Contents

Preface .. V
Contributors ... XII

Session 1. Mitochondrial DNA, Mutations and Genetic Mapping
Chairman: P.P. Slonimski

Mitochondrial DNA and the Heritable Unit of the Yeast Mitochondrial Genome: A Review
D. H. Williamson, L. H. Johnston, K. M. V. Richmond, J. C. Game 1

Two Aspects of Mitochondrial DNA Structure: The Occurrence of Two Types of Mitochondrial DNA in Rat Liver and the Isolation From Rat Liver of DNA Complexes of High Buoyant Density
J. F. Francisco, F. F. Vissering, M. V. Simpson 25

Transposable Segments of Mitochondrial DNA: A Unitary Hypothesis for the Mechanism of Mutation, Recombination, Sequence Reiteration and Suppressiveness of Yeast “Petite Colony” Mutants
P. P. Slonimski, J. Lazowska .. 39

Control of the Genetic Recombination of Mitochondrial Genes: Preliminary Approaches
B. Dujon, H. Baranowska, G. Dujardin 53

Extrachromosomal Inheritance in Schizosaccharomyces pombe.
V. On a Possible Correlation Between Bias in Transmission, Spontaneous mit"-Production, and Formation of Uniparental Zygotic Clones
K. Wolf, F. Kaudewitz .. 65

Mitochondrial Mutants Isolated by a New Screening Method Based Upon the Use of the Nuclear Mutation op1
Z. Kotylak, P. P. Slonimski ... 83

Control of Mitochondrial Inactivation of Temperature-sensitive Saccharomyces cerevisiae Nuclear Petite Mutants

Biochemical Characterization of a Temperature Conditional Mutant Having a Mutation in the w-Controlled Region of the Yeast Mitochondrial Genome and Effects of the Mutation on Mitochondrial Recombination
H. B. Lukins, J. T. English, T. W. Spithill, R. J. Devenish, R. M. Hall,
P. Nagley, A. W. Linnane .. 107
VIII

Preferential Loss of a Specific Region of Mitochondrial DNA by rho^- Mutation
H. Fukuhara, M. Wesolowski .. 123

Preferential Loss or Retention of Mitochondrial Genes in rho^- Clones
S. Mathews, R. J. Schweyen, F. Kaudewitz 133

The Genetic Map of the Mitochondrial Genome, Including the Fine Structure of cob and oxi Clusters
R. J. Schweyen, B. Weiss-Brummer, B. Backhaus, F. Kaudewitz 139

Extrachromosomal Inheritance in Schizosaccharomyces pombe.
VI. Preliminary Genetic and Biochemical Characterization of Mitochondrially Inherited Respiratory-deficient Mutants
G. Seitz, G. Lückemann, K. Wolf, F. Kaudewitz, M. Boutry, A. Goffeau 149

Fine Structure Genetic Map of the Mitochondrial DNA Region Controlling Coenzyme QH_2: Cytochrome c Reductase
Z. Kotylak, P. P. Slonimski ... 161

Cytochrome c Reductase and Cytochrome Oxidase Formation in Mutants and Revertants in the "box" Region of the Mitochondrial DNA
P. Pajot, M. L. Wambier-Kluppel, P. P. Slonimski 173

Mapping of Drug-resistant Loci in the Coenzyme QH_2: Cytochrome c Reductase Region of the Mitochondrial DNA Map in Saccharomyces cerevisiae
A. M. Colson, P. P. Slonimski .. 185

Resistance to High Concentrations of Antimycin A in Saccharomyces cerevisiae: Synergistic Interaction of Nuclear and Mitochondrial Mutations
E. Pratje, G. Michaelis ... 199

Mutations to Drug Resistance in the cob Region of the Mitochondrial Genome
G. Burger, B. Lang, B. Backhaus, K. Wolf, W. Bandlow, F. Kaudewitz 205

Session 2. Organization of the Mitochondrial Genome, Transcription and Translation Products
Chairman: D. Wilkie

The Physical Map of Yeast Mitochondrial DNA Anno 1977 (A Review)
Physical Characterization of the Difference Between Yeast mitDNA Alleles ω^+ and ω^-
C. Jacq, C. Kujawa, C. Grandchamp and P. Netter 255

