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Abstract. The application of the maximum entropy principle to determine probabili-

ties on finite domains is well-understood. Its application to infinite domains still lacks a

well-studied comprehensive approach. There are two different strategies for applying the

maximum entropy principle on first-order predicate languages: (i) applying it to finite

sublanguages and taking a limit; (ii) comparing finite entropies of probability functions

defined on the language as a whole. The entropy-limit conjecture roughly says that these

two strategies result in the same probabilities. While the conjecture is known to hold for

monadic languages as well as for premiss sentences containing only existential or only uni-

versal quantifiers, its status for premiss sentences of greater quantifier complexity is, in

general, unknown. I here show that the first approach fails to provide a sensible answer

for some Σ2-premiss sentences. I discuss implications of this failure for the first strategy

and consequences for the entropy-limit conjecture.
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1. Introduction

We can understand Inductive logic as a logical approach seeking to model
the (un-)certainty one ought (or could) attach to a conclusion of interest (ψ)
given (un-)certain premisses ϕ1, . . . , ϕk. Denoting an inductive entailment
relation by |≈ we may formalise this by

ϕX1
1 , . . . , ϕXk

k |≈ψY ,

where X1, . . . , Xk, Y represent (un-)certainties. Inductive logicians then
develop inductive entailment relations (e.g., [7]) and aim to determine the
uncertainty attaching to the conclusion ψ, Y .

Inductive logic was popularised by Carnap [2–4], his approach today lives
on in the Pure Inductive Logic approach [9,10,22]. In this paper, I how-
ever pursue an alternative approach due to Jaynes applying the Maximum
Entropy Principle. The Maximum Entropy Principle compels rational agents
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to adopt a probability function which satisfies all the premisses. While this
first step is rather uncontroversial, the principle has a second part which
applies, if there is more than one probability function satisfying all the pre-
misses. In this case, the principle compels rational agents to adopt one of
these probability functions with maximum entropy (hence the name of the
principle). In this paper, I investigate consequences of a accepting this prin-
ciple.

The application of the Maximum Entropy Principle to finite propositional
language is “merely” a matter of computational complexity, well-understood
and well-behaved [13,15,16,19–21]. Applications to infinite domains are
another kettle of fish altogether, because it is not clear how to explicate
the notion of entropy.

I here consider a first-order predicate language L with infinitely many
constant symbols. Intriguing questions arise for the application of the Max-
imum Entropy Principle. Two, possibly conflicting, ways to apply the Max-
imum Entropy Principle to predicate languages have been put forward. It
is not clear whether the resulting inductive logics agree. Furthermore, it is
not clear which approach to prefer, if they do indeed differ.

The entropy-limit approach, due to Jeff Paris and his co-workers [1,17,18,
23–26], proceeds as follows: (i) reinterpret the premisses as constraints on the
probabilities of sentences of a finite predicate language Ln containing only
the first n constants; (ii) determine the function Pn that maximises entropy
on this finite language, subject to constraints imposed by the reinterpreted
premisses; (iii) draw inductive inferences using the function P∞ defined by
P∞(θ) : = limn→∞ Pn(θ) for sentences θ of L, in case the limit exists.

The maximal-entropy approach, due to the objective Bayesian Jon
Williamson [27–30], avoids a reinterpretation of premisses: (i) consider prob-
ability functions defined on the language L as a whole; (ii) deem one prob-
ability function P to have greater entropy than another function Q, if and
only if P has greater entropy than Q on all but finitely many finite sublan-
guages Ln; (iii) draw inductive inferences using those functions P †, from all
the probability functions on L that satisfy the premisses, that have maximal
entropy (i.e., no other function satisfying the premisses has [in this sense]
greater entropy).

The entropy-limit approach is constructive and allows for a (often much)
simpler calculation of probabilities. The maximal-entropy approach deter-
mines probabilities in some cases in which the entropy-limit approach fails
to determine probabilities. If these two approaches lead to different induc-
tive probabilities, then this would provide ammunition to opponents of the
Maximum Entropy Principle. On the other hand, if it can be shown, that
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both approaches agree (where they are both defined), then this would point
towards a unique consistent interpretation of the Maximum Entropy Prin-
ciple on infinite domains providing further support for its application.

The consistency of these applications of the Maximum Entropy Princi-
ple to predicate languages with infinitely many constants has recently been
conjectured:

Entropy-limit Conjecture. If P∞ exists and satisfies the constraints
imposed by the premisses, then it is the
unique function with maximal entropy from
all those that satisfy the premisses, i.e.,
P † = P∞. [30, p. 191]

This paper is concerned with the case that all premisses are known with
certainty, X1 = . . . = Xk = 1. This amounts to having a single certain
premiss ϕ known with certainty, ϕ1 = ϕ1

1 ∧ . . .∧ϕ1
k. To simplify the notation

the superscripted 1 will be dropped.
There are some results which show that the conjecture is true for rela-

tively simple premisses. For a quantifier-free premiss sentence entropy max-
imisation reduces to entropy maximisation on a finite domain, where both
approaches agree. Two recent results show that the conjecture holds for all
satisfiable premiss sentences in Σ1∪Π1 [14,25]. The conjecture is also known
to hold for monadic languages [1].

