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Non-additive ring and module theory V.

Projective and coflat objects.

Bodo Pareigis

The notion of a finitely generated projective K-module,
where K 1is a commutative ring can be defined in many
different ways. Several of these definitions may be carried
over to monoidal categories. For closed symmetric categories
some of these generalizations have been known for some time
under different names [1, 3, 4, 5, 6, 12] . In [3] it was
observed that these notions coincide with the notion of a
strongly dualizable space in the monoidal category Stab ,
the stable homotopy category.

In this paper we want to study the generalization of
finitely generated projective A-modules P in monoidal
(not necessarily closed or symmetric) catecories, where A
is a K-algebra. We call such objects P "finite". At the
end of the paper we shall also investigate a slightly stronger
notion of "finitely generated projective A-objects".

One principal obstacle for this generalization is that ¢C
is not necessarily closed so that the tensor product does
not preserve difference cokernels. Although we can define,
like in module categories, the tensor product M oy N ‘"over"
a monoid A , we do not have associativity anymore. The first
section of this paper shows a way how to deal with this prob-
lem.

Section 2 and 3 are devoted to the study of different equi-
valent definitions of finite objects (see Theorem 3.10). The
last section contains miscellaneous material on finite objects
and relative projective objects.

1. Let C be a monoidal category with tensor product e
and neutral object I. Let A,B,C € C be monoids and

M € BCA resp. N e ACC be B-A- resp. A-C-biobjects. As

in [9] the tensor product M ey N is defined to be the differ-

ence cokernel

Me® Ag N— Me N—>M e N

in BCC , if it exists.



1.1 Definition: P € ACB is called B-coflat over A 1if

i) the tensor product P &y M in AC exists for all
M € BC

ii) the morphism

P o5 (M @ X) — (P ey M) & X
induced by o is an isomorphism for all X e C and
M e BC .
Let P ¢ ACB . P is B-coflat over A iff the functor
P eyt BC —> AC is a C-functor with ¢: P ey M e X) —

(P ey M) @ X induced by a«[10,Thm.4.2]. If P e 1Cp = Cp
is B-coflat over I , we simply say that P is B-coflat.

If P € AC and Q e CA both are A-coflat then the dia-

gram
(P @ Y) > X e (Q e, (P & Y))

112
P) e Y 2 (X e (Q N P)) e Y #Xe ((Q &, Pe Y)

(X e Q) en

((X & Q) ®
is commutative since it is induced by the coherence diagram
of o in C , but the two arrows need not be isomorphisms.

1.2 Lemma: Let P e ,C; be B-coflat over A . Then P e

induces a functor P ep: (. —> e

Proof: Follows immediately from the above remarks and

[10,4.1] . In particular P ey M formed in AC is also a

difference cokernel in ACC .

1.3 Lemma: Let P e ,C, be B-coflat over A and Q € gC,
be C-coflat over B . Assume that « induces an isomorphism
Pe; (Qe. M = (PeyQ e M in ,C for all M e C

Then P ey Q is C-coflat over A .

~

(Me X) 2P e, (0 ®c Me X)) &
(P eg (0 ec M) X & ((P e, Q) ec M) & X

Proof: (P ep Q) &
P e, ((Q e, M) e X)

[[Xe@]



The additional assumption in Lemma 1.3 and the remark
before Lemma 1.2 show that the notion of coflatness alone
is not strong enough for all applications. Before we intro-
duce a stronger notion, we will investigate a few instances

~

where the isomorphism P ep (Q ®c M) = (P ey Q) e M exists.

i) P e ,C, 1is B-coflat over A and P e

preserves difference cokernels,

8° 8°p 7 a‘p

ii) ¢ 1is a biclosed monoidal cocomplete category,

iii) P e ,Cy is B-coflat over A and N ¢ C, is C-coflat

C'D
over D , then & induces an isomorphism in ACD
P e, (Me, N = (P ey M o N
C
for Mme C. , N e CCD

Proof: i) The commutative diagram in C

Pe. (M®eC®N) —3 P e

B B (M e N) — P ey (M . N)

n2 112 112

(P 8y M) e Ce N —3 (P e

M) @ N — (P e M) . N

B C

has two difference cokernels in ACD as rows, the first

row since P e, preserves difference cokernels, the
second row by definition. The first two vertical isomor-
phisms are given by definition of B-coflatness. The last
arises canonically.

ii) All tensor products P ep Q exist in C ., Since & X and

X ® have right adjoints, they preserve difference coker-

nels, hence we have isomorphisms P ep (Q @ X) £ (P LN Q) ®
and X & (P ey Q) = (X ® P) &g Q . By definition P is
B-coflat and Q 1is B-coflat. By 1.2 P éB Q carries

additional left or right structure if P e ACB or Q € BCC

Hence any P e ACB is B-coflat over A and A-coflat over

B . So we are reduced to iii)



iii) The following commutative diagram has difference co-

kernels as rows and columns in ACD

PeBeMeCeN—3IPeMeCeN —> (Pe M €CesN

B

i I U

P eBeMeN - PeMeN ——> (P LN M) N

(P ®

B C

4
L 4
PeBe (Mo, N) =3 P e (Me, N) — P ey (Me.N)
where the required isomorphism arises from the fact

that colimits commute with colimits.

1.5 Definition: P e CB is continuously B-coflat if

i) X e P e CB is B-coflat for all X e C

ii) the morphism (X e P) ep M — X e (P ey M) induced
by o is an isomorphism for all X e C , M € BC .

1.6 Lemma: Let P e ACB

P is B-coflat over A .

be continuously B-coflat. Then

Proof: The following commutative diagram in C shows
the A-structure and universal property of P ey Q in AC:

Ae@PeBeQ 3 Ae P e Q —™ (A & P) e Q=Ae (P e, Q)
1 e
P e® BeQ \\¥ ,”P QB Q
/
\\\\ kﬁf 7
M 7

®
\ lk_’
M

The next commutative diagram shows that the isomorphism

(Me X) £ (Pe_ M) © X is in C:

P e a

B B

M) o, N



Ae (P ey (MoX))-A'—»Aa((PaBM)oX)“:’(Ao(PeBM)) ® X
YA 14
(A e P)eB (M @ X) ((A @ P) ey M) @ X
P ey (M & X) = (P &y M) e X

The exterior diagram commutes since it commutes before

tensoring over B and (A e P) e, (M @ X) is a difference

B
cokernel.

