International Journal on Software Tools for Technology Transfer (2020) 22:389-397

https://doi.org/10.1007/s10009-020-00565-0

FOUNDATION FOR MASTERING CHANGE

Special Section REoCAS

®

Check for
updates

Rigorous engineering of collective adaptive systems: special section

Rocco De Nicola' - Stefan Jahnichen? - Martin Wirsing?

Published online: 13 May 2020
© The Author(s) 2020

Abstract

An adaptive system is able to adapt at runtime to dynamically changing environments and to new requirements. Adaptive
systems can be single adaptive entities or collective ones that consist of several collaborating entities. Rigorous engineering
requires appropriate methods and tools that help guaranteeing that an adaptive system lives up to its intended purpose.
This paper introduces the special section on “Rigorous Engineering of Collective Adaptive Systems.” It presents the seven
contributions of the section and gives a short overview of the field of rigorously engineering collective adaptive systems
by structuring it according to three topics: systematic development, methods and theories for modelling and analysis, and
techniques for programming and operating collective adaptive systems.

Keywords Adaptive systems - Collective adaptive systems - Software engineering - Formal methods - Rigorous methods

1 Introduction

A collective adaptive system (CAS), often also called ensem-
ble, consists of collaborating entities that are able to adapt at
runtime to dynamically changing open-ended environments
and to new requirements [40,45]. Often the entities of such a
system have their own individual properties and objectives;
interactions with other entities or with humans may lead
to the emergence of unexpected phenomena. Many modern
systems are collective and adaptive: smart systems such as
smart cities and smart traffic, collective cyber-physical sys-
tems such as robot swarms and sensor networks, as well as
socio-technical systems such as distributed energy systems.

Rigorous engineering of collective adaptive systems
requires appropriate methods and tools that help guarantee-

B Martin Wirsing
wirsing@lmu.de

Rocco De Nicola
rocco.denicola@imtlucca.it

Stefan Jahnichen
stefan.jachnichen @tu-berlin.de
I IMT School for Advanced Studies Lucca, Lucca, Italy

TU Berlin and FZI Forschungszentrum Informatik Berlin,
Berlin, Germany

Ludwig-Maximilians-Universitit Miinchen, Munich,
Germany

ing that—in spite of dynamically changing environments—
they live up to their intended purpose. This includes theories
for designing and analysing collective adaptive systems,
techniques for programming and operating such systems,
rigorous methods for devising adaptation mechanisms, vali-
dation and verification techniques as well as approaches for
ensuring security and trust and optimising performance.

Research projects In the last 10years research on col-
lective adaptive systems has been fostered by European
and national research programs and projects. The notion
of collective adaptive system was elaborated in a work-
shop on “Fundamentals of Collective Adaptive Systems”,
organised by the European Commission in 2009 [45]; ear-
lier in 2006-2008, the notion of ensemble was developed
in a series of workshops of the Interlink project [71],
funded by the Future and Emerging Technologies (FET) Unit
of the European Commission. As a sequel, the FET unit
launched two proactive initiatives. The action ICT-2009.8.5
“Self-Awareness in Autonomic Systems”! called for “new
concepts, architectures, foundations and technologies” for
computing and communication systems “that are able to opti-
mise overall performance and resource usage in response
to changing conditions, adapting to both context (such as
user behaviour) and internal changes (such as topology).”

! https://cordis.europa.eu/programme/id/FP7_ICT-2009.8.5, read on
2020/02/03.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00565-0&domain=pdf
https://cordis.europa.eu/programme/id/FP7_ICT-2009.8.5

390

R.De Nicola et al.

The follow-up action ICT-2011.9.10 on “Fundamentals of
Collective Adaptive Systems”? focused on socio-technical
systems “that are constructed as a collective of heteroge-
neous components and that are tightly entangled with humans
and social structures”. Altogether 12 projects were funded
including ASCENS [73,74] on “Autonomic Service- Compo-
nent ENSembles”, SAPERE [75] on “Self-Aware PERvasive
service Ecosystems”, ALLOW Ensembles [17] on large
scale collective adaptive ensembles, QUANTICOL [14] on a
quantitative approach to the design and management of col-
lective and adaptive behaviours, and the coordination action
FoCAS.?

More recently, a number of National projects or initiatives
have been funded in Europe, here we would like to mention
just two that are very close to us.

The German Transregional Collaborative Research Cen-
tre 248 “Foundations of Perspicuous Software Systems™
aims at enabling comprehension in a cyber-physical world
with the human in the loop. The starting consideration is
that computer programs increasingly participate in actions
and decisions that affect humans but that the understanding
of how these applications interact and what is the cause of
a specific automated decision is lagging far behind. These
“smart systems” calculate and propagate outcomes of com-
putations, but unfortunately do not provide explanations.

The Italian collaborative project IT-Matters® has the goal
of developing and the experimenting with a novel methodol-
ogy for the specification, implementation and validation of
trustworthy smart systems based on formal methods. Three
basic steps are envisaged: (i) providing and analysing sys-
tem models to find design errors, (ii) moving from models
to executable code by translation into domain-specific pro-
gramming languages and, finally, (iii) monitoring run-time
execution to detect anomalous behaviours and to support sys-
tems in taking context-dependent decisions autonomously.

ISoLA This special section on “’Rigorous Engineering of
Collective Adaptive Systems”” was inspired by three success-
ful tracks [30,44,72] on rigorous engineering at the ISOLA
conferences in 2014 [51], 2016 [52], and 2018 [53]. In 2014,
the topic of the track was “Rigorous Engineering of Auto-
nomic Ensembles” and the six papers of the track presented
results of the ASCENS project [73]. The tracks of 2016 and
2018 were not dedicated to the outcome of a single project,
but addressed more widely the theme of rigorous engineering
collective adaptive systems. The 12 scientific contributions

2 https://cordis.europa.eu/programme/id/FP7_ICT-2011.9.10, last
accessed 2020-04-16.

