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Introduction

Vestibular evoked myogenic potentials
(VEMPs) are short-latency, otolith-
driven reflexes elicited by air-conducted
sound (ACS), bone-conducted vibration
(BCV), or galvanic vestibular stimulation
and recorded from ocular (oVEMPs) or
cervical (cVEMPs) muscles [5, 71, 74].
Combining VEMPs with the video head
impulse test (vHIT) [36] allows for a re-
ceptor-specific examination of all five
vestibular endorgans in clinical practice

The German version of this article can be
found under https://doi.org/10.1007/s00106-
019-00757-4.

(oVEMPs: utricle; cVEMPs: saccule;
vHIT: semicircular canals; [14]).

Reflex pathways

Ocular VEMPs (oVEMPs) are mediated
by a predominantly crossed reflex path-
way projecting from the utricle to the
ipsilateral vestibular nuclei and via the
medial longitudinal fasciculus to the con-
tralateraloculomotornucleus(N.III)that
supplies the contralateral inferioroblique
muscle (. Fig. 1a). From there, an early
excitatory potential (n10) is recorded by
surface electrodes approximately 10ms
after stimulus onset while the subject is
looking upwards (. Fig. 1b; [17, 25]).

The oVEMP n10 amplitude predom-
inantly reflects contralateral utricular
function.

» The oVEMP n10 amplitude
predominantly reflects
contralateral utricular function

Incontrast, cVEMPs involve amainlyun-
crossed reflex circuit running from the
saccule to the ipsilateral vestibular nu-
clei from where inhibitory interneurons
project to the ipsilateral spinal accessory
nucleus (N. XI) that innervates the stern-
ocleidomastoidmuscle (SCM).The early
inhibitory potential (p13n23) recorded
from the activated SCM between 13 and
23ms after stimulus onset is an indica-
tor of predominantly ipsilateral saccular
function (. Fig. 1c; [17]).

The cVEMPp13n23 amplitude is pre-
dominantlyan indicatorof ipsilateral sac-
cular function.

» The cVEMP p13n23
amplitude is predominantly an
indicator of ipsilateral saccular
function

VEMPs are vestibular—and not
cochlear—reflexes. They are preserved

Abbreviations
ACS Air-conducted sound

AR Asymmetry ratio

BCV Bone-conducted vibration

c Cervical

Fz Midline of the forehead at the hairline

g Gravitational acceleration

nHL Normal hearing level

o Ocular

p Peak

pe Peak equivalent

pps Pulses per second

RMS Root mean square

SCD Superior canal dehiscence

SCM Sternocleidomastoidmuscle

SPL Sound pressure level

VEMPs Vestibular evoked myogenic potentials

vHIT Video head impulse test

VOG Video-oculography
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Fig. 19 Reflex pathways
andVEMPs recorded in
a–c a healthy subject
andd–f a patientwith
right-sided unilateral
vestibular loss (uVL). III
oculomotor nucleus; XI
spinal accessory nucleus;
blackhexagon inhibitory in-
terneurons in thevestibular
nucleiprojectingtothemo-
toneurons of the ipsilateral
sternocleidomastoidmus-
cle (SCM). a–c In a healthy
subject, symmetric oVEMP
n10 responses are recorded
from the inferior oblique
muscle beneath the left
and right eyes. Likewise,
symmetric cVEMPp13n23
responsesarepresent inthe
left and right SCM.d–f In
a patientwith right-sided
uVL (X), however, con-
tralateral (= left) oVEMPs
(crossed reflex pathway)
and ipsilateral (= right)
cVEMPs (uncrossed re-
flex pathway) are absent.
VEMPs vestibular evoked
myogenic potentials, c
cervical, o ocular, inf infe-
rior. (Slightlymodified and
reprinted from [17]with
permission from© John
Wiley & Sons)

in subjects with profound sensorineu-
ral hearing loss, but intact peripheral
vestibular function. On the other hand,
they are absent in patients after vestibu-
lar neurectomy with normal hearing [5,
41–43, 71]. While sensorineural hearing
loss does not affect VEMPs, it should
however be noted that a conductive
hearing loss (air–bone gap) as small as
10dB may cancel ACS-evoked VEMP
responses completely ([86]; for details
see the section “Nature of the stimulus”).