If P e CB is continuously B-coflat then X e P is
continuously B-coflat for all X e C . This implies that
(X ® P) 8y 1is a C-functor for all X € C and that
(f © P) €y
we get for Q ¢ CC that Q e P is B-coflat over C .

is a C-morphism for all f e C . In particular

1.7 Lemma: X e A is continuously A-coflat for all X e C .

Proof: By the previous remark it is sufficient to prove
that A 1is continuously A-coflat. Since

AReAeP—3RreP—>P¥ne, P

is a difference cokernel of a contractible pair [8,2.3] it
is preserved by tensoring with X , so that we get an iso-
morphism of difference cokernels

(X @ A) eAPé‘x@(AeAP)

which is functorial in X and induced by o .

Furthermore the morphism

R

R

(X ®» A) , (P @ Y) X @ (A ®, (P ® Y)) X e ((A @, P) e vY)

(xQ(AeAP))ey——”((xQA) &, P) eV

A

R

is induced by « so that all X @ A are A-coflat.

1.8 Lemma: a) If C 1is a biclosed monoidal cocomplete

category, then all P e CB are continuously B-coflat.



b) If C is a left-closed monoidal category and P € Cg

is B-coflat. Then P 1is continuously B-coflat.
c) If C is a symmetric monoidal category and P e (g 1is

B-coflat. Then P is continuously B-coflat.

Proof: a) and b) have already been shown in the proof
of Lemma 1.4 (ii).
c) The following diagram shows the inverse of the morphism

induced by a_1 , since X e w 1is a difference cokernel:

PeBeMeX‘—:‘»PoMOXu—}SrPsBMéX
He 1 12
Xo(PoBoM):xQ(PeM)X—"$Xo(PeBM)
i iz 2

(X@eP) e BeaM — (X@P) aM —>» (X e P) ey M

1.9 Proposition: Let P € ACB be continuously B-coflat

and Q € C. be continuously C-coflat, then P e; O € aCc

is continuously C-coflat and o« induces an isomorphism

in |
P LN (Q e M) = (P ey Q) 8 M
for all M € C .

C
Proof: By 1.6 P 1is B-coflat over A . We show that

P e

B B

2 02 n2
(P e, Q) e C e M = (P e, Q) @« M — (P e Q) e M

Qe CeM —3Pe, (Q@aM —P ey (Q e M)

is a commutative diagram of difference cokernels. The first
two isomorphisms arise from the fact that P is B-coflat
over A . The last line is a difference cokernel by definition.

The first row arises from the diagram



PeBeQeCaeM ——3PeBeQeM—>PeBe (Q - M)
PeQ &LC e M —_—F ©Pe t}o M — Pe (éiec M)
. l _ |

P e, (QeCeM =3P L %Q e M) —> P e (ngc M)
where the columns are difference cokernels by definition the
first two rows are difference cokernels since Q 1is contin-
uously C-coflat and the last row is a difference cokernel
since the diagram commutes and colimits commute with colimits.
Thus we get the claimed isomorphism. Observe that we only
used that P is B-coflat over A and Q .is continuously
C-coflat.

The isomorphisms

N ~

(P e Q) ec MeX) &p e, (Q e Me X)) &P ey ((Q LR M) ® X) =
(P ey (Qa, M) @ X2 ((PegQ) o M X

show that P ey Q is C-coflat over A .
From 1.7 we have that also X @ P is continuously B-coflat
so we get isomorphisms

(X o (P @ Q) o M 2 ((X e P) oy Q) e M 2 (X @ P) oy (Q o.M

£ Xae (P e (0 ®c M) =X e ((PeyQ) e M)

which are induced by o and show that P &y Q in CC (and

thus also in ACC) is continuously C-coflat.

Up to now we have considered one-sided conditions of co-
flatness. We can improve the situation by two-sided conditions.

1.10 Lemma: Let O € C. be continuously B-coflat and contin-

uously C-coflat. Then for P e ,C; and M e C, we get an ‘
isomorphism in ,C, induced by «

P oy (Q e M) = (P ey Q) 8- M .




Proof: The proof uses the same diagrams as in the proof
of 1.9. The isomorphisms in the first diagram arise from
the fact that Q 1is continuously B-coflat. The rest of
the proof is the same as in 1.9.

2. Let A and B be monoids in C(C .
2.1 Definition: An adjunction P —%4 Q between A and
B consists of two objects P e ACB , QO € BCA and two
morphisms n: B — Q e P in BCB and e: P e Q — A
in ACA such that
i) P is continuously B-coflat, Q is continuously A-coflat

ii) the diagrams
P P > P

! t

P e ~ c @ P
peBB—ﬁpeB (Q e, P) —=»> (P o, Q) ® P “—> A e, P

and

= ©

0
l!
Boy 0128 (e, P) 002508, (Pe; Q) 2506, 2

commute.

Observe that this definition is unsymmetric in i) with
respect to the sides. The associativity isomorphisms result

from 1.9.

To understand the above notion one should consider the
monoids A , B and the A-B-biobjects with their homo-
morphisms as members of a (generalized) 2-category MOD
with
O-cells the monoids in C
1-cells the Z2-B-biobjects in C , which are continuously
B-coflat

2-cells the morphisms in ACB



The composition of two 1-cells P e ,C and Q e ,C

A™B B°C
is then given by P ey Q e ACC by 1.9. The vertical
composition of two 2-cells is the usual composition of
morphisms in ACB . Observe that the composition of 1-cells

as given in 1.9 is only quasi associative. In such a
2-category the notion of adjointness is precisely the one
given above.

