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Abstract
The Software-Defined Networking (SDN) architecture facilitates the flexible deployment of network functions by detach-
ing them from network devices to a logically centralized point, the so-called SDN controller, and maintaining a common 
communication interface between them. While promoting innovation for each side, this architecture also induces a higher 
chance of conflicts between concurrent control applications compared to existing traditional networks. We have discovered 
a new type of anomalies that we call hidden conflicts. They appear to occur only due to side-effects of control application’s 
behaviour and to be independent of and distinct from the class of conflicts between rules present in the network devices. We 
analyse the SDN interaction primitives susceptible to such disruptions and present experiments supporting our analysis, the 
result of which indicates the necessity of the knowledge on the control mechanics in detecting hidden conflicts. We present a 
hidden conflict prediction approach that employs speculative provocation to determine the deployed applications’ behaviour. 
The observed behaviour can be leveraged to predict undesired network state. Evaluation of our prediction prototype suggests 
that prediction functions should be integrated into control applications.

Keywords Hidden conflicts · Side-effects · Conflict detection · Conflict prediction · Software-defined networks · 
Speculative provocation

Introduction

In Software-Defined networking (SDN) architecture, the 
network elements (SDN devices) forming the data plane 
lack a control plane of their own. The control functions are 
centralized in a logical component, the so-called SDN con-
troller, that serves as a platform for control applications. 
These applications issue rules that govern the behaviour of 
the SDN devices in the data plane. The devices themselves 
retain only the essential functions for forwarding messages 
according to the rules stored in their flow tables and to pro-
cess instructions from the controller.

SDN offers a higher degree of flexibility in the speci-
fication of network behaviour than is achievable in tradi-
tional networks composed of autonomous network elements. 
The need for control protocols facilitating the negotiation 
between autonomous elements in traditional networks is 
eliminated in SDN and replaced by a central specification 
of network behaviour.

This architectural feature increases the flexibility in speci-
fying network behaviour. In particular, new or experimental 
network behaviour can be introduced at one single point in 
the network (the controller) instead of requiring changes to 
every network element.

This same flexibility renders SDN prone to conflicts 
between the intents of concurrently active control applica-
tions. Different control applications may intend to specify 
different behaviour that possibly leads to conflicts at the 
policy level. In other cases, its implementation in terms of 
rules may include rules conflicting with each other at a tech-
nical level.

We consider a conflict to be present when the network’s 
behaviour differs from the expected behaviour, as a result of 
the combined deployment of control applications. The new 
type of conflict demonstrated in this paper originates from 
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side-effects and is hidden from analysis of the rules in the 
data plane alone.

Hidden Conflicts

An instance of a generalization conflict in our experi-
mental setup for conf licts in SDN showed unex-
pected, anomalous network behaviour different from 
that described in literature. The generalization con-
flict class  [3, 21] is defined by two rules i and j differ-
ing in their action while the match expression of the rule 
with higher priority describes a subset of the other’s: 
priorityi > priorityj,matchi ⊆ matchj, actioni ≠ actionj . The 
consequence of generalization conflicts has been assessed 
to be minor.

The conflict instance caused by our two control appli-
cations conformed to the class definition: one application 
installed a “broader” rule with a more general match field, 
while the other of higher priority installed a rule matching 
a subset of the first. Figure 1 shows the scope of the rules 
introduced by the applications.

Figure 2 illustrates the case where two control applica-
tions verified to function correctly in isolation create a gen-
eralization conflict when executed concurrently. The upper 

box of the sequence diagram shows the simple reactive 
mechanics of App. 2: it reacts to new flows, of which it is 
notified, by installing new rules in the (Device 1).

The case of concurrent execution of both applications 
is shown in the lower box of Fig. 2, in which App. 2 is 
effectively disabled. Analysis of this behaviour showed the 
observed effect to be not a consequence of the generalization 
conflict between rule1 and rule1234 but contingent on the 
suppression of notifications (or events) issued to the applica-
tions. The presence of the broader rule rule1234 resulted in 
packets interesting to App. 2 being processed locally by the 
device, instead of being escalated to the controller. Hence, 
App. 2 was deprived of the notifications it requires to func-
tion as expected. A concrete experiment corresponding to 
this case is presented in "EpLB and TE1" section.

