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Abstract
Flow on a beta-plane driven by a steady localised anticyclonic forcing of poten-
tial vorticity (or equivalently a mass source) is considered as a simple model
of the Asian monsoon flow in the upper troposphere. Previous authors have
noted that the response may be steady, or unsteady, according to the magnitude
of the forcing, with the unsteadiness manifested as westward eddy shedding.
A detailed study of the transition between steady and eddy-shedding regimes
reveals a third regime ('break up'), for intermediate forcing magnitude, where
the flow is steady in the neighbourhood of the forcing, but the westward extend-
ing plume of low potential vorticity breaks up into isolated anticyclonic vortices
some distance away from the forcing region. A related spatio-temporal instabil-
ity problem for flow on a beta plane is specified and analysed. The flow can be
stable, convectively unstable or absolutely unstable. It is argued that these three
stability regimes correspond to the steady, break-up and eddy-shedding regimes
for the forced flow and good quantitative correspondence between the regimes
is demonstrated by explicit solution of the spatio-temporal stability problem.
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1 INTRODUCTION

This paper considers the behaviour of an idealised flow
configuration motivated by the Asian monsoon anticy-
clone. The same configuration is relevant to other atmo-
spheric and oceanic flows.

The Asian monsoon is a major feature of the boreal
summer atmospheric general circulation with widely
appreciated societal implications. In the lower and mid-
dle troposphere, the monsoon is characterised by strong

convection and precipitation over south and southeast
Asia, together with a large-scale cyclonic circulation. In
the upper troposphere, on the other hand, the monsoon
is characterised by a large anticyclone extending from
the Mediterranean to east Asia. This anticyclonic circu-
lation can be regarded as the large-scale response to the
localised anticyclonic potential vorticity (PV) forcing asso-
ciated with the upper part of the latent heating due to
precipitation (e.g., Hoskins and Rodwell, 1995; Liu et al.,
2007).
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The upper-level anticyclone has broader importance
for several reasons, one being its remote influence on
weather and climate, another being its role in transport
from troposphere to stratosphere. In the lower part there
is fast convective transport from the surface to the upper
troposphere. Then from the upper troposphere air may be
taken up into the tropical stratosphere via the large-scale
upwelling circulation, or alternatively be transported lat-
erally into the extratropical lower stratosphere through
disturbances to the subtropical jet that depend on the
time variation of the anticyclone itself. Thus the lower
and upper parts of the monsoon combine to form a poten-
tially rapid pathway for chemical species and aerosols
originating from anthropogenic emissions at the surface
in the south and east Asian regions to reach the strato-
sphere, with implications for climate and for ozone, since
the chemical species include short-lived halogen species
(Park et al., 2009; Randel et al., 2010; Bourassa et al., 2012;
Fiehn et al., 2017).

Observational studies have revealed that an important
aspect of the time-dependent behaviour of the upper-level
anticyclone is what is described as “vortex shedding” or
“eddy shedding”. The upper-level forcing provided by the
latent heating generates a region of low PV. Rather than
reaching some equilibrium size, or simply increasing in
size, this region is seen to break up, forming an anticy-
clonic eddy which moves away from the forcing region
most commonly to the west (“westward shedding”), but
sometimes to the east (e.g., Vogel et al., 2015). The focus in
this paper will be on the westward shedding.

Using re-analysis data, Hsu and Plumb (2000) illus-
trated a particular westward-shedding event occurring
during the monsoon season 1990, visible as coherent PV
structure breaking off the bulk PV-low associated with
the main monsoon anticyclone. Popovic and Plumb (2001)
showed that shedding events are not rare, but typically
happen several times during a monsoon cycle. They fur-
ther found the shed eddies to be rather shallow and con-
fined to the upper troposphere/lower stratosphere (UTLS).
More recently Garny and Randel (2013) examined the vari-
ability of the anticyclone, including the PV structure, and
its association with variability in carbon monoxide.

The observed variations (typically on a time-scale of
about two weeks) in the monsoon anticyclone have been
interpreted in different ways. Zhang et al. (2002) have
suggested a “bi-modality” with eastward or westward dis-
placements of the centre of the anticyclone. Vogel et al.
(2015) have described a “split-state” where there are two
pronounced and zonally separated PV extrema. Nützel
et al. (2016) investigated multiple re-analysis datasets and
found that only one (NCEP-1) out of seven showed pro-
nounced and consistent signs of bi-modality. It seems quite
possible that the underlying process is eddy shedding,

which may be interpreted as bimodality or split-state
according to the particular diagnostic and perhaps dataset
considered.

The potential importance of the spatial and temporal
variability of the monsoon anticyclone for chemical trans-
port and the meteorological interest in the phenomenology
of the variability implies a need for dynamical understand-
ing. One basic question, considered by Garny and Randel
(2013), for example, is the extent to which the temporal
variability of the monsoon anticyclone is directly deter-
mined by the variability of precipitation and the associated
latent heating versus the extent to which it is an intrinsic
feature of the dynamics of the upper-tropospheric flow.

Some aspects of the structure of the monsoon circu-
lation, both at lower and upper levels, are captured by
the linear dynamical model of Gill (1980), but because
this model relies on frictional damping, which is diffi-
cult to justify in the upper troposphere, its relevance to
the structure of the upper-level anticyclone is question-
able (e.g., Sardeshmukh and Hoskins, 1985; Lin et al.,
2008). Furthermore the model is steady and therefore
its relevance to any time dependence of the anticyclone
is likely limited. A different approach has been taken
by Hsu and Plumb (2000), who consider a single layer
shallow-water model, representing the upper troposphere,
with a specified localised anticyclonic PV forcing (or equiv-
alent a localised mass source). Hsu and Plumb (2000)
showed in numerical simulations that the phenomenon
of westward eddy shedding can spontaneously emerge as
response to a steady localised forcing and hence provide
a possible mechanism for time dependence that does not
rely on the variability of the forcing. They further investi-
gated the transition between a steady state of the system
and a time-periodic eddy-shedding state when imposing
a meridional background PV gradient for a given forcing.
This transition, however, is fundamentally different from
the transition investigated in this paper, since Hsu and
Plumb (2000) find steady behaviour in the case of strong
forcing magnitudes (or equivalently weak background
PV gradient) and unsteady behaviour for weak forcing
magnitudes.

A very similar fluid dynamical model, but motivated
by oceanographic problems, for example the formation
of isolated eddies from the Mediterranean outflow, had
previously been studied by Davey and Killworth (1989,
hereafter DK89). They found the response to transition
from a steady, zonally symmetric response extending west-
ward from the forcing region (a so-called beta-plume) at
small forcing amplitude to a westward-extending series
of periodically shed vortices at larger forcing amplitude.
A similar behaviour was found by Cenedese and Linden
(1999) in a series of laboratory experiments to study the
response to a continuous mass flux into a two-layer system



RUPP and HAYNES 1863

with a sloped bottom topography (inducing a beta-effect).
They also found a transition from a zonally symmetric
response to periodic shedding when increasing the flux.
The phenomenon of eddy shedding from a region where
there is a localised PV forcing is therefore potentially
important to a wide range of problems in geophysical fluid
dynamics.

The numerical and laboratory experiments in the
studies by DK89, Cenedese and Linden (1999) and Hsu
and Plumb (2000) were all performed on a domain
with relatively small zonal scale. This restriction on the
domain size may seem consistent with the spatial scales
of the problem (motivated by the monsoon anticyclone
flow), but can make it difficult to observe the full range
of behaviours within the system since in certain situ-
ations important features of the forced response only
develop a large distance to the west of the forcing region
(Section 3).

The study reported in this paper will analyse the mech-
anisms controlling westward eddy shedding from a steady,
localised anticyclonic forcing in terms of a spatio-temporal
stability analysis. The concept of spatio-temporal insta-
bilities of shear flows was first introduced in the field
of plasma physics (e.g., by Briggs, 1964; Bers, 1973) and
finds application in many branches of fluid dynamics,
particularly in the evolution of spatially evolving shear
flows and their response to excitation (Huerre and Monke-
witz, 1990). The possible application to a range of prob-
lems in geophysical fluid dynamics was quickly recognised
(e.g., by Merkine, 1977). Pierrehumbert (1986) applied the
idea of spatio-temporal stability to the Charney problem
and investigated the formation of baroclinic instability
for different surface wind magnitudes. Lin and Pierre-
humbert (1993) extended this approach to flows with
both latitudinal and vertical structure. Schär and Smith
(1993) performed a spatio-temporal stability analysis to
link eddy-shedding phenomena caused by a flow over
an isolated mountain in a non-rotating shallow-water
model to the absolute instability of certain idealised
steady solutions. In a meteorological setting, Hoheneg-
ger et al. (2006) argued that the lack of predictability
skill for certain precipitation events in numerical mod-
els is not fully explained by problems in modelling moist
convection, but is partially caused by a spatio-temporal
amplification of small-amplitude perturbations. Wang
(2011) performed a comprehensive spatio-temporal sta-
bility analysis to explain small-scale structures observed
in oceanic eastern boundary currents. Diaz and Aiyyer
(2015) used the idea of spatio-temporal instabilities to
model large-scale wave patterns found within the African
easterly jet.

The structure of the paper is as follows. The specifics
of the model used in the present study is described in

Section 2. In Section 3 we will discuss a range of behaviours
observed in steadily forced numerical experiments. This
will in particular involve a transition (depending on details
of the forcing) between two distinct states of the system
in which the response to the steady forcing spontaneously
develops a temporal dependence. As we will show, the
transition is related to a change in stability properties
of the system. We will therefore subsequently analyse
the stability of an idealised representation of the forced
flow in two different ways. In Section 4 we perform a
spatio-temporal stability analysis based on the Rayleigh
equation of the system. This is a delicate calculation and
therefore in Section 5 we present a complementary anal-
ysis of the stability of the flow using direct numerical
simulations and compare our findings to the theoretical
predictions obtained in the previous section. Section 6 will
then use these theoretical predictions to explain aspects of
the behaviour of the response to a localised steady forcing.
Finally we will summarise and discuss our main findings
in Section 7.