Physical Mapping of Mitochondrial Genes and Transcripts in *Saccharomyces cerevisiae*

Properties and Genetic Localization of Mitochondrial Transfer RNAs of *Neurospora crassa*
P. Terpstra, H. de Vries, A. M. Kroon 291

The Genetic Organization of Rat Liver Mitochondrial DNA
C. Saccone, G. Pepe, H. Bakker, A. M. Kroon 303

Genetic, Physical and Biochemical Analysis of a Mitochondrial Gene
R. A. Butow, R. D. Vincent, R. L. Strausberg, E. Zanders, P. S. Perlman 317

Mutations at Anyone of Three Unlinked Mitochondrial Genetic Loci, BOX1, BOX4 and BOX6, Modify the Structure of Cytochrome b Polypeptide(s)
M. L. Claisse, A. Spyridakis, P. P. Slonimksi 337

Structural and Regulatory Mutations Affecting Mitochondrial Gene Products
H. R. Mahler, D. Hanson, D. Miller, T. Bilinski, D. M. Ellis, N. J. Alexander, P. S. Perlman .. 345

A Structural Analysis of the oxi3 Region on Yeast mitDNA
L. A. Grivell, A. F. M. Moorman .. 371

Yeast Mitochondrial Messenger RNA is not Correctly Translated in Heterologous Cell-free Systems

Effect of Mitochondrial Mutations on Cytochrome c Oxidase in Yeast
F. Cabral, M. Solioz, D. Deters, Y. Rudin, G. Schatz, L. Clavilier, O. Groudinski, P. P. Slonimksi ... 401

Transcription Map of Yeast Mitochondrial DNA
G. J. B. van Ommen, G. S. P. Groot ... 415

A One-step Method for $\text{rho}^+\text{cRNA}/\text{rho}^-\text{DNA}$ Hybridization in Mapping of the Mitochondrial Genome of *Saccharomyces cerevisiae*
G. Grosch, I. Doxiadis, B. Lang, R. J. Schweyen, F. Kaudewitz 425
Session 3. Mitochondrial Components and Assembly
Chairman: C. Saccone

Altered Amino Acid Sequence of the DCCD-binding Protein of the Nucelar, Oligomycin-resistant Mutant AP-2 From Neurospora crassa
W. Sebald, M. Sebald-Althaus, E. Wächter .. 433

Altered Amino Acid Sequence of the DCCD-binding Protein in the oli 1-resistant Mutant D 273-10 b/A 21 of Saccharomyces cerevisiae
E. Wächter, W. Sebald, A. Tzagoloff .. 441

Structure of the Mitochondrial and Plasma-membrane ATPases of the Yeast Schizosaccharomyces pombe
A. Goffeau, M. Boutry, J. P. Dufour .. 451

Partial Identification, Stoicheiometry and Site of Translation of the Sub-units of Ubiquinone : Cytochrome c Oxidoreductase
H. Weiss, B. Ziganke .. 463

Isolation and Hydrodynamic Properties of the bc1 Complex from Beef Heart Prepared by Hydroxyapatite Chromatography in Triton X-100
G. von Jagow, H. J. Kolb ... 473

A Cell-free System to Study Synthesis and Transport of Cytoplasmically Translated Mitochondrial Proteins
R. Zimmermann, H. Korb, W. Neupert .. 489

DNA-binding Properties of Mitochondrially Synthesized Proteins
G. Rödel, W. Bandlow .. 503

Session 4. Mitochondrial-Nucleocytoplasmic Interactions
Chairman: C. Saccone

Some Preliminary Observations on the Effect of Cerulenin on the Formation of Mitochondrial and Cytoplasmic Precursors of Electron Transfer Complexes III and IV in Adapting, Lipid-limited Saccharomyces cerevisiae
W. Rouslin ... 511

An Inductor-Repressor Model Co-ordinating the Expression of Mitochondrial and Nuclear Genes that Specify Mitochondrial Proteins in Yeast (Candida utilis)
E. Keyhani, J. Keyhani ... 523
Derepression of Mitochondrial Enzymes in Yeast Wild Type and a Mitochondrial Conditional Mutant, tsm8, Retarded in Oxidative Adaptation
W. Bandlow ... 531

