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Abstract
Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic 
intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar 
and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on 
brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and compu-
tational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized 
to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the 
cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal 
tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these 
areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual 
distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 
2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course 
of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu 
reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither 
significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity dis-
tribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, 
but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity 
as moderators of tDCS induced effects.

Keywords Magnetic resonance spectroscopy · Functional magnetic resonance imaging (fMRI) · Electrical field modelling · 
Glutamate · GABA · Transcranial direct current stimulation (tDCS)

Introduction

Due to its safe and cost-effective profile, transcranial direct 
current stimulation (tDCS) of prefrontal cortex (PFC) 
regions represents a promising therapeutic approach in 
major depression (MD) and other psychiatric disorders 
[1–5]. The technique is based on the application of a weak 
direct current flowing between bipolar electrodes positioned 
over the head with an intensity of 1–2 mA for 5–30 min, for 
one or several days [6–8].

However, there is still an ongoing debate on the basic 
mechanisms of tDCS, such as the direction of its effects in 
terms of polarity, intensity, session duration and individual 
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neuroanatomy [9–12]. Promising studies had shown that 
tDCS effects over the motor cortex were polarity-dependent, 
shifting neuronal resting membrane potentials either toward 
depolarization (close to the anode) or hyperpolarization 
(close to the cathode) [13–15]. Moreover, the orientation 
of neuronal layers [16, 17], anatomical differences between 
individuals, and the variability of brain states [18] may influ-
ence tDCS effects, as may current intensity and the precise 
electrode position, size and orientation [19–24].

When applying tDCS in different brain regions in healthy 
subjects various effects have been described, including 
changes in brain networks, assessed by resting-state func-
tional connectivity magnetic resonance imaging (rsfcMRI) 
[25, 26], cognitive performance, measured via working 
memory tasks [27–31], and changes in brain metabolite and 
neurotransmitter levels, investigated via 1H-magnetic reso-
nance spectroscopy (MRS) [28, 32–34]. In recent studies, 
rsfcMRI and computational modeling of the electrical field 
(efield) induced by tDCS in the brain have been included as 
additional tools to enhance the explanatory power, demon-
strating an association of functional brain connectivity and/
or efield strength with physiological changes [35–37].

Previous MRS studies mainly investigated tDCS 
over motor cortex regions [32, 34, 37–39], and very few 
MRS studies focused on tDCS of prefrontal regions [40, 
41]. Bifrontal tDCS (anode: right dorsolateral PFC (right 
DLPFC; F4), cathode: left DLPFC (F3)) in gambling dis-
order increased GABA levels under the anode in the right 
DLPFC during stimulation. Another bifrontal tDCS montage 
(anode: F3, cathode: F4) in healthy participants increased 
prefrontal N-acetyl-aspartate (NAA) and striatal gluta-
mate + glutamine (Glx) levels during and after stimulation. 
Combining on- and offline protocols for tDCS and MRS 
(i.e., MRS before, during and after stimulation) allows meas-
uring dynamic effects of bifrontal tDCS. Similarly, adding 
another functional MR-based modality to MRS (i.e., rsfc-
MRI) can increase the explanatory power of these results as 
shown in a recent study [37]. In this pilot study, we investi-
gated the effects of bifrontal tDCS on Glu, Glx and GABA 
levels in an MRS voxel close to the cathode over the right 
DLPFC before, during and after tDCS, expecting stimulation 
induced changes in metabolite concentration. In addition, we 
explored the impact of gender, efield distribution within the 
MRS voxel as well as rsfcMRI connectivity.

Materials and methods

All subjects participated in a sham-controlled combined 
tDCS-MRS protocol and received active and sham tDCS 
in a double-blind cross-over design with randomized order.

The study was approved by the local ethics commit-
tee (Faculty of Medicine, Ludwig Maximilian University 

Munich, Munich, Germany). All participants provided writ-
ten informed consent, and received financial compensation 
for participation.