2 MODEL

In the following we will consider a single-layer
beta-channel model, intended as a simple representation
of the subtropical Asian monsoon system. A single-layer
model of the low-latitude upper troposphere has been used
in several previous studies (e.g., Hsu and Plumb, 2000;
Kraucunas and Hartmann, 2007; Bao and Hartmann,
2014) and can be justified on the basis of the “tropical
scaling” first set out by Charney (e.g., Vallis, 2017, chap-
ter 18.8) which predicts that, in the absence of diabatic
heating, the motion of each horizontal layer of fluid is
essentially independent of those above and below. A
restriction relative to previous studies is that, rather than
considering the full single-layer equations, we make the
quasi-geostrophic (QG) approximation. This is justified
on the basis that the main effect of the approximation is
to omit gravity waves, including equatorial Kelvin waves,
and that the subtropical vortex-shedding phenomenon
does not depend significantly on such waves. However,
note that Hsu and Plumb (2000) consider some tropical
cases where there is a more substantial role for Kelvin
waves. Relaxing the QG approximation will of course alter
some of the quantitative details of the behaviour, but it
should also be noted that the single-layer model repre-
sentation is itself approximate and will not correspond
precisely to the behaviour of a three-dimensional atmo-
sphere. Diabatic heating is included in the model only to
the extent that it provides a specified anticyclonic forcing
since we are interested in the flow response rather than
the details of the forcing itself.
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The non-dimensional model equations are given by:

𝜕tq = −u𝜕xq − v𝜕yq − F − S(x)q − 𝜖∇4q,

q = ∇2𝜓 − 𝜓 + 𝛽y, (1)

where q describes (QG) PV, 𝜓 is the stream function, u =
−𝜕y𝜓 and v = 𝜕x𝜓 are the fluid velocities in the zonal (x)
and meridional (y) directions, respectively, F is a PV forc-
ing (or equivalently a mass source), S is a space-dependent
damping, 𝜖 is a hyperdiffusion parameter and ∇ is the
two-dimensional gradient operator. The parameter 𝛽 rep-
resents the non-dimensional meridional gradient of back-
ground PV. Equation (1) is non-dimensionalised, scaling
horizontal lengths by the Rossby radius of deformation
RD, times on a scale of 1 day, and all other quantities
correspondingly.

For the purpose of the results to be presented, we
will take 𝛽 = 2.2, which corresponds to about 20◦ latitude,
when assuming RD = 1, 250 km. This value of RD is fur-
ther consistent with dynamical structures of the Rossby
height of roughly HR = fRDN−1 ≈ 3 km, assuming f ≈ 0.5 ⋅
10−4s−1 and N ≈ 2 ⋅ 10−2s−1, which are values appropri-
ate for the subtropical upper troposphere. In the set of
single-layer equations, this further leads to a layer thick-
ness of about H = R2

Df 2∕g ≈ 400 m, with g being the grav-
itational acceleration. (For comparison, Kraucunas and
Hartmann, 2007 used a value of H = 200 m and Bao and
Hartmann, 2014 used H = 600 m.)

The model domain is taken to be −240 < x < 80
and −20 < y < 20. Given the non-dimensionalisation
described above, this domain is clearly much larger than
can be justified by application to the subtropical atmo-
sphere. However, the objective here is to remove, as far
as possible, the effect of rigid boundaries in y and the
effect of the periodic domain in x, to allow a clear under-
standing of the behaviour of the system. Note that most
figures will show the response only within a part of the
full domain. Equation (1) is numerically integrated using
a spectral representation in x, truncated at wave number
2,048, and a second-order central-difference scheme with
256 equally spaced grid points in y. We further assume𝜓 =
0 at the meridional boundaries, implying vanishing nor-
mal flow. In time the model is integrated via a second-order
Runge–Kutta method with 200 steps per day. To ensure
numerical stability of the model, 𝜖 was chosen to damp the
shortest waves resolved on a time-scale of about 100 days.
The spectral representation in x implies periodicity, but
we wish to consider the solutions to Equation (1) on an
infinite x domain, with no communication between large
positive x and large negative x. To achieve this, S(x) is set to
be non-zero only in a sponge region with x < −200, which

is to the far west of the forcing region (or the east, due to the
periodic boundary conditions). Note that, for the steadily
forced experiments in Section 3, the damping acts on the
full PV field, while for the experiments in Section 5 it acts
only on the zonally varying part of the response. The sensi-
tivity of the solutions to Equation (1) to the precise details
(structure and magnitude) of the sponge region S(x), the
hyperdiffusion parameter 𝜖, the domain size and the spa-
tial resolution was thoroughly tested and all the results
presented below are robust to changes in these various
quantities.

The forcing is given by a confined mass source with
spatio-temporal structure F(x, y, t), switched on smoothly
over the first 10 days of each experiment and defined via

F(x, y, t)

=

{
F0 cos (𝜔0t) cos2

(
𝜋x
2r0

)
cos2

(
𝜋y
2r0

)
if |x|, |y| ≤ r0,

0 otherwise.
(2)

Here, F0 controls the forcing magnitude, r0 the
non-dimensional length-scale of the forcing and 𝜔0 the
time dependence. The primary motivation for the work
reported in this paper is to understand the behaviour of
the system starting from an initial condition at rest, when
the forcing is steady (𝜔0 = 0). But in interpreting this
behaviour, it is useful also to consider the response to a
time-dependent forcing (𝜔0 ≠ 0), starting from an initial
condition of a specified zonally uniform flow. In the case
with 𝜔0 = 0, the forcing represents a constant mass source
into the system, but note that the dynamics described by
Equation (1) stay invariant when adding a constant to 𝜓
and thus a statistical steady state can be reached without
the explicit need for dissipative processes. Further details
on the nature of the forcing will be given in Sections 3
and 5.

3 DIFFERENT TYPES
OF RESPONSE TO A STEADY
FORCING

As noted in Section 1, the horizontal structure and tem-
poral evolution of the response to a continuous (𝜔0 = 0
in Equation (2)) mass source in a single-layer model has
previously been investigated by DK89, who observed a
state transition when increasing the forcing magnitude
while keeping the length-scale of the forcing fixed. They
showed that the response changes from a steady, westward
extended plume of PV anomaly to a state in which vortices
form spontaneously and periodically inside the forcing
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F I G U R E 1 Day 400 PV snapshots
(shading) using different combinations of
forcing magnitudes F0 and length-scales
r0, labelled cases (a)–(f). The system is
exhibiting various states of temporal
behaviour and spatial structure. We can
distinguish steady, break-up and shedding
states. The contours show the positive part
of the stream function field, using
different contour intervals for the different
plots. The forcing used in (b), (c), (e), and
(f) satisfies the shedding criterion in
Equation (A3), while the forcing in (a) and
(d) does not. The superimposed ellipses
indicate the forcing region

region and are subsequently shed to the west, forming a
zonal chain of discrete eddies.

Furthermore DK89 gave a theoretical prediction of the
threshold value of the forcing at which the state transi-
tion takes place, based on consideration of whether the PV
gradient resulting from the steady linear response became
negative, hence satisfying the Rayleigh inflexion point cri-
terion necessary for instability. They argued that, once
this criterion was satisfied, the steady response would no
longer be observed and instability would result in the for-
mation of discrete eddies. A derivation of an equivalent
criterion for our QG model and a specified forcing profile
is given in the Appendix.

We now investigate whether the behaviour identified
by DK89 and the shedding criterion (Equation (A3) in the
Appendix) applies in our system and how it depends on
the parameters of the forcing. We consider Equation (1)
integrated forward in time from an initial state at rest.
Figure 1 shows the model response at day 400 for the speci-
fied forcing profile and different sets of forcing parameters,
which we will refer to as cases (a) to (f) within this section.
The response for two different forcing length-scales r0 are
shown, using three different values of forcing magnitude
F0 each (Equation (2)). Note that DK89 used a fixed forcing
radius of r0 = 3, that is, a forcing radius that is somewhat
larger than the deformation radius, as in the examples pre-
sented here, but that their value of 𝛽 and various details of
the underlying model were different. However, our numer-
ical simulations show a good match with DK89 when
the corresponding physical parameters are chosen appro-
priately. This provides reassuring evidence that the QG
approximation, which was not used by DK89, does not
disrupt the eddy-shedding behaviour.

For weak forcing magnitudes (cases (a) and (d)) the
response is steady and does not show any sign of zonal
variability west of the forcing. The corresponding forcing
profiles do not satisfy Criterion A3 and the response does

not have a reversed mean meridional PV gradient, as can
be seen in Figure 2. The flow in these cases is, as DK89
have shown, well described by steady, linear theory.

For forcing profiles that satisfy Criterion A3 (cases (b),
(c), (e) and (f)), we observe the formation of discrete vor-
tices despite the use of a steady mass source, as described
and predicted by DK89. Figure 2 shows that the corre-
sponding cases are associated with a region of negative (or
vanishingly small in case (b)) mean meridional PV gradi-
ent. Note that cases (e) and (f) look very similar in terms
of the mean PV gradient, but the detailed structure seen in
Figure 1 is very different.

It is here important to remember that the
Davey–Killworth criterion in terms of a sign change in PV
gradient is simply a necessary condition for instability that
is entirely based on a steady solution to the problem. The
response in cases (b), (c), (d) and (f), on the other hand, is
unsteady and thus the significance of a sign change in the
mean PV gradient is not so clear. The profiles displayed
in Figure 2 show a time average which accounts for times
when there is an eddy at x = −10, and times when there
is not. However, the idea that the time-mean PV gradient
changes signs in the non-steady cases is consistent with
the idea of the forcing generating a PV plume that is sub-
sequently breaking up into discrete vortices due to the
growth of small random perturbations because of some
instability.