3 http://www.focas.eu, last accessed 2020-04-16.

4 https://www.perspicuous-computing.science/, last accessed 2020-
04-16.

5 http://itmatters.imtlucca.it/, last accessed 2020-04-16.

@ Springer

of 2016 and the 18 contributions of 2018 covered a broad
range of topics such as formally modelling, analysing and
programming collective adaptive systems as well as secu-
rity, machine learning, and software support for collective
adaptive systems.

Contents The seven papers of this special section are revised
and extended versions of papers presented at the ISOLA 2018
track [30]. In this paper we give a very short account of the
field of rigorously engineering collective adaptive systems
by structuring the research about collective adaptive systems
along three different lines:

— systematic development of CAS,
— methods and theories for modelling and analysing CAS,
— techniques for programming and operating CAS.

The seven contributions of the special section are presented
as part of this general overview.

2 Systematic development of CAS

Key features of collective adaptive systems are the so-called
self*-properties, such as self-awareness and self-adaptation.
Systematic development approaches address these features
and support (some or most of) the classical phases of the soft-
ware development life cycle such as requirements elicitation
and specification, design, implementation, validation and
verification, and deployment. In the following we distinguish
goal-oriented methods with focus on the early development
phases, methods based on feedback control loops, and auto-
mated synthesis.

Goal-oriented methods Well-known early goal-oriented
engineering approaches are KAOS [28] and Tropos [15].
KAOS [28] distinguishes hard and soft goals, is formally
based on (linear temporal) logic, and proposes activities
for refining the goals and deriving operational requirements
which serve as the basis for system design. Tropos [15] is
a method for developing multi-agent systems. Its notion of
agent is founded on the BDI (Belief, Desire, and Intention)
architecture [62]. Key modelling concepts are actors, their
dependencies as well as the goals, plans and capabilities.
For KAOS and Tropos, the development process covers all
phases from requirements to implementation; special focus
is put on the identification of stakeholders and the specifi-
cation of the environment in the early requirements phases.
Neither KAOS nor Tropos offer direct support for adaptation,
but in [24,58] it is shown how to use KAOS for developing
dynamic self-adaptive systems, while a Tropos extension,
called Tropos4AS, is presented in [57] as a tool for engineer-
ing self-adaptive systems.

https://cordis.europa.eu/programme/id/FP7_ICT-2011.9.10
http://www.focas.eu
https://www.perspicuous-computing.science/
http://itmatters.imtlucca.it/

Rigorous engineering of collective adaptive systems: special section

391

ADELFE [11] is a methodology for developing self-
organising cooperative and thus collective multi-agent sys-
tems. Its main ingredients are the characterisation of the
system environment and the identification and treatment
of so-called non-cooperative situations. ADELFE 3.0 [55]
proposes an iterative process that integrates modelling, pro-
gramming and simulation techniques. The method supports
the UML Unified Process and tailors it to the specificity of
self-organising systems. In [56] ADELFE is combined with
Tropos4AS to obtain a goal-oriented development method
for self-organising multi-agent systems.

Autonomous Requirements Engineering [67] (ARE) is a
goal-oriented method for systematically eliciting so-called
autonomy requirements. These are the self*-objectives of the
system which are derived by applying a model for generic
autonomy requirements to any system goal and its envi-
ronmental constraints. The ARE method was applied to
unmanned space missions [68] as well as to ensembles such
as a peer-to-peer cloud [67].

The paper in this special section “The SOTA approach to
engineering collective adaptive systems” [4] by Dhaminda
Abeywickrama, Nicola Bicocchi, Marco Mamei, and Franco
Zambonelli presents SOTA, a goal-oriented requirements
engineering and modelling method for describing the over-
all domain and the requirements of a collective adaptive
system. SOTA focuses on modelling and analysing func-
tional and non-functional requirements of self-adaptation,
and enables the early verification of requirements, the identi-
fication of knowledge requirements for self-adaptation, and
the identification of the most suitable architectural patterns
for self-adaptation. A more detailed and formal counter-
part of SOTA specifications is the general ensemble model
GEM [41].

The invariant refinement method IRM [19] supports the
transition from early high-level requirements—specified,
e.g. in SOTA and ARE, see [4,67]—to software architec-
ture. IRM captures goals and requirements as invariants
that describe desired system states over time. High-level
invariants are iteratively decomposed into more specific sub-
invariants up to the level that they can be operationalised by
autonomous components and component ensembles.

Methods based on feedback control loops An early refer-
ence model for adaptive systems is the MAPE-K architecture
introduced by IBM [42]. It comprises a control loop with the
four phases Monitor, Analyse, Plan, Execute, all of which
exploit the Knowledge of the system itself and its environ-
ment. The research roadmap for self-adaptive systems [29]
suggests a life cycle based on MAPE-K and proposes
the use of a process modelling language to describe the
self-adaptation workflows and feedback control loops. The
“generic life cycle for context-aware adaptive systems” [43]
is also based on MAPE-K and addresses foreseen and unfore-

seen evolution of the environment. In [16] feedback loops
are considered as first-class entities and are explored from
a control engineering perspective. Similarly, in [64] a bio-
cybernetic loop serves as basis for a three-layered software
architecture for adaptive systems.