Isolation and Preliminary Characterization of Yeast Mutants Affected in Carbon Catabolite Repression
M. von Ciriacy ... 543

The Role of Mitochondria in the Mechanism of Initiation of Differentiation in *Saccharomyces cerevisiae*
H. J. Rhaese, R. Groscurth, R. Scheckel .. 551

Mitochondria-Cell Relationships in *Saccharomyces cerevisiae*: Aspects of Sporulation
E. S. Diala, D. Wilkie ... 563

Differences in Mitochondrial Isoaccepting tRNAs from *Saccharomyces cerevisiae* as a Function of Growth Conditions
G. Baldacci, C. Falcone, L. Frontali, G. Macino, C. Palleschi 571

Appendix
The Mitochondrial Genetic Map of *Saccharomyces cerevisiae*:
A Literature Compilation Towards a Unique Map
B. Dujon, A. M. Colson, P. P. Slonimski 579
A CELL FREE SYSTEM TO STUDY SYNTHESIS AND TRANSPORT OF CYTOPLASMICALLY TRANSLATED MITOCHONDRIAL PROTEINS

R. ZIMMERMANN, H. KORB AND W. NEUPERT
Institut für Physiologische Chemie, Physikalische Biochemie und Zellbiologie der Universität München, Germany

INTRODUCTION

Previous papers have described synthesis of cytoplasmically synthesized mitochondrial proteins and their transport into the mitochondria of whole cells of Neurospora crassa (1,2). These in vivo studies have suggested the existence of extramitochondrial pools of mitochondrial proteins. However, such studies with intact cells can supply only limited information on the mechanism of the transport of proteins into functional locations. Therefore, an in vitro system has been developed to separate the processes of synthesis and transport (3,4). This report deals with further experiments to discriminate between the mechanisms currently proposed for the transport of proteins into mitochondria (2,4-6). The experiments support the earlier view that precursors of mitochondrial proteins are located in the cytosolic fraction. In addition, an attempt is made to characterize these precursors.

RESULTS AND DISCUSSION

1) Synthesis and Transport of Mitochondrial Proteins in the Cell Free System

Neurospora hyphae (wild type 74 A) were grown in the presence of ^35S-sulphate. After 12 hr of growth a chase of unlabelled sulphate was added for one hr. The cells were then washed with ice-cold distilled water and collected by filtration. The hyphae were broken by grinding with sand in an incubation mixture described previously (7) but supplemented with an ATP
regenerating system and chloramphenicol (0.5 mg/ml). The homogenate was centrifuged twice at 3000 x g for 5 min. The cell free supernatant thus obtained was used for in vitro protein synthesis as described in a previous paper (4).

Electronmicroscopic analysis of this homogenate did not show a significant number of cytoplasmic ribosomes bound to the outer mitochondrial membrane.

Incorporation of 3H-leucine into the 35S-prelabelled homogenate reached a plateau within 10-15 min. The individual cellular fractions showed the labelling kinetics given in Fig. 1.

Fig. 1 Incorporation of 3H-leucine in a cell free system: specific labelling of the proteins of various cell fractions

A cell free homogenate of 35S-labelled *Neurospora* hyphae was incubated with 3H-leucine in the presence of chloramphenicol. Cell fractions were isolated by differential centrifugation. Specific 3H-radioactivities are expressed by the 3H/35S-ratio and plotted vs. time of incubation.

The microsomal fraction showed very rapid labelling, reaching exceptionally high 3H/35S-ratios at 10-15 min, which exceeded the final 3H/35S-ratio of the total homogenate by a factor of 2-6. The free ribosomes showed a lower increase of the 3H/35S-ratio. Therefore, it appears that in this cell free homogenate membrane bound ribosomes are more active in the synthesis of proteins than are free ribosomes. The mitochondrial fraction also shows an increase in the 3H/35S-ratio but this increase
is distinctly slower than in the cytosolic fraction. However, the ratio in mitochondria does eventually reach a similar $^{3}\text{H}/^{35}\text{S}$-ratio. This incorporation into mitochondrial proteins cannot be attributed to mitochondrial protein synthesis since chloramphenicol was present in the reaction medium. Therefore, it appears that proteins synthesized on cytoplasmic ribosomes are transferred into the mitochondrial fraction.