Now consider the 2-category C-CAT of C-(right-) categories
whose

O-cells are C(C-categories

1-cells are C-functors

2-cells are C-morphisms.
There is a 2-functor from MOD to C-CAT which sends a
monoid A to the C-category AC , an A-B-biobject P which
is continuously B-coflat to the C-functor P ey BC —> AC '
and an A-B-morphism f: P —>» Q to the C-morphism

f ey: P oy —> Q L

2.2 Proposition: Given P e ACB continuously B-coflat and

Q € gC, continuously A-coflat. Then there is a bijection

between pairs (e,n) such that P —%ﬂ Q is an adjunction

between A and B and pairs (g,m) such that

P ey —%« Q e, is an adjunction in C-CAT .

Proof: Given ¢: P ey Q — A and n: B— Q ®, P we

A
get € and W from the diagrams

P e (Q e, M) ———E—+ M ————E———+ Q 85 (P ey M)

k e o, M Ti i n ey M h

(P LN Q) 8, M ——»A e M B en M — (Q e, P) ey M

The adjointness diagrams are easy to check. For the converse
substitute A resp. B for M to obtain n and ¢ from the
above diagrams [6,Prop. 5]



i +1 . 3 U 1
2.3 Proposition: Given P e ACB , P' ¢ BCC , O' e CCB ,
Q € BCA , and n: B —™> Q &, P, e: P ey Q — A,
n': ¢ — Q' ey P' , ¢: P' Q' —/ B such that

P%«Q and P'——f‘-—dQ'.
Then
Pe P L850 e 0
B nne B :

Proof: By 1.9 P ey P' 1is continuously C-coflat and
Q' ey Q 1is continuously A-coflat. The morphism e'e and
nn' are defined by
nn': C —> Q' e, P' ¥ Q' e, (B ey
Q' e ((Q 8, P) 85 P') % (Q' @, Q) 8, (P ey P'),

g P') - (Q' e; 0) 2P ey ((P' e, Q') ey Q —»
P e, (B &; Q) £P e, Q0 —>A,

where the isomorphisms exist by 1.9 and are induced by

P') —>

e'e: (P @

coherence morphisms. Hence the diagrams

P 8y P' —> P e, P'
lz

(P ®, P') @

R

C —> (P e_ P') o ((Q! e Q) &, (P en P'))

B C . B
= ((P 2 P') e Q' 8y Q)) ®, (p ®p P')—>
—> A & (P eB P')
and
Q' o5 Q > Q' e Q

~

C e Q' ey Q) —> (' e; Q) o, (P ey P')) 8- Q' &g Q) =
2 (0! e, Q) &, ((P ey P') e, (Q' ey 0))—>
—> (Q' ey Q) e, A

4
B

 e'e '
commute and we have P ey P ;;7 Q ey Q .

2.4 Lemma: Let C —> B be a monoid homomorphism in C such

that B e CC is continuously C-coflat. Then B —%ﬂ B with

n:C—-ngBoBB and e:BeCB—-rBoBB-—‘fB.



Proof: By 1.7 B is also continuously B-coflat. With
the given morphisms =n and ¢ it is easy to check the

adjointness.

2.5 Corollary: Let P e be given such that

as » @ ©5Ca
P —%4 Q . Let C —> B be a monoid homomorphism such that

B is continuously C-coflat. Then there is an adjunction

P %74 Q between A and C .

Proof: follows from 2.2 and 2.3 and the isomorphisms
~

P =P ®n B e ACC and Q =B &5 Q € CCA .

Observe that B 1is always continuously I-coflat. Hence

any adjunction P -%ﬁ Q between A and B defines also

an adjunction P %}4 Q between A and I .

2.6 Proposition: Let P e ACB be continuously B-coflat

and Q e CA be continuously A-coflat. Let P —%ﬁ Q be an

adjunction between A and I . Then there is a B-structure

on Q such that 0 e BCA . and there is an adjunction

P %%4 Q between A and B .

Proof: The adjunction is defined by n: I — O ®n P

in C and ¢: P ® Q — A 1in C, . Thus we have

A A
n € Q ©n P(I) and write it as n =g_ @ Then the

1o ®a Po -
adjunction diagrams can be expressed by

p = (pa,)p, and a = g (pq)

where we write «¢(p ® q) = pq
Define a B-structure on Q by ba:= qo((pob)q) . Then
b(qa) = g ((pb) (qa)) = a,((ppra)a) = (g ((ppla))a = (bg)a
g = g ,({p1)q) =«
b(b'a) = b(a ((p b')a)) = (bqo)((Pcb')q)
= (q ( 'b)c ))((pob')q)
= (((péb)qo)(pob'))q) = qé(((((péb)qo)po)b')q)

= qé(((péb)b')q) = al((pl(bb"))aq) = (bb')q



where we used in the last calculation the definition of

b'q , the identity b(ga) = (bg)a , the associativity of
the A-structure on Q , e € ACA , P e ACB , the identity
p = (pqo)pO and the associativity of the B-structure on

P . Thus Q e BCA . Observe that Q LN P is in BCB by
1.2 and 1.6. Furthermore we have

(pb)ag = (((qu)po)b)q = ((qu) (pob))q = (pqo) ((pob)q) =
p(qo((pob)q)) = p(bq)

hence ¢ factors through ¢': P @, Q — A in aCp - We

B

— 1 1) - 1 ] -_—
also have bqo @ Py = qo((pob)qo) ey Py = 4 €, ((pob)qo)pO =
qé e, péb hence a morphism :

B b+ bqO &, Py = 9, 8 pob € Qe, P

in BCB . Finally the two adjunction diagrams hold since we

had already p = (pqo)pO and q = qo(poq)

2.7 Corollary: Let P —%ﬂ Q be an adjunction between A

and B . Then there is an adjunction P i%ﬂ Q between A
and C for every monoid C such that P e ,C. 1is contin-

uously C-coflat.

Proof: By the remark preceeding 2.5 there is an adjunction
P —%ﬂ Q between A and I , thus 2.5 can be applied.

3. Recall that we defined ,[M,N] € ¢ (if it exists) for
M,N €,C by ,C(MeX,N) 2 c(X,,[Mx]) [9] . Since ¢ is
not symmetric, M @ X does not carry a right A-structure if
M e CA . There is however the functor eM: C —» CA . We
define [M,N]} by C,(X e M,N) ¥ C(x,[M,N]}) if it exists.