The situation concerning premiss sentences containing existential and
universal quantifiers is less well-understood. We know of satisfiable premiss
sentences ϕ ∈ Σ2 such that the entropy maximiser (P †

ϕ) does not exist [24].
We also know of satisfiable premiss sentences ϕ ∈ Π2 such that the entropy
limit (P∞

ϕ ) does not exist [23]. As far as I’m aware, this all that is known,
see Table 1 located at the end of the paper for an overview.

If there exists a ϕ ∈ Σ2 premiss sentence for which the entropy maximiser
(P †

ϕ) does not exist but the entropy limit (P∞
ϕ ) does exist, then the Entropy-

limit Conjecture would be false.
In this paper, I show in Theorem 1 that for every polyadic language

L there exists a satisfiable sentence ϕ ∈ Σ2 of L such that P∞
ϕ = P=,

where P= is the (uniform) equivocator function defined in Example 2. In
Theorem 2, I generalise this result to the existence of such sentences of all
quantifier complexities greater than Σ2. In these cases, the maximal entropy
function P †

ϕ does not exist [24, Section 2.2]. While this looks prima facie
like conclusive evidence against the Entropy-limit Conjecture, I conclude
that these cases are, despite appearance to the contrary, cases in which the
entropy limit is not defined.
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Since the Entropy-limit Conjecture only applies to cases in which the
entropy limit is defined, the conjecture is not troubled by my results. The
Entropy-limit Conjecture even emerges strengthened, since it applies to
fewer cases, and can hence also fail in fewer cases.

2. The Formal Framework

The formal framework and the notation are taken from [14]. I now reproduce
this framework with the simplification that the premiss here is a single
sentence known with certainty rather than multiple premisses which may be
uncertain.

Predicate languages. Throughout this paper, I consider first-order predicate
languages L, with countably many constant symbols t1, t2, . . . and finitely
many relation symbols, U1, . . . , Un. The atomic sentences, i.e., sentences of
the form Uiti1 . . . tik where k is the arity of the relation Ui, will be denoted
by a1, a2, . . ., ordered in such a way that atomic sentences involving only
constants among t1, . . . , tn occur before those atomic sentences that also
involve tn+1. The set of sentences of L is denoted by SL.

I also consider the finite sublanguages Ln of L, where Ln has only the
first n constant symbols t1, . . . , tn but the same relation symbols as L. Ln

has finitely many atomic sentences a1, . . . , arn
. We call the state descriptions

of Ln (i.e., the sentences of the form ±a1 ∧ . . . ∧ ±arn
), n-states. We let Ωn

be the set of n-states for each n. Note that |Ωn| = 2rn , and every n-state
ωn ∈ Ωn has |Ωn+1|/|Ωn| = 2rn+1−rn many n + 1-states, ωn+1 which extend
it (i.e., ωn+1 |= ωn). Denote the sentences of Ln by SLn.

Reinterpretation. I use N to refer to the largest number n such that the
constant tn appears in ϕ ∈ SL. For a sentence ϕ ∈ SL and fixed n ≥ N , one
can reinterpret ϕ as a sentence of Ln, by substituting every sub formula of
the form ∃xθ(x) by θ(t1) ∨ . . . ∨ θ(tn) and substituting every sub formula of
the form ∀xθ(x) by θ(t1) ∧ . . . ∧ θ(tn). To deal with multiple quantifications
over the same variable, substitutions begin at the innermost quantifiers and
proceed outwards.

I write (ϕ)n, or if there is no ambiguity, simply ϕn, to denote this rein-
terpretation of ϕ, which thus becomes a quantifier free sentence of Ln. For
any sentence ϕ ∈ SL I denote by [ϕ]n the set of n-states that satisfy ϕ. The
number of n-states in [ϕ]n is denoted by |ϕ|n.
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Example 1. If ϕ = ∀xθ(x) with quantifier-free θ(x), then [ϕn]n = {ω ∈ Ωn :
ω |= ∧n

i=1 θ(ti)}. For quantification over l variables with quantifier-free θ(�x)
we have

(∀�xθ(�x))n =
∧

ti1 ,...,tik∈{t1,...,tn}
θ(ti1 , . . . , tik)

(∃�xθ(�x))n =
∨

ti1 ,...,tik∈{t1,...,tn}
θ(ti1 , . . . , tik).