In contrast to the findings of DK89, we observe two
qualitatively different kinds of behaviour when the forc-
ing profile satisfies the shedding criterion given in the
Appendix (Equation (A3)). For certain parameter com-
binations (case (e) in Figure 1) we find the response in
and close to the forcing region to be almost steady and
qualitatively similar to the solution predicted by steady,
linear theory, but with a sustained meridional PV gradient
reversal, as shown in Figure 2. In these cases the west-
ward extending plume becomes perturbed and breaks up
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F I G U R E 2 Time mean
meridional PV gradients along x = −10
for the same experiments as in Figure 1,
for length-scale r0 = (a) 2 and (b) 4, and
with various values of forcing
magnitude F0

(a) (b)

into discrete patches a finite distance away from the forc-
ing. The corresponding state is therefore characterised by
weak time dependence near the forcing and strong time
dependence to the far west of the forcing. Note that such
behaviour might not be observed for small domain sizes
or short time integrations where the flow does not have
the opportunity to extend sufficiently far westward and
might incorrectly be classified as completely steady. In
other cases (e.g., case (f)), the vortices form directly within
the forcing region and are then shed westward. This state
is characterised by a strong time dependence of the flow
near the forcing region (as well as further to the west). In
the following, we will refer to the three different types of
system behaviour as steady, break-up and shedding states.

To identify the type of response to a certain forcing
with given scale r0 and magnitude F0, we evaluated the
temporal behaviour close to the forcing (at x = −10) and
the zonal structure of its stream function at day 300. In
the steady cases we expect no strong variations, neither in
time nor in space. We classify the system as being in the
break-up state if the stream function stays steady near the
forcing region but develops strong zonal and temporal vari-
ations far to the west. The spatial amplification of pertur-
bations in this state suggests the system to be convectively
unstable, as explained in detail in Section 4. Finally we
classify the response as being in the eddy-shedding regime
if we observe strong temporal perturbations near the forc-
ing and a consistently perturbed zonal structure west of the
forcing. We will later in Section 6 use the characteristics
of the spatial structure and temporal variability that have
been discussed in this paragraph to classify the state of the
response.

The evolution of the system in the shedding state typ-
ically leads to the formation of an almost periodic chain
of vortices, as can be seen in Figure 1b,c,f. Note a signifi-
cant meridional drift of the formed discrete vortices on top
of the predominantly zonal propagation, which is particu-
larly strong for small and strong eddies. This drift is a result
of the beta-effect, as discussed, for example, by Davey and
Killworth (1984). To reduce the impact of this meridional

drift on our diagnostics, many of the results shown will be
meridionally integrated over a range of roughly the merid-
ional extent of the forcing region. The shed vortices seem
to travel with a relatively constant zonal velocity, as also
described by other authors (Davey and Killworth, 1989;
Hsu and Plumb, 2000). The periodic formation of vor-
tices therefore leads to a periodic signal of the response
at fixed locations west of the forcing. To further quantita-
tively characterise the shedding process, we estimated the
frequency 𝜔 at which vortices are created and shed from
the forcing region (the shedding frequency) by computing
the temporal Fourier power spectra of the stream function
response to the west of the forcing for experiments (b), (c),
(e) and (f) shown in Figure 1. Although the different exper-
iments cover a wide range of parameter combinations for
the forcing, and in addition include responses in the shed-
ding and break-up states, the various power spectra (not
shown) all indicate dominant frequencies in a relatively
narrow range of about 0.8 < 𝜔 < 1.1.

The structure of the response in the break-up state
shown in Figure 1e suggests a zonally amplifying pertur-
bation on top of an almost steady beta-plume. We therefore
propose that certain aspects of the response to a localised
steady forcing can be explained as the the result of a
spatio-temporal instability of the forced beta plume that is
itself well described by steady linear theory (DK89; see also
the Appendix to this paper). In particular, we will show
that the transition between the steady, break-up and shed-
ding states can potentially be explained by a change in
stability properties of the system. The interpretation of the
shedding process as a result of a spatio-temporal instabil-
ity further potentially allows us to predict the dominant
frequencies that we reported in the previous paragraph.

4 STABILITY OF CONFINED
PARALLEL SHEAR FLOWS

We will in this section investigate to what extent the three
qualitatively different states identified in Section 3 can be
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explained as the result of changes in the spatio-temporal
stability properties of the system. We will therefore per-
form a comprehensive spatio-temporal stability analysis
for a set of basic flows representing the steady parallel
shear flow that is predicted as the beta-plane steady linear
response to a localised vorticity forcing far to the west of
the region where the forcing is applied.

The QG PV model described by Equation (1) can be
linearised for a zonal wave-like perturbation around the
zonally uniform basic state with ū(y) = −𝜕y𝜓(y), that is,

𝜓(x, y, t) = 𝜓(y) +ℜ
{
𝜓 ′(y)ei(kx−𝜔t)} ,

where 𝜓 ′ describes the meridional structure of the wave,
k is the x-wave number and 𝜔 the frequency. In principle,
both k and 𝜔 can be complex. The corresponding com-
plex phase speed is then given by c = 𝜔∕k. The standard
approach to analysing stability is to write the resulting
linearised equation in the Rayleigh form

𝜔

k
[
(k2 + 1)𝜓 ′ − 𝜕2

y𝜓
′] − ū

[
k2𝜓 ′ − 𝜕2

y𝜓
′]

+ 𝜓 ′ [𝛽 − 𝜕2
y ū
]
= 0, (3)

together with boundary conditions 𝜓 ′ = 0 in y.
Equation (3) can be used to define a function D(k, 𝜔),
where the condition D = 0 represents the dispersion rela-
tion of the system and links the (complex) wave number
and frequency of a supported wave. Note that D(k, 𝜔) = 0
generally has multiple solutions, each corresponding to
a different wave mode supported by the system. Deter-
mining D(k.𝜔), and thus determining the spatio-temporal
stability properties, will require numerical solution of
Equation (3), which we describe in Subsections 4.2–4.4
below.

4.1 Theoretical background

In this subsection we summarise the relevant theoretical
background on temporal, convective and absolute instabil-
ity. The stability behaviour is determined by D(k, 𝜔) = 0.
Since both k and 𝜔 can in principle be complex, we can
distinguish between different types of instability. The
familiar case of temporal instability corresponds to real k
and there is instability if the corresponding 𝜔 has a posi-
tive imaginary part. Another possibility is what is known
as convective instability, where a mode grows in space
but not in time, that is, k has a non-vanishing imaginary
part and 𝜔 is real. Note that positive 𝔍k implies growth
in the negative x direction and negative 𝔍k growth in the
positive x direction.

It is now understood that the response of a flow to a
localised forcing is not completely determined by whether

or not there is temporal or convective instability. Briggs
(1964) and Huerre and Monkewitz (1990), for example,
determined this by considering the evolution of a localised
wave packet. If there is temporal instability, the wave
amplitude may grow, but if the wave packet propagates
away from its initial location sufficiently fast, then the
waves will be observed to decay in amplitude at the initial
location. This situation corresponds to convective instabil-
ity. The alternative is that the waves at the initial location
are observed to increase in amplitude for large times. This
situation is called absolute instability and corresponds to
both k and 𝜔 having non-vanishing imaginary parts. The
wave packet interpretation makes it clear that absolute
instability has to be associated with a saddle point in the
complex dispersion relation at an isolated frequency 𝜔a
and corresponding wave number ka, since such a point cor-
responds to a wave mode with vanishing group velocity
d𝜔∕dk = 0 which allows for energy to grow in place.

The distinction between convective and absolute insta-
bility is essential to predict the behaviour of disturbances
to a flow that will be observed in some finite range of x.
Determining where there is absolute instability requires
a detailed understanding of the behaviour of the roots of
D(k, 𝜔) = 0 in the complex plane. Note that the interpre-
tation of convective and absolute instability in terms of an
initial wave packet perturbation still holds when consider-
ing a problem where a basic flow is perturbed by a spatially
localised periodic forcing with fixed frequency, which cor-
responds to the idea of a continuous formation of wave
packets with modulated amplitude at a fixed location.
Such an interpretation is conceptually closer to the prob-
lems considered in this paper and forms the motivation for
the experiments in Section 5.

It is not sufficient to analyse the form of D locally in the
(k, 𝜔)-plane to determine whether a flow is convectively
or absolutely unstable. As discussed by Briggs (1964), the
convective roots of the dispersion relation, that is, roots
with 𝜔 real and k complex, only correspond to a physi-
cally relevant disturbance if k(𝜔) crosses the real k-axis as
𝔍𝜔 decreases from large positive values towards zero. It
follows as a corollary that there is convective or absolute
instability only if there is temporal instability. As further
discussed by Briggs (1964), there is a similar criterion for
absolute instability to determine whether or not the corre-
sponding saddle point (which is formed as a double root
of D) corresponds to a physically relevant disturbance. The
condition is, again, based on the global behaviour of the
dispersion relation D around the saddle point at ka = k(𝜔a)
and is usually described in terms of curves in the com-
plex k-plane defined by the (inverse) dispersion relation
k(𝜔)with𝜔i = 𝔍𝜔 fixed and𝜔r = ℜ𝜔 varying, often called
Bromwich images. The corresponding lines in the complex
𝜔 plane with fixed𝜔i are called Bromwich contours. There
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may be several Bromwich images for a given Bromwich
contour (i.e., a specified𝜔i) if k(𝜔) is multivalued. A saddle
point (or double root) of D now only describes a physically
relevant mode of absolute instability if it is formed by two
merging Bromwich images that originate from opposite
half-planes in k-space as 𝜔i is varied, as was particularly
stressed by Pierrehumbert (1986).

It is clear from the above that finding convectively (and
absolutely) unstable modes for the Rayleigh equation of
our system (Equation (3)) and similar equations is a sub-
tle undertaking and different approaches to this have been
developed and used. Some authors (e.g., Pierrehumbert,
1986; Polvani and Pedlosky, 1988; DelSole, 1997) were able
to formulate a problem for which the dispersion relation
could be obtained in analytic form.