The ensemble development life cycle EDLC [39] deals
with awareness and adaptation in a “runtime feedback con-
trol loop.” It is an agile process whose development phases
are arranged in two “wheels”: at “design” time, the classical
development phases—requirements engineering, modelling
and programming, verification and validation—are iterated,;
at “runtime”, the entities of the ensemble iterate the “runtime
feedback control loop” consisting of monitoring, awareness,
and self-adaptation. The connection between design time and
runtime is established by the deployment or hot update of
the system and in the other direction by the runtime sys-
tem providing feedback to the design cycle. The construction
of collective adaptive systems using EDLC is supported by
eight engineering principles [9]. EDLC has been used in the
development of several ensemble systems covering swarm
robots [74], peer-to-peer cloud [54], and e-mobility applica-
tions [18].

Automated synthesis Automated synthesis of programs is a
lifely and important research area (for an overview see [36]).
Collective adaptive systems are typically too complex to be
automatically generated but some crucial parts can be syn-
thesised or generated.

Autonomous systems are subject to faults caused by the
interaction with the environment. The paper [33] proposes
an algorithm for automatically synthesising runtime moni-
tors for fault detection and recovery strategies for controller
synthesis. The approach is currently under implementation
in the BIP [7] framework.

The gap between simulated hardware and real hardware
implementations is addressed in [70]. It proposes a novel
architecture for realising collective adaptive systems on hard-
ware devices for real-world scenarios. Hardware devices are
equipped with self-descriptions and these self-descriptions
are used to automatically find appropriate devices for the
tasks required by the system or the users.

Modern energy systems comprise several local commu-
nity energy systems [23] which produce, consume, and sell
energy. In [23] community energy systems are modelled as
so-called electronic institutions [60,63] and two optimisa-
tion methods are proposed to automatically find appropriate
policies for selling and consuming energy. The optimisation
methods are based on genetic programming and reinforce-
ment learning. The results show that the evolved policies
clearly outperform the initially human-designed policy and
enable the energy system to remain sustainable over time.

The paper in this special section “Learning-based coordi-
nation model for spontaneous self-composition of reliable

@ Springer

392

R.De Nicola et al.

services in a distributed system” [50] by Houssem Ben
Mahfoudh, Giovanna Di Marzo Serugendo, Nabil Naja, and
Nabil Abdennadher studies decentralised services which are
built and composed on-demand and arise from the inter-
action of multiple sensors and devices. The bio-inspired
SAPERE coordination model [75] is extended to a learning-
based coordination model which accommodates spontaneous
self-composition of services in fully distributed scenarios
using multiple nodes. Through learning, agents progressively
update their behaviours and initial results show that the col-
lective adaptive system are able to converge towards reliable
composition of services, in terms of both functionality and
expected quality of services.

3 Methods and theories for modelling and
analysing CAS

Process algebraic, logical, and model-based methods are
used for modelling dynamically reconfigurable architectures
and ensemble requirements.

As of now there exist a large number of instances of
Process Description Languages (PDLs), but overall they
share a common ground: they can be generally described
as action-based formalisms relying on behavioural opera-
tors that support compositionality and abstraction, where
the meaning of process terms is formally defined via a set
of structural operational semantic rules that can be used to
associate a state transition graph to each process term. Such
state transition graphs are then used as the basis for model
checking properties expressed with one of the many tem-
poral logics that have been proposed. After the success of
such logics in specifying and verifying qualitative properties
of system, other richer logics and tools for considering also
quantitative properties have been proposed, to perform also
probabilistic, stochastic or statistical model checking: see,
e.g. [46] and [47]. For an extensive overview of such logics
and associated tools, we refer the reader to [6] and references
therein.

In parallel with the above approach, Architecture descrip-
tion languages (ADLs) have been developed and used to
model the architecture of software-intensive systems. With
the term architecture we refer to the description of the compo-
nents that comprise a system, the behavioural specifications
of those components, and the patterns and mechanisms for
their interactions. However, as pointed out in surveys on the
main ADLs [27,34,59] their semantics is not always fully
formal and early analysis of system architectures is often
difficult if not impossible.

Below we describe some of the logic-based approaches
that have been more concerned with the specification and
verification of collective adaptive systems. Then we will con-
sider (architectural) languages and their models.

@ Springer

Logic-based methods and analysis techniques Complex
requirements of collective adaptive systems are specified
concisely by modal logics that exploit dynamic, spatial and
temporal concepts.

Spatial Temporal Logics have been introduced in order to
specify spatial aspects of computation that are very important
in systems distributed in physical space and thus in many
collective adaptive systems.

These logics offer a topology-based approach to formal
verification of spatial properties depending upon physical
space based on a spatial logic, We extend the framework
with a spatial surrounded operator, a propagation operator
and with some collective operators.

A spatial logic (SLCS), stemming from the tradition of
topological interpretations of modal logics, dating back to
earlier logicians such as Tarski, where modalities describe
neighbourhood is introduced in [25]. SLCS extends the
classical framework with a spatial surrounded operator, a
propagation operator and with some collective operators
which are interpreted over arbitrary sets of points instead of
individual points in space. A variant of SLCS, named SSTL,
with two new spatial modalities: the somewhere operator and
anovel bounded version of the topological surrounded opera-
tor is introduced in [26] and is used in [25] to detect problems
in vehicle location data for city buses and, e.g. spot the unde-
sirable phenomenon of “clumping” which occurs when there
is not enough separation between subsequent buses serving
the same route.

Properties of dynamically changing ensembles can be
described in dynamic logics. In [61] a differential dynamic
logic (dL) is proposed to lay the foundations for developing
adaptive cyber-physical system models by rigorously spec-
ifying their behaviour: the logic is then accompanied by a
continuous monitoring to safeguard the decisions of learn-
ing agents and guide run-time decisions. In [38] a dynamic
logic is presented for specifying the global behaviour of sys-
tems by desired and forbidden interaction scenarios.