Probability. A probability function P on L is a function P : SL −→ R≥0

such that:

P1: If τ is a tautology, i.e., |= τ , then P (τ) = 1.

P2: If θ and ϕ are mutually exclusive, i.e., |= ¬(θ ∧ ϕ), then P (θ ∨ ϕ) =
P (θ) + P (ϕ).

P3: P (∃xθ(x)) = supm P (
∨m

i=1 θ(ti)).

A probability function on Ln is defined similarly (the supremum in P3 is
dropped and m is equal to n). We shall use the notation P and Pn to denote
the set of all probability functions on L and Ln respectively.

A probability function is determined by the values it gives to the n-
states, for each n. Consequently, a probability function is determined by the
values it gives to the quantifier-free sentences, a result known as Gaifman’s
Theorem [5].

Example 2. [Equivocator function] The equivocator function P= is defined
by:

P=(ωn) : =
1

|Ωn| =
1

2rn
for each n−state ωn ∈ Ωn and each n = 1, 2, . . . .

The equivocator function is a probability function on L. It is called the
equivocator function because it equivocates between n-states: it is the only
probability function that gives each n-state the same probability, for each
n. The restriction P=�Ln

of P= to Ln is a probability function on Ln, for
any n. To simplify notation, I use P= to refer to these restrictions, as well
as to the function on L itself.

Entropy. The n-entropy of a probability function P (which is defined on
either L or Ln) is defined as:

Hn(P ) : = −
∑

ω∈Ωn

P (ω) log P (ω).
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The usual conventions are 0 log 0 := 0 and the logarithm to be the natural
logarithm. The second convention is inconsequential.

The two key approaches are the entropy-limit approach and the maximal-
entropy approach.

The entropy-limit approach. For fixed n ≥ N , reinterpret ϕ as a statement
of Ln. Let En be the set of probability functions on Ln such that P (ϕn) = 1.
If En �= ∅ consider the entropy maximiser:

Pn df= arg max
P∈En

Hn(P ).

En is closed and convex and Pn is uniquely determined, if ϕn is satisfiable.
However, the premiss is intended as a statement on L, not Ln, and the

question arises as to what would be the most appropriate probability func-
tion for drawing inferences from this premiss when it is interpreted as a
statement about an infinite domain. If it exists, one can consider the func-
tion P∞ defined on L as a pointwise limit of maximum entropy functions [1]:

P∞(θ) : = lim
n→∞ Pn(θ).

The entropy-limit approach takes P∞ for inference, attaching probability
Y = P∞(ψ) to sentence ψ.

There is one complication about the definition of P∞. While [1] define
P∞ in terms of a pointwise limit where the limit is taken independently for
each sentence of L, [18,23,25] define P∞ in a slightly different way: take the
pointwise limit on quantifier-free sentences and extend this to the (unique)
probability function on L as a whole which agrees with the values obtained
on the quantifier-free sentences, assuming that the pointwise limit exists
and satisfies the axioms of probability on quantifier-free sentences of L [5].
The Rad-Paris definition [1] circumvents a problem that can arise with the
Barnett-Paris definition [18,23,25], namely that the pointwise limit on L as
whole may exist but may fail to be a probability function. This detail will
be a crucial for interpreting the main result of this paper (Theorem 1).

Note that Pn and En are defined on Ln not L. To simplify notation,
when P is defined on L, I say P ∈ En meaning that the restriction of P to
Ln is in En, P�Ln

∈ En.

The maximal-entropy approach. This alternative approach avoids appealing
to the finite sublanguages. For probability functions P and Q defined on L,
P is deemed to have greater entropy than function Q, if and only if it
has greater n-entropy for sufficiently large n, i.e., if and only if there is
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some natural number N such that for all n ≥ N it holds that Hn(P ) >
Hn(Q). Then one can consider the set of probability functions in E, the set
of probability functions on L with P (ϕ) = 1, with maximal entropy:

maxentE : ={P ∈ E : there is no Q ∈ E that has greater entropy than P}.

If maxentE �= ∅, one can draw inferences using the maximal entropy func-
tions P †.1 Thus, the maximal-entropy approach attaches the set of prob-
abilities Y = {P †(ψ) : P † ∈ maxentE} to ψ. If maxentE contains only a
single element, so does Y and the maximal entropy function is said to exist
and be unique; it is then unambiguously denoted by P †.

See [11,12,30] for one kind of justification of this approach.