Participants

Twenty out of 25 recruited subjects (12 women 
[23.6 ± 2.0 years]/8 men [24.1 ± 2.0 years]; mean age of 
23.7 ± 2.0 years) were analyzed. Five participants were 
excluded due to poor MRS data quality. Recruitment was 
performed via social networks (facebook.com) and postings 
at the University hospital. An online questionnaire was sent 
for screening to assess exclusion criteria, such as drug abuse, 
other psychiatric or neurological diseases and MRI con-
traindications (e.g., metals in/on the body, claustrophobia, 
pacemakers). In addition, a telephone interview was con-
ducted to screen participants for psychiatric and neurological 
disorders, use of psychotropic medications, and unstable or 
severe physical health conditions. Participants were asked 
to abstain from alcohol the day before the measurement and 
to avoid caffeine on the day of the measurement. All par-
ticipants were right-handed, as assessed by the Edinburgh 
Handedness Inventory [42].

Experimental design

All participants underwent two combined tDCS-MRI ses-
sions (approximately 2 h each) at the same time of the day 
with a minimum interval of 2 weeks between both sessions 
to avoid carry-over effects. Before and after tDCS-MRI 
measurements, positive and negative affect were assessed 
using the PANAS trait and state questionnaire (Positive And 
Negative Affect Schedule; [43]).

The study design is shown in Fig. 1; before stimulation, 
structural MRI scans (T1- and T2-weighted isotropic 3D 
sequences), an MRS sequence and a rsfcMRI sequence were 
acquired. Two separate MRS sequences were measured dur-
ing stimulation, initiated after 15 s of tDCS, to compare 
early and late periods of tDCS. After stimulation, another 
set of MRS and rsfcMRI sequences was acquired. A total of 
four MRS acquisitions named baseline, during1, during2 and 
post were conducted. Baseline MRS was recorded before 
rsfcMRI to exclude possible effects of echo planar imag-
ing (EPI) sequences on MRS [44]. Only after measuring 
the first 10 subjects in our study, we noticed that the MRS 
ROI was placed according to the neurological instead of 
the radiological convention. Thus, the respective MRS ROI 
was erroneously placed underneath the cathode. However, 
expecting effects of bifrontal tDCS in proximity to both elec-
trodes we continued our tDCS-MRS protocol with the MRS 
ROI positioned over the right DLPFC. Such effects under 
both electrodes with an increase of Glu under the anode 
and a reduction under the cathode has been previously been 
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demonstrated [32, 37, 45]. Future studies need to investi-
gate further MRS ROI positions ideally applying multi-voxel 
MRS for localizing tDCS effects on metabolites.

Transcranial direct current stimulation

TDCS was administered using an MR-certified Eldith stimu-
lator MR (neuroConn, Ilmenau, Germany) via two saline-
soaked surface sponge electrodes (5 × 7 cm2) placed over 
F3 (anode) and F4 (cathode; according to the international 
10–20 system) corresponding to the left and right DLPFC. 
Active tDCS was administered in the scanner for 20 min at 
2 mA intensity. Sham tDCS followed the built-in placebo-
mode that limits stimulation to the 15 s ramp-up/ramp-down 
periods to mimic the somatosensory artefacts of active tDCS 
(skin warming, tingling). Blinding was assessed after every 
single session using a standardized questionnaire [46].

Magnetic resonance imaging/magnetic resonance 
spectroscopy

All MRI scans were conducted on a 3 Tesla MRI scanner 
(Magnetom Skyra, Siemens Healthineers, Erlangen, Ger-
many). A T1-weighted 3D structural magnetization-prepared 
rapid gradient-echo (MPRAGE) sequence with 176 layers 

of slices, slice thickness 0.8 mm3 isotropic voxels in sagit-
tal orientation, repetition time (TR) = 1900 ms, echo time 
(TE) = 2.2 ms, flip angle (FA) of 9° and field of view (FoV) 
of 200 × 200 mm; and a T2-weighted 3D SPACE sequence 
with 160 slices, slice thickness 1.0 mm3 isotropic voxels, 
TR = 5000 ms, TE = 386 ms and FoV of 256 × 256 mm 
were acquired. Single-voxel spectroscopy with a MEGA 
PRESS sequence [https ://www.cmrr.umn.edu/spect ro/] [47] 
(TR = 2000 ms, TE = 68 ms, spectral bandwidth = 2000 Hz, 
144 averages and editing pulses applied to the GABA spins 
at 1.9 ppm for refocusing only the GABA spins for the ON-
signal, and at 7.5 ppm that do not affect any GABA spins for 
the OFF-signal) was acquired. As the GABA signal acquired 
at 68 ms is roughly 50% macromolecule, we refer to GABA 
as GABA + in the following sections. Voxel placement was 
performed by experienced MRS operators on the individual 
3D-reconstructed T1-weighted images using the superior 
frontal sulcus, the lateral fissure, and the genu of the corpus 
callosum as anatomical landmarks (see supplemental infor-
mation, Fig. 4).