If A[M,FU exists then the morphism

Me ,[MN] — N in ,C

defined by the identity on A[M,N] is called the evaluation
and denoted by m @ f — <m>f . If A[M,M ® X] exists, then

there is also the coevaluation
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X — ,M,Me x] in ¢
defined by the identity on M e X and written as
X —» (m+—> m e X) .

There is another interesting morphism if A[M,A] and

AM,N]  exist for M,N € ,C . It is the morphism

AM,A] &, N — ,[M,N]

defined by f &, n —r (m > (<m>f)n) . The image of

f @, n will be denoted by £fn .

3.1 Definition: P e ,C 1is called finite if
i) ,[P,A] and ,[P,P] exist
ii) ,[P,A] € ¢, is continuously A-coflat

iii) the morphism

AlP/2] o, P —> ,[P,P]

is an isomorphism.
If A[P,A} is continuously A-coflat, then it is called the
dual of P . By [9,Cor. 3.4] we know that ,[P,P] has the
structure of a monoid. In particular there is a unit element
1 =n: I — A[P,P] which is induced by ¢: P € I —» P
or the identity 1: P —>» P if we omit ¢ . With the
evaluation morphism it acts as identity: <p>1 = p for all
p € P(X) . Condition 3) of the definition of a finite object

implies that there is an element

f, ® Py € A[P/A] & P(D)
whose image is 1 € A[P,P](I) » i.e. <p>f p  =p for all
p € P(X) . This element fO ® p, is called the dual basis
of P . It is uniquely determined, since the morphism

AlP/A] e,
also guite easily from 3) namely that

P —> ,[P,P] is an isomorphism. Another fact follows

A[P.A] e, P(I) —> ,[P,P] (D)
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is surjective. In general we will call a morphism
M —» N rationally surjective if M(I) —> N(I) is

surjective.

3.2 Lemma: Let P € ,C be finite. Then there is an

adjunction P —— ,[P,A] between A and I .
n A —_ —_

Proof: Let fo @, P, be the dual basis for P . Then
we have <p>fopo =p . For p € P(X) and g e A[P,A](Y)

we also have <p>(fo<po>g) = (<p>fo)(<po>g) =

<<p>fopo>g = <p>g hence fo<po>g = g . These two identities
are precisely the adjointness diagrams. By assumption A[P,K]
is continuously A-coflat and we need no assumption about P .

3.3 Lemma: Let P —%« Q be an adjunction between A and I .

Then P e ,C is finite.

Proof: We have AC(P e X,A) ¥ C(X,0 e, A) 2 ((X,Q0) by
2.2 hence Q = ,[P,A] and continuously A-coflat. The
evaluation is given by e¢: P ® Q —» A . Furthermore
AC(P e X,P) 2 C(X,0 ©, P) = C(X,A[P,P]) , hence there is an
isomorphism Q L% P A[P,P] and this isomorphism is induced

e

by the identity on

O

e P through

aC(P e Q e, P,P) £ C(Qo, P,,[P,P]) .

2

C(Q &, P,Q e, P)

It is an easy exercise to show that this is the isomorphism
described in the definition of a finite object. In particular
A[P,P] exists and thus P e ,C is finite.

These two lemmas together with 2.6 and 2.3 give that the
tensorproduct of two finite objects P € CB and P' e _C

B'C
is again finite: P ey P'e€ C. . [2,II.5.3]

3.4 Corollary: If P e ,C is finite then ,[P,M] exists

for all M e AC .

R

Proof: C(P ® X,M)

A C(X,Q ® M) hence ,[P,M] 2Qe, M .



3.5 Definition: P e AC is called reflexive if
i) A[P,A] and [,[P,A],A]; exist
ii) the morphism P — [,[P,A],A], defined by
p —> (f &> <p>f) 1is an isomorphism.

The morphism given in ii) is the morphism corresponding

to the identity under the isomorphism

AC (@, [A[P/A],A],) £ ,C(P e ,[P,A],2) 2 C,(,[P,A],,[P,A])

3.6 Lemma: If P € ,C is finite then it is reflexive.

Proof: The dual A[P,A] exists by definition. To show
)
that [A[P,A],AJA_ exists, we show that the functor
CA(X @A[P,AJ,A) is representable by P . Define maps

o: C(X,P) —> C,(X & ,[P,A],R)

v: (X @ A[P,Aj,A) —> C(X,P)

by ¢(f)(x ® h):= <f(x)>h and V¥ (g)(x):= g(x @ fo)po

where fo ® is the dual basis of P . For the proper

p
A o
definition of ¥ we have to use g ¢ C, and A[P,AJ
continuously A-coflat. It is clear that ¢(f) € CA . The

compositions of ¢ and Y are

oY (g) (x ® h) = <g(x fo)po>h = g(x e fo)<po>h
=g(x @ fo(<po>h)) = g(x ® h)

since by 3.2 the second adjointness diagram commutes, and

vo (£) (x)

<f(x)>fopO = f(x) .

So ¢ and V¥ are inverses of eachother and they are obvi-
ously natural transformations in X so that P represents
the functor C,(X e A[P,A],A) and [A[P,A] ’A]A exists.

To show that the morphism defined in 2) of the definition
of reflexivity is an isomorphism, we exhibit an inverse.
For ¢ e [A[P,A],A];L define an element (P<f >)p_ e P .
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Then <p>fopo = p and <(¢<fo>)po>f = (q<fo>)f<po>f) =
¢<f_<p>f> =¢ <f> show that P —> [,[P,A],A], is an
isomorphism. Note that we write the evaluation

DM,N]; M —> N as f em —> f<m> and that we may
change parentheses as above since A[P,AJ is continuously
A-coflat.

3.7 Lemma: Let P e ,C be finite. Then the morphism
]
alP/a] oy P — [, [P,2], ,[P,2]],
defined by f €, P —>» (g —> (p' ¥ <p'>f<p>g)) 1is an
isomorphism.