Relevant anatomy and
physiology of the otolith organs

The otolith (macula) organs sense linear
acceleration, the utricle predominantly
in the horizontal plane and the sac-
cule predominantly in the vertical plane
(. Fig. 2a; [58, 69]). During constant or
low-frequency linear acceleration, the
otolith organs work as accelerometers,
i.e., the otoconial membrane lags behind
the underlying neuro-epithelium due to
the inertia of the otoconia, thus, causing
a relative movement between the two
layers that is opposite to the direction of

linear acceleration (. Figs. 2b, c and 3a;
[21, 34]). The resulting shearing force
deflects the hair cell bundles of vestibular
hair cells in the neuro-epithelial layer.
Deflection of the stereocilia towards the
kinocilium results in depolarization of
the hair cell, thus, triggering the sig-
nal transduction process between the
vestibular hair cell and its postsynaptic
afferent nerve fiber.

Otolith afferents are organized in two
different functional channels [29, 31].
The so-called transient (= dynamic) sys-
tem, which is particularly sensitive to
changes in linear acceleration (“jerks”),
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receives its input from highly specialized
type I striolar vestibular hair cells that
are connected to postsynaptic vestibular
afferents with irregular resting activity
via ultrafast calyx synapses (. Fig. 2b, c;
for more details see S1 [online supple-
mentary material] and [9, 76]). On the
other hand, constant and low-frequency
linear accelerations are processed by the
sustained (= transient) channel that in-
volves mainly type II vestibular hair cells
and regular vestibular afferents from the
extrastriola [20, 21, 23, 26].

While all utricular afferents run in the
superior vestibular nerve, 90% of saccu-
lar afferents are organized in the inferior
vestibular nerve and 10% in the superior
vestibular nerve. The so-called “Voit’s
nerve” contains mainly afferents from
the hook region of the saccular macula
(. Fig. 2d; [24]).

Sound and vibration as otolithic
stimuli

In clinical practice, usually sound and vi-
bration of 500Hz and above are applied
to evoke VEMPs. How can these—with
regard to thevestibular system—high fre-
quencies provide adequate linear acceler-
ation for the otolith organs, a seemingly
sluggish system whose function is based
on the inertia of the otoconia?

Biomechanical evidence

Eachcycle of a soundwave (ACSorBCV)
is able to create a pressure wave—and
thus a change in acceleration—in the en-
dolymph surrounding the otolith macu-
lae (for details see S2 [online supplemen-
tary material]). Accordingly, a stimulus
frequency of 500Hz is equivalent to
500 changes in acceleration per second,
making it an ideal “jerk” stimulus for
the transient vestibular system [21]. The
conventional “accelerometer” mode of
the otolith organs (. Fig. 3a)would, how-
ever, be too sluggish to encode this high-
frequency acceleration with adequate
temporal precision. Instead, the utricle
and the saccule work as seismometers in
this situation—similar to the mechanism
by which technical seismometers detect
earthquakes (see . Infobox 1 for further
information about the mode of action of

a seismometer): the neuro-epithelium
oscillates with the stimulus frequency,
while the otoconia remain stationary
because of their inertia (. Fig. 3b; [34])
resulting in a relative motion between
the otoconial membrane and the neuro-
epithelium, albeit with reversed roles
of the two layers as compared to the
accelerometer mode. Finally, this rel-
ative motion causes deflection of the
hair cell stereocilia and, thus, hair cell
depolarization (see above and [21]).

Experimental evidence for the “seis-
mometer”mode of otolith organs derives
from a sophisticated guinea pig model
showing that application of sound or vi-
brationtotheguineapig’s skull resulted in
periodic oscillationsof theutricularmac-
ula and de-/repolarizations of the utric-
ular hair cells in sync with the stimulus
frequency up to several kHz (for details
see S3 [online supplementary material]
and [65, 66]).

