent allocations that allows taking into account the
dependence structure of X. An example showing these features can be found in
[7, Example 7.1]. If the aggregation function � is a sum of utility functions as in
(1.3), one can see directly that the dependence structure of X is taken into account
from the constraint E[∑N

n=1 un(X
n + Yn)] ≥ B in (1.5), which depends only on the

marginal distributions of X in the case of deterministic Yn.

5.3 Fair systemic risk allocation ρn(X)

We now address the problem of choosing a systemic risk allocation (ρn(X))n=1,...,N

in R
N (or individual contributions at time zero) as introduced in Definition 1.2. Note
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that in our setting, besides providing a ranking of the institutions in terms of their
systemic riskiness, a risk allocation ρn(X) can be interpreted as a capital contribu-
tion/requirement for institution n in order to secure the system.

From (5.2), we see that EQX[·] defined by EQX[Y] = ∑N
n=1 EQn

X
[Yn] already

appeared as a multivariate valuation operator, and on the other hand, we have ob-
tained in (4.20) that the minimiser YX and the maximiser QX of the dual problem
satisfy

ρ(X) =
N∑

n=1

Yn
X =

N∑
n=1

EQn
X
[Yn

X],

which shows that ρn(X) = EQn
X
[Yn

X], n = 1, . . . ,N , gives a systemic risk alloca-
tion.

Any vector Q = (Qn)n=1,...,N of probability measures gives rise to a valuation
operator EQ[·] and to the systemic risk measure ρQ given by (1.10). Note, however,
that in (1.10), the clearing condition

∑N
n=1 Yn = ρ(X) is not guaranteed since the

optimisation is there performed over all Y ∈ M�. Now, using the valuation EQX[·]
given by the dual optimiser, we know by Proposition 4.11 that the optimal allocation
in (1.10) fulfils the clearing condition YX ∈ CR, and is in fact the same as the optimal
allocation for the original systemic risk measure in (1.5). From (4.19) and (4.20), we
obtain

N∑
n=1

Yn
X = ρ(X) = ρQX(X) =

N∑
n=1

EQn
X
[Yn

X],

which shows that the valuation by EQX[·] agrees with the systemic risk measure
ρ(X). This supports the introduction of EQX[·] as a suitable systemic valuation oper-
ator.

The essential question for a financial institution is now whether its allocated share
of the total systemic risk given by the risk allocation (EQ1

X
[Y 1

X], . . . , (EQN
X
[YN

X ]), is
fair. With the choice Q = QX, Corollary 4.3, Lemma 4.5 and (4.11) lead to

πA(X) = π
QX
A (X) = max∑N

n=1 an=A

N∑
n=1

sup
EQn

X
[Yn]=an

E[un(X
n + Yn)]. (5.5)

Choose A = ρB(X). Then Proposition 4.2 and the fact that YX is then the solution
of π

QX
A (X) yield EQXn [Yn

X] = an∗ ,
∑N

n=1 EQXn [Yn
X] = A, and (5.5) can be rewritten

as

πA(X) = π
QX
A (X) =

N∑
n=1

sup
EQn

X
[Yn]=EQn

X
[Yn

X]
E[un(X

n + Yn)].

This means that by using QX for valuation, the system utility maximisation in (1.9)
reduces to individual utility maximisation for the banks without the “systemic” con-
straint Y ∈ C, i.e., to

sup{E[un(X
n + Yn)] : Yn such that EQn

X
[Yn] = EQn

X
[Yn

X]} for all n.
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The optimal allocation Yn
X and its value EQn

X
[Yn

X] can thus be considered fair by
the nth bank as Yn

X maximises its individual expected utility among all random
allocations (not constrained to be in CR) with value EQn

X
[Yn

X]. In particular, it is
clear then that for individual banks, it is more advantageous to use random rather
than cash-valued allocations as the supremum will be larger, as previously stated
in Sect. 5.2 (a) and (b). This finally argues for the fairness of the risk allocation
(EQ1

X
[Y 1

X], . . . ,EQN
X
[YN

X ]) as fair valuation of the optimal scenario-dependent allo-

cation (Y 1
X, . . . , YN

X ).

6 The exponential case

In this section, we focus on a relevant case under Assumption 2.2, that is, we set
C = C(n), see Definition 2.5 and Example 3.5, and choose un(x) = −e−αnx/αn,
αn > 0, n = 1, . . . ,N , as in Example 3.6. Then vn(y) = 1

αn
(y lny − y) and

v′
n(y) = 1

αn
lny. We select B <

∑N
n=1 un(+∞) = 0. Under these assumptions,

φn(x) := −un(−|x|) + un(0) = 1
αn

(eαn|x| − 1),

Mφn = Mexp := {X ∈ L0(R) : E[ec|X|] < +∞ for all c > 0},
the Orlicz hearts Mφn , n = 1, . . . ,N , coincide with the single Orlicz heart Mexp as-
sociated to the exponential Young function x �→ e|x| − 1, and the random variable
X := ∑

n Xn ∈ Mexp is well defined. The systemic risk measure ρ : (Mexp)N →R

from (2.3) becomes

ρ(X) = inf

{ N∑
n=1

Yn : Y ∈ C(n), E

[
−

N∑
n=1

1

αn

exp
( − αn(X

n + Yn)
)] = B

}
. (6.1)

Recall that each set C(n) is closed in probability and closed by truncation. From
Proposition 2.4 and Corollary 4.23, we deduce

Proposition 6.1 The map ρ in (6.1) is finite-valued, monotone decreasing, convex,
continuous and subdifferentiable on the Orlicz heart M� = (Mexp)N , and the prob-
lem ρ̃(X) admits the unique solution ỸX given in Corollary 4.23.

For a given partition n and allocations C(n), we can explicitly compute the value
ρ(X), the unique optimal allocation of (6.1) and the unique optimiser QX of the
corresponding dual problem (3.10). Note that in the present exponential case, the
vector ỸX = YX ∈ (Mexp)N is the solution for ρ(X) and ρ̃(X).