In order to analyze the transferred proteins, gel electrophoretic separation in the presence of SDS was performed on the total mitochondrial protein. Mitochondria were isolated after 10 min and 80 min of incubation. The electrophoretic patterns are presented in Fig. 2.

![Fig. 2 Gel electrophoretic analysis in the presence of SDS of ^{3}H-labelled proteins in the mitochondrial fraction](image)

A cell-free homogenate was prepared from ^{35}S-labelled hyphae and incubated with ^{3}H-leucine in the presence of chloramphenicol. Mitochondria were isolated after 10 min (A) and 80 min (B) of incubation, dissolved in SDS-containing buffer, dialysed and subjected to gel electrophoresis.
The 3H- and 35S-radioactivity patterns are not identical, although there is considerable similarity at least after 80 min of incubation. Harmey et al. have demonstrated that the in vitro synthesized proteins which are associated with the mitochondria do not represent unspecifically attached cytosolic proteins (4). Furthermore, the transferred proteins were characterized as specific mitochondrial proteins by immunoprecipitations from isolated mitochondria using antibodies directed against certain mitochondrial proteins: 1) CAT-binding protein (Fig. 3) ++

++ The electrophoretogram shows a major peak with an apparent molecular weight of 32,000. A distinct peak with an apparent molecular weight of 60,000 probably represents the dimeric form. Furthermore, in the molecular weight range of 10,000-30,000 a considerable amount of radioactivity is present. The amount of radioactivity in this region increases with the time of the in vitro incubation period. For this reason, and because these lower molecular weight proteins are not observed when the immunoprecipitation is carried out on mitochondria that have not been incubated in vitro, it seems likely that the radioactivity in this region represents proteolytic degradation products of the CAT-binding protein. Exceptional lability of the CAT-binding protein has also been observed with the beef-heart protein (8).
2) cytochrome c (see Fig.6) and 3) cytochrome c oxidase (Fig.4) In the latter case chloramphenicol was omitted during the incubation to obtain synthesis and labelling of mitochondrially synthesized subunits. In all the above cases the appearance of defined polypeptides in the mitochondria is apparent.

Fig.4 SDS gel electrophoresis of cytochrome c oxidase immunoprecipitated from the mitochondrial fraction of a cell free homogenate

A 35S-prelabelled homogenate was incubated with 3H-leucine. In this experiment no chloramphenicol was added. The immunoprecipitation was carried out with antibody directed against holo-cytochrome c oxidase.

2) Effect of Cycloheximide and Puromycin on Transfer of Proteins into the Mitochondria

A 35S-prelabelled homogenate was incubated with 3H-leucine for 10 min in the presence of chloramphenicol as described above. Cycloheximide and puromycin were then added to aliquots of the homogenate (final concentrations: 0.36 mM and 0.5 mM)
and incubation was continued.

The 3H/35S-ratios of the homogenate and the various cell
fractions were determined after the intervals shown in Fig. 5.

![Graph showing the effect of cycloheximide and puromycin on the transport of mitochondrial proteins into the mitochondria of a cell free homogenate](image)

Fig. 5 The effect of cycloheximide and puromycin on the transport of mitochondrial proteins into the mitochondria of a cell free homogenate

3H-leucine was incorporated for 10 min in a cell free homogenate prelabelled with 35S. The homogenate was divided into two equal portions and cycloheximide and puromycin were added (zero time) and incubation was continued. The 3H/35S-ratios of various fractions are plotted vs. time after addition of cycloheximide (A) and puromycin (B)

- ■ Homogenate
- ○ Cytosol
- ● Mitochondria
- ▲ Microsomes
- △ Ribosomes

The inhibitory effect of cycloheximide and puromycin on cytoplasmic protein synthesis is complete since the 3H/35S-ratios of the total homogenates show no increase. When cycloheximide was present during the incubation (Fig. 5A) the microsomal and ribosomal fractions showed no significant change in the 3H/35S
ratio, whereas that of the cytosolic fraction declined slowly. When puromycin was added to an incubation mixture (Fig. 5B) the \(^3\text{H}/^{35}\text{S}\)-ratio in the microsomal fraction dropped sharply but the ratio in free ribosomes was not affected. This rapid release of \(^3\text{H}\)-label from the microsomes was accompanied by a corresponding increase of the \(^3\text{H}/^{35}\text{S}\)-ratio in the cytosolic fraction followed by a slow decline of this ratio.