Arithmetic Hierarchy of Formulae. Δ0 is the set of sentences of SL which
are logically equivalent to a quantifier free sentence. The level of the hierar-
chy Σn consists of those sentence which are logically equivalent to a sentence
of the form ∃�x1∀�x2 . . . ϕ(�x1, �x2, . . .) (with n-many quantifier blocks) and Πn

consists of those sentence which are logically equivalent to a sentence of the
form ∀�x1∃�x2 . . . ϕ(�x1, �x2, . . .). The level Δn is the set of sentences which are
logically equivalent to a sentence of the form ∃�x1∀�x2 . . . ϕ(�x1, �x2, . . .) and to
a sentence of the form ∀�x1∃�x2 . . . ψ(�x1, �x2, . . .). Let Ψ be one of these classes,
I then denote by Ψ∗ the set of sentences which are in Ψ but not in a class of
lower complexity. In other words, sentences are classified according to their
minimal quantifier complexity.

3. The Σ∗
2 Case

I now prove and explain the main technical result of this paper.

3.1. Proof of the Σ∗
2 Case

This result concerns the most simple Σ∗
2 sentence of a polyadic language

there is, ϕ = ∃x∀yUxy. ϕ only mentions two variables, one binary relation
symbol, no connective and no constant.

1Note that the maximal-entropy approach may license inferences with multiple prob-
ability functions in case maxentE contains multiple probability functions [28, p. 91]. It
is not obvious how this approach is to be implemented in such a case. Fortunately, this
complication of maxentE containing multiple probability functions does not to concern us
here.
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Proposition 1. [Σ∗
2] Let L contain only one binary relation symbol U and

ϕ = ∃x∀yUxy, then

P∞
ϕ = P=. (1)

Proof. The proof is a rather simple but not short exercise in counting
states and their extensions.

There are 2(n2)-many n-states, |Ωn| = 2(n2). There are 2n-many conjunc-
tions of the form

∧n
i=1 ±Utti, only one of them is a witness for ϕn (satisfy-

ing ϕn),
∧n

i=1 Utti. So, there are (2n − 1)n-many n-states which are not in
[ϕn]n. Hence, there are 2n2 − (2n − 1)n = 2n·n − (2n − 1)n-many n-states
in [ϕn]n. Pn equivocates on these n-states to which it assigns probability
(2n·n − (2n − 1)n)−1.

Let us now consider an arbitrary k-state ωk /∈ [ϕk]k and count the number
of n-states with n > k which extend ωk such that ωn ∈ [ϕn]n. An n-state
extending ωk is in [ϕn]n, if and only if there exists some c ∈ {k + 1, k +
2, . . . , n} such that

∧n
l=1 Utctl. Since all those k-states are assigned the same

probability by Pn, we may consider ωk =
∧k

i,j=1 ¬Utitj to make things more
concrete.

There are k · (n − k)-many sentences of the form Utitl with 1 ≤ i ≤ k
and k + 1 ≤ l ≤ n which do not affect whether ωn ∈ [ϕn]n or not (see below
for an illustration).

There are n · (n−k)-many sentences of the form Utitl with k +1 ≤ i ≤ n
and 1 ≤ l ≤ n which do affect whether ωn ∈ [ϕn]n or not. There are hence
2n·(n−k)-many possible conjunctions which decide whether the extension ωn

of ωk is in [ϕn]n.

k n − k
︷ ︸︸ ︷ ︷ ︸︸ ︷

irrelevant }

kωk . . .
choices

relevant }

n-k. . .
choices

︸ ︷︷ ︸
n

For an extending n-state ωn not to be in [ϕn]n it must hold that for all
k + 1 ≤ i ≤ n at least one of the literals of the form

∧n
l=1 Utitl is negated.
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For every fixed i, there are 2n many conjunctions of the form
∧n

l=1 Utitl,
of which 2n − 1-many such conjunctions mentioning at least one negation
symbol.
There are hence (2n − 1)n−k-many conjunctions of the 2n·(n−k)-many con-
junctions which entail that ωn is not in [ϕn]n. Hence, for all 1 ≤ k < n and
all ωk /∈ [ϕk]k

Pn(ωk) = Pn(
k∧

i,j=1

¬Utitj) =
|{ωn ∈ [ϕn]n | ωn |= ωk}|

|ϕn|n

= (2

total relevant choices︷ ︸︸ ︷
n · (n − k) −

no new witness
︷ ︸︸ ︷
(2n − 1)n−k ) · 2

irrelevant choices︷ ︸︸ ︷
k · (n − k) · Pn(

n∧

i,j=1

Utitj)

=
(2n·(n−k) − (2n − 1)n−k) · 2k·(n−k)

2n·n − (2n − 1)n

=
2(n+k)·(n−k) − (2n − 1)n−k · 2k·(n−k)

2n·n − (2n − 1)n
. (2)

I now turn to computing the limit as n goes to infinity and find

2k·k
(
(Pn(

k∧

i,j=1

¬Utitj) − 1
2k·k

)
=

2(n2) − 2(k2) · (2n − 1)n−k · 2kn−k2

2n·n − (2n − 1)n
− 1

=
2(n2) − (2n − 1)n−k · 2kn

2n·n − (2n − 1)n
− 1

=
−(2n − 1)n−k · 2kn + (2n − 1)n

2n·n − (2n − 1)n

=
1 − ( 2n

2n−1)k

( 2n

2n−1)n − 1

= − ( 2n

2n−1)k − 1

( 2n

2n−1)n − 1
.