Theorem 6.2 For m = 1, . . . , h and k ∈ Im, we have

dm = βm ln

(
− β

B
E

[
exp

(
− Xm

βm

)])
, (6.2)

Y k
m = −Xk + 1

βmαk

Xm + 1

βmαk

dm ∈ Mexp, (6.3)
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where Xm = ∑
k∈Im

Xk , βm = ∑
k∈Im

1
αk

, β = ∑N
i=1

1
αi

and

ρ(X) =
N∑

i=1

Y i =
h∑

m=1

dm.

The vector QX of probability measures with densities

dQm
X

dP
:= e

− 1
βm

Xm

E[e− 1
βm

Xm ]
, m = 1, . . . , h, (6.4)

is the solution of the dual problem (3.10), i.e.,

ρ(X) =
h∑

m=1

EQm
X
[−Xm] − αB(QX), (6.5)

and EQm
X
[Yn

X], m = 1, . . . , h, n ∈ Im, is a systemic risk allocation as in Definition 1.2.

Proof By (3.11), we note that QX defined in (6.4) belongs to D. Using QX and se-
lecting λ∗ = −B

β
from Example 3.6, it is easy to verify that the random variable

Yn
X := −Xn − v′

n(λ
∗ dQn

X
dP

) from Corollary 4.23 coincides with the expression in (6.3)
and

∑
n∈Im

Y n
X = dm.

We prove below that
∑h

m=1 dm = ∑h
m=1 EQm

X
[−Xm] − αB(QX). A priori, these

equations are not sufficient to prove that (YX,QX) are indeed the solutions to the
primal and dual problems, as one needs to know that one of the two is indeed an
optimiser of the corresponding problem. The proof that YX defined in (6.3) is the
optimiser of ρ(X) uses the Lagrange method and several estimates of lengthy com-
putations; it is omitted.3

Assuming that YX is the optimiser of the problem associated to ρ, so that we have
ρ(X) = ∑

Y I = ∑
dm, we now prove (6.5). First notice that

H(Qm
X |P) = EQm

X

[
ln

dQm
X

dP

]
= 1

βm

EQm
X
[−Xm] − lnE[e− 1

βm
Xm ].

By (3.13), αB(QX) can be rewritten as

αB(QX) =
h∑

m=1

∑
i∈Im

(
1

αi

H(Qm
X |P) + 1

αi

ln
(

− B

β

))

=
h∑

m=1

(
EQm

X
[−Xm] − βm ln

(
− β

B
E[e− 1

βm
Xm ]

))

=
h∑

m=1

(EQm
X
[−Xm] − dm) =

h∑
m=1

EQm
X
[−Xm] − ρ(X),

as ρ(X) = ∑N
i=1 Y i = ∑h

m=1 dm. Then (3.12) concludes the proof. �

3The proof can be obtained upon request from the authors.
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Remark 6.3 Note that if we arbitrarily change the components of the vector X, but
keep fixed the components in one given subgroup, say Im0 , then the risk measure
ρ(X) will of course change, but dm0 and Y k

m0
for k ∈ Im0 remain the same.

6.1 Sensitivity analysis

Let X ∈ (Mexp)N , V ∈ (Mexp)N and set V m := ∑
k∈Im

Vk for m = 1, . . . , h. We con-

sider a perturbation εV, ε ∈ R, and perform a sensitivity analysis. Consider the op-
timal allocations Y i

X+εV and the solution QX+εV of the dual problem associated to

ρ(X + εV); see (6.4). By (6.3) and (6.2), we have

Yn
X+εV = −Xn − εV n + 1

βmαn

(Xm + εV m) + 1

βmαn

dm(X + εV),

where

dm(X + εV) = βm ln

(
− β

B
E

[
exp

(
− Xm + εV m

βm

)])
.

Proposition 6.4 Let ρ be the systemic risk measure defined in (6.1). Then we have:
1) The marginal risk contribution of group m is

d

dε
dm(X + εV)

∣∣∣∣
ε=0

= EQm
X
[−V m], m = 1, . . . , h.

2) The local causal responsibility is

d

dε
EQm

X
[Yn

X+εV]
∣∣∣∣
ε=0

= EQm
X
[−V n], n ∈ Im.

3) d
dε
EQm

X+εV
[Z]|ε=0 = − 1

βm
CovQm

X
(V m,Z) for any Z ∈ Mexp.

4) The marginal risk allocation of institution n ∈ Im is

d

dε
EQm

X+εV
[Yn

X+εV]
∣∣∣∣
ε=0

= EQm
X
[−V n] − 1

βm

CovQm
X
(V m,Y n

X) (6.6)

= EQm
X
[−V n] + 1

βm

CovQm
X
(V m,Xn)

− 1

αn

1

β2
m

CovQm
X
(V m,Xm). (6.7)

5) The sensitivity of the penalty function is

d

dε
αB(QX+εV)

∣∣∣∣
ε=0

=
h∑

m=1

1

βm

CovQm
X
(V m,Xm).
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6) The systemic marginal risk contribution is

d

dε
ρ(X+εV)

∣∣∣∣
ε=0

=
h∑

m=1

∑
i∈Im

EQm
X
[−V i] =

h∑
m=1

EQm
X
[−V m].

Proof The proof is the result of lengthy computations and is omitted.4 �

The interpretation of the above formulas is not simple because we are dealing with
the systemic probability measure Qm

X and not with the “physical” measure P. Think
of the difference between the physical measure P and a martingale measure. If we
replace Qm

X with P, none of the results of Proposition 6.4 will hold in general.
The first term EQm

X
[−V n] in (6.6) or (6.7) is easy to interpret: EQm

X
[−V n] is the

contribution to the marginal risk allocation of bank n regardless of any systemic in-
fluence. The sign of the increment V n in the first term of (6.6) is here relevant; an
increment (positive) corresponds to a risk reduction, regardless of the dependence
structure. If V is deterministic, the marginal risk allocation to bank n is exactly
EQm

X
[−V n] = −V n and no other terms are present.

To understand the other terms in (6.6) or (6.7), take V =V j ej with j �= n. Then
the first term in (6.6) disappears (V n = 0) and we obtain

d

dε
EQm

X+εV j ej
[Yn

X+εV j ej
]
∣∣∣∣
ε=0

= 1

βm

CovQm
X
(V j ,Xn) − 1

αn

1

β2
m

CovQm
X
(V j ,Xm).