Lin and Pierrehumbert (1993) considered the stabil-
ity of a zonally symmetric jet in a QG beta-plane model
which leads to an eigenvalue problem in k and c, similar to
Equation (3), and pointed out the subtlety of these kinds of
problems if the dispersion relation cannot be obtained in
analytic form. They described an iterative procedure start-
ing by obtaining the temporal dispersion relation (found
by imposing real k in Equation (3)) and subsequent track-
ing of the unstable mode as k becomes complex. This
method is conceptually similar to the approach we will be
using, described below, however, it can only be used to
identify absolutely unstable modes and does not directly
give any information on pure convective instability of the
system or other characteristics of the dispersion relation
(in contrast to our approach).

4.2 Calculation of temporal stability

In the rest of this section we will progress towards a full
solution of the spatio-temporal stability problem to deter-
mine whether, for a specified basic state, there is absolute
instability. This is practically done by solving Equation (3)
which, together with the boundary conditions, can be
regarded as a generalised eigenvalue problem that straight-
forwardly implies c given k (and hence 𝜔 given k), or
as a different eigenvalue problem that straightforwardly
implies k given c = 𝜔∕k. However it is not so straight-
forward to determine k given 𝜔. We solve Equation (3)
numerically by simple discretisation using second-order
centred differences and then using standard MATLAB rou-
tines to solve the resulting matrix eigenvalue problem.
The eigenvalue of interest has to be selected from the
set of all eigenvalues of the matrix. The criteria used for
this selection are described later in this subsection. All
the results reported use a discretisation with 256 points
equally spaced over a domain of size 40 in the y-direction.

Robustness of the results to changes in the number of
points and the size of the domain was checked.

For illustration of our methods, we consider the partic-
ular family of basic state profiles 𝜓 defined by the stream
function

𝜓(y) =

{
𝜂cos4

(
𝜋y
2𝜌

)
for |y| < 𝜌,

0 otherwise,
(4)

where 𝜂 determines the strength of the flow and 𝜌 its
meridional width. The basic state is supposed to model a
zonally extended steady plume, motivated by the steady
linear solution of Equation (1) (as described in Section 3).

The form of 𝜓 in Equation (4) has purposely not been
chosen to match the steady linear response to the forcing
specified by Equation (2), since that would imply a discon-
tinuity in the corresponding PV field at the edges of the
forcing region and hence numerical difficulties. However,
our aim is to explain the response to a steady localised forc-
ing, as described in Section 3. In practice in the numerical
simulations nonlinear effects seem to smooth any discon-
tinuities and the smoothed discontinuities then manifest
as secondary peaks in the meridional PV gradient at the
edges of the forcing region (Figure 2). Hence profile 4 turns
out to be a useful semi-quantitative representation of the
profiles seen in the simulations, as can also be seen from
Figure 3 and the corresponding explaining paragraphs in
Section 6.

The general structure of the basic state is illustrated in
Figure 3, also showing the background zonal wind ū(y) =
−𝜕y𝜓 and meridional PV gradient qy = 𝛽 + ū − 𝜕2

y ū. Note
that the meridional PV gradient is single-signed for 𝜂 < G,
where G(𝜌, 𝛽) can in principle be calculated exactly from
the basic state profile in Equation (4) and the definition
of PV in Equation (1). In cases where 𝜂 < G, we expect
the system to be stable in a temporal sense, which further
implies convective and absolute stability. For a fixed 𝜌=6
this is the case for roughly 𝜂<5.

Since the analysis is relatively complicated, we begin
by considering the temporal stability problem, which is
solved by specifying a (real) value for k and computing,
via the generalised eigenvalue problem in Equation (3),
the (complex) phase speed c, which immediately implies
the corresponding (complex) frequency𝜔 = ck. The fastest
growing mode is that, considering all (real) values of k,
with the largest positive value of 𝜔i = 𝔍𝜔. For the basic
state shown in Figure 3 with specified choices of the
parameters 𝜂 and 𝜌, it was straightforward to solve the
eigenvalue problem for c(k) numerically using the method
outlined above for many choices for imposed, real k.
As noted previously, a solution of the matrix eigenvalue
problem for a given k gives many eigenvalues (the same
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F I G U R E 3 (a) Idealised basic state
profile 𝜓 with 𝜂 = 9.5 and 𝜌 = 5.4 defined via
Equation (4) and associated zonal wind
ū = −𝜕y𝜓 and meridional PV gradient
qy = 𝛽 + ū − 𝜕2

y ū. (b) measured state profile
extracted from a direct numerical simulation
with forcing parameters r0 = 4,F0 = 1.3
(defined later in Section 6)

number as the number of points used in the discretisa-
tion). The selection procedure applied, for each k, was to
choose the eigenvalue with largest imaginary part (most
of the eigenvalues had zero imaginary part and represent
an approximation to the “continuous” spectrum of the
Rayleigh problem). This specifies a unique c(k).

Figure 4 shows the temporal dispersion relation in
terms of frequency 𝜔 and wave speed c as a function of
(real) k for different combinations of basic state parame-
ters 𝜂 and 𝜌. We find the system to be temporally unstable
for a range of wave numbers in all three cases shown. The
growth rate 𝜔i seems to generally increase with increas-
ing 𝜂, specifying the strength of the basic state flow, and
decreasing 𝜌, specifying the width of the flow. The real
part of the frequency shows relatively little dependence
on either 𝜂 or 𝜌 and an almost inverse linear dependence
on k gives rise to a relatively constant value for cr = ℜc in
all three cases.

A distinct, continuous dispersion relation can be iden-
tified in all cases where the PV gradient changes sign,
which we interpret as a coherent and physically rele-
vant temporal mode. The overall shape of the structure is
relatively similar for the various parameter combinations
and shows a clear local maximum in 𝜔i. However, the
value of the maximum growth rate varies and seems to
increase for narrower and stronger basic states, making
the flow less stable in these cases. Further note that the
range of k with 𝜔i > 0 seems to decrease significantly as
𝜌 increases or 𝜂 decreases (consistent with the idea that

the system becomes stable for large 𝜌 and/or small 𝜂, as
explained earlier).

As noted previously, temporal instability of the system
is a necessary condition for convective or absolute insta-
bility. In Section 4.3 we will use this condition to solve
the convective instability problem starting from an unsta-
ble solution of the temporal problem. Figure 4 can be
used to identify suitable temporally unstable modes, that
is, a set of real wave number and corresponding complex
frequency, that can be used to calculate potential convec-
tively (or absolutely) unstable modes. Note that solving
the eigenvalue problem in Equation (3) for imposed real
k together with the selection process described above can
lead to problems due to numerical uncertainties in cases
where the corresponding solutions (i.e., the calculated
phase speeds and thus frequencies) have small imaginary
parts. The profiles shown in Figure 4 therefore have to be
interpreted with caution in regions with small 𝜔i and are
most reliable around the corresponding local maximum of
𝜔i(k). For the analysis to be presented in Sections 4.3 and
4.4, we therefore chose to start the calculations with values
of k close to the local maximum in 𝜔i.

4.3 Calculation of convective instability

Convective instability can imply growth in the positive or
negative x-direction. For simplicity (bearing in mind the
results shown in Figure 1) we shall here consider only

F I G U R E 4 Temporal dispersion relation in frequency and wave speed for idealised basic states with different widths 𝜌 and magnitudes 𝜂
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growth in the negative x-direction. This requires a solution
to Equation (3) with positive imaginary wave number ki =
𝔍k, satisfying the additional condition that it corresponds
to a root that crosses the real k-axis as 𝜔i decreases from
large positive values towards zero. Both conditions require
knowledge of the structure of the dispersion relation for
varying 𝜔. However, as noted previously, Equation (3), or
its numerical representation, does not straightforwardly
allow us to determine k(𝜔), but rather to determine
k(c) and then compute 𝜔 = kc, which increases the diffi-
culty of finding physically relevant convectively unstable
modes.

The two conditions mentioned above suggest the fol-
lowing approach to finding the required complex k(𝜔) for
real 𝜔. We start with solutions to the temporal instability
problem, each providing a real k(c) for particular c, with
the corresponding 𝜔i greater than zero. We then vary c in
such a way to reduce𝜔i to zero. This can be done using the
linearisation

Δ𝜔 ≃ cΔk + kΔc ≃
(

cΔk
Δc

+ k
)
Δc, (5)

which allows, for example, Δc to be chosen such that Δ𝜔
has zero real part. This gives us a constructive relation
between the real and imaginary parts of Δc leading to the
desired behaviour of Δ𝜔:

Δ𝜔r = 0 ⇒ ℜ [MΔc] = 0 ⇒ Δci =
Mr

Mi
Δcr, (6)

where M = c(Δk∕Δc) + k and Mr and Mi are the respective
real and imaginary parts. Note that, due to the assumption
of linearity, we can change the sign of the real part of the
change in frequency Δ𝜔i by changing the sign of the corre-
sponding change in phase speedΔc. This allows us to spec-
ify, for example, aΔ𝜔with vanishing real part and negative
imaginary part. Following similar considerations as for
Equation (6), we can construct Δc in a way that leads to a
change in frequency Δ𝜔 with vanishing imaginary part:

Δ𝜔i = 0 ⇒ 𝔍 [MΔc] = 0 ⇒ Δci = −Mi

Mr
Δcr. (7)

Starting from a known solution of the temporal
problem (real k and 𝜔 with positive imaginary part), we
can use Equation (6) to gradually and iteratively decrease
the imaginary part of 𝜔 until it becomes real. While doing
so, we track the corresponding value of k in the complex
plane. This way we can construct a solution to Equation (3)
with complex k and real𝜔 that, if the corresponding ki > 0,
corresponds to a convectively unstable mode.

Once a convectively unstable mode was identified, we
can use Equation (7) to obtain the convective dispersion

(a) (b)

F I G U R E 5 Convective dispersion relation for flows with
meridional basic state length-scale 𝜌 = 6 and different strength
parameters 𝜂 calculated using the iterative approach based on
Equations (6) and (7) and a suitable solution of the temporal
problem. The triangles show frequency/wave number pairs
deduced from the numerical simulations discussed in Section 5 and
provide a useful check on the validity of the approach to solving the
dispersion relation

relation by varying Δc in such way that the corresponding
𝜔i stays zero, but 𝜔r (and thus k) changes.