It is the dual mode of action as ac-
celerometers and seismometers that al-
lows the otolith organs to encode both
constant/low-frequency linear accelera-
tion and high-frequency sound and vi-
bration. The 500Hz ACS or BCV stim-
ulus applied in clinical VEMP testing is
ideally suited to activate the transient
(= dynamic) otolithic system [21].

Neurophysiological evidence

How does sound- and vibration-induced
depolarization of vestibular hair cells ac-
tivate vestibular afferents? And which
types of afferents: otolith or semicircular
canal? Those with irregular or regular
resting discharge? The answers to these
questionsweremainly foundbyperform-
ing extracellular recordings of primary
vestibular neurons in Scarpa’s ganglion
(SG)duringapplicationofACSorBCVto
a guinea pig’s skull (. Fig. 2d). The mea-
surement set-up, in particular the stim-
ulus parameters, were chosen to match
the conditions during VEMP testing in
humans [10, 13, 15, 18, 21, 22].

These experiments revealed that
500Hz sound and vibration selectively
activate type I vestibular hair cells in the
utricular and saccular striola and their
postsynaptic vestibular afferents with
irregular resting discharge (. Fig. 4).
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Abstract
Background. Vestibular evoked myogenic
potentials (VEMPs) are increasingly being
used for testing otolith organ function.
Objective. This article provides an overview
of the anatomical, biomechanical and
neurophysiological principles underlying
the evidence-based clinical application of
ocular and cervical VEMPs (oVEMPs and
cVEMPs).
Material andmethods. Systematic literature
search in PubMed until April 2019.
Results. Sound and vibration at a
frequency of 500Hz represent selective
vestibular stimuli for the otolith organs.
The predominant specificity of oVEMPs
for contralateral utricular function and of
cVEMPs for ipsilateral saccular function is
defined by the different central projections
of utricular and saccular afferents. VEMPs
are particularly useful in the diagnosis of
superior canal dehiscence and otolith organ
specific vestibular dysfunction and as an
alternative diagnostic approach in situations
when video oculography is not possible or
useful.
Conclusion. The use of VEMPs is a simple,
safe, reliable and selective test of dynamic
function of otolith organs.

Keywords
Vestibular evoked myogenic potentials ·
Vibration · Otolithic membrane · Bone
conduction · Vestibular neuritis

The combination of type I vestibular
hair cells, ultrafast calyx synapses, and
irregular otolith afferents is ideally suited
for a stimulus- and phase-locked coding
of these dynamic vestibular stimuli (500
changes in acceleration per second) with
high temporal precision (see above and
S1, S2 [online supplementary material]
for more details).

In contrast, the resting activity of
semicircular canal (both regular and
irregular) and regular otolith afferents is
virtually not altered during application
of 500Hz ACS or BCV at stimulus lev-
els usually employed for clinical VEMP
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Fig. 29 Schematic diagrams of a the otolith
organs,b,c their vestibular hair cells andd their
afferent innervation. a Spatial orientation of the
utricular and saccularmaculae in the labyrinth.
Dashed lines: linesofpolarity reversal/striola.Ar-
rows: polarization vectors of the vestibular hair
cells. For details see [69].bAmphora-shaped
typeIvestibularhaircell (withcalyxsynapse)and
cylindrical type II vestibular hair cell (with bou-
ton synapse) and the overlying otoconia at rest:
no deflection of hair cell stereocilia.c Vestibu-
lar hair cells and otoconia during constant or
low-frequency linear acceleration:relativemo-
tion of the otoconialmembrane relative to the
neuroepithelial layer anddeflection of hair cell
stereocilia opposite to the direction of linear
acceleration. (Slightlymodified and reprinted
from [21]with permission from© I.S. Curthoys
et al., CC BY 4.0 [https://creativecommons.org/
licenses/by/4.0/]).dAfferent innervation of the
vestibular organ. Yellow: superior vestibular
nerve;blue: inferior vestibular nerve; SG Scarpa’s
ganglion; ant./hor./post. SCC anterior (= supe-
rior)/horizontal/posterior semicircular canal.
(Reprinted from [17]with permission from
© JohnWiley & Sons)

testing. Most probably, the sound- and
vibration-inducedendolymphflowin the
semicircular canals is too weak to deflect
hair cell stereocilia in the canal crista
as long as the bony labyrinth is intact
[75]. This may however change when
a third mobile window is introduced
into the bony wall of the inner ear in
addition to the round and oval windows
(see section “Superior canal dehiscence”
and S4 [online supplemental material]
for details).