To fix ideas, suppose that CovQm
X
(V j ,Xn) < 0 and examine for the moment only the

contribution of 1
βm

CovQm
X
(V j ,Xn). This component does not depend on the specific

αn, but it depends on the dependence structure between (V j ,Xn). If the systemic risk
probability Qm

X attributes negative correlation to (V j ,Xn), then from the systemic
perspective, this is good (independently of the sign of V j ); indeed, a decrement in
bank j is balanced by bank n, and vice versa. If bank n is negatively correlated
(as seen by Qm

X ) with the increment of bank j , then the risk allocation of bank n

should decrease. Therefore, bank n takes advantage of this as its risk allocation is
reduced ( 1

βm
CovQm

X
(V j ,Xn) < 0). Since the overall marginal risk allocation of the

group m is fixed (and equal to EQm
X
[−V m] = EQm

X
[−V j ] from 1)), someone else has

to pay for this advantage to bank n. This is the last term in (6.7), which is discussed
next.

For the third component in (6.7), we distinguish between the systemic component
− 1

β2
m

CovQm
X
(V j ,Xm), which only depends on the aggregate group Xm, and the sys-

temic relevance 1
αn

of bank n. The systemic quantity is therefore distributed among

the various banks according to 1
αn

. In addition, this term must compensate for the pos-
sible risk reduction (the second term in (6.7)) as the overall risk allocation to group
m is determined by EQm

X
[−V m] = EQm

X
[−V j ].

Finally, 1) and 6) express the same property (which holds in general, as shown in
Proposition 5.4) for one group or for the entire system, respectively.

4The proof can be obtained upon request from the authors.
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6.2 Monotonicity

Another desirable fairness property is monotonicity. If C1 ⊆ C2 ⊆ CR, then we have
ρ1(X) ≥ ρ2(X) for the corresponding systemic risk measures

ρi(X) := inf

{ N∑
n=1

Yn : Y ∈ Ci , E

[ N∑
n=1

un(X
n + Yn)

]
≥ B

}
, i = 1,2.

The two extreme cases occur for C1 := R
N (the deterministic case) and C2 := CR

(the unconstrained scenario-dependent case). Hence we know that when going from
deterministic to scenario-dependent allocations, the total systemic risk decreases. It
is then desirable that each institution profits from this decrease in total systemic risk
in the sense that also its individual risk allocation should decrease, i.e.,

ρn
1 (X) ≥ ρn

2 (X) for each n = 1, . . . ,N. (6.8)

The opposite would clearly be perceived as unfair. In the next result (see in particular
(6.11)), we prove that (6.8) holds true in the context of the Definition 2.5 of group-
ing when the risk allocation ρn(X) = EQn

X
[Yn

X] is computed using QX. If we were
to select a vector of probability measures R different from QX to compute the risk
allocation with the formula ERn[Yn

X], the property (6.8) would be lost in general.
For a given partition n and C = C(n), let Y k

r , k ∈ Ir , r = 1, . . . , h, be the corre-
sponding optimal allocations of the primal problem (6.1) and Qr

X, r = 1, . . . , h, the
solutions of the corresponding dual problem (3.10) (in this section, we suppress the
label X from the optimal allocation YX to ρ(X)).

Consider for some m ∈ {1, . . . , h} a nonempty subgroup I ′
m of the group Im and

set I ′′
m := Im\I ′

m. Then the h + 1 groups I1, I2, . . . , Im−1, I
′
m, I ′′

m, Im+1, . . . , Ih cor-
respond to a new partition n′. The optimal allocations of the primal problem (6.1)
with C = C(n′) coincide with Y k

r , k ∈ Ir , for r �= m. For r = m, i ∈ I ′
m, we have the

following.

Proposition 6.5 Denote by (Y i
m)′, i ∈ I ′

m, the optimal allocation to the primal prob-
lem with C = C(n′). Then

EQm
X

[ ∑
i∈I ′

m

Y i
m

]
≤

∑
i∈I ′

m

(Y i
m)′ := d ′

m. (6.9)

In particular, if the group I ′
m consists of only one single element {i}, then (Y i

m)′ is
deterministic and

EQm
X
[Y i

m] ≤ (Y i
m)′ for each i ∈ Im. (6.10)

If we compare the deterministic optimal allocation Y∗ (corresponding to C = R
N )

with the random optimal allocations Y associated to one single group (i.e., with
C = CR ∩ (Mexp)N ), we conclude that

EQX[Yn] ≤ (Y ∗)n for each n = 1, . . . , d, (6.11)

where QX is the unique solution of the dual problem with C = CR ∩ (Mexp)N .
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Proof Given the subgroup I ′
m, define β ′

m := ∑
k∈I ′

m

1
αk

. Then the value with respect to

C(n′) is given by

d ′
m = β ′

m ln

(
− β

B
E

[
exp

(
− 1

β ′
m

∑
k∈I ′

m

Xk
)])

.

Summing the components of the solutions relative to C(n) over k ∈ I ′
m, we get

∑
k∈I ′

m

Yk
m =

∑
k∈I ′

m

(
1

βmαk

Xm − Xk

)
+

∑
k∈I ′

m

1

βmαk

dm

=
(

β ′
m

βm

Xm −
∑
k∈I ′

m

Xk

)
+ β ′

m

βm

dm.

Using Jensen’s inequality, we obtain

EQm
X

[ ∑
k∈I ′

m

Yk
m

]
= β ′

m ln exp

(
1

β ′
m

EQm
X

[(β ′
m

βm

Xm −
∑
k∈I ′

m

Xk
)])

+ β ′
m

βm

βm ln

(
− β

B
E

[
exp

(
− Xm

βm

)])

≤ β ′
m ln

(
EQm

X

[
exp

( 1

βm

Xm − 1

β ′
m

∑
k∈I ′

m

Xk
)])

+ β ′
m ln

(
− β

B
E

[
exp

(
− Xm

βm

)])

= β ′
m lnE

[exp(−Xm

βm
) exp( 1

βm
Xm) exp(− 1

β ′
m

∑
k∈I ′

m
Xk)

E[e− 1
βm

Xm ]

]

+ β ′
m ln

(
− β

B
E

[
exp

(
− Xm

βm

)])

= β ′
m ln

(
− β

B
E

[
exp

(
− 1

β ′
m

∑
k∈I ′

m

Xk
)])

= d ′
m.