For quantification of GABA + and Glx concentrations, the 
open source software Gannet 3.0 (http://www.gabam rs.com) 
was used, while for the Glu quantification off-spectra of the 
MEGA-PRESS sequence were analyzed in LCModel (Lin-
ear Combination Model, Version 2.1-1A; [48]. Results are 

Fig. 1  Study protocol. a Four 
10-min intervals of MRS were 
measured before (baseline), dur-
ing (during1, during2) and after 
(post) tDCS. MRS during1 was 
started 15 s after the beginning 
of tDCS. b Electrode position-
ing with the anode over the left 
DLPFC and the cathode over 
the right DLPFC. MRS region 
of interest (ROI) was placed 
under the cathodal electrode in 
the right DLPFC (yellow box). 
c Example of the MRS ROI in 
a male participant. d Example 
of the MRS ROI in a female 
participant. e Combined ROI 
of all participants (male and 
female); ROIs projected onto 
the MNI152 standard template

https://www.cmrr.umn.edu/spectro/
http://www.gabamrs.com
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presented in ratios to creatine (for more detailed informa-
tion of processing steps please see supplemental information 
section 3.2).

Data with standard deviations (Cramér-Rao lower 
bounds) > 20% estimated by the LCModel and Gannet 3.0 
were considered as poor quality and excluded from further 
analysis (five out of twenty-five). Tissue segmentation in 
the ROIs was performed using FSL FAST [49] to estimate 
the content of cerebrospinal fluid (CSF), grey matter (GM), 
and white matter (WM). The metabolite concentrations were 
corrected for partial CSF volume in the ROI [50].

Resting state functional MRI connectivity

Sixteen out of twenty datasets were analyzed (4 datasets were 
excluded due to failed data processing). An EPI sequence 
with the following parameters was acquired: TR = 2000 ms; 
TE = 30 ms; flip FA = 80°; spatial resolution, 3 × 3 x 3 mm3; 
imaging matrix, 64 × 64; FoV = 192 × 192 mm2; number 
of slices 36; number of volumes, 250. The individual high-
resolution MPRAGE data served as anatomical reference.

Pre-processing of the data was conducted using FSL 
5.0.10 (https ://fsl.fmrib .ox.ac.uk/fsl/fslwi ki/), AFNI (https 
://afni.nimh.nih.gov/) version 18 and in-house scripts (Karali 
et al. [51, 52]; https ://zenod o.org/recor d/35308 97#.XfdzS 
WRKhP Z). For detailed information about pre- and post-
processing of the data please see supplemental information, 
page 2 and 3.

Computational modeling of electrical fields

Eighteen out of twenty datasets were analyzed (7 men, two 
datasets were excluded due to missing T2-weighted data-
sets). SimNIBS 2.0 (Stimulation in Non Invasive Brain Stim-
ulation, https ://www.simni bs.org/; Thielscher et al. [53]) was 
used to model the distribution and intensity of the efield. 
To generate the head models, T1- and T2-weighted MR 
images were fed into the ‘mri2mesh’ function of SimNIBS, 
that employs FreeSurfer and FSL functions to automatically 
segment the MR images into five tissue types (white matter, 
grey matter, skin, skull and cerebrospinal fluid) and subse-
quently creates individual tetrahedral head meshes from the 
segmentations [54–56]. Efield simulations are based on the 
Finite Element Method (FEM).

For twelve out of eighteen participants (4 men, six data-
sets were excluded due to failing transformation into volu-
metric space), the simulated data of the norm of the electric 
field was transformed into MNI standard volumetric space 
using a customized python script based on FSL and the 
following GitHub resource: https ://githu b.com/ncull en93/
mesh2 nifti  to extract the number of activated voxels thres-
holded at 0.3 in GM only, as a measure for efield strength.

Exploratively, we investigated the relationship between 
Glu changes and individual efield strength within the MRS 
ROI by dividing the sample of twelve participants into a 
“small” (n = 5) and a “large” (n = 7) efield group. The cut-
off value defined to separate the two groups was the mean 
value of activated voxels of all subjects (6000 activated vox-
els). We hypothesize that a larger number of activated efield 
voxels in the volumetric space reflects a stronger potential 
response to electrical stimulation as indicated by the results 
of the simulation.