Neuronal projections

If sound and vibration are able to acti-
vate both utricular and saccular afferents,
how can ocular and cervical VEMPs dif-
ferentiate between utricular and saccular
function? Thepredominant specificity of
oVEMPs for utricular and cVEMPs for
saccular function is not due to different
stimulus qualities (i.e., ACS and BCV),
but to the differential neuronal projec-
tions of utricular and saccular afferents
in the central vestibular system.

Anatomical and neurophysiological
evidence shows that utricular afferents
project predominantly to vestibulo-ocu-
lar neurons in the vestibular hindbrain,
while saccular afferents mainly con-
tact vestibulo-spinal neurons [32, 40,
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Fig. 38 Dualmode of action of the otolith
organs as a accelerometers for constant and
low-frequency linear accelerations (= sustained
channel of otolithic function) andb seismome-
ters for high-frequency changes in acceleration
(= transient channel). (Reprinted from [21]with
permission from© I.S. Curthoys et al., CC BY 4.0,
https://creativecommons.org/licenses/by/4.0)

59, 77–79]. Therefore, ocular VEMPs
recorded from the inferior oblique eye
muscle predominantly reflect utricular
function, and cervical VEMPs obtained
from the SCM are predominantly an in-
dicator of saccular function (. Fig. 1a–c;
[14, 17]).

At this point, it is important to notice
that the separation between the central
projections of utricular and saccular af-
ferents ispredominant, andnotcomplete.
Furthermore, 10% of the saccular affer-
ents travel in thesuperiorvestibularnerve
together with the utricular afferents (see
above and . Fig. 2d). A number of clini-
cal studies in patients with superior and
inferior vestibular neuritis indicate, how-
ever, that the predominant specificity of
oVEMPs for utricular and cVEMPs for
saccular function is sufficient for distin-
guishing between utricular and saccular
dysfunction in clinical practice (see also
section “Vestibular neuritis” and [6, 11]).

To make things even more compli-
cated, not only otolith, but also semicir-
cular canal afferents project to vestibulo-

ocular and vestibulo-spinal neurons in
the vestibular hindbrain. For instance,
afferents of the superior semicircular
canal provide excitatory input to the
contralateral inferior oblique muscle
and inhibitory input to the ipsilateral
SCM via central vestibular neurons [78,
79]. These pathways are however silent
in subjects with a normally encased bony
labyrinth, as the fluid displacement in
the superior semicircular canal during
application of 500Hz sound and vibra-
tion is too small to activate the respective
vestibular hair cells and afferents (see
above). The “silent” projections may,
however, become activated if a third
mobile window is introduced into the
bony labyrinth, e.g., in superior canal de-
hiscence, resulting in increased VEMP
responses (see below and S4 [online
supplemental material]).

Measurement set-up and
analysis of data

Thissectionsummarizes themost impor-
tant principles concerning measurement
set-up anddata analysis ofVEMPrecord-
ings. Formore details, please refer to [26,
63, 74].

Stimulus quality

Short ACS and BCV stimuli can be
used for recording both o- and cVEMPs
(for detailed stimulus parameters see
below and [63, 68, 74]). A stimulus
frequency of 500Hz is generally recom-
mended for most clinical applications
because most of the neurophysiologi-
cal data in the guinea pig model were
obtained for 500Hz sound or vibration
[21, 74]. Please note that stimulus fre-
quencies <500Hz are able to activate
irregular semicircular canal in addition
to irregular otolith afferents—even in
the normally encased bony labyrinth.
As this might compromise the otolithic
specificity of VEMPs, these frequencies
are not recommended for VEMP testing
in clinical practice [19].