Then (6.10) and (6.11) follow directly by (6.9). �
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Appendix A

A.1 Properties of the utility functions and proof of Proposition 2.4

Lemma A.1 Under Assumption 2.2 and if we have limx→−∞ un(x)
x

= +∞ and

limx→+∞ un(x)
x

= 0, then:
(a) There exist c ∈R and b ∈R+ such that

(i) un(x) ≤ bx + c for all x ≥ 0 and all n,
(ii) un(x) ≤ 2bx + c for all x ≤ 0 and all n.

(b) For all ε > 0, there exists b = b(ε) > 0 such that un(x) ≤ εx +b for x ≥ 0 and
all n.

Proof From 2) in Assumption 2.2, we know that dom(un) = R for each n. Hereafter,
the left derivatives of the concave increasing functions un are denoted by u′

n; they
satisfy u′

n(x) ≥ 0 for all x ∈R.
(a) For (i), the concavity of each un implies that un(x) ≤ u′

n(0)x + cn for all
x ∈ R (for some cn), and setting b := maxn=1,...,N u′

n(0) ≥ 0 and c ≥ maxn=1,...,N cn

therefore gives un(x) ≤ bx + c for all x ≥ 0.
For (ii), we prove that for every M > 0, there exists a constant d > 0 with

un(x) ≤ Mx + d for all n and x ≤ 0. By taking M = 2b, we obtain (ii). The as-
sumption limx→−∞ un(x)

x
= +∞ implies that there exists K > 0 (which depends

on M) such that un(x) ≤ Mx for x ≤ −K and for all n. Hence Mx − un(x) ≥ 0
for x ∈ (−∞,−K). As the function Mx − un(x) is continuous on [−K,0], we may
add a properly chosen d > 0 to get Mx + d − un(x) ≥ 0 for all x ∈ (−∞,0] and
all n.

(b) The assumption limx→+∞ un(x)
x

= 0 guarantees the existence of a con-
stant K > 0, which depends on ε, such that un(x) ≤ εx for x ≥ K and all n.
Hence

un(x) ≤ εx + Kε + max
n=1,...,N

sup
[0,K]

un(s), ∀x ≥ 0. �

Proof of Proposition 2.4 To show ρ > −∞, we suppose by way of contradiction that
ρ(X) = −∞ for some X ∈ M� ⊆ L1(P;RN). Let (Ym) ⊆ C satisfy

∑N
n=1 Yn

m ↓ −∞
as m → ∞ and �(X + Ym) ∈ A for each m for � from (1.3). The first condition
implies

∑N
n=1 E[Yn

m] ↓ −∞ as m → ∞. Note also that by Jensen’s inequality,

B ≤ E[�(X + Ym)] ≤ �(E[X + Ym]) =
N∑

n=1

un(E[Xn] +E[Yn
m]). (A.1)
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We now prove that
∑N

n=1 un(E[Xn] + E[Yn
m]) ↓ −∞ as m → ∞, which contradicts

(A.1). Set xm := (xn
m)Nn=1, where xn

m := E[Yn
m]. Since

∑N
n=1 xn

m ↓ −∞, there must

exist n0 ∈ {1, . . . ,N} and a subsequence (xhm) such that x
n0
hm

↓ −∞ as m → ∞.

With a slight abuse of notation, denote the subsequence (xhm) again by (xm). Then
we have x

n0
m ↓ −∞. If there exists another coordinate n1 ∈ {1, . . . ,N}\{n0} such

that lim infm→∞ x
n1
m = −∞, take a subsequence (xkm) such that x

n1
km

↓ −∞. By a

diagonal procedure, we obtain one single sequence again denoted by (xm) such that
x

n0
m ↓ −∞ and x

n1
m ↓ −∞ as m → ∞. We may adopt this procedure (at most N

times) analogously in the case where lim supm→∞ x
n2
m = +∞ for some coordinate n2.

At the end, we obtain one single sequence (xm) and three disjoint sets of coordinate
indices N−, N+, N∗ such that

xn
m ↓ −∞ if n ∈ N− ⊆ {1, . . . ,N} ,

xn
m ↑ +∞ if n ∈ N+ ⊆ {1, . . . ,N} ,

|xn
m| ≤ K for all m and all n ∈ N∗ = {1, . . . ,N} \(N− ∪ N+),

where K is a constant independent of m. We know that N− �= ∅ since n0 ∈ N− (but
the other two sets N+ and N∗ may be empty). Since

∑N
n=1 xn

m ↓ −∞, we deduce that
for large m,

∑N
n=1 xn

m ≤ 0 so that for each fixed (large) m,

∑
n∈N+

xn
m ≤ −

∑
n∈N−

xn
m −

∑
n∈N∗

xn
m ≤ −

∑
n∈N−

xn
m + NK. (A.2)

Using the inequalities of Lemma A.1 (a) and in (A.2) gives for each fixed large m

N∑
n=1

un(E[Xn] +E[Yn
m]) =

∑
n∈N+

un(E[Xn] + xn
m) +

∑
n∈N−

un(E[Xn] + xn
m)

+
∑
n∈N∗

un(E[Xn] + xn
m)

≤ C1 +
∑

n∈N+
bxn

m +
∑

n∈N−
2bxn

m +
∑
n∈N∗

un(K)

≤ C2 −
∑

n∈N−
bxn

m + bNK +
∑

n∈N−
2bxn

m

= C3 + b
∑

n∈N−
xn
m

with constants C1,C2,C3 all independent of m. Since xn
m ↓ −∞ for each n ∈ N−,

we get b
∑

n∈N− xn
m ↓ −∞ as m → ∞. This contradicts (A.1) and hence shows that

ρ(X) > −∞ for all X ∈ M�.
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Let X ∈ M�. Then E[�(X)] > −∞ and X + m1 ↑ +∞ P-a.s. if m → ∞,
m ∈ R, where 1 = (1, . . . ,1). We have E[�(X + m1)] > −∞ for m > 0 because of
E[�(X)] > −∞, and monotone convergence implies E[�(X + m1)]↑�(+∞) > B .
Since R

N ⊆ C, this gives m1 ∈ C and {Y ∈ C : �(X + Y) ∈ A} �= ∅ so that
ρ(X) < +∞. Hence ρ : M� → R and then convexity and monotonicity are straight-
forward. The remaining properties in (a) are a consequence of Theorem A.2 below
and the fact that M� is a Banach space.