Proof: We first remark that the diagram

AP ]
AlP/2] e, P A

2.2l ., [P.A]],

commutes where ¢ 1is from the definition of finiteness,

Yy from the Lemma and A defined by
1
alP/P] ® h —> (g = (p —> <<p>h>q)) e [,[P,A],,[P,A]],

which is just the composition ,[p,F] e ,[P,p] —> ,[P,F]
transferred by

]

CalalP.B] © 4[P,A]),,[P,A]) 2 C(,[P,P],[,[P.A] APA]],)
A is an isomorphism since ¢ —>» (p > (<p>(¢<f0>))po)
is the inverse as can be easily checked. Thus V¥ is an
isomorphism.

]

So we only have to show that [A[P,A],A[P,A]]A exists,

or that



Cp(x e ,[P,A],,[P,2]) £ alaP @ Xe A[P/A],R)
AC(P @ x,[A[P,A] ,A'_]A)

AC(P ® X,P)

C(X,,[P,P])

IR

iR 1R

is representable, which is obvious. The second but last

isomorphism uses that P 1is reflexive.

3.8 Corollary: Let P € ,C be fi?ite. Then the morphism
pe L [e,R) — [L[P.2a],,[P/A]],

is an isomorphism of monoids.

Proof: Write <p>(A(h)<g>) = <<p>h>g , then
<p> ((A(h) A(k)) <g>) = <p>(A(h)<K(k)<g>>)
= <<<p>h>k>g
= <<p>hk>g

I

<p> (A (hk) <g>)

hence A(h)A(k) = A(hk) and
<p> (A (1) <g>) = <<p>1>g = <p>g
hence A(1) =1 .

If P 1is finite or equivalently if P —%ﬁ Q 1is an

adjunction between A and I then Q e, P is a monad by
using e€: P @ Q — A , e(p ® g) = pg with
v: Q e, P &0 e, P 2 g e, p' ® a & P —>
: a' e, (p'a)p € Q &, P
n: I — Q OA P
Being a monad 1is nothing else than being a monoid in

with multiplication u and unit n .

3.9 Corollary: Let P € ,C be finite. Then the morphisms
o: ,[P,2] o, P — ,[P,P]

and
v: ,[P,A] o, P —> [,[P,A] :A[P'A]]z;

are isomorphisms of monoids.
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Proof: Because of A® =Y and 3.7, 3.8 it suffices to
show that ¢ is a monoid homomorphism. The multiplication
of the monoid (= monad) A[P,A] &, P is given by u in
the preceeding remarks. Then
<p">0 ((£' @, p') (f 8, p)) = <p">f<p'>fp = <<p">f'p>fp
= <p">9¢ (£’ LN p')e (f ©n pP)
and <p">®(fO LN po) = <p">fopO =p
hence ¢ ((f' ®n p')- (£ e p)) = & (f' L p')- o (f LN P)

tb(fO 8y po) =1
where fO ep Pg is the dual basis of P .

3.10 Theorem: Let P e AC . The following are equivalent:

a) P is finite,

b) P has a dual A[P,A],A[P,R] exists and the morphism
o: ,[P,A] o, P —» A[P/P]
is rationally surjective,

c) P has a dual ,[P,A],,[P,P] exists and there is an
element (dual basis)

£, ®, P, € A[P,A] o, P(I)
such that o¢(f_ e, p)) is the identity in A[P,P],
d) P has a dual A[P,A], P is reflexive,
fA[P,é],A[P,A]]A exists, and the morphism
1
v: ,[p,A] &, P —> [[P,A] A PAT,
is an isomorphism (of monoids),
e) there is an adjunction P —%ﬂ Q between A and I ,

f) there is a continuously A-coflat object Q e CA and

a natural isomorphism

AC (P @ X,Y) £ C(X,Q &y Y)

g) P has a dual A[P,AJ and there is a morphism
n: I —> A[P,A] ®, P such that the diagram

2
1
PrelI —23pe (,[P.2] o, ») = (PoA[P,A]) oAPs—-o—;AeAP

commutes.
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Proof: From the previous paragraphs we know already the
implications a) =» b) = c), a) =» 4d), a) &> e) &> f),
and a) and e) =» g) .

c) == a): Define a morphism ,[P,F] —> ,[P,A] e, P by
f —> fO 0A<po>f . This morphism is well-defined by
(9, Thm. 3.2] and because A[P,A] is continuously A-coflat.

Then (<p>f ) (<p>f) = <<p>f >f = <p>f and by this

p
oo
equation also fO e, <po>fp = fo(<po>f) e, p = f ® P .

Thus the above morphism is inverse to ¢: A[PfAJQA P — ,[P,P].
g) = e) We only have to show fo(<po>f) = f for all

f e, [P/A](X) with f_ e, p, =n e ,[P,A](I) . But the given
diagram means p = <p>fopo , hence (<p>fo)(<po>f) =
<<p>fopo>f = <p>f and thus fo(<po>f) = f .

d) = g) Let £, 8, P, € A[P,AJ e, P(I) be the image of
the identity under the isomorphism w—1 . Then we have for
all p e P(X) and all g & A[p,A] (Y)
<p>g = <p>(\y(fo 85 po) <g>) = (<p>fo) (<p6>g)
= <<p>fopo>g . '
Since P is reflexive the isomorphism P # [,[P,A],A],
gives p = <p>fopo . This is the required diagram.

3.11 Corollary: Let P e ,C be continuously A-coflat and

finite, then ,[P,A] € C, 1is finite.

Proof: If P 4is finite then there is an adjunction
P —%ﬂ QO between A and I . By addittonal assumption that
P is continuously A-coflat we get a completely symmetric
situation in the definition of an adjunction (2.1) with
respect to the sides and the exchange of P and Q . The
symmetric counterpart of 3.10 gives the result.

3.12 Corollary: Let C be a left-closed monoidal category

and P e AC . Then the following are equivalent:

a) P is finite

b) ,[P,-]: ,C —> C exists, is a C-functor and is co-

continuous.
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c) p[P/-]: ¢ — C exists, is a C-functor and preserves

difference cokernels of U-contractible pairs.