The expectation from the descriptions in literature and 
the apparent effect of the rules would suggest, indeed, only 
a minor issue: normally, the broader, low-priority rule would 
defer to the more specific one of higher priority. In our case, 
the sheer presence of the broader rule causes suppression of 
events and thus the failure of one application, as a side-effect 
of its (correct) handling of incoming packets. An alterna-
tive interpretation of this effect is a conflict between the 
broader rule and the default behaviour of the device to esca-
late unknown flows to the controller.

We name this type of conflicts hidden conflicts or side-
effect conflicts, as their cause cannot be discerned from anal-
ysis of the rules in the data plane’s devices alone but requires 
insight into the mechanics of the control plane. Their discov-
ery raises the question how sensitive the SDN control is to 
side-effects. To address it, we analyse the operational model 
for OpenFlow SDN [16] to identify potential side-effects that 
can cause anomalous behaviour in the network.

Synopsis

We first describe a new type of conflicts in SDN that we call 
hidden conflict. In contrast to the conflict types portrayed in 
literature, hidden conflicts are not detectable by rule analysis 
alone. The cause and mechanism of hidden conflicts appear 
to be orthogonal to those of conflicts between rules. Thus, 
hidden conflicts appear to be a different dimension of con-
flicts. Our initial examination of this conflict type shows it to 
occur due to suppression of the event mechanism as a side-
effect of an otherwise conflict-free rule set. Consequently, 
events necessary for the function of a control application are 
no longer provided to it.

Aiming to identify all possible side-effect sources, we 
examine the interaction primitives of SDN in "Analysis" 
section and identify those combinations of primitives that 
can be influenced by the operation of a control applica-
tion. Where possible, we determine the probable observ-
able consequences of such influence. We have conducted 

Fig. 1  Scope of the rules issued by the control applications

Fig. 2  Interactions of a control application in isolation and when con-
flicting with another. For clarity, the controller intermediary has been 
omitted
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experiments, discussed in "Empirical examination" section, 
that indicate the consequences of side-effects to be uncor-
related to conflicts between rules. In particular, we demon-
strate identical side-effects for two different types of con-
flicts between rules, as well as the absence of side-effects in 
a situation in which the influence on the control primitives 
is removed.

Being deprived of rule analysis as an effective method 
for the detection of hidden conflicts, we introduce a specu-
lative method to predict hidden conflicts through provoca-
tion of side-effects. By issuing surrogate, fake events to a 
control application, a predictor is capable of observing the 
application’s response behaviour and determining if the state 
of the data plane, including the rule set, would hinder that 
behaviour. We describe this approach and the function of our 
predictor prototype in "Hidden conflict predictor" section.

Our prediction approach is general in that it is not applica-
tion specific. Conversely, it is initially agnostic of the behav-
iour of the control applications that are being examined. 
Thus, the prediction itself may cause undesired effects in 
the network, in response to the surrogate/fake events issues 
by the predictor. Similarly, run-time prediction may cause 
race conditions between genuine and fake events. We dis-
cuss these issues in "Discussion" section. We review related 
research on conflicts and their detection in "Related work" 
section, including race conditions and conflicts between 
rules.

We conclude in "Conclusion" section by highlighting 
properties of the hidden conflict class and propose that pre-
dictor code should be included into applications at design 
time. The specialization of our prediction approach to render 
it useful during control application development is an inter-
esting topic for further study.

This article extends our previous work [28], that intro-
duced the notion of hidden conflicts, by emphasizing the 
following points:

• We elaborate the implementation details of the hidden 
conflict predictor (Sect. "Hidden conflict predictor") 
ranging from the prediction mechanism, the choice of 
candidate traffic for generating fake events and the inter-
ception of methods as reactions of control applications 
once receiving the fake events.

• We discuss the properties of the hidden conflict predictor, 
the challenges encountered during its deployment and 
find that they suggest the integration of predictor code 
in control applications to be beneficial.

• We indicate interesting research directions based on the 
analysis of the limitations of our own work, particularly 
when dealing with dynamic topology change and for 
choosing a fixed matching policy during the examina-
tion of conflicts.

Analysis

We discuss the methodology to analyse the hidden conflicts 
described in  "Introduction" section, which requires the 
introduction of the interaction primitives between SDN par-
ticipants at different layers. We infer the disturbance factors 
that could lead to hidden conflicts and their possible impact.