Figure 5 shows the convective dispersion relation
found following the described iterative method for three
basic states with fixed width 𝜌 = 6 and different magni-
tudes 𝜂.

We first consider the case 𝜂 = 6.5, for which Figure 5
shows a distinct local maximum in convective growth rate
ki at 𝜔r ≈ −0.85 with the corresponding real part of the
wave number being kr ≈ 0.6. Following previous work on
spatial instability in other fluid dynamical problems (e.g.,
Ho and Huerre, 1984), we interpret the convective disper-
sion relation as providing information on the growth of
random perturbations to a zonally extended and steady
beta-plume which results in the break-up behaviour iden-
tified in Figure 1e. We envisage that these perturbations
correspond to a range of frequencies and that the perturba-
tions that dominate as x decreases (i.e., as distance to the
west of the forcing region increases) are those with largest
spatial growth rate ki. Alongside the spatial growth the
perturbations have an oscillatory structure in x with scale
predicted by kr, corresponding to the x-scale of the eddies
seen in Figure 1e, at least in the region where the evolution
is well described by linear theory. Note that, as discussed
in Ho and Huerre (1984) and similar papers, the convec-
tive dispersion relation also provides information on the
forced problem, where𝜔r is imposed, for example, in a lab-
oratory flow by adding an oscillatory forcing, but that is not
relevant to the case we are considering here.

We investigated the sensitivity of the frequency and
wave number of the convectively unstable mode with max-
imum spatial growth rate and found that, for varying basic
state strength parameter 5 < 𝜂 < 7, their real parts stay rel-
atively constant around values of 𝜔r ≈ 0.8 and kr ≈ 0.6.
The imaginary part of the wave number, however, seems
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(a) (b)

F I G U R E 6 Complex dispersion relation 𝜔(k) for basic state with 𝜌 = 6 and 𝜂 = 13 showing a clear saddle point (red cross), i.e., a point
where d𝜔∕dk = 0. The dispersion relation was obtained by initiating with the temporal mode at k = 0.6 (green cross, corresponding to a wave
speed of c0 = −1.42 + 0.19i), and tracking the mode in k- and 𝜔-space when varying the real and complex parts of c with a step size of
Δci =Δcr = 0.005 and a total range of c − c0 ≤ 0.4. Only a quarter of the points are shown

to be zero for 𝜂 ≈ 5 and gradually increases with 𝜂 taking
a value of ki ≈ 0.1 at 𝜂 ≈ 7. Recall that for a fixed 𝜌 = 6, as
explained earlier, the flow is stable only when the merid-
ional PV gradient is single-signed, which is the case for
roughly 𝜂 < 5, which is in agreement with a vanishing
convective growth rate as 𝜂 → 5.

Now considering the cases 𝜂 = 8.6 and 13, it is seen
from Figure 5 that ki(𝜔r) does not have an apparent local
maximum, at least in the range of 𝜔r considered. In fact
it will be shown in Section 4.4 that for these values of 𝜂
there is absolute instability. As has been noted previously,
absolute instability is associated with a saddle point in the
dispersion relation D(k, 𝜔) with the transition from stabil-
ity to instability as this saddle point crosses the real 𝜔-axis
into the positive 𝜔i-half-plane. Since the saddle point is
the result of a merging of two branches of the dispersion
relation originating from opposite sides of the real k-axis
(discussed in detail in Section 4.4) the iterative method
for convective instability outlined above, following a cer-
tain branch of D with 𝜔i = 0, can start to follow different
branches of the function k(𝜔) when the real frequency
exceeds the real part of the frequency of the absolutely
unstable mode (i.e., for |𝜔| > 𝜔a,r ≈ 0.8, as explained in
Section 4.4). When the basic flow is absolutely unstable,
we therefore cannot be certain that the calculation of ki,
that is, the results shown in Figure 5, is correct for large
frequencies𝜔r. However, in these cases the flow behaviour
at large times will be dominated by the absolutely unsta-
ble modes and the properties of the convectively unstable
modes will not be of interest.

4.4 Calculation of absolute instability

To compute absolutely unstable modes, we follow a
similar approach as in the convective problem described in

Section 4.3, starting with solving the temporal instability
problem to find the phase speed c corresponding to an
imposed real wave number k. We then varied c away
from this starting point while tracking the correspond-
ing frequency and wave number to map out the disper-
sion relation 𝜔(k) over a certain region in k-space. In
many cases it was possible to identify a saddle point
in the (complex) surface 𝜔(k), as illustrated in Figure 6
for a basic state with 𝜌 = 6 and 𝜂 = 13. Note that 𝜔(k)
being an analytic function of the complex variable k
implies that the two surfaces show saddles at the same
location.

To verify that the saddle point shown in Figure 6 does
indeed describe a physically relevant mode and results
from the merging of modes originating from opposite
sites of the real k-axis (Section 4.1), we computed the
Bromwich images corresponding to a range of Bromwich
contours, that is, we computed the values of the complex
(inverse) dispersion relation k(𝜔) for a range of𝜔i-isolines,
as shown in Figure 7. To obtain the Bromwich contours
and images we performed two sets of calculations, both
initialised with a value for c close to the previously com-
puted complex saddle-point value ca = 𝜔a∕ka, but with
slightly increased or decreased (about 1%) imaginary part,
respectively. For the two slightly altered values of initial
c, solving Equation (3) will lead to two different solutions
in k-space on either side of the saddle point (denoted as
mode 1 and mode 2 in Figure 7). We then vary this initial
c based on Equations (6) and (7) to obtain the Bromwich
contours and the corresponding Bromwich images for the
two modes individually by varying c so that the change
in either 𝜔i or 𝜔r vanishes. Note that this procedure will
generally lead to Bromwich images corresponding to dif-
ferent sets of Bromwich contours for the two modes, but
can still provide useful information on the structure of
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F I G U R E 7 Bromwich images corresponding to different 𝜔i

contours on the dispersion relation that merge in the saddle point
(triangle, corresponding to ka and 𝜔a) shown in Figure 6 as
𝜔i → 𝜔a,i. Modes 1 and 2 describe two branches of D(k, 𝜔) = 0
originating from opposite sides of the real k axis for large 𝜔i. The
small dots show the path of the mode with fixed𝜔r = 𝜔a,r as𝜔i varies

the dispersion relation and the behaviour of the Bromwich
images.

It can be seen in Figure 7 how the Bromwich images
of the two modes originate from different sides of the real
k-axis for Bromwich contours with 𝜔i ≫ 𝜔a,i. As 𝜔i → 𝜔a,i
for the Bromwich contours, the corresponding Bromwich
images of the two modes merge at the saddle point. This
behaviour confirms that the identified saddle point is
indeed physically relevant and does describe a mode of
absolute instability.

We can perform the described instability calculation
for various basic states to investigate the dependency of the
absolute instability (described by the saddle point location)
on the specified flow profile. Figure 8a shows the abso-
lute frequency 𝜔a and wave number ka as function of the
parameter 𝜂 (for fixed 𝜌 = 6) determining the basic state
according to Equation (4).

Two main observations can be made:

• The temporal growth rate depends strongly on 𝜂. In
particular 𝜔a,i changes sign at 𝜂 ≈ 7. Here the basic
state transitions from being absolutely stable to being
absolutely unstable,

• the three quantities 𝜔a,r, ka,r and ka,i, that is, the real
parts of the absolute frequency and wave number and
the imaginary part of the absolute wave number, seem
not to be sensitive to changes in basic state strength.
Their values only change slightly with 𝜂 for very weak
basic flows, for which the system is absolutely stable and
the shown mode is less important.

We also investigated the characteristics of the absolute
instability for various values of the width 𝜌 of the
basic state flow with fixed magnitude 𝜂 = 13, shown in
Figure 8b. We find a similar qualitative behaviour as for
changes in 𝜂, in the sense that the system becomes more
stable for larger length-scales and 𝜔a,i does become nega-
tive for certain parameters.

5 NUMERICAL SIMULATIONS
OF UNSTABLE GROWTH

In this section we complement the spatio-temporal sta-
bility analysis presented in the previous section by direct
numerical solution of the linearised equations governing
the evolution of disturbances to a specified basic state, that
is, the linearised form of Equation (1).

Unstable modes of the basic state with imposed scale
𝜌 and magnitude 𝜂 are excited by perturbing the system
with the mass source shown in Equation (2), with imposed
perturbation frequency 𝜔0, weak forcing magnitude F0 =
2 ⋅ 10−3 and radius r0 = 𝜌. In contrast to the experiments
performed in Section 3, the imposed mass source is not
supposed to directly force the flow, but merely to explic-
itly perturb the system at a given location with a given
frequency. These perturbations are representing small ran-
dom perturbations of the beta-plume corresponding to
the steady linear solution of Equation (1). The method-
ological idea of the periodic forcing with fixed frequency
is that it will only excite waves and unstable modes of
exactly that frequency, while the small forcing magni-
tude ensures that only (spatially or temporally) amplifying
modes lead to a significant perturbation of the system. For
long times the flow perturbation should then be domi-
nated by the corresponding fastest growing mode. Hence it
should be possible to verify numerically the behaviour pre-
dicted on the basis of the dispersion relation. Note that to
the far west of the forcing (x < −200) the localised sponge
region is still active (although not shown in most plots),
in order to simulate an infinitely extended domain. In
contrast to the steadily forced experiments in Section 3, the
sponge region now acts only on the zonally non-symmetric
part of the response and thus does not affect the
basic state.