Beside sound and vibration, galvanic
currents applied to the mastoid via large
surface electrodes can be employed as
VEMP stimuli (galvanic or gVEMPs). So
far, this technique has mainly been ap-

plied in experimental settings, and not
in clinical routine [28].

Air-conducted sound: ACS (clicks or
tone bursts) is presented to both ears
sequentially with calibrated headphones
or insert phones, while the ipsilateral
cVEMP or the contralateral oVEMP re-
sponse is recorded (. Fig. 5). The test
subject has to be protected from exces-
sive sound exposure during presentation
ofACS stimuli. WhenusingACS, the test
subject has tobeprotected fromexcessive
sound exposure.

» When using ACS as a VEMP
stimulus, the test subject has
to be protected from excessive
sound exposure

To achieve this aim, a careful calibration
of the sound source is of paramount im-
portance. As a rule of thumb, a sound
pressure level (SPL) of 130dB(A) applied
for 1 s is regarded to be safe. The peak (p)
SPL should not exceed 140dB(A). De-
tailed information concerning the calcu-
lation of sound exposure and prevention
of noise trauma has been provided by [7,
8, 68, 74]. If the sound pressure level is
indicated in “dB nHL” (normal hearing
level) by the manufacturer of the VEMP
platform, it has to be converted into “dB
pSPL” or “pe (peak equivalent) SPL” in
order to calculate safe sound exposure
levels. The individual conversion fac-
tor depends on multiple variables, such
as headphone type, stimulus parameters
(see below), and ear canal volume [39,
68]. Conversion factors for the most
common test conditions are often pro-
vided in the manufacturer’s instructions
(e.g., [38]), otherwise they have to be de-
termined during calibration of the sound
source.

The use of ACS stimuli requires func-
tional integrity of the middle ear.

As a rule of thumb, a 500Hz ACS
tone burst of 95–100dB nHL is required
to obtain stable cVEMPs in a healthy sub-
ject, while 5–10dB more are needed for
oVEMPs, reflecting the higher sensitiv-
ity of irregular saccular as compared to
utricular afferents to ACS in the guinea
pig model [18, 72, 74].

HNO · Suppl 2 · 2020 S73



Leitthema

Fig. 48 Response of anutricular afferent neuronwith irregular restingdischarge to500Hzbone-conductedvibration (BCV)
and air-conducted sound (ACS) in the guinea pig:both BCV andACS cause a stimulus-locked increase in spike discharge rate
in the irregular utricular afferent neuron. (Modified from [13])

Fig. 58 Placementof surface electrodes for the recordingofaocular andb cervical vestibularevoked
myogenic potentials.X: Fz (midline of the forehead at the hairline)

Finally, the neurotologist should al-
ways be aware that the use of ACS stim-
uli requires intact middle ear function.
An air–bone gap as small as 10dB is able
to absorb so much sound energy in the
middle ear that the remaining energy fi-
nally reaching the labyrinth might be too
small to evoke reliable VEMP responses
[86].

» The use of ACS stimuli
requires functional integrity of
the middle ear

Bone-conducted vibration: BCV is usu-
ally applied to the midline of the fore-
head at the hairline (Fz; . Fig. 5a), from
where the vibration propagates through
the skull and causes simultaneous linear
acceleration in both labyrinths with ap-
proximately equal intensity. Therefore,
a time-saving simultaneous recording of

right- and left-sided VEMP responses is
possible in this set-up [42]. Furthermore,
BCV does not put the test subject at risk
of excessive sound exposure, as irregular
otolith afferents are muchmore sensitive
to BCV (thresholds of ~0.02g) than ACS
(thresholds >80dB SPL) [21]. Vibration
can also be applied in patients with con-
ductive hearing loss, as the sound energy
is transported to the labyrinth via bone
and connective tissue, and not through
the middle ear.