Methodology

The occurrence of the conflict instance demonstrated in 
"Hidden conflicts" section is contingent on an influence of 
one of the applications on the control mechanics of the other. 
Our examination therefore targets the potential influences 
exerted by applications and the SDN control mechanics that 
are susceptible to each influence.

As a starting point, we use an analytic examination 
method in that we decompose the operational model of 
OpenFlow into primitive interactions between the devices, 
the controller and the control applications. Such interactions 
are triggered by events in the network, including packets 
arriving at a device. Each combination of interactions is 
a candidate for influence. We assess each candidate with 
respect to its susceptibility to influence, i.e. we enumerate 
the conditions in which the interaction can be disturbed. For 
each of these susceptible candidates we attempt to assess 
the impact on an application whose correct function relies 
on it. Thus, we acquire a conflict model, that includes (i) 
the susceptible primitive interaction combinations, (ii) the 
conditions in which they may be influenced and (iii) the 
potential impact on the function of an application relying 
on a given interaction combination at a time when one of 
the conditions is met. We validate the model in "Empirical 
examination" section by documenting experiments that sup-
port our analysis.

Interaction Primitives

From the study of the OpenFlow specification 1 we extract 
the basic actions of the devices and a controller. Since Open-
Flow does not specify a north-bound interface, we define the 
interaction between controller and applications to consist of 
a controller interface and an event system, as it is commonly 
implemented in SDN controller software.

We list the trigger events along with the possible actions 
being triggered in Tables 1, 2 and 3.

1 https ://www.openn etwor king.org/wp-conte nt/uploa ds/2014/10/
openfl ow-switc h-v1.3.5.pdf

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
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Interaction Combinations

We assume that devices and applications do not interact 
directly and thus all interactions are relayed and translated 
by the controller. We note that some combinations are 
impossible in practice. We constrain the actions listed to 
those pertaining to an interaction and refrain from assump-
tions on the internal actions of controller and applications. 
Some of the combinations shown in Table 4 can be elimi-
nated from further analysis. These include:

• the items marked “device only”, as these do not reflect 
an actual interaction;

• the items where the application action is void, marked 
“NoP”.

It is possible to generate mock events, i.e. events that have 
no base in an actual state change in the network, to exploit 
the north-bound interface, either for productive use, e.g. to 
diagnose a network problem, or with malicious intent. The 
combinations of the interactions between applications and 
the controller, shown in Table 5, result from the mock events 
being introduced at the controller level or at the application 
level. Note that a mock event could be any of the events from 
Table 4 intended for the controller or the application.

Disturbance Factors

Network behaviour can be influenced (negatively) by the 
disruption of the interaction between the actors. In the fol-
lowing, we list disturbance factors that have been observed 
in an experiment or that are conceivable and give an example 
of how they can disturb the mechanics of an application.

Event suppression by local handling A switch handles 
an incoming packet locally, instead of escalating it to the 
controller. Consequently, the application is deprived of the 
event notification. An illustration for this disturbance factor 
is shown in Fig. 2: the presence of rule 1234 results in the 
missing notification for App. 2 when flow 2 arrives at Device 
1. Experiments 3.2.1 and 3.2.2 also reveal the same effect.

Event suppression by changes to paths Prevention of esca-
lation by changes to paths, e.g. when a packet interesting to 
an application is routed around the switch holding a rule that 
would escalate the packet to the controller.

Action suppression by packet modification A device exe-
cuting rules that modify packet fields before the packet is 
escalated by itself or by subsequent devices could modify the 
packet so that it is no longer accepted within an application’s 
scope. For example, application A1 instals a rule on switch 
S1 to modify all packets to D1 by changing the destination to 
D2 before sending these packets out of S1–S2. Application 
A2 is interested in the traffic destined to D1 and subscribes 
to event E originated from switch S2. As a result, the event 
escalated at switch S2 is ignored by A2.

Undue trigger Conversely to Action suppression by 
packet modification, an application can be “tricked” into, 
e.g. installing or removing rules by packets modified before 
escalation. This can happen in the course of an attack by 
mock packets sent by attackers.

Tampering with event subscription This disruption is 
contingent on applications being able to modify each oth-
er’s subscriptions. In that case, an application might cause 
“undue trigger” disruption to another application or simply 
suppress events by unsubscribing events for it. This case can 
also happen as a result of an attack.