Proof: a) == b): We have A[P,—J £ 0 e, - and
c(Q e, M,X) £ ,C(M,[Q,X]) by [9, 3.1C]. Hence Q e, - is
left adjoint and cocontinuous. Furthermore we have

~

AlP/Me X £0e, (MeX) Qe, M ex = ,[P,M aXx.

b) = c) is trivial.

c) == a) By [10, 4.2] there is a Q ¢ CA which is
A-coflat such that A[P,—] 20 e, - . By Letma 1.8.b. 0 is
continuously A-coflat. The isomorphism just civen defines

a natural isomorphism

IR

AC(P e XM 2 cx,,[PM) 2 C(x,08, M) .

By 3.10 P 1is finite.

Observe that condition b) of the Corollary is often denoted
by "P 1is an atom"

We conclude this paragraph by giving some examples of
finite objects. If C = K-Mod with a commutative ring K ,
then (C 1is closed symmetric cocomplete hence continuous
coflatness holds always (1.8). By 3.10 c) and the dual basis
lemma P € AC = A-Mod 1is finite iff it is a finitely
generated projective A-module.

If C = R-Mod-R , the category of R-R-bimodules, then ¢(

is biclosed cocomplete and continuous coflatness holds

always. The richt-adjoint of X'QR - is HomR(.X,—) ,

the right-adjoint of - LN X is HomR(X.,-) . If A is

a monoid in (C (a so called R-ring ), then AC is the
category A-Mod-R of A-R-bimodules. P € AC is finite iff

P 1is a finitely generated projective A-module. If (¢ = Set ,
the category of sets, then A[P,M] = A-Set (P,M) , the set

of maps from P to M which are compatible with the action
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of A . Since C(C 1is closed cocomplete, P e _C is

A
finite iff there is an element (fo,po) & A-Set (P,A) Xa P
such that p = fo(p)-pO for all p e P . (Observe that
M(I) and M can be identified in C .) Thus P = A~pO
and fo(apo) = a-fo(po) induces an isomorphism

P 3 ap, afo(po) € A~fo(po) with fo(po) idempotent

in A . Conversely any idempotent e € A defines a finite
object P:= Are with dual basis (fo,e) , Where fO is

the imbedding Ae &= A . In particular I is the only
finite object in C . If C = K-Mod®°® , then C is not
closed, but cocomplete. P € C is finite iff there is an
adjoint Q iff P (and Q) are finite in K-Mod iff P
(and Q) are finitely generated projective K-modules.

If C = Stab , the stable homotopy category, then any

compact neighborhood retract of R" is finite in ¢

(3, Thm. 3.1].

If C = 3-Mod , the category of chain-complexes of K-modules,
then the finite objects in ( are precisely the chain
complexes P = (Pn,a) such that Pn is a finitely generated
projective K-module and Pn + O for only a finite number of
indices. [3, Prop. 1.6]. In view of [13] 3-Mod is C-monoid-
ally equivalent to B-Comod with isomorphic underlying functors
with the Hopf-algebra B defined by

B = K<x,y,y-1>/(xy + yx,xz) with non-commuting variables x

and y and A(x) = x @ 1 + y—1 e x , Aly) =y ey,

e(x) =0, ely) =1, s(x) =xy , and s(y) = y_1 . This
result should be compared with 4.6 and 4.7. If C is a
monoidal category with X @ Y:= X=xY , the categorical
product in € , and I the final object in C , then P € C
is finite iff P £ 1 .

To see this note that C(C(I,-): C —» Sets preserves
(tensor-) products, so a dual basis for P nmust be of the
form (f_,p,) € [P,I] = P(I) hence p = <p>f _p, implies

P = Ipo and I 2 x —> Xp, € P defines an isomorphism. The

converse, I is finite, is trivial to see.
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4. In this paragraph we want to study various properties
of finite objects and adjunctions and compare them with
the corresponding classical concepts.

Assume that P —%q Q 1is an adjunction between A and
B . Then, as for adjoint functors, we can define the
corresponding comonad C:= P ey Q in ACA . The counit
is e: P 85 Q — A and the comultiplication is

A:PoBQ’——’peB (BeBQ)-—,peB((QeA?) eBQ)é’
(P L Q) e, (P es Q)

where the arrow is induced by n . It is easy to verify
that 4 and ¢ define a coassociative counitary comulti-

plication. In the category AC of continuously right

A-coflat objects in c we can define a tensor-product

A"A
MaN=M e, N by 1.9. Thus (ACA , 8 , A) Dbecomes a
monoidal category and (P ey Q , o, €) 1is a comonoid in
AC with a(p ®n q) = p 8y 4, ©, P, g g and dual basis
90 ®a Pp -

Observe that for any commutative ring K and any
finitely generated K-module P the above construction
gives P oz:HomK(P,K) the structure of a coalgebra in
K-Mod-K , but not necessarily in K-Mod , since the two
K-structures on P az:HomK(P,K) do not coincide in general.

In particular K QZ:K becomes a coalgebra in K-Mod-K .

I1f we take, however, A = I then AC = C as monoidal

categories and thus P ey Q forms a comonoid in C for

every B such that P is continuously B-coflat (2.7).
If C = K-Mod then for every finitely generated projective
K-module P and every K-subalgebra B of EndK(P) there

is a guotient coalgebra P &y HomK(P,K) of P ey HomK(P,K) z

HomK(HomK(P,P),K) . The verification that the last isomorphism

is a coalgebra isomorphism is left to the reader.
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If P e AC is finite then many natural transformations
should become natural isomorphisms, as the example

C = K-Mod suggests. In the general case we get

4.1 Proposition: a) Let P e ,C be finite. Then there are

natural isomorphisms for M € AC and X € C
i) ,[p,M] 2 ,[P,A] e, M
ii) pc(p,M) 2 ,[P,A] & M(I)
iii) p[P/Me X] = ,[P,M e X
iv) AC(P,M e X) = ,[P,M] e X(I)
v) AP e x,M £ [X,,[P,2] o, M
vi) AC(P @ X,M) £ C(X,,[P,2] e, M)
b) Let P & ,C be finite and continuously A-coflat.