Exact number of data sets for each analysis is shown in 
the study flow chart in the supplemental information, Fig. 2.

Statistical analysis

Statistical analyses were conducted using R (R Development 
Core Team, 2008, R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. ISBN 3-900051-07-0, https ://www.r-proje 
ct.org/). We performed linear mixed effects models (LMM) 
for repeated measurements to investigate differences in 
metabolite concentration change between the active and 
sham group incorporating four different time points (base-
line, during1, during2 and post). Measurements were con-
sidered as nested within subjects. To control for gender 
effects, gender was included as a covariate to the LMM. 
Inter-individual differences in metabolite concentration at 
baseline were accounted for by including a random intercept 
term to the model. To account for subject-specific change 
rates, we tested if the inclusion of a random slope term 
would significantly improve the model fit. Nested models 
were compared using χ2-likelihood-ratio tests. Effect sizes 
reflecting the between-group differences in metabolite con-
centration change over time were calculated (Cohen’s d). 
Post-hoc analyses were planned (e.g., multiple comparisons 
between time points) if factors reached significance in the 
original LMM (two-sided p < 0.05).

Open science

All raw data and scripts will be available via OSF: https ://
osf.io/qgs57 /.

Results

Behavioural data

PANAS scores before and after the stimulation were 
evaluated showing differences of the effect of time and 
PANAS scores for active and sham stimulation (p = 0.037). 
For both conditions PANAS scores were higher before 
 (meanactive = 16.00 ± 9.6;  meansham = 14.95 ± 7.1) compared 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://afni.nimh.nih.gov/
https://afni.nimh.nih.gov/
https://zenodo.org/record/3530897#.XfdzSWRKhPZ
https://zenodo.org/record/3530897#.XfdzSWRKhPZ
https://www.simnibs.org/
https://github.com/ncullen93/mesh2nifti
https://github.com/ncullen93/mesh2nifti
https://www.r-project.org/
https://www.r-project.org/
https://osf.io/qgs57/
https://osf.io/qgs57/
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to after  (meanactive = 13.25 ± 8;  meansham = 12.15 ± 8.6) the 
stimulation. For more detailed information on behavioral 
data please see supplemental information page 5 and 6.

tDCS effects on metabolite concentrations
We investigated changes of Glu, Glx and GABA + con-

centration over time in the two conditions (active, sham; see 
Fig. 2). Including a random slope term did not significantly 
improve model fit for all outcomes (Glu: χ2 = 0.03, p = 0.98; 
Glx: χ2 = 1.14, p = 0.57; GABA + : χ2 = 0.00, p = 1). Hence, 
a random intercept fixed slope solution was selected.

To control effects of Cr changes on Glu, GABA or Glx 
related effects, we also analyzed the NAA/Cr ratio. How-
ever, we did not detect any significant effects for time (F(1, 
140) = 0.166, p = 0.685), condition (F(1, 140) = 0.065, 
p = 0.799) or the time*condition interaction (F(1, 
140) = 0.037, p = 0.848).

Effects of tDCS on Glu concentrations in the DLPFC

While no significant effects were found for the factors time 
and condition, we observed a trend for the factor condition 
(F(1, 140) = 3.01, p = 0.085) and a trend for time*condition 
(F(1, 140) = 2.88, p = 0.092). Descriptive statistics showed a 
marked difference in male and female participants (Fig. 3). 
Therefore, we decided to additionally investigate how 
tDCS-induced changes differed with regard to gender as a 

model factor. No significant effects were found for the fac-
tors time (F(1, 140) = 2.67, p = 0.102) and time*condition 
(F(1, 140) = 1.48, p = 0.226) in the full sample (Fig.  2); 
however, the three-way interaction with gender indicated 
significant differences in tDCS-induced change of metab-
olite concentrations between male and female subjects 
(F(1, 140) = 2.04, p = 0.017). Female subjects showed a signifi-
cant reduction in Glu concentration in the active compared 
to the sham condition (β = 0.03 [0.01–0.05], t(140) = 2.87, 
p = 0.004, d = 1.29 [0.41–2.17]), while male subjects did not 
(β = −0.01 [−0.03 to 0.02], t(140) = 0.78, p = 0.440, d = 0.33 
[− 0.50 to 1.16]) (see Fig. 3 and supplemental information 
Table 1). To determine at which time point tDCS-induced 
reduction in Glu (i.e., time*condition interactions) was at 
its strongest, Bonferroni-corrected LMM models were fit 
by consecutively including the next latest time point from 
baseline revealing a significant interaction for Glu change 
between baseline and the “during 2” time point (β =− 0.03 
[−  0.05 to −  0.02], t(12) = −  4.56, p = 0.004, d = 1.50 
[0.86–2.15]) (see supplemental information, Table 2).