Languages and models Several formalisms for specialised
component models and languages for collective adaptive sys-
tems have been proposed, in particular in the context of
the ASCENS project [73]. One of the main objectives of
these formalisms is the actual formation of ensembles of
components forming a collective system with the idea that
ensembles are formed according to the overall goals of the
system and possibly to the environmental conditions.

The Service Component Ensemble Language (SCEL) [32]
has been designed to deal with collective adaptation. It brings
together programming abstractions to directly address aggre-
gations (how different components interact to form ensem-
bles and systems), behaviours (how components progress)
and knowledge manipulation according to specific policies.
These ingredients constitute the basis of so-called attribute-

Rigorous engineering of collective adaptive systems: special section

393

based communication, a novel paradigm that enables groups
of partners to interact by considering the predicates over
the (dynamic) values of the attributes they expose. SCEL
is equipped with an operational semantics that permits ver-
ification of properties of systems. SCEL has also been the
main source of inspiration for CARMA, a language recently
defined to support specification and analysis of collective
adaptive systems. CARMA [13,48] combines the lessons
learned from SCEL and the long tradition of stochastic pro-
cess algebras [31].

The Helena approach [37] proposes a role-based method
for modelling collaborations using a UML-like notation and
is founded on a rigorous formal semantics. Helena focuses
on the description of the behaviour of each role as well as
on the behaviour on the ensemble level. In Helena, a compo-
nent instance explicitly indicates which of the ensembles it
belongs to.

The DEECo (Dependable Emergent Ensembles of Com-
ponents) component model [21] aims at providing the
relevant software engineering abstractions that ease the
programmers’ tasks. A componentin DEECo features an exe-
cution model based on the MAPE-K autonomic loop. Like
SCEL, it consists of well-defined knowledge and processes
that are executed periodically in a soft real-time manner.
The component concept is complemented by the first-class
ensemble concept. An ensemble stands as the only communi-
cation mechanism between DEECo components. In DEECo
ensembles are specified explicitly and ensemble formation
employs a “greedy” strategy, in that a component is a member
of each of the ensemble instances, the membership condition
of which it satisfies, and that at the same time, this condition
is solely based on the component’s current knowledge.

Another formalism developed outside ASCENS is BIP [7].
This formalism aims at combining the approach based on
PDLs and ADLs by relying on a logic language for mod-
elling the interaction of components. Within the framework,
components are obtained as the superposition of three layers
that give name to the framework itself: Behaviour, Interac-
tion between transitions of the behaviour in the form of a set
of connectors, and Priority to describe the scheduling poli-
cies of interactions. The framework is designed to support
incremental construction of systems starting from atomic
components combined through a parameterised binary com-
position operator.

The two papers in this special section address reconfigura-
tion modelling and formal modelling of scenario evolution.

The paper “The DReAM framework for dynamic recon-
figurable architecture modelling: theory and applications”
[49], Alessandro Maggi, Joseph Sifakis, and Rocco De
Nicola introduces a new framework for modelling dynamic
reconfigurable architectures. A system is understood as a
dynamically changing set of typed components and a system
architecture is characterised by a set of coordination con-

straints. The DReAM language is based on the Propositional
Interaction Logic [12] of the BIP framework and extends
it with operations for data exchange between components
and by coordination terms for regulating interactions and
reconfigurations among a set of components. Static architec-
tures are modelled by Interaction Logic formulas. The main
ingredient for modelling dynamic architectures is the new
notion of ‘motif” which is defined by a DReAM coordina-
tion term. The DReAM framework is implemented as a Java
API together with an execution engine.

In “Adapting quality assurance to adaptive systems: the
scenario coevolution paradigm” [35] by Thomas Gabor,
Andreas Sedlmeier, Thomy Phan, Fabian Ritz, Marie Kier-
meier, Lenz Belzner, Bernhard Kempter, Cornel Klein, Horst
Sauer, Reiner Schmid, Jan Wieghardt, Marc Zeller, and Clau-
dia Linnhoff-Popien take a more abstract view and present a
formal framework for adaptation and testing of adaptive sys-
tems using scenarios; it also discusses how such a framework
can be used for increasing the trustworthiness of complex
adaptive systems. In particular, the work extends the sys-
tem model and the notion of adaptation space of [41] of
the ASCENS project [74] by abstract definitions of self-
adaptation and scenarios. A main contribution is also the
concept of scenario coevolution for making quality assur-
ance self-adaptive in order to match the capabilities of the
self-adaptive system-under-test.

4 Techniques for programming and
operating CAS

In collective adaptive systems interactions are typically per-
formed following an opportunistic pattern and might involve
several selected partners among a huge number of alterna-
tives. It is thus very costly or infeasible to rely on channels,
addresses or component identities for selecting such partners.
A number of alternative programming frameworks have been
proposed with different intercommunication strategies and
abstractions.

ECA programming Unlike traditional programming lan-
guages, Event-Condition-Action (ECA) programs consist of
a small set of rules, each of which specifies an action that
is performed when an event occurs and a specific condition
holds [10]. This event-driven model allows for the specifi-
cation of robust programs in which the static data model is
separated from the dynamic part. Tools have been developed
to support runtime execution and static/dynamic analysis of
ECA programs to guarantee satisfaction of invariants [65,66].