Table 1  Device primitives

2 Flow timeout

Events Actions

Packet Out
Flow removal by internal timer 2 Drop
Packet with action Modify
Device/link/port startup Escalate data packet
Device/link/port shutdown Escalate status
Device/link/port failure Escalate notification
Device’s state query Modify and out

Modify and escalate

Table 2  Controller primitives

Events Actions

Device/link/port enabled Publish event
Device/link/port disabled Instal rule
Device/link/port failure Modify rule
Packet escalated Delete rule
Notification escalated Nop
Function call from application
Device’s state response

Table 3  Application primitives

3 By sending packet-out

Events Actions

Startup Instal rule
Shutdown Modify rule
Packet-in Delete rule
Topology change Delegate 

packet to 
device 3

Notification Nop
Device’s state response
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Susceptible Interactions and Impact

The combinations shown in Tables 4 and 5 may be suscep-
tible to one or more of the disturbance factors. We analyse 
each of them to determine which, if any, disturbances they 

are sensitive to and the result are shown in the Disturbance 
factor column of these tables. In our analysis, we have deter-
mined a combination to be sensitive if it is conceivable that 
one of the disruption factors may be able to disturb its pro-
cess. We present only the results and the effects we consider 

Table 4  Combinations of interaction primitives

# Device Controller Application Distur-
bance 
factor

Note

Event Action Event Action Event Action

1 Startup Escalate status Device/port/link enabled Publish event Topology change NoP
2 Startup Escalate status Device/port/link enabled Publish event Topology change Instal rules a,b,c
3 Startup Escalate status device/port/link enabled Publish event Topology change Delete rules a,b,c
4 Startup Escalate status Device/port/link enabled Publish event Topology change Packet-out a,b,c
5 Shutdown Escalate status Device/port/link disabled Publish event Topology change NoP
6 Shutdown Escalate status Device/port/link disabled Publish event Topology change Instal rules a,b,c
7 Shutdown Escalate status Device/port/link disabled Publish event Topology change Delete rules a,b,c
8 Shutdown Escalate status Device/port/link disabled Publish event Topology change Packet-out a,b,c
9 Failure Escalate status Device/port/link failure Publish event Topology change NoP
10 Failure Escalate status Device/port/link failure Publish event Topology change Instal rules a,b,c
11 Failure Escalate status Device/port/link failure Publish event Topology change Delete rules a,b,c
12 Failure Escalate status Device/port/link failure Publish event Topology change Packet-out a,b,c
13 State query State response D. state response Publish event D. state response NoP
14 State query state response D. state response publish event D. state response instal rules a,b,c
15 State query state response D. state response publish event D. state response delete rules a,b,c
16 State query state response D. state response publish event D. state response packet-out a,b,c
17 Packet Out – – – – Device only
18 Packet Drop – – – – Device only
19 Packet Modify – – – – Device only
20 Packet Escalate Packet esc. Publish event Packet-in NoP
21 Packet Escalate Packet esc. Publish event Packet-in Instal rules a,b,c
22 Packet Escalate Packet esc. Publish event Packet-in Delete rules a,b,c
23 Packet Escalate Packet esc. Publish event Packet-in Packet-out a,b,c
24 Flow timeout Escalate notification Notification esc. Publish event Flow removed NoP
25 Flow timeout Escalate notification Notification esc. Publish event Flow removed Instal rules a,b,c
26 Flow timeout Escalate notification Notification esc. Publish event Flow removed Delete rules a,b,c
27 Flow timeout Escalate notification Notification esc. Publish event Flow removed Packet-out a,b,c

Table 5  Mock events based on the interaction primitives

Controller Application Disturbance 
factor

Note

Event Action Event Action

Mock event Publish event Event NoP Mock event sent by apps relayed via controller
Mock event Publish event Event Instal rules/

delete rules/
packet-out

a,b,c,d,e Mock event sent by apps relayed via controller

Mock event NoP App sends mock event directly to app
Mock event Instal rules/

delete rules/
packet-out

a,b,c,d,e App sends mock event directly to app
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possible consequences of a disruption. Unsurprisingly, these 
effects strongly relate to the purpose of the interaction set. 
They include missing rules, redundant rules or wrong rules 
in one device or more, which may cause anomalous network 
behaviour. We note that the suppression of handling and the 
suppression of events appear prevalent in our assessment of 
the susceptibility of interaction combinations.