These observations suggest that the release of polypeptides into the cytosolic fraction occurs mainly from the microsomal ribosomes. In the case of both, cycloheximide and puromycin inhibition, the mitochondrial fraction showed a significant increase in the \(^3\text{H}/^{35}\text{S}\)-ratio suggesting that transport of cytoplasmically synthesized mitochondrial proteins takes place after blocking cytoplasmic protein synthesis. The decline of the \(^3\text{H}/^{35}\text{S}\)-ratio of the cytosolic fraction indicates that the proteins are transferred into the mitochondria from that fraction. This conclusion is dependent upon the observation that the \(^3\text{H}/^{35}\text{S}\)-ratio of the total homogenate did not decrease.

In order to demonstrate that completed mitochondrial proteins are transferred after cessation of cytoplasmic protein synthesis the following experiments were carried out: A \(^{35}\text{S}\)-prelabelled homogenate was incubated with \(^3\text{H}\)-leucine for 10 min, cycloheximide or puromycin added (zero time), and aliquots were withdrawn immediately. Incubation was continued for 70 min following which aliquots were again withdrawn. Mitochondria were isolated and matrix proteins, CAT-binding protein, and cytochrome \(c\) were immunoprecipitated. The immunoprecipitates of CAT-binding protein and of cytochrome \(c\) were analyzed by SDS gel electrophoresis and the \(^3\text{H}/^{35}\text{S}\)-ratios determined (electrophoretic analysis of immunoprecipitated cytochrome \(c\) is shown in Fig. 6). In the case of the immunoprecipitated matrix proteins the ratio in the total immunoprecipitates were determined. The \(^3\text{H}/^{35}\text{S}\)-ratios obtained after 70 min compared to the ratios at zero time are presented in Table 1 for the various proteins. The ratio for total
3) Experiments to Demonstrate the Presence of Precursors in the cytosolic Fraction

In previous papers it was reported that mitochondrial matrix proteins show kinetics characteristic of precursors outside the mitochondria. In experiments with intact cells as well as in *in vitro* experiments putative precursors were detected in the cytosolic fraction (1,3). This work extends these observations with experiments to detect precursors for the CAT-binding protein and for cytochrome *c*.

A 35S-prelabelled homogenate was incubated with 3H-leucine as described above for 10 min. The cytosolic and mitochondrial fraction were then isolated and immunoprecipitations were performed with antibodies against CAT-binding protein.

![Fig.7 SDS gel electrophoresis of CAT-binding protein immunoprecipitated from the cytosolic fraction (A) and the mitochondrial fraction (B) of a cell free homogenate](image)

After 10 min incubation only a small amount of 3H-label co-migrates with the 35S-prelabelled CAT-binding protein from mitochondria (Fig.7B). No 35S-radioactivity could be
mitochondrial proteins is also given in the Table. For comparison the $^{3}H/^{35}S$-ratios determined following incubation with no inhibitor present (control) is included in the Table. The results given in the Table lead to the conclusion that specific and completed polypeptides are transported into the mitochondria when cytoplasmic translation is blocked. This demonstrates the existence of extramitochondrial pools which are exhausted after blocking protein synthesis.

Table 1
Incorporation of ^{3}H-leucine in total mitochondrial protein, matrix proteins, cytochrome c and CAT-binding protein after inhibition of cytoplasmic protein synthesis with cycloheximide or puromycin (values were determined as described in the text)