Then there are natural isomorphisms for M € CA , X e C
: ' ~n
i) [R[P.A] M, S Me, P

ii) C, (,[P,2] M) é"M e, P(I) '
iii) [X e ,[P,A],M], % [X,M e, P]
iv) C,(Xx e ,[P,A],M) £ C(X,M &, P)
c) Let P e ,C be finite and let C be symmetric.
Then there are natural isomorphisms for M € ACB and N e CB

1) [pPM] N & 4, [R[P.2] N ]

ii) CB(A[_'P,M] Ny £ aC (M,[A[P,A] ,N]B)
if [[P.A] ,N], exists.
d) Let P € AC , P' e BC be finite and let C( be closed
monoidal symmetric. Then there is a natural isomorphism for

M eAC and N eBC

AP/M e [P,N] 2 [PeP' , MeN]

Proof: a) By 3.10.f. we get A[P,M] 0 ©, M = A[P,A:] e M
and ,[P,MeX] £0e, (MeX) £ (Qe, M) © X% [PM &Xx.
The isomorphisms ii) and iv) follow by applying C(I,-)

vi) is again 3.10.f. and v) follows by
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c(y,,[P ex,M) = ,C(PeXaeyM =C(XeVYQe M
£c(Xev¥,,[PA] 6, M) % C(Y,[X,,[P,A] o M) ,

b) By 3.11 we get [Q,Nﬂ; £ M e, P as in a) for the other
1)

side, where we use P £ [AEP'AJ'AJA, from 3.10.d. Further-

1
more [X e Q,M]A £ [x,M ©, 1]
c) For Q = ,[P,A] we get
[o[P.MN]g % [0 ®s M,N]p = a[M [o,N]], by [9, 3.11]
Al P2 N ]

The second isomorphism arises again by applying C(I,-)

R

d) This isomorphism reduces to
Qe M) @ (Q' e, N) ¥ (08 Q') @

A & B (M e N)
with o = ,[P,A] and Q' = ,[P',B].

For many purposes one needs a slightly stronger

property for P € AC than being finite.

4.2 Definition: P e AC is called finitely generated
projective (over A) if
i) ,[P,a] and ,[P,P] exist

ii) A[P,AJ € C, 1is continuously A-coflat

iii) there is a strong dual basis f_ e p_ € ,[P,A] e P(I)
such that
(<p>fo)pO =p for all X € C and all p e P(X) .

4.3 Lemma: P e AC is finitely generated projective over

A iff P is finite and the map

alP/2] e P(I) —> ,[P,A] e, P(I)

is surjective (i.e. ¢: ,[P,A] @ P — ,[P,A] e, P is
rationally surjective).

Proof: If P 1is finite and ¢ 1is rationally surjective
then the dual basis f_ e, p
o A %o

fo e P, and conditions 1), 2), and 3) of the definition

for P has a counterimage

are satisfied. If P 1is finitely generated projective then
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the image of fo ® P, is a dual basis for P and P
is finite. If f e, p € ,[P,A] e, P(I) then f e, p =

f(<p>fo) ® is the image of f(<p>fo) ® p, €

p
A Yo
A[P,A] e P(I) , thus & is rationally surjective.

The same argument as in the above proof shows that
alP:2] ® P(X) —» ,[P,A] e, P(X)

is surjective for all finitely generated projective

objects P e AC and all X € C . If I € C 1is projective,
i.e. for each epimorphism f: X —» Y in C(C the map £(I)
is surjective, then every finite object is finitely generated
projective. This is for example the case in the categories

of sets, of abelian groups, of K-modules and of Banach
spaces. If K is injective as a K-module then this holds
also for (K-Mod)°P .

If F,G: AC — BC are C-functors and if F and G
preserve difference cokernels of (U: AC —> () -contractible
pairs, if furthermore ¢: F —> G is a C-morphism and
@(A): F(A) —> G(A) 1is an isomorphism then the following
diagram commutes

F(M) £ F(A) ®, M

5% RGN
G(M) £ G(M) e M

by the universal property of difference cokernels. Hence
?(M) is an isomorphism for all M € AC . If we drop the
assumption that F and G preserve difference cokernels

of U-contractible pairs we get the following.

4.4 Proposition: Let F,G: ,C —» ,C be C-functors and

B
cf

F —» G be a C-morphism. Assume that

.e

9(a): F(A) —> G(A)

is an isomorphism. Then
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q(P): F(P) —» G(P)

is an isomorphism for all finitely generated projective

P‘s AC .

Proof: The following diagram in AC is commutative:
P ! > A e P
\Y

-]
\\AOAGP/91'
Vp
k
P

A

Iso :
A epP .

e

p
> p

1
where the morphisms are defined by
go(a ® bep) =abep
g,(a b ep) =aebp
g(a e p) = a e <p>fO ® P,
k(p) = <p>f_ e p
© o
vP(a ® p) = ap
and where fO ® p, is a strong dual basis for P . Both
functors preserve this diagram, hence we get difference
cokernels in the rows of the following commutative diagram

F(A) e Ae@P —3F(A) e P —> F(P) £ F(A) e, P

A
PR eAeP WYR) P | ¢ 9@ e, P
G(A) e A e P =% G(A) e P —> G(P) ¥ G(B) e, P

such that q(P) becomes an isomorphism.

This proposition is a counterpart of the corresponding

proposition for additive functors instead of C-functors.

4.5 Proposition: Let F: ,C —> ,C be a C-functor and

F(n) € 5C, Dbe B-finite and continuously A-coflat. Then for

every finitely generated projective P € AC we have

F(P) € BC finite.
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Proof: As in the above proof we get a difference

cokernel
F(A) ® A®P —3 F(A) ®« P — F(P) 2 F(A) e, P
in BC . But F () € BCA is finite over B and

P e AC is finite over A , thus by 2.3 and 3.10 we get

F (A) N P = F(P) € BC finite.

In [12, Theorem 17] and [3, Corollary 2.4] it is shown
that monoidal functors preserve finite objects. We want
to investigate a special case of this. For this purpose
let C be a closed symmetric monoidal category and B € C
a bimonoid. Then it is easy to see that (BC,Q,I) is again
a monoidal category by diagonal action of B on a tensor
product M e N (cf£. [13]). To denote this B-structure we
will write M e N . It is also clear that the underlying
functor U: BC —» C is a monoidal functor. Thus we have

4.6 Proposition: Let B be a bimonoid in the closed

symmetric monoidal category C . If P € BC is finite (with

respect to the monoidal structure of ,C), then P & C is

also finite.