In partial validation of our analytical assessment on the 
disruption of interaction primitive combinations, we pre-
sent selected experiments in "Empirical examination" sec-
tion. One of them is a detailed description of the motivating 
example sketched in "Introduction" section.

Empirical Examination

We conduct two experiments to demonstrate the conse-
quences of side-effects on applications operating in reaction 
to events issued by the SDN controller. In another experi-
ment, we show that side-effects do not occur at all for event-
free applications.

Experiments are deployed on the topology shown in 
Fig. 3. The testbed are built based on virtual machines 
as described in [7]. We use the Ryu SDN framework2 for 
SDN controller with OpenFlow1.3 as the controller south-
bound API. Open vSwitch [20] with OpenFlow support is 
employed for SDN switches. Traffic among end-points is 
generated by common tools: iperf 3, nc and ping.

Applications for Experiments

We employ several control applications, that are run concur-
rently in different combinations, depending on experiment. 
They are described in the following.

Shortest Path First (SPF)

The SPF application uses the topology information provided 
by the controller to realize the shortest path first routing 
function for all common kinds of traffic: ARP, ICMP, TCP, 
UDP.

SPF can be configured to deploy rules in two manners for 
IP traffic including ICMP, TCP, UDP:

• SPF1 the rule’s match field includes: source IP address, 
destination IP address, IP protocol number 4

• SPF2 the rule’s match field includes only destination IP 
address.

End‑point load balancer (EpLB)

The session-based end-point load balancer balances the 
TCP/UDP traffic among configurable replicas. To change the 
target replica transparently to the sender of the packet, EpLB 
modifies specific fields (e.g. destination MAC address, des-
tination IP address) of the packets. This operation is imple-
mented by installing rules with a setfield action, as specified 
for OpenFlow SDN devices.

In the experiment presented in this paper, EpLB is 
deployed on switch S7 to balance the UDP/TCP sessions 
between PC3 and PC4. The first incoming session destined 
to PC3 will be sent to PC3, the second session to PC3 will 
be changed to PC4 by rewriting the destination information 
of the relevant traffic, the third will come to PC3 and so on. 
The balancing operation is transparent to end users in that 
the traffic in response from PC4 to the original source will 
be changed to appear as if it was sent from PC3.

Traffic Engineering (TE)

In the role of a network administrator, we employ the Ryu 
REST API 5 to pro-actively perform traffic engineering in 
two different manners in different experiments. Note, that 
in these experiments the TE “application” has been simu-
lated by manual entry of the flow rules, however an actual 
application for the Ryu controller performing these actions 
automatically in response to policy configuration is easily 
conceivable. Due to the intended function of the application 
(static configuration of flows), its only benefit compared to 
the manual input would lie in the automation of the task.

• TE1 The traffic engineering application redirects all traf-
fic of the same port, destination, e.g. all traffic to the web 
server on port 80, on a dedicated path which is supposed 
to be more secure and reliable. In our experiment, all 
UDP traffic to PC3 with destination port being 5001 will 
be sent through the link S7–S6 by installing a flow entry 
on switch S7 to direct all these traffic out of its port 4.

• TE2 The traffic engineering application directs all TCP 
traffic to PC3 out of port 3 of switch S7 on the link S7–S5 
and all TCP traffic to PC4 out of port 4 of switch S7 on 
the link S7–S6.

Experiments

Table 6 shows the settings for the experiments according to 
the concerned factors discovered in our earlier work [26, 27]. 
Each application is deployed with only one configuration 
in each experiment, they may start at the same time or one 2 https ://ryu.readt hedoc s.io/en/lates t/.

3 https ://iperf .fr/
4 https ://www.iana.org/assig nment s/proto col-numbe rs/proto col-
numbe rs.xhtml 

5 https ://ryu.readt hedoc s.io/en/lates t/app/ofctl _rest.html

https://ryu.readthedocs.io/en/latest/
https://iperf.fr/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
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after another and their rules may have different priority or 
the same. The routing application SPF1/2 is necessary for 
the functioning of the network, so it will affect all switches 
while the EpLB and TE1/2 deploy their rules on switch S7 
only. In our experiments, traffic sources are from PC1 and 
PC2 while traffic sinks are on PC3 and PC4. We employ 
the constant bit rate (CBR) traffic profile for all related end-
points in the experiment. The network topology is shown 
in Fig. 3. We test with UDP traffic in the first and second 
experiments and a mix traffic of TCP/UDP in the third one.