To prove (b), we claim that if E[�(X + Y)] > B , then Y ∈ C cannot be opti-
mal, i.e.,

Y ∈ C and E[�(X + Y)] > B =⇒
N∑

n=1

Yn > ρ=(X). (A.3)

Indeed, the continuity of un and E[un(Z
n)] > −∞ for all Z ∈ M� imply the ex-

istence of δ ∈ R
N+ \ {0} such that E[�(X + Y − δ)] = B and so, as Y − δ ∈ C,

ρ=(X) ≤∑N
n=1(Y

n − δn) <
∑N

n=1 Yn. This implies ρ(X) = ρ=(X) because if we
had ρ(X) < ρ=(X), then by definition of ρ(X), there would exist ε > 0 and
Y ∈ C with E[�(X + Y)] > B and

∑N
n=1 Yn ≤ ρ(X)+ε<ρ=(X), which contradicts

(A.3).
We now show uniqueness by way of contradiction. Suppose ρ(X) is attained

by two distinct Y1 ∈ C and Y2 ∈ C so that P[Yj

1 �= Yj

2] > 0 for some j . Then we
have

ρ(X) =
N∑

n=1

Yn
k and E

[ N∑
n=1

un(X
n + Yn

k )

]
= B, for k = 1,2.

For λ ∈ [0,1], set Yλ := λY1 + (1 − λ)Y2 ∈ C as C is convex. This implies

N∑
n=1

Yn
λ = λ

N∑
n=1

Yn
1 + (1 − λ)

N∑
n=1

Yn
2 = ρ(X), ∀λ ∈ [0,1],

and for λ ∈ (0,1),

B = λE

[ N∑
n=1

un(X
n + Yn

1 )

]
+ (1 − λ)E

[ N∑
n=1

un(X
n + Yn

2 )

]

< E

[ N∑
n=1

un

(
λXn+λYn

1 + (1 − λ)Xn+(1 − λ)Y n
2

)]

= E

[ N∑
n=1

un(X
n + Yn

λ )

]
,

where we used that uj is strictly concave and P[Y j

1 �= Y
j

2 ] > 0. This is a contradiction
to ρ(X) = ρ=(X) and (A.3). �
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A.2 Orlicz setting

We first recall an important result for the characterisation of systemic risk measures
of the form (2.3) on an Orlicz heart.

Theorem A.2 (Biagini and Frittelli [10, Theorem 1]) Suppose that L is a Fréchet
lattice and ρ : L → R∪ {+∞} is convex and monotone decreasing. Then:

1) ρ is continuous in the interior of dom(ρ) with respect to the topology of L.

2) ρ is subdifferentiable in the interior of dom(ρ).

3) Denote by L∗ the dual of L (for the topology for which L is a Fréchet lattice)
and set L∗+ = {Q ∈ L∗ : Q is positive}. For all X ∈ int(dom(ρ)),

ρ(X) = max
Q∈L∗+

(
Q(−X) − α(Q)

)

with α : L∗ →R∪ {+∞} defined by

α(Q) = sup
X∈L

(
Q(−X) − ρ(X)

)

is then σ(L∗,L)-lower semicontinuous and convex.

Proof of Proposition 3.4 Consider the convex functional �n : Mφn(R) → R defined

by �n(Z) := E[−un(Z)] and let �∗
n be its convex conjugate. Then �n(Z

n) > −∞
as Mφn(R) ⊆ L1(P) and E[un(Z

n)] ≤ un(E[Zn]) < +∞, and �n(Z
n) < +∞ as

Zn ∈ Mφn(R) implies E[un(Z
n)] > −∞. Thus we have �∗

n(ξ) = E[vn(−ξ)] for

ξ ∈ Lφ∗
n (R) by [10, Sect. 5.2]. Define f : M� →R by

f (Z) :=
N∑

n=1

E[−un(Z
n)] + B =

N∑
n=1

�n(Z
n) + B

and observe that

A :=
{

Z ∈ M� :
N∑

n=1

E[un(Z
n)] ≥ B

}
= {Z ∈ M� : f (Z) ≤ 0}.

We have that f is convex and decreasing with respect to the componentwise order.
Let f ∗(ξ) be its convex conjugate for ξ ∈ L�∗

. We assume that ξ �≡ 0. By the Fenchel
inequality E[Zξ ] ≤ f (Z)+f ∗(ξ), we obtain for all Z ∈A and λ > 0 that

E[−Zξ ] =λE

[
Z

(
−1

λ
ξ

)]
≤λ

[
f (Z) + f ∗

(
− 1

λ
ξ

)]
≤λf ∗

(
− 1

λ
ξ

)
.

Hence

αB(ξ) := sup
Z∈A

E[−Zξ ] ≤ inf
λ>0

λf ∗
(

− 1

λ
ξ

)
. (A.4)
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By the definition of the convex Fenchel conjugate and the fact that M� is a product
space, we have

f ∗(ξ) := sup
Z∈M�

(
E[ξZ] − f (Z)

) = −B + sup
Z∈M�

( N∑
n=1

E[ξnZ
n] −

N∑
n=1

�n(Z
n)

)

= −B +
N∑

n=1

(
sup

Z∈M�(R)

(
E[ξnZ] − �n(Z)

)) = −B +
N∑

n=1

�∗
n(ξn),

where we have used (2.2), and therefore

inf
λ>0

λf ∗
(

− 1

λ
ξ

)
= inf

λ>0

(
− Bλ + λ

N∑
n=1

�∗
n

(
− 1

λ
ξn

))

= inf
λ>0

(
− Bλ + λ

N∑
n=1

E

[
vn

(1

λ
ξn

)])
.