A conventional bone-conduction de-
vice (e.g., RadioEar B71) is usually too
weak for application at Fz; therefore,
more powerful electromechanical vibra-
tors are recommended (e.g., minishaker
type 4810, Bruel and Kjaer) along with
an appropriate amplifier (e.g., power am-
plifier type 2718, Bruel and Kjaer) [41,
42]. It should however be noted that
the latter are not certified medical de-
vices; therefore, their use is currently re-

stricted to scientific applications. Tap-
ping Fz with a standard reflex hammer
(which is a medical device) is a cost-
effective alternative for delivering BCV
to Fz in clinical practice (for technical
details see [37, 41, 49]).

Stimulus parameters

Theamplitude of aVEMP response is not
determined by the total duration of the
stimulus, but by its abrupt start (“jerk”;
[3, 48]). The latter is the adequate stim-
ulus for activating the transient channel
of otolithic function (see above). There-
fore, short stimuli (up to 6ms) with short
rise times (0–2ms) are generally recom-
mended for evoking o- and cVEMPs in
clinicalpractice. Ingeneral, 50–200stim-
uli at a repetition rate of 5 pulses per sec-
ond (pps) are required to obtain robust
VEMP responses [74]. When using the
reflex hammer, 10 taps to Fz are usually
sufficient to evoke a stable signal, as this
is an ideal “jerk” with a rise time of 0ms
[17, 37].

Placement of recording electrodes

ForrecordingofoVEMPs, the active elec-
trode is placed on the skin covering the
inferior oblique muscle, i.e., on the in-
fraorbital rim in one line with the pupil,
the reference electrode is located 1–2cm
further below (. Fig. 5; [42]). The patient
is asked to look upwards (“look at your
forehead”, . Fig. 5a) during the record-
ing as this increases the relatively small
oVEMP n10 amplitude (5–10μV). This
effect is causedbyacombinationofbring-
ingthebellyof the inferiorobliquemuscle
closer to the recording electrode on the
skin and increasing the tonic activity of
the muscle during upward gaze [73].
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Fig. 69 Effect of
a superior canal
dehiscence (SCD)
on ocular vestibular
evokedmyogenic
potentials (oVEMPs).
a Enhanced con-
tralateral oVEMP
n10 amplitude
(arrowhead) dur-
ing application of
500Hz bone-con-
ducted vibration
(BCV) at Fz (midline
of the forehead
at the hairline).
(Reprinted from [54]
with permission
from©Wolters
KluwerHealth,
Inc.). b Presence
of a contralateral
oVEMPn10 re-
sponse to 4000Hz
BCV and air-con-
ducted sound (ACS)
in a case of SCD.
(Slightlymodified
and reprinted from
[55]with permis-
sion from©SAGE
Publications)

The active electrode for recording
cVEMPs is placed on the skin above
the mid-third of the anterior arm of
the SCM, the reference electrode is lo-
cated either on the medial end of the
clavicula (. Fig. 5b) or on the sternum
(in case only one reference electrode
is used for the two sides). The ground
electrode for both o- and cVEMPs can be
fixed to the chin or sternum. A certain
baseline activity of the SCM is required
for recording cVEMPs, as these are in-
hibitory responses. To this end, the test
subject is asked to lift their head straight
ahead while lying in a semi-recumbent
position on the examination table. If the
baseline activity of the SCM is too low
with this maneuver, the test subject is
asked to lift the head and turn it to the
contralateral side [74].

Outcome parameters

Amplitudes and latencies of the oVEMP
n10 and the cVEMP p13n23 responses
are the most important outcome param-
eters in clinical practice. For a better
comparisonbetweenright- and left-sided
amplitudes, the asymmetry ratio (AR) is
calculated:

AR =∣right − left amplitude∣÷
∣right + left amplitude∣×100%

AnAR value >40% indicates an asym-
metry between right- and left-sided dy-
namic otolithic function [42, 43, 86].