EpLB and SPF1

In this experiment, PC1 and PC2 send traffic to PC3, PC4 
acts as a replica of PC3. The flow table of switch S7 has only 
rules 1, 7 (controller management rules) in the beginning. 
Rule generation happens on first traffic both for EpLB and 
SPF1 (Table 7).

Observation and analysis Further UDP sessions from 
PC1 to PC3 cannot be balanced as expected. All the next 
UDP sessions from PC1 always come to PC3 while they 
were meant to be alternately handled by PC3 and PC4.

The problem can be identified by comparing the flow 
entries 2 and 6 highlighted in Table 7. EpLB features a 
UDP session by additional information of layer 4 source 
and destination ports as reflected in flow entry 2. It is sup-
posed to instal new flow entries to handle further UDP traffic 
from PC1 to PC3 having different combination of layer 4 
source–destination ports when being triggered by the cor-
responding packet-in events for this kind of traffic from the 
controller. However, since flow entry 6 matches the men-
tioned incoming traffic already, no packet-in event will be 
generated. As a consequence, the EpLB intention cannot be 
achieved.

Table 6  Experimental settings Dimensions Exp. 1 Exp. 2 Exp. 3

EpLB SPF EpLB TE SPF TE SPF

App config. 1 SPF1 1 TE1 SPF1 TE2 SPF2
App start order 1 1 1 2 1 2 1
App priority 2 1 2 1 1 2 1
Target switches 7 all 7 7 all 7 all
Ept traf.prof. CBR CBR CBR CBR CBR CBR CBR
Ept combi. {PC1,PC2} 

−− > {PC3,PC4}

{PC1,PC2} – > {PC3,PC4} {PC1,PC2} 
– > {PC3,PC4}

Topology 1 1 1
Transport type UDP UDP UDP UDP UDP TCP, UDP TCP, UDP

Fig. 3  Topology for the experiments. The numbers surrounding a 
switch indicate the port number assigned by the SDN controller

Table 7  Experiment 1: switch S7’s flow table after the first UDP session

The highlighted rule pair 2 and 6 expose the redundancy conflict pattern, other rules (1,3,4,5,7) cause no problem at all
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EpLB and TE1

SPF1 is modified to work in concert with the EpLB and 
TE1 in this experiment, so its rules will be overwritten or 
not deployed at all where EpLB’s or TE1’s rules are active. 
EpLB balances sessions between PC3 and PC4 where PC4 
acts as a replica of PC3. TE1 instals static rules to direct all 
UDP traffic having the specified destination port (5001 in 
this case) to PC3. The flow table of switch S7 has only rules 
1, 7 (controller management rules) in the beginning of the 
experiment. Rule generation happens on first traffic both for 
EpLB and SPF1. In the role of an administrator, we instal 
TE1 rules later via REST API. This experiment shows the 
importance of the application deployment order (Table 8).

Observation and analysis Similar to the first experiment, 
EpLB is completely disabled for subsequent UDP sessions 
having the destination port of 5001 after the TE1 rule becomes 
effective.

Two flow entries 2 and 6 are identified to be responsible for 
the problem and are highlighted in Table 8. Again, since flow 
entry 6 is more general in that it matches only the destination IP 
address and the destination UDP port, further UDP sessions hav-
ing these fields will be handled by this flow entry and no packet-
in event will be generated to keep EpLB functioning correctly.

TE2 and SPF2

This experiment shows that side-effects do not happen at all 
when the application with more specific rules does not oper-
ate on the basis of the packet-in event (Table 9).

The flow table of switch S7 has only rules 1, 11 (con-
troller management rules) in the beginning. Rule genera-
tion happens on first traffic by SPF2. TE2 rules are installed 
subsequently.

Observation and analysis The flow rules 2 and 8 follow the 
redundancy conflict pattern [3, 21], which features a similar 
relationship between two rules as in the generalization pattern 
but their actions are the same and their priority relationship 
does not matter. The flow rules 3 and 10 exhibit the gener-
alization conflict pattern. The network behaves as expected 
for the main effect and there is no side-effect at all: all TCP 
traffic to PC3 and PC4 are forwarded according to rules 2 and 
3, other traffic, e.g. UDP, ICMP is controlled by SPF2 rules.