To prove (3.7), we only need to show that there is no duality gap in (A.4), i.e., if
αB(ξ) < +∞, then

αB(ξ) = inf
λ>0

λf ∗
(

− 1

λ
ξ

)
. (A.5)

Observe that by the definition of f ∗, we have for each λ > 0 that

λf ∗
(

− 1

λ
ξ

)
:= sup

Z∈M�

(
E[−ξZ] − λf (Z)

)
.

As ξ �≡ 0 and M� is a linear space, we have supZ∈M� E[−ξZ] = +∞ and therefore

inf
λ>0

λf ∗
(

− 1

λ
ξ

)
= inf

λ>0
sup

Z∈M�

(
E[−ξZ] − λf (Z)

) = inf
λ≥0

sup
Z∈M�

(
E[−ξZ] − λf (Z)

)
.

We claim that

inf
λ≥0

sup
Z∈M�

(
E[−ξZ] − λf (Z)

) = sup
Z∈M�

inf
λ≥0

(
E[−ξZ] − λf (Z)

)
. (A.6)

Assuming (A.6), we may immediately conclude that

inf
λ>0

λf ∗
(

− 1

λ
ξ

)
= sup

Z∈M�

inf
λ≥0

(
E[−ξZ] − λf (Z)

)

= sup
Z∈M�

(
E[−ξZ] − sup

λ≥0
λf (Z)

)
= sup

Z∈A
E[−ξZ] = αB(ξ).

We now prove (A.6) by showing the equivalent condition

sup
λ≥0

inf
Z∈M�

(
E[ξZ] + λf (Z)

) = inf
Z∈M�

sup
λ≥0

(
E[ξZ] + λf (Z)

)
. (A.7)
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In order to make an easy comparison with the results from [42] mentioned below, let
f0(Z) := E[ξZ]. Consider the function F : M� ×R →R∪{+∞} defined by

F(Z, u) =
{

f0(Z) if Z ∈ M� and f (Z) ≤ u,

+∞ otherwise,

(see [42, Eq. (2.8)]) and the associated Lagrangian K(Z, λ) (see [42, Eq. (4.4)]). Then
(A.7) can be rewritten as

sup
λ≥0

inf
Z∈M�

K(Z, λ) = inf
Z∈M�

sup
λ≥0

K(Z, λ). (A.8)

As f : M� →R is convex decreasing and finite-valued, Theorem A.2 guarantees that
it is continuous on M� (for the M�-norm). Therefore (see [42, Example 1, pages 7
and 22], the function F is closed and convex in (Z, u). The absence of a duality
gap in (A.5) is now expressed by (A.8) and follows from [42, Theorems 17 and 18],
provided that the (convex) value function ϕ(u) := infZ∈M� F(Z, u), u ∈R, defined in
[42, Eq. (4.7)] is bounded from above in a neighbourhood of 0. This is easily verified
by showing the existence of an element Z0 ∈ M� such that u �→ F(Z0, u) is bounded
from above in a neighbourhood of 0. This concludes the proof of (3.7).

To prove (3.8), we set ξn := dQn

dP
≥ 0 a.s. From Lemma A.5 below, vn is strictly

convex with vn(+∞) = +∞, vn(0+) = un(+∞), limz→+∞ vn(z)
z

= +∞ because
of Assumption 2.2, 2) and vn is continuously differentiable. As u′

n(+∞) = 0 and
u′

n(−∞) = +∞, we get v′
n(0) = −∞ and v′

n(+∞) = +∞. Set η = 1
λ

∈ (0,+∞)

and consider the differentiable function F : (0,+∞) →R defined by

F(η) := −Bη + η

N∑
n=1

E

[
vn

(
1

η
ξn

)]
.

Then αB(ξ) = infη>0 F(η) and (3.9) can be rewritten as

F ′(η) = 0 (A.9)

with

F ′(η) = −B +
N∑

n=1

E

[
vn

(
1

η
ξn

)]
− 1

η

N∑
n=1

E

[
ξnv

′
n

(
1

η
ξn

)]
.

Note that if η∗ > 0 is the (unique, see below) solution to (A.9), then inserting η∗ into
F(η) immediately gives (3.8).

Next, using the integrability conditions provided by Lemma A.4 below, we show
the existence of a solution η∗ > 0 of (A.9). First we consider η → +∞. Since∑N

n=1 vn(0+) = ∑N
n=1 un(+∞) > B by Assumption 2.2, we have

lim inf
η→+∞

(
− B +

N∑
n=1

E

[
vn

(1

η
ξn

)])
> 0.
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Moreover, v′
n(0) = −∞ shows that

lim inf
η→+∞−1

η

N∑
n=1

E

[
ξnv

′
n

(
1

η
ξn

)]
≥ 0.

Hence lim infη→+∞ F ′(η) > 0. We now look at η → 0 and find

lim
η→0

F ′(η) = −B + lim
η→0

( N∑
n=1

E

[
vn

(1

η
ξn

)]
− 1

η

N∑
n=1

E

[
ξnv

′
n

(1

η
ξn

)])

= −B + lim
t→+∞

( N∑
n=1

E[vn(tξn)] − t

N∑
n=1

E[ξnv
′
n(tξn)]

)

= −B +
N∑

n=1

lim
t→+∞E[vn(tξn) − tξnv

′
n(tξn)].

The convexity of vn implies that for any fixed z0 > 0 and z > z0,

vn(z) − vn(z0) ≤ v′
n(z)(z − z0).

From limz→+∞ v(z)
z

= +∞, v′
n(z) → +∞ as z → +∞ and

vn(z) − zv′
n(z) ≤ vn(z0) − z0v

′
n(z) ↓ −∞ as z → +∞,

we have by monotone convergence that

lim
t→+∞E[vn(tξn) − tξnv

′
n(tξn)] = −∞,

so that lim infη→0 F ′(η) = −∞. By the continuity of F ′, we obtain the existence of
a solution η∗ > 0 for (A.9). Uniqueness follows from the strict convexity of F . �

Remark A.3 In [42, Theorem 4.106], (A.5) is deduced by different means for univari-
ate risk measures defined on L∞. In [3], (A.5) is obtained by different means in the
multi-dimensional deterministic case, i.e., in R

N .