Attribute-based programming The “attribute-based”

paradigm allows for specifying communicating systems
by abstracting from channels and identities. Systems are

@ Springer

394

R.De Nicola et al.

described as sets of parallel components equipped with
attributes encoding relevant features such as role, status,
and position that can be modified at runtime. Communica-
tion links among components are dynamically established
through predicates over their attributes. Attribute-based pro-
gramming was first used in SCEL [32] and has been then
refined in AbC [1,2]. This more abstract calculus concen-
trates on primitives and interaction mechanisms that are
crucial for dealing with CAS and relies on anotion of implicit,
anonymous, and non-blocking multicasting. An AbC system
is rendered as a set of parallel components, each equipped
with a set of attributes, termed as attribute environment, and
with a behaviour, termed as a process. The attribute values
can be modified by internal actions and the behaviour of a
component is parameterised to these values.

Aggregate programming A similar approach is adopted
in the “aggregate programming” paradigm [8]: systems are
coherent collections of interacting devices, whose coor-
dination and composition are hidden to programmers. In
aggregate programming, a program is specified over a region
of the computational environment expressing e.g. network
structure, continuous space and time. Programs manipu-
late data computed by the individual devices in that region,
via local sensing and interactions with (spatial or network)
neighbours. Several models and programming languages
supporting encapsulation, modulation, and composition of
services have been already proposed, e.g. the Field Calculus
and the language Protelis [69].

The last part of this special session is exactly dedicated to
setting up appropriate programming frameworks to support a
programming style that would ease programming, evolution,
management, and security of collective adaptive systems. It
also addresses testing methods and fault handling techniques
for self-organising adaptive and autonomic systems.

The paper “A distributed API for coordinating AbC
programs” [3] by Yehia Abd Alrahman and Giulio Garbi
concentrates on the interaction models for CAS where
environmental conditions largely influence interactions. In
particular, it considers a possible implementation of message
exchange based on anonymous multicast communication as
advocated in AbC. The paper describes an efficient and dis-
tributed coordination infrastructure for AbC and proves its
correctness with respect to the formal operational semantics
of ABC. The proposed approach guarantees that the individ-
ual components are infrastructure agnostic. Thus the code of
a component does not specify how messages are routed in
the infrastructure but rather what properties a target compo-
nent must satisfy. The actual communication infrastructure is
implemented through a Go API, named GoAt, and an Eclipse
plugin that enables one to program in a high-level syntax
which can be automatically used to generate matching Go
code. The approach is illustrated through a non trivial case

@ Springer

study implementing a distributed graph colouring algorithm.
The performance of the tree-based coordination infrastruc-
ture is also evaluated against two alternative ones based on
clusters and rings.

The paper “A language and framework for dynamic com-
ponent ensembles in smart systems” [20] by Tomas Bures,
Ilias Gerostathopoulos, Petr Hnetynka, Frantisek P14sil, Filip
Kirijt, Jif{ Vindrek, and Jan Kofron presents the “Trait-based
COmponent Ensemble Language” TCOEL. This specifi-
cation and architecture description language builds on the
experience on using DEECo [21] within the same group and
is based on the consideration that in complex real-life systems
ensembles may overlap, be nested, and dynamically formed
and dismantled in a distributed environment. TCOEL is built
on top of Scala and supports the combination the ensemble
specifications with existing libraries in Java and other JVM-
based languages available on multiple platforms. Ensembles
are constructed by integrating domain-independent concepts
(such a number and type of the members of an ensemble)
with domain-dependent features, so-called traits, similar to
mixins in object-oriented languages. Examples for traits are
spatial constraints, predictions of certain values, or statis-
tical tests. For evaluating the approach it is shown how a
RoboCup Rescue application can be specified and simulated
in TCOEL.

The last paper of this section, “Toward autonomically
composable and context-dependent access control specifica-
tion through ensembles” [5] by Rima Al Ali, Tomas Bures,
Petr Hnetynka, Jan Matejek, FrantiSek P14sil, and Jit{ Vinarek
is concerned with the possibility of extending the concept of
ensemble and exploiting it to define dynamic access control
rules to govern interactions in a system of evolving auto-
nomic components. Autonomic component ensembles [22]
are enhanced with autonomously composable and context-
dependent access control rules that follow the dynamicity and
context-dependence of the components of a system. These
are the so-called (dynamic) security ensemble rules that
describe the allowed interactions in the system and follow
the system during its evolution. The rules are complemented
with an approach to match ensembles to the current state of
the system so as to resolve the binding of dynamic access
control rules to current situations and to generate the set of
actions permitted at a given moment given the components
in the system and their context. Care is taken for deriving
the state of components that are not controlled by the sys-
tem (e.g. humans and 3rd party components) and thus are
not directly observable. For the specification of the rules, an
internal Scala-based DSL has been proposed, but for end-user
usage, an external a user friendly DSL is also offered.

Rigorous engineering of collective adaptive systems: special section

395

5 Concluding remarks

Collective adaptive systems pose many research challenges
which range from engineering adaptivity to novel require-
ments for the classical topics of modelling, analysing, testing,
safety, security, and performance. Adaptivity is probably the
most challenging topic for further evolution of our current
technologies. But adaptivity is not only concerned with tech-
nical challenges and solutions. Even more important are the
questions of acceptance and trust as well as those concerned
with liability and, in general, with law. More research will
be needed to master the rigorous engineering of such collec-
tive adaptive systems, to make them reliable and trustworthy.
The story continues, in the mean time, enjoy this special
section of STTT.