The numerator and the denominator converge to zero and the limit as n
approaches infinity cannot simply be read off.

Let s greatest natural number such that k · s ≤ n, s := �n
k �. Define a

sequence fn := 2n

2n−1 and put δn := (fn)k − 1 > 0. Then

( 2n

2n−1)k − 1

( 2n

2n−1)n − 1
=

δn

k
√

((fn)k)n − 1
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=
δn

k
√

(δn + 1)n − 1

≤ δn

k
√

(δn + 1)s·k − 1

=
δn

(δn + 1)s − 1

≤ δn(
s
1

)
δn + 1 − 1

=
1
s
.

So,

2k·k
(
(Pn(

k∧

i,j=1

¬Utitj) − 1
2k·k

)
≥ −1

s
. (3)

But since ωk =
∧k

i,j=1 ¬Utitj has the fewest n-extensions in [ϕn]n, it follows
that Pn(

∧k
i,j=1 ¬Utitj) ≤ 1

2k·k . Thus, the sequence in (3) is always negative.
But since this sequence is greater or equal than −1

s and s grows with growing
n, this sequence is a null-sequence.

This in turn entails that

lim
n→∞ Pn(

k∧

i,j=1

¬Utitj) =
1

2k·k = P=(
k∧

i,j=1

¬Utitj).

Consider an extension ωn ∈ [ϕn]n of
∧k

i,j=1 ¬Utitj and denote by λ the
conjunction of literals in [ϕn]n which do not appear in

∧k
i,j=1 ¬Utitj , ωn =

λ∧∧k
i,j=1 ¬Utitj . Note that for every other k-state νk it holds that νk ∧λ ∈

[ϕn]n. Hence, the set of n-extensions in [ϕn]n of every νk is either equal to
or a proper superset of the extensions of

∧k
i,j=1 ¬Utitj in [ϕn]n

{ωn ∈ [ϕn]n|ωn |=
k∧

i,j=1

¬Utitj} ⊆ {ωn ∈ [ϕn]n|ωn |= νk}.

This means that

Pn(
k∧

i,j=1

¬Utitj) ≤ Pn(νk)

for all k, all νk ∈ Ωk\{∧k
i,j=1 ¬Utitj} and all n > k.

Since for all k limn→∞ Pn(
∧k

i,j=1 ¬Utitj) = 1
2k·k , all other k-states νk

and all δ > 0 it holds for all large enough n that 1
2k·k − δ ≤ Pn(νk) ≤
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1 and all n it holds that
∑

ωn∈Ωn
Pn(ωn) = 1, it must be the case that

limn→∞ Pn(νk) ∈ [ 1
2k·k , 1), if the limit exists.

If a single such limit does not exists, then there must exist an infinite set
of natural numbers I ⊆ N and an ε > 0 such that Pn(νk) ≥ 1

2k·k + ε for
all n ∈ I. This however contradicts the fact that the least probable k-state
has a probability arbitrarily close to 1

2k·k which can only happen, if all other
k-states have a probability very close to 1

2k·k (probabilities add up to 1),
too. Hence, all these other limits exist, too.

Since probabilities add up to 1, it must be the case that for all ωk ∈ Ωk

it holds that limn→∞ Pn(ωk) = 1
2k·k = P=(

∧k
i,j=1 ¬Utitj), too. This means

that for all k ∈ N that limn→∞ Pn and P= agree on all k states. And so,

P∞ = P=.

Mutatis mutandis, this proof goes through for more expressive languages
and more complicated premiss sentences, see the Appendix for details:

Theorem 1. [More Expressive Languages] For every polyadic language L
the satisfiable sentence ϕ = ∃x∀yUx@r − 1y ∈ Σ∗

2 of L is such that P∞
ϕ =

P=.

Theorem 2. [Beyond a Σ2 Premiss] For every polyadic language L contain-
ing at least two relation symbols and every set of sentences Λ∗ ∈ Ψ∗ which is
one of Σ∗

i , Π
∗
i , Δ

∗
i , there exists a contingent sentence χ = ψ∧∃x∀yU1x@r−1y

in Λ∗ such that P∞
χ = P=.