Effects of tDCS on GABA + and Glx concentrations 
in the DLPFC

A significant effect of gender on GABA + concentration 
(F(1, 140) = 6.26, p = 0.014) was detected; however, no 

Fig. 2  Glu, Glx and GABA + values from baseline to post stimulation 
of active and sham tDCS showing a significant reduction of Glu con-
centrations during active stimulation (see supplemental information, 
Table 1) and difference plots of metabolite changes to baseline con-

centrations. Error bars represent standard error of the mean (SEM). 
Glu, glutamate; Glx, glutamate & glutamine; GABA+, gamma amin-
obutyric acid (+ macromolecules)
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other significant interactions for the factors time (GABA: 
F(1, 140) = 0.28, p = 0.600; Glx: F(1, 140) = 1.57, p = 0.213), 
condition (GABA: F(1, 140) = 2.78, p = 0.100; Glx: 
F(1, 140) = 0.21, p = 0.645) and time*condition (GABA: 
F(1, 140) = 0.38, p = 0.540; Glx: F(1, 140) = 0.09, p = 0.764) 
were observed, neither for GABA + nor for Glx, even if 
examining gender separately (see supplemental informa-
tion, Table 1).

Effects of tDCS on resting‑state functional 
connectivity

After active tDCS, rsfcMRI connectivity between the indi-
vidual MRS ROI and whole brain showed an increase within 
the subgenual/subcallosal cortex (at trend level; cluster-
corrected at 20 voxels, cluster: x = 2; y = 28; z = − 22 (21 
voxel); log-p value = 1.0; FDR-corrected, see supplemental 
information Fig. 3). More detailed results are presented in 
supplemental information, page 8 and 9.

Relationship between tDCS induced efields 
and brain metabolite changes

The individually modelled tDCS induced efields showed 
a high inter-individual variability of their distribution and 
peak intensities with efields widely spreading between the 
electrodes within the medial prefrontal cortex (see supple-
mental information, Fig. 1). Female participants showed sig-
nificantly more activated voxels (mean = 7620, sd = 1676) 
compared to men (mean = 3141, sd = 1968) within the MRS 
ROI (t(3) = 3.54, p = 0.038). We investigated whether the sex 
specific differences in tDCS induced Glu concentrations 
could also be found in subgroups of small and large efield. 
Therefore, we fit the same model with efield as grouping 
factor instead of gender. Based on the number of activated 
voxels of the transformed efield data into volumetric space, 
we defined groups of “small” and “large” efield. The “large” 
efield group revealed a trend towards stronger Glu reduc-
tion in the active compared to the sham condition (β = 0.02 
[0.00–0.05], t(84) = 1.69, p = 0.096, d = 1.23 [− 0.18 to 2.44]), 

Fig. 3  Glu concentration significantly decreased following bifrontal stimulation under the cathode in female but not in male participants. Error 
bars represent standard error of the mean (SEM); *p < 0.05. Glu, glutamate
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while the “small” efield group did not (β = −0.01 [− 0.04 to 
0.02], t(84) = − 0.51, p = 0.613, d = 0.29 [− 0.84 to 1.43]) (see 
supplemental information, Table 3).

Discussion

Our pilot study investigated the effects of a bifrontal tDCS 
protocol on Glu, Glx and GABA + levels close to the cathode 
over the right DLPFC. This tDCS protocol uses a stand-
ard montage which is commonly applied for the treatment 
of MD in clinical trials [57–60]. A reduction of Glu levels 
was observed for the active tDCS condition in a gender-
dependent manner; however, no significant effects were 
found for Glx and GABA + concentration. For rsfcMRI, 
neither significant changes nor correlations with MRS data 
were observed except a trend (FDR-corrected, p < 0.1) for 
increased connectivity from the MRS-ROI to the subgenual/
subcallosal cortex after active stimulation. Based on a com-
putational model and individual MRI data, efields induced 
by tDCS were calculated to approximate the real efield dis-
tribution as a potential key parameter of individual tDCS 
dosing. Therefore, the study also aims to conceptually test 
a comprehensive multimodal neuroimaging approach (i.e., 
MRS, rsfcMRI and structural MRI based efield modeling), 
which to our knowledge has previously not been reported 
for prefrontal tDCS.