A.3 Auxiliary results for existence

The following auxiliary result is standard and can be found in many articles on utility
maximisation; see for example [8, Lemma 18]. Recall that we are working under
Assumption 2.2, 4).

Lemma A.4 Let υ : R+ → R be a strictly convex differentiable function satisfying
υ ′(0+) = −∞, υ ′(+∞) = +∞ and let Q 
 P. Then:

(a) υ ′(λdQ
dP

) ∈ L1(Q) for all λ > 0.

(b) Setting F(λ) := E[ dQ
dP

υ ′(λdQ
dP

)] defines a bijection between (0,+∞) and
(−∞,+∞).
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By applying the classical convex duality theory for real-valued functions (see
[41, Sects. 12 and 26]), we get

Lemma A.5 The convex conjugate function v : R → (−∞,+∞] of u given by
v(y) = supx∈R(u(x) − xy) is a proper lower semicontinuous convex function, equal
to +∞ on (−∞,0), bounded from below on R, finite-valued, strictly convex, contin-
uously differentiable on (0,+∞) and satisfying

v(+∞) = +∞, v(0+) = u(+∞), v′(0+) = −∞, v′(+∞) = +∞,

u′(x) = (v′)−1(−x), u
( − v′(y)

) = −yv′(y) + v(y), ∀y ≥ 0,

where the usual rule 0 · ∞ = 0 is applied.

Proposition A.6 (Biagini et al. [11, Proposition 3.6]) Let Q 
 P. For all c ∈ R, the
optimiser λ(c;Q) of

min
λ>0

(
E

[
v
(
λ

dQ

dP

)]
+ λc

)

is the unique positive solution of the first order condition

EQ

[
v′

(
λ

dQ

dP

)]
+ c = 0.

If sup{E[u(g)] : g ∈ L1(Q) and EQ[g] ≤ c} < u(+∞), then the random variable
ĝ := −v′(λ(c;Q)

dQ
dP

) belongs to the set {g ∈ L1(Q) : EQ[g] = c} and satisfies
u(ĝ) ∈ L1(P) and

min
λ>0

(
E

[
v
(
λ

dQ

dP

)]
+ λc

)
= sup{E[u(g)] : g ∈ L1(Q) and EQ[g] ≤ c}
= E[u(ĝ)] < u(+∞).

A.4 Proofs for Sect. 4.2

Proof of Proposition 4.4 From Mφn ⊆ L1(P,Qn) ⊆ L1(Qn), we clearly have
Un(a

n) ≤ Ũn(a
n) ≤ Ûn(a

n) ≤ un(+∞) so that

if Un(a
n) = u(+∞), then Un(a

n) = Ũn(a
n) = Ûn(a

n) = un(+∞). (A.10)

By the Fenchel inequality, we get

E[un(X
n + W)] ≤ λ(EQn[Xn] +EQn[W ]) +E

[
vn

(
λ

dQn

dP

)]

and hence

Un(a
n) ≤ Ũn(a

n) ≤ Ûn(a
n)

≤ inf
λ>0

(
λ(EQn[Xn] + an) +E

[
vn

(
λ

dQn

dP

)])
< +∞ (A.11)

as E[vn(λ
dQn

dP
)] < +∞. Therefore (4.4) is a consequence of (A.10) and (4.6).
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To show (4.6), we consider the integral functional I : Mφn → R defined by
I (Xn) = E[un(X

n)]. It is finite-valued, monotone increasing and concave on Mφn

(as E[un(X
n)] ≤ un(E[Xn]) < +∞), and therefore by Theorem A.2, it is norm-

continuous on Mφn . We can then follow the well-known duality approach (see for
example [11]), as follows.

Consider the convex cone D0 := {W ∈ Mφn : EQn[W ] ≤ 0} which is the polar
cone of the one-dimensional cone D := {λdQn

dP
: λ ≥ 0}, so that the bipolar D00 coin-

cides with D. Let δD0 : Mφn → R∪{+∞} be the support functional of D0. By Kozek
[38], or directly by hand, the concave conjugate I ∗ : Lφ∗

n → R∪{−∞} is given by
I ∗(ξn) = E[−vn(ξ

n)], and so by the Fenchel duality theorem,

Un(a
n) = sup

W∈D0
E[un(X

n + an + W)] = sup
Z∈D0+Xn+an

E[un(Z)]

= sup
Z∈Mφn

(
E[un(Z)] − δD0+Xn+an(Z)

)

= min
ξn∈Lφ∗

n

(
δ∗
D0+Xn+an(ξ

n) −E[−vn(ξ
n)])

= min
ξn∈Lφ∗

n

(
E[ξn(Xn + an)] + δD00(ξ

n) +E[vn(ξ
n)])

= min
ξn∈D00

(
E[ξn(Xn + an)] +E[vn(ξ

n)])

= min
λ>0

(
λ(EQn[Xn] + an) +E

[
vn

(
λ

dQn

dP

)])
,

where we used δ∗
D0 = δD00 , D00 = D and the fact that the minimum is obtained at

λ > 0. The last fact follows because if λ = 0, then Un(a
n) = E[vn(0)] = un(+∞), in

contradiction to the assumption. We complete the proof by showing (4.5). From the
inequality (A.11), it is clear that Un(−∞) = −∞. Define

Vn(λ) := E

[
vn

(
λ

dQn

dP

)]
+ λEQn[Xn].

When Un(a
n) < un(+∞), we have Un(a

n) = infλ>0(Vn(λ)+λan) from (4.6), which
shows that Un and Vn are conjugate to each other, i.e., we have

Vn(λ) = sup
an>0

(
Un(a

n) − λan
)
.