3.2. Explanation of the Σ∗
2 Case

Since Proposition 1 is the main result of this paper and the proof does not
transmit much understanding, I now explain why Proposition 1 holds.

To help our understanding I find it helpful to think of a k-state as the
presence and its extensions as futures in which currently contingent facts
(literals mentioning constants tc with c ≥ k + 1) have been decided. A
future is called possible, if and only if it is [ϕn]n. The name is inspired by
the observation that only n-states in [ϕn]n are assigned a strictly positive
probability by Pn.

Let us consider the probability of a presence, Pn(ωk) for a fixed k-state
ωk for some fixed point in time (k ∈ N).

This probability is given as the ratio of the number n-states in which ϕn

is true and which extend ωk divided by the number n-states in which ϕn is
true (2). That is just the ratio of the number of all possible futures over the
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number of all possible and all alternative possible futures (possible futures
of alternative presences).

Let n be very large, then this probability (measured as a ratio of such
conjunctions) that there exists some k < c ≤ n such that

∧k
j=1 Rtctj is close

to 1. In fact, for large enough n, the probability that there exist many more
such c than k is close to 1. But since every constant t such that

∧k
j=1 Rttj

has the same probability to satisfy
∧n

j=1 Rttj , it follows that a witness for ϕ
is most likely among the constants tk+1, . . . , tn. In almost all possible futures
there will be a witness, which is not yet present.

Denote by λ a conjunction of literals such that λ ∧ ωk ∈ [ϕn]n, that
is a completion of the k-world to a ϕn-world. This may be understood as
time evolving from now to the future. With probability approximating 1
(as n goes to infinity), a witness for ϕ is to be found in the completion λ,
the witness is among tk+1, . . . , tn. For every way the presence could be, in
almost all possible futures there will be a witness which is not yet present.

Since probabilities assigned by P∞, if P∞ exists, are according to n-
extensions in [ϕn]n, it follows that ωk and νk have the same probability.
The number k and the two k-states ωk and νk were chosen arbitrarily, so for
all fixed k all k-states are assigned the same probability. This means that
P∞ = P=. Since the probability of a presence is approximated by the ratio
of possible futures over the number of all ways the future could have been,
all presences are equally likely.

To make a long story very short: all presences have [approximately] the
same number of possible futures, which are all equally likely. Hence, all
presences are [approximately] equally likely.

4. Conclusions

4.1. The Entropy-Limit Conjecture

Recall that Theorem 1 shows that for every polyadic language L there exists
a satisfiable sentence ϕ = ∃x∀yUx@r − 1y ∈ Σ2 of L such that P∞

ϕ = P=.
Prima facie, this seems like evidence against the Entropy-limit Conjecture
because it provides a plethora of cases, in which the entropy limit is seem-
ingly well-defined and the maximal entropy function does not exists (easy
corollary from [24, Section 2.2]).
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Let us take a closer look. P∞
ϕ = P= entails that P∞

ϕ (ϕ) = P=(ϕ) but
observe that

P=(ϕ) = lim
n→∞ lim

k→∞
P=(

n∨

i=1

k∧

j=1

Uti@r − 1tj)

≤ lim
n→∞ lim

k→∞

n∑

i=1

P=(
k∧

j=1

Uti@r − 1tj)

= lim
n→∞

n∑

i=1

lim
k→∞

P=(
k∧

j=1

Uti@r − 1tj)

= lim
n→∞

n∑

i=1

0

= 0.

So, the limit of the Pn
ϕ assigns the certain premiss ϕ probability 0, limn→∞

Pn
ϕ (ϕ) = P∞

ϕ (ϕ) = 0. This is absurd. The entropy limit was designed to
inform our inductive inferences on the basis that we are sure about the
premiss ϕ. How can the rational probability of ϕ be zero? It cannot!

It was, presumably, for these reasons that the entropy limit was origi-
nally only defined, if P∞

ϕ (ϕ) = 1. The definition evolved in [18,23,25] into
defining the entropy limit by first considering the limits of Pn(ωk) for all
k and all ωk ∈ Ωk and then define the probability of sentences containing
quantifiers via P3 (Gaifman’s Theorem). In previous work, both definitions
of the entropy limit agreed. Hence, the entropy limit always assigned proba-
bility 1 to certain premisses. I speculate that this is caused by previous work
(with the exception of [23, Section 3.2]) not considering premiss sentences
mentioning a universal and an existential quantifier.

It might somehow be argued, that it is in (exceptional) cases acceptable
to have an entropy limit which assigns an uncertain premiss, ϕX , a non-
extreme probability outside of X in the open unit interval. For example,
if X is an open interval, it might not appear criminal for P∞ to assign ϕ
the infimum or supremum of X. The case here is Different. We are given a
certain premiss ϕ and yet the “entropy limit” assigns it probability 0.