Prior studies combining tDCS and MRS have rather 
focused on M1 and SM1 and only very limited data are avail-
able for PFC regions. For motor and sensorimotor regions, a 
reduction of Glu levels was observed with several montages 
(i.e., cathode: left M1, anode: contralateral supraorbital ridge 
or cathode: left SM1, anode: right supraorbital region) [32, 
37]. Thus, our results are in line with these previous find-
ings supporting the central hypothesis of divergent effects 
of tDCS underneath cathode and anode, i.e., an inhibitory or 
excitatory action, respectively. Accordingly, increased Glu 
levels were detected in the right intraparietal sulcus after 
tDCS with the anode over the parietal cortex [45]. Oppo-
site effects of tDCS on GABA levels were observed in prior 
studies, i.e., a reduction of GABA levels was detected in M1 
(anode: left M1, cathode: contralateral supraorbital ridge) 
[32, 61, 62] and the occipital lobe (anode: occipital-temporal 
lobe, cathode: contralateral supraorbital ridge) [63].

Very few MRS studies to date have investigated the 
effects of prefrontal tDCS on brain metabolites. In the left 
DLPFC, NAA and striatal Glx levels were found to increase 
during tDCS with the anode over the left DLPFC (cathode 
over right DLPFC [40]) as well as GABA + concentrations 
during tDCS with the cathode over this region (anode over 
right DLPFC) [41]. The current study did not show such 
a modulation of GABA + levels. However, this negative 

finding should be interpreted with caution due to the limited 
sample size and a potentially large beta error.

Changes of Glu levels during and after tDCS as observed 
in the current study are hypothesized to emerge from a direct 
effect on neural firing rates and NMDA receptor depend-
ent, long-lasting synaptic potentiation in animal models [64, 
65]. However, metabolic changes in distinct MRS ROIs may 
also be induced transsynaptically through other brain regions 
functionally connected to the ROI, e.g., tDCS of the DLPFC 
may modulate metabolite concentrations in medial prefron-
tal regions [66]. In addition, it is not clear how PFC and 
motor regions actually differ in their functional response 
to tDCS with respect to Glu and GABA + levels, since both 
macro- and microconnectivity as well as regional neuro-
transmission differ largely across brain regions. In this pilot 
project, we observed Glu changes during, but not after tDCS 
as shown in previous studies [29, 34, 37, 38, 61, 67].

The gender-dependent Glu reduction in our study may 
be discussed in the light of gender-specific differences in 
metabolite levels (mainly Glu, Glx, GABA + and NAA) as 
previously reported; however, findings in prior studies were 
not fully consistent [68–70]. Numerous factors may theoreti-
cally contribute to a gender-dependence of tDCS effects on 
MRS measures, e.g., differences in brain metabolism and 
structure or hormonal status [71–73]. Though we found sig-
nificant differences between male and female participants 
in their response to prefrontal tDCS, we have to consider 
that this effect may as well be due to the responder vs non-
responder distribution in this small sample. Previous studies 
showed marked inter-individual differences between sub-
jects in terms of their response to tDCS [25, 77]. This is an 
important factor and should be addressed in future studies 
by including additional measures (e.g., behavioral or neuro-
physiological information) which allows to classify respond-
ers vs non-responders. Moreover, future studies should sur-
vey gender-specific parameters to systematically investigate 
the role of these factors.

Having observed a marked difference in gender-spe-
cific efield intensities, we were interested in the question 
whether effects of tDCS may be related to individual efield 
intensities as shown in a previous study [37]. We observed 
similar differences in Glu concentrations between par-
ticipants with “small” and “large” efields as defined by 
below or above the mean value of activated voxels for 
all subjects. Although these results are preliminary, the 
relationship between efield intensity and tDCS effects on 
metabolite concentrations may be relevant and should be 
further investigated and may be an avenue for establishing 
dose–response relationships for tDCS. The inter-individual 
variation of efields beyond the MRS ROI converges with 
previous evidence of a marked inter-individual variability 
in terms of efield intensities and their distribution [74, 75], 
and raises the question at which brain regions bifrontal 
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montages actually exert their effects. In contrast to our 
study, Antonenko et al. [37] investigated normal com-
ponents of efield strength (i.e., calculation of the efield 
including information about the efield entering or leaving 
the surface which is only available in SimNIBS 2.1) to 
address polarity effects of the stimulation, showing peaks 
of efield intensities at the stimulation site which may pro-
vide a superior approach for analyzing target specificity.