Acknowledgements Open Access funding provided by Projekt DEAL.
As editors of this special section we would like to thank all authors for
their valuable contributions and all reviewers for their careful evalu-
ations and constructive comments. We are also grateful to the ISOLA
chairs, Tiziana Margaria and Bernhard Steffen, for giving us the oppor-
tunity to organise this special section and we thank them and STTT for
providing us with the very helpful Online Journal Service (OJS) system.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus for
collective-adaptive systems and its behavioural theory. Inf. Com-
put. 268, 104457 (2019)

2. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Programming inter-
actions in collective adaptive systems by relying on attribute-based
communication. Sci. Comput. Program. 192, 102428 (2020)

3. Abd Alrahman, Y., Garbi, G.: A distributed API for coordinating
ADbC programs. In this issue

4. Abeywickrama, D., Bicocchi, N., Mamei, M., Zambonelli, F.: The
SOTA approach to engineering collective adaptive systems. In this
issue

5. AlAli,R.,Bures, T., Hnetynka, P., Matejek, J., Plasil, F., Vinarek, J.:
Towards autonomically composable and context-dependent access
control specification through ensembles. In this issue. (2018)

6. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

7. Basu, A., Bensalem, S., Bozga, M., Bourgos, P., Sifakis, J.: Rigor-
ous system design: the BIP approach. In: MEMICS 2011, Volume
7119 of Lecture Notes in Computer Science 7119, pp. 1-19.
Springer, Berlin (2012)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Beal, J., Viroli, M.: Aggregate programming: from foundations to

applications. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) For-
mal Methods for the Quantitative Evaluation of Collective Adaptive
Systems—SFM 2016, Volume 9700 of Lecture Notes in Computer
Science, pp. 233-260. Springer, Berlin (2016)

. Belzner, L., Holzl, M.M., Koch, N., Wirsing, M.: Collective

autonomic systems: towards engineering principles and their foun-
dations. Trans. Found. Mastering Chang. 1, 180-200 (2016)
Berndtsson, M., Mellin, J.: ECA rules. In: Liu, L., Ozsu, T.
(eds.) Encyclopedia of Database Systems, 2nd edn, pp. 959-960.
Springer, Berlin (2018)

Bernon, C., Gleizes, M.-P., Migeon, F., Di Marzo Serugendo, G.:
Engineering self-organising systems. Self-organising Softw, 2011,
283-312 (2011)

Bliudze, S., Sifakis, J.: The algebra of connectors—structuring inter-
action in BIP. IEEE Trans. Comput. 57(10), 1315-1330 (2008)
Bortolussi, L., De Nicola, R., Galpin, V., Gilmore, S., Hill-
ston, J., Latella, D., Loreti, M., Massink, M.: Collective adaptive
resource-sharing Markovian agents. In: Quantitative Analysis of
Programming Languages, Volume 194 of EPTCS, pp. 16-31
(2015)

Bortolussi, L., De Nicola, R., Gast, N., Gilmore, S., Hillston, J.,
Massink, M., Tribastone, M.: A quantitative approach to the design
and analysis of collective adaptive systems. In: 1st FOCAS Work-
shop on Fundamentals of Collective Adaptive Systems (2013)
Bresciani, P, Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos,
J.: Tropos: an agent-oriented software development methodology.
JAAMAS 8(3), 203-236 (2004)

Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle,
H.M., Litoiu, M., Miiller, H. A., Pezze, M., Shaw, M.: Engineering
self-adaptive systems through feedback loops. In: Software Engi-
neering for Self-Adaptive Systems, pp. 48-70 (2009)
Bucchiarone, A., Dulay, N., Lavygina, A., Marconi, A., Raik, H.,
Russo, A.: An approach for collective adaptation in socio-technical
systems. In: SASO Workshops, pp. 43—48 (2015)

Bures, T., De Nicola, R., Gerostathopoulos, I., Hoch, N., Kit, M.,
Koch, N., Monreale, G.V., Montanari, U., Pugliese, R., §erbediij a,
N., Wirsing, M., Zambonelli, F.: A life cycle for the development
of autonomic systems: the e-mobility showcase. In: SASO Work-
shops, pp. 71-76 (2013)

Bures, T., Gerostathopoulos, 1., Hnetynka, P., Keznikl, J., Kit, M.,
Plasil, F.: The invariant refinement method. In: [73], pp. 405-428
(2015)

Bures, T., Gerostathopoulos, 1., Hnetynka, P., Plasil, F., Krijt, F.,
Vindrek, J., Kofron, J.: A language and framework for dynamic
component ensembles in smart systems. In this issue

Bures, T., Plasil, F.,, Kit, M., Tuma, P., Hoch, N.: Software abstrac-
tions for component interaction in the internet of things. Computer
49(12), 50-59 (2016)

Bures, T., Plasil, F.,, Kit, M., Tuma, P., Hoch, N.: Software abstrac-
tions for component interaction in the internet of things. IEEE
Comput. 49(12), 50-59 (2016)

Cardoso, R.P., Rossetti, R.J.E. , Hart, E., Kurka, D.B., Pitt, J.:
Engineering sustainable and adaptive systems in dynamic and
unpredictable environments. In: [53], pp. 221-240 (2018)

Cheng, B., Sawyer, P, Bencomo, N., Whittle, J.: A goal-based
modelling approach to develop requirements of an adaptive system
with environmental uncertainty. In: MODELS ’09, Volume 5795 of
Lecture Notes in Computer Science, pp. 468—483. Springer, Berlin
(2009)

Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M.,
Massink, M.: Spatio-temporal model checking of vehicular move-
ment in public transport systems. STTT 20(3), 289-311 (2018)
Ciancia, V., Latella, D., Loreti, M., Massink, M.: Model checking
spatial logics for closure spaces. Log. Methods Comput. Sci. 12, 4
(2016)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