Let me briefly consider premiss sentences of greater quantifier complexity.
As Theorem 2 shows, we again have cases with P∞

χ = P=(χ). Again we see
that that P∞

χ (χ) = P=(χ) = P=(ψ ∧ ϕ) ≤ P=(ϕ) = 0. This shows that
for all greater quantifier complexities there exists a premiss sentence χ such
that P∞

χ (χ) = 0, too.
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So, according to the original definition of the entropy limit, the entropy
limit is not defined for the cases in Theorems 1 and 2. A sensible interpre-
tation of the later definition of the entropy limit ought to come to the same
conclusion—and I hope you agree with my assessment.

This then entails that these cases do not trouble the Entropy-limit Con-
jecture (which was stated for the original definition of the entropy limit).
Rather than troubling the Entropy-limit Conjecture, discovering cases in
which the entropy limit is not defined strengthens the case for the Entropy-
limit Conjecture.

But what about the maximal entropy functions P †
ϕ and P †

χ? If they are
well-defined, then P †

ϕ(ϕ) = 1 = P †
χ(χ) by the definition of a maximum

entropy function which must satisfy the constraints imposed by the evi-
dence. The absurd situation of the entropy limit (P∞

ϕ (ϕ) = 0 = P∞
χ (χ))

cannot arise in the maximal-entropy approach. Unfortunately, they are not
well-defined in these cases [24, Section 2.2], and both entropy maximisation
methods do not provide sensible beliefs for these premisses.

Developing a comprehensive approach to the Maximum Entropy Principle
yielding sensible beliefs for these premisses, too, is pressing future work.

4.2. The Entropy Limit

What have we learned about the entropy limit? Its definition only makes
sense as long as the probability of the premiss sentence is computed from a
single limit of probabilities of n-states.

This is, obviously, the case for Π1, Σ1 sentences (Gaifman) and for unary
languages (every unary sentence is logically equivalent to a disjunction of
mutually exclusive Π1 and Σ1 sentences ([6, Theorem 35, pp. 68], restated
in [1, Lemma 2.2, p. 89], and so the probability is equal to the sum of the
probabilities of the disjuncts). Furthermore, the recipe of using the entropy
limit to (more simply) compute the maximum entropy function only seems
to produce palatable results in these cases.

In case the premiss is of greater quantifier complexity, the entropy limit
may fail to provide a (sensible) answer: for ϕ2 ∈ Π∗

2 and beyond the entropy
limit may fail to exist [see (6) below], for ϕ ∈ Σ∗

2 ∪Ψ∗ the entropy limit may
fail to provide a sensible answer (Theorems 1 and 2).

Finally, note that the stated assumptions of Theorems 1 and 2 are all
crucial (Table 1):

1. For every purely unary language L and every satisfiable sentence ϕ of L
it holds that P∞

ϕ (·) = P †
ϕ(·) and P∞

ϕ (ϕ) = 1 [1, Theorem 2.4] and [23,
Theorem 29].
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2. For every language L and every satisfiable sentence ϕ ∈ Σ1 of L it holds
that P∞

ϕ (·) = P=(·|ϕ) = P †
ϕ(·) and P∞

ϕ (ϕ) = 1 [25, Theorem 4].

3. For every language L and every satisfiable sentence ϕ ∈ Π1 of L such that
P=(ϕ) > 0 it holds that P∞

ϕ (·) = P=(·|ϕ) = P †
ϕ(·) and P∞

ϕ (ϕ) = 1 [14,
Theorem 12].

4. For every language L and every satisfiable sentence ϕ ∈ Π1 of L such
that P=(ϕ) = 0: if P∞

ϕ exists, then P∞
ϕ (·) = P †

ϕ(·) and P∞
ϕ (ϕ) = 1 [14,

Theorem 14].

5. For every polyadic language L there exists a contingent sentence ϕ =
∃x∀yU1x@r − 1y ∈ Σ2 of L such that P †

ϕ does not exist. This is a
simple corollary from [24, Section 2.2]. Similarly to Theorem 2, this fact
generalises to Ψ∗ by considering a suitably contingent χ = ψ ∧ ϕ with
P †

ψ = P= (details omitted since out of scope of current interests), where
ψ does not mention the relation symbols in ϕ.

6. For every polyadic language L with at least three relation symbols
U1, U2, U3 such that the arity of Ui is greater or equal than i there exists
a contingent sentence ϕ ∈ Π∗

2 of L such that P∞
ϕ does not exist. This is

a simple corollary from [23, Section 3.2]. Again, this fact generalises to
Ψ∗.
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A. Beyond a Single Binary Relation Symbol and Beyond Σ∗
2

The above focussed on a language with a single binary relation symbol. I now
show how the above generalises to sentences of greater quantifier complexity
and to all other languages containing at least one relation symbols that is
not unary.