The “raw” cVEMP p13n23 amplitude
(in μV) correlates linearly with the base-
line activity of the SCM (in μV) [5].
Therefore, it is recommended to calcu-
late a dimensionless “corrected” p13n23

amplitude: the raw amplitude (obtained
from the unrectified averaged trace of
the electromyograhic [EMG] recording)
is divided by the baseline activity of the
SCM.The latter is determined as the av-
erage amplitude of the rectified or root
mean square (RMS) EMG recorded in
parallel to the unrectified EMG in the
intervalbetween–20msandstimuluson-
set (0ms). For details, see Figs. 5 and 6
in [74]. The corrected p13n23 amplitude
allows for a better comparison of cVEMP
responses recorded from different sides,
in different individuals and during dif-
ferent recording sessions.

Normal values

Normal values for VEMPs depend on
many variables, such as the test subject’s
ageandvariousstimulusparameters (e.g.,
frequency, intensity, duration, rise times)
[1, 3, 60, 67, 72, 85]. Therefore, it is
strongly recommended that each neuro-
tological center defines its own normal
values for each set of stimulus parameters
and different age groups [74].

Clinical applications

The following section focuses on char-
acteristic VEMP responses in periph-
eral vestibular disorders that have con-
tributed to a better understanding of the
neurophysiology behind VEMPs or that
provide additional information as com-
pared to other vestibular tests. Detailed
accounts of clinical VEMP applications
have been provided by, for example [14,
26, 46, 50, 57, 62, 70, 74, 81, 84].

Vestibular neuritis

In line with the afferent innervation of
the labyrinth (. Fig. 2d), patients with
a superior vestibular neuritis display re-
duced oVEMP n10 amplitudes on the
contralateral side (. Fig. 1e), while right-
and left-sided cVEMPs are symmetri-
cal. On the other hand, reduced ipsi-
lateral cVEMP p13n23 amplitudes and
symmetrical oVEMP n10 responses are
a hallmark of inferior vestibular neuri-
tis (. Fig. 1f; [12, 33, 44, 51, 52, 56, 61,
64, 82]). This “double dissociation” of
o- and c-VEMPs in superior versus infe-
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Infobox 1 Background informa-
tion

Websites accessed on 23 April 2020
4 mode of function of a seismome-

ter: https://www.iris.edu/hq/inclass/
animation/seismograph_horizontal

4 animation of the Tullio phenomenon:
https://www.youtube.com/watch?
v=UohkAL7IY0w

rior vestibular neuritis has two important
implications. First, it indicates that the
two otolith-driven reflexes do not orig-
inate in the same subset of vestibular
receptors. If they did, one would expect
that either both responses or none at
all would be affected in superior/inferior
neuritis. Second, the double dissociation
shows that the predominant specificity of
oVEMPs for contralateral utricular func-
tion and cVEMPs for ipsilateral saccular
function is sufficient to distinguish be-
tween utricular and saccular dysfunction
in clinical practice—although the neu-
ronal projections of utricular and saccu-
lar afferents are not completely separated
[11].

Otolith organ specific vestibular
dysfunction

VEMPs are an efficient and reliable tool
for detecting isolated disorders of the
otolith organs [16, 30]. If vestibular test-
ing assesses only semicircular canal func-
tion (e.g., by calorics or vHIT), these
disorders may easily been missed and
classified as “non-vestibular” or “func-
tional”. Therefore, the results of semi-
circular canal testing have to be com-
plemented by selective tests of otolithic
function such as VEMPs in clinical prac-
tice.

» VEMPs are an efficient and
reliable tool for diagnosing
otolith organ specific vestibular
dysfunction

This is especially important in patients
with mild traumatic brain injury or blast
trauma who often suffer from isolated

dysfunction of the otolith organs despite
intact semicircular canal function [2, 47].

Superior canal dehiscence

A dehiscence in the bony roof of the su-
perior semicircular canal creates a third
mobile window in the bony labyrinth
(beside the oval and round windows) re-
sulting, e.g., in sound-induced vertigo
and nystagmus (Tullio phenomenon; for
details see. Infobox1andS4 [online sup-
plementary material]; [35, 83]).