Figure 9 visualises the time evolution of the stream
function response of the linearised and non-linearised
version of the model to a weak time-periodic perturba-
tion with 𝜔0 = 0.8 and basic flows with different strength
parameters 𝜂 and fixed width 𝜌 = 6. This frequency 𝜔0
corresponds roughly to the absolute frequency and the
frequency of maximum growth rate of the convective
instability of the system (Figures 5 and 8). Specifically
shown is the logarithm of the absolute value of the stream
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(a) (b) F I G U R E 8 Change in 𝜔a

and ka as (a) a function of flow
strength 𝜂 of the idealised basic
state with fixed flow width
𝜌 = 6, and as (b) a function of 𝜌
for fixed 𝜂 = 13

F I G U R E 9 Temporal evolution of the logarithm of the
absolute value of the stream function anomaly from the basic state
taken at (x = −50, y = 0) for different values of basic flow strength
and using both the linear and the nonlinear model. The slope of the
straight line indicates the theoretically predicted absolute temporal
growth rate 𝜔a,i for a system with 𝜌 = 6 and 𝜂 = 13 according to
Figure 8

function anomaly from the basic state (as defined by
Equation (4)) at a fixed location west of the forcing with
x = −50 and y = 0.

The time period between days 0 and about 100 is
associated with the spin-up of the statistically steady
response. For times after day 100 the three systems show
distinctly different behaviours. Of particular interest in
these plots are the positions of the local maxima of the
various curves, which indicate the strength of the enve-
lope of the temporally periodic wave that is perturb-
ing the beta-plume initial state. The case with 𝜂 = 6.5
shows a constant magnitude of the perturbation at the
fixed location and no temporal growth, which is con-
sistent with the idea of convective instability. The case
with 𝜂 = 13 and the linear model, on the other hand,
shows an exponential temporal growth, suggesting an
absolute instability of the system. The temporal growth
rate is close to the theoretical prediction𝜔a,i deduced from
Figure 8 (indicated by the slope of the straight line). How-
ever, if we impose a basic state with 𝜂 = 13 and use the

non-linearised version of Equation (1), the response shows
nonlinear saturation and becomes statistically steady for
long times.

Correspondingly to the temporal evolution in Figure 9,
Figure 10 shows the spatial structure of the pertur-
bations for basic states with different values for 𝜂,
and again using the linearised or non-linearised ver-
sion of the model. Figure 10 shows two different
types of plots, all corresponding to the instantaneous
state of the system on day 200. The two-dimensional
filled-contour plots (Figures 10c,f) show the spatial struc-
ture of the total stream function at day 200, the line curves
(Figures 10a,b,d,e) show the corresponding logarithm of
the absolute value of the stream function anomaly from the
basic flow along y = 0.

Figures 10a,d show the response of the linear model.
Both cases, the strong (𝜂 = 13) and weak (𝜂 = 6.5) basic
flows, exhibit a strong growth of the spatially periodic vari-
ability in the zonal direction, indicating a spatio-temporal
instability of the basic flow. In the case with 𝜂 = 6.5
(Figure 10a) the spatially growing wave is (statistically)
steady in a temporal sense, as was shown in Figure 9.
However, the perturbations in the system with 𝜂 = 13
(Figure 10d) do grow in space and time and thus strongly
dominate the flow after a certain time. The magnitude
of the forced wave grows rapidly (in the linear case) and
does not seem to be limited1. The persistent exponential
temporal growth of the perturbations leads to extreme val-
ues of 𝜓 at day 200. The structure of the stream function
anomaly, however, still shows spatial exponential growth,
which extends continuously to the west and the east of the
forcing. The temporal amplification of a spatially ampli-
fying perturbation, and the propagation of the wave in
positive and negative x-direction, both suggest an absolute

1Note a slight deviation of the ln |𝜓 − 𝜓| curves (Figure 10a,d) for large
negative x below the linear trend, which is likely due to the
hyper-diffusion used in the model.
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F I G U R E 10 Day 200 snapshots of the stream function response of zonally symmetric basic state profiles with 𝜌 = 6 and different
magnitudes 𝜂 = (a, b, c) 6.5 and (d, e, f) 13 to a small time-periodic perturbation at the origin with frequency 𝜔0 = 0.8. (c,f) show the
two-dimensional fields and (a, b, d, e) the logarithm of the absolute value of the deviation from the basic state along y = 0. The model uses
either the (a, d) linear or (b, c, e, f) nonlinear version of Equation (1). The straight lines in (a, b) have a slope corresponding to the spatial
growth rate of the fastest growing convective mode, and the line in (d) has a slope corresponding to the spatial growth rate of the absolute
mode of the system. The ellipses in (c, f) indicate the forcing region. Recall that only part of the zonally periodic simulation domain is shown
and that an imposed sponge region at x < −200 suppresses communication of the response for large positive x and large negative x (Section 2)

instability of the basic flow in the case with 𝜂 = 13, while
the temporally steady and only westward response in the
case with 𝜂 = 6.5 suggests a convective instability of the
system. The spatial growth rates of the stream function
in Figure 10a,b,d are close to the predicted growth rates
ki for convective and absolute instability, respectively, as
deduced via Figure 5 (for 𝜂 = 6.5) and 8 (for 𝜂 = 13). The
corresponding growth rates are indicated by solid green
and pink straight lines.

Figures 10b,c,e,f show the response of the same two
basic states, but using the fully nonlinear QG model. We
can observe only small differences to the linear case for
𝜂 = 6.5 since the perturbation of the basic flow is rela-
tively weak and nonlinear effects are relatively small. For
the state with 𝜂 = 13, however, the nonlinearity of the
system limits the temporal and the spatial growth drasti-
cally and hence the perturbations are much smaller than
when using the linearised equations. Since the instabil-
ity still occurs over the full length of the domain, the
initially zonally symmetric basic state now breaks into
isolated vortices everywhere, in particular to the east of
the forcing. In this case the system does reach a (statisti-
cal) steady and zonally almost periodic state (Figure 10f)
resembling a zonal chain of discrete vortices similar to the

response to a steady mass source in the shedding state2

(e.g., Figure 1f).
To better understand the response in terms of con-

vective and absolute instabilities, we performed Fourier
decompositions of the stream function signal (with zonal
mean removed) in time and space. The computed power
spectra are displayed in Figure 11. Again, there is a clear
difference between the cases with 𝜂 = 6.5 and 𝜂 = 13. For
𝜂 = 6.5 we do find sharp temporal peaks, located almost
exactly at the imposed forcing frequency 𝜔0. Correspond-
ingly we observe isolated and pronounced spatial Fourier
peaks for the different values of 𝜔0. Note that the Fourier
peaks are normalised by their integral over the full domain
range.

For the case with a stronger basic flow (𝜂 = 13), we do
not observe a range of isolated temporal or spatial peaks,
but both normalised power spectra are seemingly indepen-
dent of the forcing frequency, showing a single robust peak
in frequency and wave number. This kind of excitation

2Recall that in the steadily forced cases, the beta-plume corresponding
to the steady linear solution only extends to the west of the forcing while
the experiments performed in this section are started with a zonally
symmetric beta-plume initial state.
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(a) (b)

(c) (d)

F I G U R E 11 (a, c) Temporal and (b, d) spatial Fourier
decomposition of the zonally varying part of the response along y = 0
between days 100 and 200 and −80 < x < −10 (averaged over the
respective spatial/temporal range) for the response of different basic
states with 𝜌 = 6 to a periodic forcing with frequency 𝜔0. Dashed
lines indicate theoretical prediction of absolute frequency/wave
number of the corresponding basic state according to Figure 8. (c, d)
show all six values of 𝜔0 but the spectra are identical

of a specific frequency independent of the forcing again
suggests the presence of an absolute instability. The verti-
cal, dashed lines in Figure 11c,d illustrate the theoretically
calculated values of 𝜔a,r and ka,r according to Figure 8.

Since the absolute stability analysis in Section 4.4 pre-
dicts a strong sensitivity of the temporal growth rate 𝜔a,i
to changes in basic flow strength 𝜂 and even a sign change
near 𝜂 ≈ 7, we can expect the absolute mode to grow
very slowly for states with 𝜂 just above this value and to
not amplify at all for 𝜂 < 7. Figure 12 shows the tempo-
ral peaks of a Fourier decomposition over a varying time
window, with fixed length of 30 days, for a constant forc-
ing frequency 𝜔0 = 0.4 and different values of basic flow
strength.

In the case with 𝜂 = 6.5 the system is absolutely stable,
that is, 𝜔a,i < 0. The response shows a clear and localised
peak exactly at the forcing frequency and independent of
the analysed time period. If we choose a system with 𝜂 =
8.6, and hence weak absolute instability, we observe the
same temporal peak at 𝜔 = 𝜔0 when analysing early times
between days 30 and 60, since the perturbation response is
directly forced by the imposed time-periodic mass source.
As we move the window to later times, we see the peak
at the forcing frequency becoming weaker and a second
peak growing at the position of the predicted absolute fre-
quency 𝜔a,r. This behaviour illustrates the domination of
the system by absolute instability for later times, since the

time is needed for the instability to take over scales like the
absolute growth rate𝜔−1

a,i . When using a strong background
flow with 𝜂 = 13, the response is dominated by the strong
absolute instability right away, since 𝜔a,i is large.

The position of the spatial and temporal Fourier
peaks in Figure 11 correspond to the dominant modes
of the response of the basic state when perturbed by a
time-periodic forcing of frequency 𝜔0. In the case with
𝜂 = 6.5, we can plot the positions of frequency peaks
against the positions of the corresponding wave number
peaks to get a numerically obtained dispersion relation
for kr(𝜔r). The result is shown as triangles in Figure 5,
compared to the theoretically computed convective dis-
persion relation of the system with 𝜂 = 6.5. The good
match between theory and measured dispersion gives con-
fidence that the spatio-temporal instability theory pre-
sented in Section 4 is indeed a useful explanation for the
break-up of the beta plume discussed in this section, and
that the developed methods can be used to theoretically
predict certain aspects of the dispersion relation of the
system. As argued in Section 4.4, it is not clear if the the-
oretical dispersion relation is valid for |𝜔r| > 𝜔a,r, hence
Figure 5 does not show the corresponding measured points
with |𝜔0| > 0.8.

6 APPLICATION TO STEADILY
FORCED EXPERIMENTS

We will now use the presented spatio-temporal instabil-
ity analysis as a theory to explain and predict the different
behaviours seen in the steadily forced single-layer model
experiments described in Section 3.