396

R.De Nicola et al.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Clements, P.C.: A survey of architecture description languages. In:
IWSSD ‘96, vol. 8, p. 16. IEEE Computer Society Press (1996)
Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed
requirements acquisition. Sci Comput Program 20(1-2), 3-50
(1993)

de Lemos, R., Giese, H., Miiller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B.R., Tamura, G., Villegas, N.M., Vogel, T.,
Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun, Y., Cukic,
B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goschka,
K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J.,
Lopes, A., Magee, J., Malek, S., Mankovski, S., Mirandola, R.,
Mylopoulos, J., Nierstrasz, O., PezzeC, M., Prehofer, W., Schifer,
R., Schlichting, D., Smith, J.P., Sousa, L., Tahvildari, K.Wong,
Wauttke, J.: Software engineering for self-adaptive systems: a sec-
ond research roadmap. In: Software engineering for self-adaptive
systems, pp. 1-32 (2010)

De Nicola, R., Jahnichen, S., Wirsing, M.: Rigorous engineering
of collective adaptive ensembles—track introduction. In: [53], pp.
3-12 (2018)

De Nicola, R., Latella, D., Loreti, M., Massink, M.: A uniform
definition of stochastic process calculi. ACM Comput. Surv. 46(1),
5:1-5:35 (2013)

De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal
approach to autonomic systems programming: the SCEL language.
ACM Trans. Auton. Adapt 9(2), 7:1-7:29 (2014)

Dragomir, I, losti, S., Bozga, M., Bensalem, S.: Designing systems
with detection and reconfiguration capabilities: a formal approach.
In: [53], pp. 155-171 (2018)

Fuxman, A.D.: A survey of architecture description languages. In:
Reports from CSC 2018 Automatic Verification (2000)

Gabor, T., Sedlmeier, A., Phan, T., Ritz, F., Kiermeier, M., Belzner,
L., Kempter, B., Klein, C., Sauer, H., Schmid, R., Wieghardt,
J., Zeller, M., Linnhoff-Popien, C.: The scenario coevolution
paradigm: adaptive quality assurance for adaptive systems. In this
issue

Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found.
Trends Program. Lang. 4(1-2), 1-119 (2017)

Hennicker, R., Klarl, A.: Foundations for ensemble modeling—
the Helena approach—handling distributed systems with elaborate
ensemble architectures. In: Specification, Algebra, and Software,
pp- 359-381 (2014)

Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: [53],
pp- 32-47 (2018)

Holzl, M.M., Koch, N., Puviani, M., Wirsing, M., Zambonelli, F.:
The ensemble development life cycle and best practices for collec-
tive autonomic systems. In: [73], pp. 325-354 (2015)

Holzl, M.M., Rauschmayer, A., Wirsing, M.: Engineering of
software-intensive systems: state of the art and research challenges.
In: [71], pp. 1-44 (2008)

Holzl, M.M., Wirsing, M.: Towards a system model for ensembles.
In: Formal Modeling: Actors, Open Systems, Biological Systems,
Number 7000 in Lecture Notes in Computer Science, pp. 241-261.
Springer, Berlin (2011)

IBM. An architectural blueprint for autonomic computing. Tech-
nical report, IBM Corporation (2005)

Inverardi, P., Mori, M.: Software lifecycle process to support con-
sistent evolutions. Softw. Eng. Self-Adaptive Syst. 2010, 239-264
(2010)

Jahnichen, S., Wirsing, M.: Rigorous engineering of collective
adaptive systems—-track introduction. In: [52], pp. 535-538
(2016)

Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive sys-
tems: challenges beyond evolvability. CoRR arXiv:1108.5643
(2011)

Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model
checking. In: Bernardo, M., Hillston, J. (eds.) Formal Methods

@ Springer

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

for Performance Evaluation, SFM 2007, Advanced Lectures, Vol-
ume 4486 of Lecture Notes in Computer Science, pp. 220-270.
Springer, Berlin (2007)

Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A.,
Grosu, R.: Statistical Model Checking, pp. 478-504. Springer,
Berlin (2019)

Loreti, M., Hillston, J.: Modelling and analysis of collective adap-
tive systems with CARMA and its tools. In: Bernardo, M., De
Nicola, R., Hillston, J. (eds.) Formal Methods for the Quantitative
Evaluation of Collective Adaptive Systems—SFM 2016 Lecture
Notes in Computer Science 9700, pp. 83—119. Springer, Berlin
(2016)

Maggi, A., Sifakis, J., De Nicola, R.: The DReAM framework for
dynamic reconfigurable architecture modelling: theory and appli-
cations. In this issue

Mahfoudh, H.B., Di Marzo Serugendo, G., Naja, N., Abden-
nadher, N.: Learning-based coordination model for spontaneous
self-composition of reliable services in a distributed system. In
this issue

Margaria, T., Steffen, B. (eds.): Leveraging applications of formal
methods, verification and validation. In: Technologies for Mas-
tering Change—o6th International Symposium, ISoLA 2014, Part
I, Volume 8802 of Lecture Notes in Computer Science. Springer,
Berlin (2014)

Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal
Methods, Verification and Validation: Foundational Techniques—
7th International Symposium, ISoL.A 2016, Part I, Volume 9952 of
Lecture Notes in Computer Science (2016)

Margaria, T., Steffen, B. (eds.): Leveraging Applications of Formal
Methods, Verification and Validation: Foundational Techniques—
8th International Symposium, ISoL.A 2018, Part III. Lecture Notes
in Computer Science, vol. 11246. Springer, Berlin (2018)

Mayer, P., Velasco, J., Klarl, A., Hennicker, R., Puviani, M., Tiezzi,
F., Pugliese, R., Keznikl, J., Bures, T.: The autonomic cloud. In:
[73], pp. 495-512 (2015)

Mefteh, W., Migeon, F., Gleizes, M.-P., Gargouri, F.: Adelfe 3.0
design: building adaptive multi agent systems based on simulation
a case study. In: ICCCI, vol. 1, pp. 19-28 (2015)