A highly increased oVEMP n10 re-
sponserecordedfromthe inferioroblique
muscle is a powerful indicator for a supe-
rior canal dehiscence (SCD) in the con-
tralateral labyrinth with a sensitivity and
specificity >90% depending on stimu-
lus parameters and control populations
(. Fig. 6a; [45, 54, 80, 88]). Furthermore,
patients with an SCD display a contralat-
eral oVEMP n10 response to 4000Hz
ACS or BCV, which is absent in normal
subjects with an intact bony labyrinth
(. Fig. 6b; diagnostic accuracy= 100%).
As the latter test does not depend on
comparisonbetweenright- and left-sided
responses, it is ideally suited to diagnose
bilateral SCD [55].

The tremendous effect of SCD on the
oVEMP n10 amplitude can be explained
by activation of the otherwise “silent”
vestibulo-ocular projections of superior
canal afferents (see section “Neuronal
projections”). While semicircular canal
hair cells and afferents do not respond
to sound or vibration in the normally
encased labyrinth, the third mobile win-
dow in SCD induces an endolymph flow
in the superior semicircular canal [75]
finally resulting in activation of type I
vestibular hair cells and their postsynap-
tic irregular afferents. As these project
to vestibulo-ocular neurons—just like
utricular afferents—they increase the
oVEMP n10 amplitude recorded from
the inferior oblique eye muscle [4, 27,
79].

Followingclosureof thesuperiorcanal
dehiscence in a guinea pigmodel of SCD,
superior semicircular canal afferents do
no longer respond to ACS and BCV,
which is in line with the normalization of
VEMP responses after successful surgical
closure of SCD in humans [27, 87].

The “difficult” patient

Most neurotological tests, such as caloric
irrigation and vHIT, infer vestibular
(dys-)function from the video-ocu-
lographic (VOG) assessment of the
vestibulo-ocular reflex, or put simply:
you have to look into your patients’ eyes
to determine their balance function.
This may, however, be difficult or even
impossible in certain groups of patients,
e.g., those with congenital/infantile nys-
tagmus (superimposition of the VOG
recording by the infantile nystagmus),
extremely poor vision (blind nystag-
mus; inability to fixate a target during
vHIT), or reduced ability to cooperate
(e.g., blink and lid artifacts). In these
cases, o- and cVEMPs offer a simple,
quick, and reliable alternative to obtain
some basic information about superior
(oVEMPs) and inferior vestibular nerve
(cVEMPs) function (. Fig. 2d; [14]).
Both responses can be recorded in pa-
tients with infantile nystagmus [53]. Due
to the short duration of the examination
(40 s for a trial with 200 stimuli at 5pps),
VEMPs are also a suitable diagnostic
tool for patients with limited ability to
cooperate, e.g., children and patients
with cognitive impairment.

Practical conclusion

4 VEMPs (vestibular evoked myogenic
potentials) are a simple, safe, reli-
able, and selective test of transient
(= dynamic) otolithic function.

4 500Hz ACS (air-conducted sound)
and BCV (bone-conducted vibration)
selectively activate type I vestibular
hair cells and irregular otolith af-
ferents in the utricular and saccular
striola. The predominant specificity
of oVEMPs (ocular vestibular evoked
myogenic potentials) for contralat-
eral utricular function and of cVEMPs
(cervical vestibular evoked myogenic
potentials) for ipsilateral saccular
function is due to the differential
projections of utricular and saccular
afferents to vestibulo-ocular and
vestibulo-spinal neurons, respec-
tively.
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4 When using ACS, the test subject has
to be protected from excessive sound
exposure.

4 The “raw” cVEMP p13n23 amplitude
is corrected for the baseline activity
of the sternocleidomastoid muscle
determined by the rectified or root
mean square EMG electromyogram
for a better comparison between
cVEMP responses from different
recordings and test subjects.

4 A highly increased oVEMP n10 am-
plitude is a diagnostic indicator
for a contralateral superior canal
dehiscence.

4 Informative VEMP recordings can
be obtained from patients with
congenital/infantile nystagmus,
extremely poor vision or limited
ability to cooperate during vestibular
testing.
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