Offline rsfcMRI showed an increased network connectiv-
ity at a trend level (FDR-corrected, p < 0.1) from the right 
DLPFC ROI to the midline/right subgenual region, under-
scoring the importance of connectivity between both regions 
for network effects of prefrontal tDCS [2, 25, 76]. However, 
this was not associated with changes in Glu concentrations. 
We did not find differences between active and sham tDCS 
for within-ROI connectivity or ICA networks, though other 
studies showed this effect [18, 25, 37, 77]. The negative 
result may be explained by the small sample size and future 
studies with larger samples should address this issue again. 
Despite its relevance as a conceptual pilot project, our study 
has obvious limitations that need to be considered when 
interpreting the data. As said, the sample size is critically 
low, which is even more problematic at the subgroup level 
(defined by gender or efield parameters); however, it is com-
parable with sample sizes in previous tDCS-MRS studies 
(e.g., N = 17 in Hone-Blanchet et al. [40], N = 12 in Bachtiar 
et al. [38], N = 20 in Dwyer et al. [78], N = 24 in Antonenko 
et al. [37]). Thus, larger trials are clearly missing in the field. 
Another issue is that study protocols are critically diverse 
hampering a direct comparison of our results with previous 
findings by the large variation in tDCS and imaging meth-
ods including different on- and offline designs. In contrast 
to offline tDCS, MRS protocols, which were applied in the 
majority of studies [32, 35, 40, 45, 61, 63], combined on- 
and offline protocols as used here could be very informative 
regarding dynamic changes of brain metabolites, but were 
used in very few studies [38, 40, 61]. There is also a marked 
heterogeneity of tDCS targets and parameters (i.e., stimu-
lation intensity and duration). Stimulation intensity varied 
between 1 and 2 mA and duration between 10 and 30 min 
in earlier MRS studies [14, 32, 35, 40, 45, 61, 63]. Here, 
we applied 2 mA intensity with a bifrontal montage (anode 
F3, cathode F4), since such protocols were used in previous 
studies in MDD and schizophrenia [2, 8, 60, 79, 80].

A specific restriction in using MRS for experimental 
research on tDCS is the key limitation of single voxel MRS, 
which does not allow to investigate tDCS effects for several 
regions in parallel. This is particularly critical in bipolar 
tDCS montages where already two regions are of main inter-
est, and neither electrode can be a priori defined as inac-
tive or reference. As a solution, multi-voxel MRS should be 
established in future tDCS studies to measure stimulation 
effects across several brain regions at the same time [81–83].

A final limitation is the investigation of only one stimu-
lation montage, in which specific questions such as the rel-
evance of electrode positions or current directions cannot be 
addressed [18, 84]. MRS data for ROIs close to anodal [14, 
85] as well as cathodal cortical targets [27, 32] are available, 
and differences in baseline metabolite concentrations are still 
in the range of known variability [86–88].

Conclusion

To the best of our knowledge, this is the first study inves-
tigating prefrontal tDCS in a combined on– and offline 
approach with the anode over the left DLPFC and the cath-
ode over the right DLPFC using multimodal neuroimaging 
including MRS and MRI based efield modeling. Our main 
focus was feasibility and we observed that a standard bifron-
tal tDCS montage (anode—F3, cathode—F4), as is common 
in therapeutic trials, led to a reduction of Glu levels in the 
MRS voxel close to the cathode in female but not in male 
participants. Computational modelling of tDCS-induced 
efields based on individual MRI data shows a large inter-
individual variation in efield intensity distribution, and pre-
liminary evidence suggests that effects on Glu levels may 
vary with efield strength. As a conclusion, we support the 
idea to further develop the combined approach using MRS 
(ideally multi-voxel MRS), rsfcMRI and individual MRI 
based efield modeling for investigating the effects of cur-
rent tDCS protocols on brain metabolites [37].
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