Assume further that C has difference kernels so that

B[AM ® B,N] exists. Then we have an isomorphism

gC(,M e T,N) & C(T M e B,N])

'sls
which shows that BC is also closed. The B-structure on
p(,M ® B,N] is given by <m & b>(b'f) = <m @ bb'>f [4,6.1].

This is indeed again in ,[M e B,N] since

(b<m ® b'>) (b"f) = <b(1)m ® b(z)b'b">f = b(<m & b'>(b"f))
The isomorphism and its inverse are given by £ and T
with

<m @ b>I(f) (t):= f(m @ bt)

T(g)(m @ t):= <m & 1>g(t)
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It is easy to verify that ¢ and T map morphisms of
BC into BC and are inverses of eachother. In a similar
way we get

gC(,T © M,N) £ C(T,;[,B & M,N])

so that BC is biclosed (but not symmetric in general).

If H is a Hopf monoid with 52 = 1 (antipode of order 2)

in C then H[AM - H,Nﬂ can be put into a simpler form.
Note that there is an isomorphism in HCH

AMngMeH

where the H-structure on the right of AM @ H is multi-
plication on H from the right, the multiplication on

M ® H on the right is given by (m e h)'h' = S(h'(1))m e hh'(z)
and the H-structure on the left of M ® H is multiplication

on H from the left. The isomorphism ¢ and its inverse V¥
are given by

¢(m @ h):= S(h(1))m e h
y(m  h):= h(1)m ® h

(2)
(2)
as is easily verified. Thus we have an isomorphism

ula (M, N]

where the last isomorphism 1 is defined by

2

MeHN £ _.[Me H,N]

<«m>(t(f)) = <m & 1>f ,

«m & h>(1 1 (g)) = h-<m>g .

Let B again be an arbitrary bimonoid in ¢ . Then the
morphism e¢: B —» I induces a functor (C —>» BC which
makes every X € C into a B-object via ¢ . This functor
is also monoidal so that Theorem 17 of [13] applies again,

and we get more examples of finite objects in C

B
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symmetric monoidal category C . If P & C is finite,

then P e pC with the trivial B-structure induced by
e: B—>» I 1is finite.

In [12] we discussed already the notion of relative
or (B,A)-projective (resp. -injective) objects.

4.8 Definition: Let ¢: A —» B be a monoid homomorphism
in € . A morphism f: M — N in BC is called a (B,A)-
epimorphisms if there is a morphism g: N —» M in AC
such that fg = 1N‘ f e BC is called a (B,A)-monomorphism
if there is g ¢ AC such that gf = 1M .

P &€ .C 1is called (B,A)-projective if for each commutative

<t

diagram

M — N
with g,h in BC and k in AC there is g': P —» M
in BC with hg' =g
Q e BC is called (B,A)-injective if for each commutative
diagram

M B>y

9’¢ k

Q
with g,h in BC and k in AC there is g': N — Q
in BC with g'h =g

4.9 Proposition: Let ¢: A —> B be a monoid homomorphism.

Consider the following statements for P ¢ _C:

B
a) P is (B,A)-projective,
b) for each (B,A)-epimorphism h: M —» N with

splitting 1l: N — M in AC (i.e. hl = 1N) and
is g

each g: P — N in C there

1. i
B : P —> M in

BC such that
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gl

n R,

Z «— 'U
Q

commutes,
c) for each (B,A)-epimorphism h: M —>» P there is a

B-morphism 1: P —» M such that hl = 1p
Then a) implies b) and b) implies c).

If ¢ has (finite) pull-backs then c) implies a).

Proof: a) = b): Define k: P —» M by k = 1lg .
Then apply the definition.
b) =P c): Set N

P and g = 1_ .

P
c) == a): Let
95
M XN P—P
9 b |9
M ——> N
be a pull-back in C . Then it is also a pull-back in AC
and in LC by [9, Cor. 2.4] . Construct 1': P — M Xy ?
. v . . . .
in AC by qu = 1P and qu =k with k: P — M ina
AC such that hk = g . Then 9p is a (B,A)-epimorphism.
Hence there is a B-splitting h': P —» M Xy P with
L — 1y — —_ 3 . 1
th = 1P . We get h(th ) = gqph' = g or with g' = Ay

in gl we have hg' = g .

4.10 Proposition: Let ¢: A —> B be a monoid homomorphisn.

a) If B e, 0 for Q € ,C exists in
(B,A) -projective.

b) If P 1is (B,A)-projective and Q 1is a retract of P
in 4C, then O is (B,A)-projective.

c) If P is (B,A)-projective and if B e, P exists in

BC , then it is

gC then P is a retract of B e, P 1in BC .

d) If the functor B e, -: ,C —» ,C exists then for eam

M € C there is a (B,A)-projective P and a (B,A)-
epimorphism P —» M




Proof: a) Given a commutative diagram

B e, Q
sV
g
M -2 N
with k € AC and g,h € BC , define g': B e Q —> M
by g'(b N g) := bk (1 e, q) . Then g' € BC and
' = = =
hg' (b ®, @) = h(bk(1 &, q)) bhk (1 e, q) bg(1 e, q)
g(b o g) hence hg' =g .

b) Consider the diagram

p(‘zig
<

M — N
with a,b,h,g € BC and k e AC such that ab = 1Q
and hk = g . Define k': P — M in AC by k' = ka .
Then hk' = ga hence there is a g': P — M in BC
with hg' = ga . Define g": Q —» M in BC by
g":= g'b . Then hg" = hg'b = gab = g hence @ is (B,A)~-

projective.

d) Take P = B e M, g: B N M — M given by
g(b e m):= bm and k: M — B e M given by k(m):=
1 8, m . Then g € BC , k € AC and gk(m) = m , hence
gk = 1M

c) is a consequence of d) and the (B,A)-projectivity
of P .

Dual results may be proved for (B,A)-injective objects
replacing the left-adjoint B ey - of U: BC — AC by
the right adjoint A[B,—] . The details are left to the

reader.
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