Morandini, M., Migeon, F., Gleizes, M.-P., Maurel, C., Penserini,
L., Perini, A.: A goal-oriented approach for modelling self-
organising mas. ESAW 2009, 33-48 (2009)

Morandini, M., Penserini, L., Perini, A.: Modelling self-adaptivity:
a goal-oriented approach. In: Second IEEE International Confer-
ence on Self-adaptive and Self-organizing Systems, pp. 469-470
(2008)

Nakagawa, H., Ohsuga, A., Honiden, S.: Constructing self-adaptive
systems using a KAOS model. In: SASO Workshops, pp. 132-137
(2008)

Ozkaya, M., Kloukinas, C.: Are we there yet? Analyzing archi-
tecture description languages for formal analysis, usability, and
realizability. In: Demir6rs, O., Tiiretken, O. (eds.) 39th Euromicro
Conference on Software Engineering and Advanced Applications,
SEAA 2013, Santander, Spain, September 4-6, 2013, pp. 177-184.
IEEE Computer Society, Washington (2013)

Pitt, J., Schaumeier, J., Artikis, A.: Axiomatization of socio-
economic principles for self-organizing institutions. ACM Trans.
Auton. Adapt. Syst. 7(4), 1-39 (2012)

Platzer, A.: The logical path to autonomous cyber-physical systems.
In: Quantitative Evaluation of Systems, 16th International Confer-
ence, QEST 2019, Volume 11785 of Lecture Notes in Computer
Science, pp. 25-33. Springer, Berlin (2019)

Rao, A.S., Georgeff, M.P.: Modeling rational agents within a bdi-
architecture. In: Proceedings of Knowledge Representation and
Reasoning, pp. 473484 (1991)

Rodriguez-Aguilar, J.A., Martin, F.J., Garcia, P., Noriega, P., Sierra,
C.: Towards a formal specification of complex social structures in

http://arxiv.org/abs/1108.5643

Rigorous engineering of collective adaptive systems: special section

397

64.

65.

66.

67.

68.

69.

70.

multi-agent systems. In: Padget, J. (ed.) Collaboration Between
Human and Artificial Societies 1999. Lecture Notes in Computer
Science, vol. 1624, pp. 284-300. Springer, Berlin (1999)
Serbedzija, N., Fairclough, S.: Biocybernetic loop: from awareness
to evolution. In IEEE Evolutionary Computation 2009, pp. 2063—
2069. IEEE (2009)

Vannucchi, C., Cacciagrano, D.R., Corradini, F., Culmone, R.,
Mostarda, L., Raimondi, F., Tesei, L.: A formal model for ECA
rules in intelligent environments. In: Intelligent Environment
(Workshops), pp. 56-65. IEEE, Washington (2016)

Vannucchi, C., Diamanti, M., Mazzante, G., Cacciagrano, D. R.,
Corradini, F.,, Culmone, R., Gorogiannis, N., Mostarda, L., Rai-
mondi, F.: vVIRONy:, a tool for analysis and verification of ECA
rules in intelligent environments. In: Intelligent Environment, pp.
92-99. IEEE (2017)

Vassev, E., Hinchey, M.: Engineering requirements for autonomy
features. In: [73], pp. 379—403 (2015)

Vassev, E., Hinchey, M.: Capturing autonomy features for
unmanned spacecraft with ARE, the autonomy requirements engi-
neering approach. Innov. Syst. Softw. Eng. 12(2), 95-107 (2016)
Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini,
D.: From distributed coordination to field calculus and aggre-
gate computing. J. Log. Algebraic Methods Program. 109, 100486
(2019)

Wanninger, C., Eymiiller, C., Hoffmann, A., Kosak, O., Reif, W.:
Synthesizing capabilities for collective adaptive systems from self-
descriptive hardware devices—bridging the reality gap. In: [53],
pp. 94-108 (2018)

71.

72.

73.

74.

75.

Wirsing, M., Banatre, J.-P., Holzl, M.M., Rauschmayer, A. (eds.):
Software-Intensive Systems and New Computing Paradigms -
Challenges and Visions. Lecture Notes in Computer Science, vol.
5380. Springer, Berlin (2008)

Wirsing, M., De Nicola, R., Holzl, M.M.: Rigorous engineering
of autonomic ensembles—track introduction. In: [51], pp. 96-98
(2014)

Wirsing, M., Holzl, M.M., Koch, N., Mayer, P. (eds.): Software
Engineering for Collective Autonomic Systems—The ASCENS
Approach. Lecture Notes in Computer Science, vol. 8998. Springer,
Berlin (2015)

Wirsing, M., Holzl, M.M., Tribastone, M., Zambonelli, F.:
ASCENS: Engineering autonomic service-component ensembles.
In: FMCO 2011, Volume 7542 of Lecture Notes in Computer Sci-
ence, pp. 1-24 (2013)

Zambonelli, F., Castelli, G., Ferrari, L., Mamei, M., Rosi, A.,
Di Marzo Serugendo, G., Risoldi, M., Tchao, A.-E., Dobson, S.,
Stevenson, G., Ye, J. Nardini, E., Omicini, A., Montagna, S., Viroli,
M.: Self-aware pervasive service ecosystems. In: The European
Future Technologies Conference and Exhibition, Procedia Com-
puter Science, vol. 7, pp. 197-199 (2011)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Rigorous engineering of collective adaptive systems: special section
	Abstract
	1 Introduction
	2 Systematic development of CAS
	3 Methods and theories for modelling and analysing CAS
	4 Techniques for programming and operating CAS
	5 Concluding remarks
	Acknowledgements
	References