<table>
<thead>
<tr>
<th></th>
<th>$^{3}H/^{35}S$ (70 min)</th>
<th>$^{3}H/^{35}S$ (10 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitochondria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.2</td>
<td>6.5</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>1.6</td>
<td>1.7</td>
</tr>
<tr>
<td>Puromycin</td>
<td>4.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Matrix Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Puromycin</td>
<td>1.8</td>
<td>---</td>
</tr>
<tr>
<td>Cytochrome c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>Cycloheximide</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>Puromycin</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>CAT Protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycloheximide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puromycin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.6 Gel electrophoretic analysis in the presence of SDS of cytochrome c immunoprecipitated from mitochondria. A cell free homogenate prelabelled with ^{35}S was incubated with ^{3}H-leucine for A) 10 min B) 10 min, then in the presence of cycloheximide for a further 70 min.
precipitated from the cytosolic fraction demonstrating the specific localisation of the CAT-binding protein in the mitochondria. However, a distinct peak of 3H-radioactivity with the same electrophoretic mobility as the CAT-binding protein was apparent in the cytosol (Fig. 7A). We consider this 3H-labelled material to be a putative extramitochondrial precursor of the CAT-binding protein. However, precursor-product kinetic studies and chemical comparison of the putative precursor with the mitochondrial membrane component must be carried out before definite conclusions can be drawn.

In a comparable experiment, in which cells were not prelabelled with 35S, the cytosolic fraction was immunoprecipitated with a specific antibody against apo-cytochrome c isolated from holo-cytochrome c according to Fisher et al. (9).

![SDS gel electrophoresis of apo-cytochrome c immunoprecipitated from the cytosolic fraction of a cell free homogenate](image)

A 35S-prelabelled cell free homogenate was incubated with 3H-leucine for 10 min in the presence of chloramphenicol.

The electrophoretic pattern of the immunoprecipitation displays a single band comigrating with cytochrome c (Fig. 8). In separate experiments it was shown that this antibody did not cross react with holo-cytochrome c. Immunoprecipitates obtained with anti-apo-cytochrome c using mitochondria isolated from 35S-prelabelled homogenates incubated in vitro with 3H-leucine contained neither 35S- nor 3H-radioactivity. Preliminary experiments, in which apo-cytochrome c was precipitated from
the cytosol and holo-cytochrome c from the mitochondria showed that following cycloheximide inhibition the 3H-radioactivity disappeared from the cytosolic fraction and increased in the mitochondrial fraction. These data suggest that apo-cytochrome c is transported into the mitochondria in vitro. However, as in the case of matrix proteins the putative cytosolic precursor has not been chemically shown to be identical with the apo-protein of integrated cytochrome c.

FINAL REMARKS

The data we have presented here and in previous papers (1-4) lead us to propose a working hypothesis to describe synthesis and transport of cytoplasmically translated mitochondrial proteins: Mitochondrial proteins are synthesized as precursors on cytoplasmic ribosomes (free or bound) with subsequent release into the cytosol. These precursors differ in their structure and/or conformation from the integrated functional proteins in the mitochondria. Only precursors are transported into the mitochondria (see also ref.4). The outer mitochondrial membrane may not present a barrier for these precursors. Precursors of proteins of the inner mitochondrial membrane may be trapped by structural or conformational changes (a) in the course of assembly reactions which lead to phospholipid containing supermolecular structures and (b) by attachment of prosthetic groups to the apo-proteins. Precursors for proteins of the mitochondrial matrix proteins may be bound to acceptor sites on the inner membrane and subsequently translocated.

The molecular mechanisms underlying these proposed reactions remain to be determined. Comparison with other cellular reactions in which protein translocation across membranes takes place may be helpful to put questions which can be experimentally tested. Such translocation reactions are (a) the transfer of nascent chains of secretory proteins across the microsomal membrane which appears to involve the clipping of a "signal sequence" (10,11) and (b) the trans-
location of fragment A of diphtheria toxin across the cellular membrane, in which a second polypeptide chain (fragment B) seems to play an essential role in binding and transfer of the toxic fragment A (12).

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft, Schwerpunkt "Biochemie der Morphogenese". We wish to thank Heide Rothe and Dietlinde Rose for skillful technical assistance. We are grateful to F. Nargang for help in preparing the manuscript.

REFERENCES

1) Hallermayer, G. and Neupert, W.: Studies on the Synthesis of Mitochondrial Proteins in the Cytoplasm and on their Transport into the Mitochondrion, in "Genetics and Biogenesis of Chloroplasts and Mitochondria" (Bücher, Th., et al., eds.), North Holland Publishing Company, Amsterdam pp 807-812 (1976)