To link the results of the theoretical stability analy-
sis for a certain imposed flow profile and the observed
response to a steady forcing, we will first define two sets of
stream function profiles (which then imply e.g., the zonal
wind field):

• Idealised profiles: given by Equation (4) with defining
parameters 𝜌 and 𝜂. The stability analysis in Section 4
was performed for these profiles.

• Measured profiles: extracted from forced experiments
(as shown in Figure 1), with steady (𝜔0 = 0) forcing
defined in Equation (2) with magnitude F0 and radius
r0. The one-dimensional profiles are obtained by aver-
aging along the x = −10 line over days 300 to 1,000.

Figure 3 in Section 4.2 shows an example of an ide-
alised (Figure 3a) and a measured (Figure 3b) stream
function profile and their corresponding wind and PV gra-
dient structures. The idealised profiles reproduce many
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(a) (b) (c)

F I G U R E 12 Temporal Fourier decomposition of the zonally varying part of the response along y = 0 averaged over −50 < x < −10 and
different time periods for basic states with 𝜌 = 6 and different magnitudes 𝜂 = (a) 6.5, (b) 8.6, and (c) 13, giving rise to different theoretically
computed absolute growth rates 𝜔a,i. The system is forced with constant frequency 𝜔0 = 0.4

features of the measured profiles, including a reversal
of the PV gradient south of the origin as well as
small and smooth secondary extrema of the PV gradient
near y = ±𝜌.

We will perform the stability analyses described in this
section only for basic states given by idealised profiles
in order to simplify the subtle computation and identi-
fication of the saddle points in the dispersion relation.
The zonally independent idealised and measured profiles
are supposed to be different representations of the west-
ward extending beta-plume caused by a steady localised
forcing if it were not subject to any dynamic instability
(e.g., Figure 1a). To link the set of measured profiles to
corresponding idealised states, we fitted the stream func-
tion structures of the latter onto the former. The fit was
computed by finding the parameter combination of ide-
alised flow width 𝜌 and strength 𝜂 that minimises the
square-integrated stream function difference between the
idealised profile and the corresponding measured profile
extracted from the experiments with steady forcing defined
by F0 and r0.

The idealised nature of the fit can lead to slightly
changed stability characteristics compared to the actual
measured profiles. Table 1 gives an example of theoret-
ically derived stability characteristics for different mea-
sured flow profiles and their corresponding fits. As can
be seen the results of the absolute stability analysis for
the measured profile and the fit are fairly close to each
other for the case with r0 = 4,F0 = 2.2(leading to a fitted
idealised profile with 𝜌=5.5 and 𝜂=16). In particular both
values of 𝜔a,i predict the system to be absolutely unsta-
ble. The system with r0 = 4,F0 = 1.3 on the other hand
shows a significant difference in stability when compared
to its idealised fit (with 𝜌=5.4 and 𝜂=9.5). While the mea-
sured profile predicts the system to be absolutely stable,
with𝜔a,i < 0, the fit suggests the opposite. Such significant

differences do mainly occur for certain transition states,
that is, marginally stable or unstable states with |𝜔a,i|≪ 1,
while the fitting gives reasonably good estimates of the
systems stability for very stable or very unstable states.

Also note that the predicted (both, using idealised fit
and measured profile) frequency of the shedding state
(F0 = 2.2, r0 = 4) is in good agreement with the observed
frequency of the steadily forced response of𝜔 ≈ 0.8, as dis-
cussed in Section 3. The good agreement gives confidence
that the shedding process in the steadily forced experi-
ments can indeed be interpreted as result of an absolute
instability.

Finally we can combine the gathered information
about the experimental results and the results of our the-
oretical stability analysis of Section 5 to create a phase
diagram indicating the transitions between the three pre-
sented states as we vary the width and magnitude of the
forcing. For the theoretical part we expect the behaviour of
the response to change in the following way:

• The flow should be steady for forcing distributions that
do not lead to a sign change in the PV gradient and
therefore do not satisfy Equation (A3). Generally the
minimum PV gradient for the idealised cos4 profiles will
become more negative (thus the system should become
less stable) for stronger and narrower forcing profiles.

• For 𝜂/𝜌-combinations that lead to a sign-change of the
PV gradient, the flow can be unstable in a convective
or absolute sense. The transition depends on the sign
of the absolute temporal growth rate of the system and
the parameter combination for the transition can be
deduced from plots like in Figures 5 and 8. For sys-
tems with negative 𝜔a,i, we expect the flow to be in the
break-up state, while positive 𝜔a,i (and thus absolute
instability) should correspond to a flow in the shedding
state.
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Profile Fit 𝝎a ka

r0 = 4, F0 = 2.2 −0.810 + 0.203i 0.471 + 0.118i

𝜌 = 5.5, 𝜂 = 16 −0.795 + 0.257i 0.573 + 0.082i

r0 = 4, F0 = 1.3 −0.557 − 0.035i 0.495 + 0.071i

𝜌 = 5.4, 𝜂 = 9.5 −0.821 + 0.104i 0.609 + 0.097i

T A B L E 1 Comparison of stability analysis
results for two measured profiles and their
corresponding idealised fits

F I G U R E 13 Comparison of theoretically obtained phase
map of idealised basic states fitted onto measured profiles obtained
from the steadily forced numerical experiments. Experiments using
the same forcing length-scale r0 as DK89 are highlighted

Figure 13 illustrates the theoretical parameter com-
binations where either the minimum meridional PV
gradient of the linear solution (solid curve) or the tempo-
ral growth rate of the absolute instability (crosses) change
sign. We then plotted diagnostics derived from the steadily
forced experiments on top of the lines from the idealised
theory. The position of each marker corresponding to a
certain set of forcing parameters r0 and F0 and is given
by the parameters 𝜂 and 𝜌 calculated via the idealised fit-
ting approach described earlier. The classification of the
type of response for each experiment is done based on the
spatial structure and temporal variability of the flow (e.g.,
Figure 1) as discussed in Section 3. Note that the classifi-
cation will generally be difficult for the inevitable transi-
tion states discussed earlier, meaning states that are only
marginally stable/unstable in a total or absolute sense.

The theoretical predictions shown in Figure 13 are
in good agreement with the experimental results. Both
sets of analyses show a clear division into three regions
with states corresponding to break-up or convective stabil-
ity being unlikely to occur for small forcing magnitudes
or small length-scales. Further, the parameter combina-
tions at which the transition between the states hap-
pens are in good agreement with the theoretical predic-
tions from our stability analysis, keeping in mind the
uncertainties associated with transition states mentioned

earlier. DK89 discussed the response in experiments using
a shallow-water reduced-gravity model forced by a steady
localised mass source, similar to the experiments in
Section 3. They restricted their analysis to a forcing with
r0 = 3 and observed only steady and shedding states, but
no convectively unstable break-up behaviour. This could
either be due to the fact that they used a rather short
periodic channel of length Lx = 60 or because the restric-
tion of the forcing length-scale puts their experiments in a
regime where the break-up state is practically impossible
to observe. Figure 13 indicates three of our forced experi-
ments with r0 = 3 and their position within the developed
phase map. As can be seen, the region with inverted PV
gradient and𝜔a,i < 0 is very small here, making it unlikely
to observe a corresponding break-up state. However, it is
not clear what changes in convective and absolute stabil-
ity are potentially caused by, for example, their different
choice of 𝛽, hence this comparison needs to be done with
caution.

7 SUMMARY

This paper has discussed in detail the phenomenon
of spontaneous westward shedding of eddies from a
steady localised mass source in a single-layer QG flow.
Previous studies have demonstrated a transition, for
example, when increasing the forcing magnitude at a
fixed forcing length-scale, from a steady, almost linear
beta-plume state to a shedding state in which discrete
vortices form within the forcing region and are shed
westwards.

We presented evidence for the existence of a third flow
state, in addition to the two known states (steady and
eddy-shedding), which is characterised by a steady flow in
the neighbourhood of the mass source, but with temporal
variability increasing in magnitude to the west, away from
the source region. This third state, which we describe as a
‘break-up state’, had the characteristics of convective insta-
bility and motivated a new approach to the problem in the
form of a spatio-temporal stability analysis.

We thus performed a comprehensive stability anal-
ysis for a certain idealised set of parallel shear flows.
We implemented numerical algorithms to determine the
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characteristics of unstable behaviour in either a tempo-
ral, convective or absolute sense. Unlike other authors, we
did not restrict our analysis to absolutely unstable modes,
but were able to also obtain information on the convec-
tive stability of the system. These algorithms can poten-
tially be used to investigate the spatio-temporal stability
of other systems. We further applied the different types
of stability analysis to various sets of idealised flows and
investigated their stability properties depending on differ-
ent imposed flow parameters, such as the strength and
meridional scale. From this analysis we argued that the
steady, break-up and eddy-shedding states corresponded
respectively to stability, convective instability and absolute
instability of the flow forced by the mass source. Among
other results, we found the studied system to develop an
absolute instability for strong flows with small meridional
length-scales, while weak flows with large meridional
scales typically lead to convective instabilities or stable
behaviour. We were able to numerically calculate various
physical scales, for example, the required threshold values
for the state transitions and the frequency of the resulting
absolutely unstable mode for a given shear flow profile. We
demonstrated good agreement between the predicted state
transitions and shedding frequencies and those observed
in numerical simulations.

This flow configuration studied here was originally
motivated by the westward eddy-shedding phenomenon
observed in relation to the Asian monsoon anticyclone,
but it has also been studied as a simple model for ocean
flows, such as the break-up of the Mediterranean salt
tongue as it emerges into the Atlantic. Another poten-
tial application for the general theory presented in this
paper might be to study the growth of waves propagat-
ing on the African Easterly Jet, which is another example
of a localised thermal forcing giving rise to an unstable
zonal flow. As noted previously, Diaz and Aiyyer (2015)
have studied the spatio-temporal instability of this flow,
focusing on the possibility of absolute instability, and it is
possible that transitions between convective and absolute
instability might be relevant to, for example, the seasonal
evolution of the flow. While the break-up state is proba-
bly not strongly relevant to the observed behaviour of the
Asian monsoon anticyclone in particular, the description
of the eddy-shedding process as spatio-temporal instability
serves as a new conceptual model for the phenomenon and
provides quantitative predictions on scales and behaviours
that have previously not been possible.