From Lemmas A.4 and A.5, we know that the convex function Vn is differentiable on
(0,+∞) and so Un is differentiable on (−∞,+∞) and U ′

n(a) = (V ′
n)

−1(−a) > 0.
We only need to show that U ′

n(+∞) = 0 and U ′
n(−∞) = +∞. We have

Vn(0+) = +∞ because vn(0+) = un(+∞) = +∞. Since v′
n(0+) = −∞, we get

V ′
n(0+) = −∞ and U ′

n(+∞) = 0. Moreover, by Jensen’s inequality,

V ′
n(+∞) = lim

λ→+∞
Vn(λ)

λ
= lim

λ→+∞
1

λ
E

[
vn

(
λ

dQn

dP

)]
+EQn[Xn]

≥ lim
λ→+∞

1

λ
vn (λ) +EQn[Xn] = v′

n(+∞) +EQn[Xn] = +∞,

which implies U ′
n(−∞) = +∞. �
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Proof of Lemma 4.7 The set K is clearly closed. We show that it is bounded. For
N = 1, this is true. Let N > 1. First we prove that for all j = 1, . . . ,N ,

Uj (a)

(
1 +

∑
n�=j Un(A − (N − 1)a)

Uj (a)

)
−→ −∞ as a ↓ −∞. (A.12)

Recall that Un(−∞) = −∞ and Un(+∞) ≤ un(+∞) for all n. Suppose that for
some k ∈ {1, . . . ,N}, we have uk(+∞) < +∞. Then Uk(+∞) < +∞ and for all
j = 1, . . . ,N ,

lim
a→−∞

Uk(A − (N − 1)a)

Uj (a)
= 0. (A.13)

Now suppose that for some k ∈ {1, . . . ,N}, we have uk(+∞) = +∞. Then Propo-
sition 4.4 shows that Uk(a

k) < +∞ = uk(+∞), U ′
k > 0, U ′

k(−∞) = +∞ and
U ′

k(+∞) = 0. By l’Hôpital’s rule, we obtain again for all j = 1, . . . ,N that

lim
a→−∞

Uk(A − (N − 1)a)

Uj (a)
= lim

a→−∞
−(N − 1)U ′

k(A − (N − 1)a)

U ′
j (a)

= 0. (A.14)

From (A.13) and (A.14), we deduce that (A.12) holds true.
We conclude that for any constant B , there exists a constant R such that for all

j = 1, . . . ,N and a < R, we have

Uj (a)

(
1 +

∑
n�=j Un(A − (N − 1)a)

Uj (a)

)
< B.

Let a ∈ K and take i with ai = min{a1, . . . , aN }. Note that for all j = 1, . . . ,N , we
have aj ≤ A − (N − 1)ai because

∑N
n=1 an ≤ A. Assume that ai < R. Then

B ≤
N∑

n=1

Un(a
n) ≤ Ui(a

i)

(
1 +

∑
n�=i Un(A − (N − 1)ai)

Ui(ai)

)

which is a contradiction. Therefore aj ≥ R for all j = 1, . . . ,N , and then also
aj ≤ A − (N − 1)R for all j = 1, . . . ,N because

∑N
n=1 an ≤ A. This proves the

claim. �

Let X ∈ M� and consider the function F(δ) := E[∑N
n=1 un(X

n + Yn − δ)] with
δ ∈ R. If Y ∈ M�, then F is finite-valued and concave on R, hence continuous on R

(see the discussion at the beginning of Sect. 4.2). However, when Y ∈ L1(Q) satisfies
E[∑N

n=1 un(X
n + Yn)] > B (with the understanding that un(X

n + Yn) ∈ L1(P) for
each n), it is not any more evident if F is continuous on R as one has to guarantee
that E[∑N

n=1 un(X
n + Yn − δ)] > −∞ for δ > 0.

Lemma A.7 If X ∈ M� and Z ∈ L1(Q) satisfy E[∑N
n=1 un(X

n + Zn)] > B ,
then there exists Z̃ ∈ L1(Q) which satisfies

∑N
n=1 EQn[Z̃n] <

∑N
n=1 EQn[Zn] and

E[∑N
n=1 un(X

n + Z̃n)] = B .



562 F. Biagini et al.

Proof Set An := {Xn + Zn > kn} and let kn ∈ R satisfy P[An] > 0 and Qn[An] > 0.
For any δ > 0, consider the random variable Z̃ ∈ L1(Q) with Z̃n := Zn − δ1An and
define G(δ) := E[∑N

n=1 un(X
n + Zn − δ1An)]. Then

G(δ) = E

[ N∑
n=1

un(X
n + Zn)1Ac

n

]
+E

[ N∑
n=1

un(X
n + Zn − δ)1An

]

≥ E

[ N∑
n=1

un(X
n + Zn)1Ac

n

]
+E

[ N∑
n=1

un(kn − δ)1An

]
> −∞,

which implies that G is continuous on R+ and the result follows. �

Proof of Lemma 4.8 From (3.5) and ρ
Q
B (X) = ρ̃

Q
B (X), note that the penalty function

can also be written as

αB(Q) = −
N∑

n=1

EQn[Xn] − ρ
Q
B (X) = −

N∑
n=1

EQn[Xn] − ρ̃
Q
B (X)

= sup

{ N∑
n=1

EQn[−Zn] : Z ∈ L1(P,Q),E[�(Z)] ≥ B

}
,

for � from (1.3). Set

c=(Q):= inf

{ N∑
n=1

EQn[Zn] : Z ∈ L1(P,Q),E[�(Z)] = B

}
.

Similarly to the proof of (A.3), we show that

Z ∈ L1(P,Q) and E[�(Z)] > B =⇒
N∑

n=1

EQn[Zn] > c=(Q). (A.15)

Indeed, Lemma A.7 implies the existence of Z̃ ∈ L1(P,Q) satisfying E[�(Z̃)] = B

and
∑N

n=1 EQn[Z̃n] <
∑N

n=1 EQn[Zn], and therefore we have

c=(Q) ≤
N∑

n=1

EQn[Z̃n] <

N∑
n=1

EQn[Zn].

It follows that

c(Q) := −αB(Q) = inf

{ N∑
n=1

EQn[Zn] : Z ∈ L1(P,Q),E[�(Z)] ≥ B

}
= c=(Q).

Indeed, −∞ < c(Q) ≤ c=(Q); so assume c(Q) < c=(Q). By the definition of c(Q),
there exist ε > 0 and Z ∈ L1(P,Q) with

∑N
n=1 EQn[Zn] ≤ c(Q) + ε < c=(Q) and

E[�(Z)] > B , which contradicts (A.15).
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Finally, uniqueness follows from an argument similar to the one applied at the end
of the proof of Proposition 2.4, replacing

∑N
n=1 Yn with

∑N
n=1 EQn[Yn]. �
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