Proposition 2. [Greater Arities] Let L contain only one relation symbol
U , which as an arity r ≥ 2 and denote by x@r − 1 the r − 1 tuple with all
elements equal to x. For ϕ = ∃x∀yUx@r − 1y it holds that

P∞
ϕ = P=. (4)

Proof. This follows immediately from the proof of Proposition 1 by only
counting extensions of the form

∧n
i,j=1 ±Uti@r − 1tj .

The above results generalise to languages containing further relation sym-
bols via the following well-known fact which follows from the Irrelevance
Principle and the Independence Principle [20, Principles 3 and 6, p. 186].

Proposition 3. [Multiple Relation Symbols] Let ψ be a sentence of the lan-
guage that does not mention U where the arity of U is at least two. Further-
more, for a state ω of the language let ω−U be conjunction of literals of ω
which do not mention U and let ωU be the conjunction of the literals that
do mention U , ω = ω−U ∧ ωU . Then

P∞
ψ∧∃x∀yUx@r−1y(ω) = P∞

ψ (ω−U ) · P∞
∃x∀yUx@r−1y(ωU ),

if P∞
ψ exists.

We can now formulate the results into a global lesson. Let us call a
language L polyadic, if and only if L contains at least one non-unary relation
symbol. Let us call the other languages purely unary.

Theorem 3. [More Expressive Languages] For every polyadic language L
the satisfiable sentence ϕ = ∃x∀yUx@r − 1y ∈ Σ∗

2 of L is such that P∞
ϕ =

P=.

Proof. If L contains multiple relations symbols simply apply Proposition 3,
where ψ is any tautology that does not mention U .

If L only contains one relation symbol, then this has already been shown
in Proposition 2.

Definition 1. Denote by Ψ∗ the set of all sentences which are at least Δ∗
3

in the hierarchy, Ψ∗ :=
⋃∞

i=3 Δ∗
i ∪ ⋃∞

i=3 Σ∗
i ∪ ⋃∞

i=3 Π∗
i .
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Theorem 4. [Beyond a Σ2 Premiss] For every polyadic language L contain-
ing at least two relation symbols and every set of sentences Λ∗ ∈ Ψ∗ which is
one of Σ∗

i , Π
∗
i , Δ

∗
i , there exists a contingent sentence χ = ψ∧∃x∀yU1x@r−1y

in Λ∗ such that P∞
χ = P=.

Proof. First recall that for the premiss ∃xU2x in Σ∗
1 the entropy limit (and

the entropy maximiser) is P=.
For every fixed level of the hierarchy in Λ∗ ∈ Ψ∗ pick a contingent sen-

tence ξ such that: i) ξ only mentions the relation symbol U2 and ii) ξ∨∃xU2x
is contingent and is in Λ∗. Clearly, such sentences ξ exist for all Λ∗ ∈ Ψ∗.

Next note that P∞
ξ∨∃xU2x = P= since Pn

ξ∨∃xU2x assigns at most one n-
state probability 0. All other n-states, for fixed n, are assigned the same
probability by Pn

ξ∨∃xU2x. Let us put ψ := ξ ∨ ∃xU2x.
Let us next consider the sentence χ := (ξ ∨ ∃xU2x) ∧ ∃x∀yU1x@r − 1y

and note that it is in the same level of the hierarchy as ξ. We can simply
absorb the two last quantifiers in χ into the quantifier blocks in ξ due to the
assumption contains at least three alternating quantifier (blocks), and hence
at least once an existential quantifier is followed by a universal quantifier in
ξ.

It is well-known that given two premiss sentences (here ψ and ϕ :=
∃x∀yU1x@r − 1y), which do not have a relation symbol in common, the
entropy maximisers of ψ ∧ ϕ on Ln are the product of the entropy max-
imisers of ψ and ϕ. For all n ∈ N and all ω ∈ Ωn it holds that Pn

ψ∧ϕ(ω) =
Pn

ψ (ω−U1) ·Pn
ϕ (ωU1). Hence, P∞

ψ∧ϕ(ω) = P∞
ψ (ω−U1) ·P∞

ϕ (ωU1), if the entropy
limits exist.

In our case we have P∞
ψ = P= = P∞

ϕ , the entropy limits thus exist. This
entails that for all n and all n-states ω ∈ Ωn that

P∞
χ (ω) =P∞

ψ (ω−U1) · P∞
ϕ (ωU1)

=P=(ω−U1) · P=(ωU1)

=P=(ω).

Since P∞
χ (ω) and P= agree on all states it follows that these two proba-

bility functions have to also agree on all sentences containing quantifiers
(Gaifman’s Theorem). So, P∞

χ = P=.
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