ACKNOWLEDGEMENTS
We acknowledge support from the European Commission
project StratoClim, 7th Framework Programme, project
no. 603557, and the European Research Council, ACCI
project no. 267760. We acknowledge the useful comments

of Alan Plumb and an anonymous reviewer on an earlier
version of this manuscript. We further want to thank Colm
Caulfield and Geoffrey Vallis for insightful discussions
about the topic of this study.

ORCID
Philip M. Rupp https://orcid.org/0000-0001-7833-1748
REFERENCES
Bao, M. and Hartmann, D.L. (2014) The response to MJO-like forcing

in a nonlinear shallow-water model. Geophysical Research Letters,
41(4), 1322–1328.

Bers, A. (1973). Theory of Absolute and Convective Instabilities,
in International Congress on Waves and Instabilities in Plas-
mas, Auer, G., Cap, F. (eds). Institute for Theoretical Physics,
Innsbruck, Austria.

Bourassa, A.E., Robock, A., Randel, W.J., Deshler, T., Rieger, L.A.,
Lloyd, N.D., Llewellyn, E.J. and Degenstein, D.A. (2012) Large
volcanic aerosol load in the stratosphere linked to Asian mon-
soon transport. Science, 337(6090), 78–81. https://doi.org/10.
1126/science.1219371

Briggs, R.J. (1964) Electron-Stream Interaction with Plasmas. MIT
Press, Cambridge, MA.

Cenedese, C. and Linden, P. (1999) Cyclone and anticyclone forma-
tion in a rotating stratified fluid over a sloping bottom. Journal of
Fluid Mechanics, 381, 199–223.

Davey, M.K. and Killworth, P.D. (1984) Isolated waves and eddies
in a shallow-water model. Journal of Physical Oceanogrophy, 14,
1047–1064.

Davey, M.K. and Killworth, P.D. (1989) Flows produced by discrete
sources of buoyancy. Journal of Physical Oceanography, 19(9),
1279–1290.

DelSole, T. (1997) Absolute instability induced by dissipation. Jour-
nal of the Atmospheric Sciences, 54(21), 2586–2595.

Diaz, M. and Aiyyer, A. (2015) Absolute and convective instability of
the African easterly jet. Journal of the Atmospheric Sciences, 72(5),
1805–1826.

Fiehn, A., Quack, B., Hepach, H., Fuhlbrügge, S., Tegtmeier, S.,
Toohey, M., Atlas, E. and Kröuger, K. (2017) Delivery of halo-
genated very short-lived substances from the west Indian Ocean
to the stratosphere during the Asian summer monsoon. Atmo-
spheric Chemistry and Physics, 17(11), 6723–6741. https://doi.org/
10.5194/acp-17-6723-2017

Garny, H. and Randel, W.J. (2013) Dynamic variability of the
Asian monsoon anticyclone observed in potential vorticity and
correlations with tracer distributions. Journal of Geophysical
Research: Atmospheres, 118(24), 13421–13433. https://doi.org/10.
1002/2013JD020908

Gill, A.E. (1980) Some simple solutions for heat-induced tropical cir-
culation. Quarterly Journal of the Royal Meteorological Society,
106, 447–462.

Ho, C.M. and Huerre, P. (1984) Perturbed free shear layers. Annual
Review of Fluid Mechanics, 16(1), 365–422.

Hohenegger, C., Lüthi, D. and Schär, C. (2006) Predictability myster-
ies in cloud-resolving models. Monthly Weather Review, 134(8),
2095–2107.

Hoskins, B.J. and Rodwell, M.J. (1995) A model of the Asian sum-
mer monsoon. Part I: the global scale. Journal of the Atmospheric
Sciences, 52(9), 1329–1340.

https://orcid.org/0000-0001-7833-1748
https://orcid.org/0000-0001-7833-1748
https://doi.org/10.1126/science.1219371
https://doi.org/10.1126/science.1219371
https://doi.org/10.5194/acp-17-6723-2017
https://doi.org/10.5194/acp-17-6723-2017
https://doi.org/10.1002/2013JD020908
https://doi.org/10.1002/2013JD020908


RUPP and HAYNES 1879

Hsu, C.J. and Plumb, R.A. (2000) Nonaxisymmetric thermally driven
circulations and upper-tropospheric monsoon dynamics. Journal
of the Atmospheric Sciences, 57(9), 1255–1276.

Huerre, P. and Monkewitz, P.A. (1990) Local and global instabilities
in spatially developing flows. Annual Review of Fluid Mechanics,
22(1), 473–537.

Kraucunas, I. and Hartmann, D.L. (2007) Tropical stationary waves
in a nonlinear shallow-water model with realistic basic states.
Journal of the Atmospheric Sciences, 64(7), 2540–2557.

Lin, J.L., Mapes, B.E. and Han, W. (2008) What are the sources of
mechanical damping in Matsuno–Gill-type models?. Journal of
Climate, 21(2), 165–179.

Lin, S. and Pierrehumbert, R. (1993) Is the midlatitude zonal flow
absolutely unstable?. Journal of the Atmospheric Sciences, 50(4),
505–517.

Liu, Y., Hoskins, B.J. and Blackburn, M. (2007) Impact of Tibetan
orography and heating on the summer flow over Asia. Journal of
the Meteorological Society of Japan, 85, 1–19.

Merkine, L.O. (1977) Convective and absolute instability of baro-
clinic eddies. Geophysical & Astrophysical Fluid Dynamics, 9(1),
129–157.

Nützel, M., Dameris, M. and Garny, H. (2016) Movement, drivers and
bimodality of the South Asian High. Atmospheric Chemistry and
Physics, 16(22), 14755–14774.

Park, M., Randel, W.J., Emmons, L.K. and Livesey, N.J. (2009)
Transport pathways of carbon monoxide in the Asian summer
monsoon diagnosed from model of Ozone and related trac-
ers (MOZART). Journal of Geophysical Research: Atmospheres,
114(D8). https://doi.org/10.1029/2008JD010621

Pierrehumbert, R. (1986) Spatially amplifying modes of the Charney
baroclinic-instability problem. Journal of Fluid Mechanics, 170,
293–317.

Polvani, L.M. and Pedlosky, J. (1988) The effect of dissipation on spa-
tially growing nonlinear baroclinic waves. Journal of the Atmo-
spheric Sciences, 45(14), 1977–1989.

Popovic, J.M. and Plumb, R.A. (2001) Eddy shedding from the
upper-tropospheric Asian monsoon anticyclone. Journal of the
Atmospheric Sciences, 58(1), 93–104.

Randel, W.J., Park, M., Emmons, L., Kinnison, D., Bernath, P.,
Walker, K.A., Boone, C. and Pumphrey, H. (2010) Asian monsoon
transport of pollution to the stratosphere. Science, 328(5978),
611–613. https://doi.org/10.1126/science.1182274

Sardeshmukh, P.D. and Hoskins, B.J. (1985) Vorticity balances in
the tropics during the 1982-83 El Niño–Southern Oscillation
event. Quarterly Journal of the Royal Meteorological Society, 111,
261–278.

Schär, C. and Smith, R.B. (1993) Shallow-water flow past isolated
topography. Part I: vorticity production and wake formation. Jour-
nal of the Atmospheric Sciences, 50(10), 1373–1400.

Vallis, G.K. (2017) Atmospheric and Oceanic Fluid Dynamics. Cam-
bridge University Press, Cambridge, UK.

Vogel, B., Günther, G., Müller, R., Grooß, J.U. and Riese, M. (2015)
Impact of different Asian source regions on the composition of
the Asian monsoon anticyclone and of the extratropical lower-
most stratosphere. Atmospheric Chemistry and Physics, 15(23),
13699–13716.

Wang, J. (2011). Instabilities of an eastern boundary current with and
without large-scale flow influence. PhD thesis, Massachusetts
Institute of Technology and Woods Hole Oceanographic Institu-
tion, USA.

Zhang, Q., Wu, G. and Qian, Y. (2002) The bimodality of the 100 hPa
South Asia High and its relationship to the climate anomaly
over East Asia in summer. Journal of the Meteorological Society of
Japan. Ser. II, 80(4), 733–744.

How to cite this article: Rupp PM, Haynes PH.
Spatio-temporal stability analysis applied to
monsoon anticyclone flow. QJR Meteorol Soc.
2020;146:1861–1879. https://doi.org/
10.1002/qj.3771

APPENDIX

Derivation of an equivalent condition for an
imposed forcing

DK89 derived an analytic criterion for which the
steady linear response to a given mass source in a full
shallow-water model reverses the PV gradient. We will
now present the derivation of an equivalent condition
for an imposed forcing F and the QG single-layer model
shown in Equation (1). For simplicity, we will neglect the
hyper-diffusion and the sponge region terms, that is, we
set 𝜖 = 0 and S ≡ 0. The steady and linearised model (for a
resting fluid) is then given by

𝜓x = −𝛽−1F. (A1)

Similar to DK89, we can assume that only transient
waves influence the region east of the forcing, giving𝜓 = 0
for x → ∞, and thus solve Equation (A1) by a a correspond-
ing integration. This leads to a formula for the meridional
PV gradient:

𝜕yq(x, y) = 𝛽 + 𝛽−1 ∫
∞

x

(
𝜕3

y − 𝜕y
)

F(x′, y) dx′. (A2)

Note that 𝜕yq in Equation (A2) changes monotonically
with x if F is single-signed and thus its extreme values in
x can be estimated for x → −∞. Under this assumption,
we can also assume F ≥ 0 everywhere without loss of gen-
erality. If that is the case, a necessary condition for the
meridional PV gradient to be reversed is given by

max
y ∫

∞

−∞

(
𝜕y − 𝜕3

y
)

Fdx > 𝛽2. (A3)

Equation (A3) is equivalent to the equation DK89
found for a full shallow-water model and can be used to
predict if a steadily forced system can support instabilities.
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