Hidden Conflict Predictor

The hidden conflict demonstrated in the experiment 
described in "EpLB and SPF1" section leads to the rather 
severe consequence of a control application becoming inef-
fective. To protect the correct behaviour of the network, it is 
therefore necessary to detect this class of conflicts. Unfortu-
nately, hidden conflicts cannot be detected by mere analysis 
of the data plane’s flow tables (the collection of flow tables 
of all devices in the data plane). The assertion of their pres-
ence requires information on the control plane’s behaviour 
in a certain state, in reaction to an event.

Full knowledge about the control plane’s behaviour 
includes all combinations of control application action 
options given the state of the data plane’s flow tables and 

Table 8  Experiment 2: switch S7’s flow table after the first UDP session and deploying TE1’s rules

The highlighted rule pair 2 and 6 expose the generalization conflict pattern while others cause no problem

Table 9  Experiment 3: switch S7’s flow table after establishing TCP sessions from PC1 to PC3 and PC4 and deploying TE2’s rules

The rule pair 2 and 8 highlighted in blue expose the redundancy conflict pattern, the rule pair 3 and 10 highlighted in green expose the generali-
zation conflict pattern. Other rules cause no problem
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the incoming traffic at the data plane. In any practical case, 
this level of knowledge about the network is obviated by 
several of its properties:

• We may not know exactly the control application’s behav-
iour. This is conceivable in SDN since control applica-
tions can come from different parties.

• The behaviour of a control application varies generally 
according to the network state while the network state 
also changes from time to time, and mostly in an unpre-
dictable fashion.

• The incoming traffic at the data plane is also unpredict-
able, e.g. end-points can generate diverse traffic types 
(TCP, UDP, ICMP...) with different traffic profiles 
(CBR, VBR, bursty...) and in different groups (unicast, 
multicast).

To address this issue, we have experimented with specu-
lative provocation of conflicts as a method to predict the 
creation of conflicts. We rely on a conflict predictor that 
selects possible conflict situations (“speculative”) and 
simulates situations in which the applications may issue 
rules conflicting with the existing rule set (“provocation”).

We exploit the interaction between an SDN control-
ler and the control applications being realized by the 
event/method mechanism [9] illustrated in Fig. 4. A con-
trol application registers as a listener for certain events, 
and the controller will invoke the application’s callback 
method whenever such events occur.

Our chosen SDN controller for experiments, the Ryu 
SDN framework, also complies to this model and facili-
tates the conflict predictor implemented as a built-in con-
trol application in the controller to create and dispatch 
events to other control applications. In our experiments, 
the predictor generates the packet-in events associated 
with the candidate packets to provoke the reactions of the 
control applications which register to this event type; the 
choice of the candidate packets is elaborated in "Choice 
of candidate traffic" section. In practice, the predictor can 
generate any type of event, e.g. those related to topology 
change, SDN devices’ state change.

Prediction Mechanism

The procedure has three main steps in which the predictor 
component interacts with the controller and control applica-
tions, as illustrated in Fig. 5: 

1. The predictor analyses the rule tables and determines 
what type of additional rules would lead to conflict. The 
potential additional rules correspond to those complet-
ing one of the conflict patterns.

2. The predictor provokes control applications into gen-
erating such rules, by having the controller issue them 
fake events and subsequently intercepting the calls for 
rule installation in response to the fake events. As with 
the additional rules, the content of the fake events is 
derived from the conflict patterns describing a conflict 
class. Thus, the predictor attempts to provoke a specific 
class of conflict.

3. Each intercepted rule installation call is analysed by the 
predictor to determine if an actual installation of that 
rule would create a conflict.

These steps can be performed in parallel for several classes 
of conflicts in several situations. Therefore, this method 
allows for a trade-off between expended computing power 
and detection latency. In addition, it relies on the network 
state at the time of prediction, thus limiting the number of 
cases that would need to be probed.

In the followings, we demonstrate how a conflict pre-
dictor can be realized by elaborating the above steps for a 
subset of hidden conflicts related to the generalization and 
redundancy conflicts identifiable in data plane’s flow tables.

Choice of Candidate Traffic

One of the necessary conditions for two rules i and j to expose 
a generalization or redundancy conflict is that the match-
ing scope of one rule is “broader” than the other. The more 
specific rule must have higher priority for generalization 

Fig. 4  Application-controller communication [9]

Fig. 5  Interaction of the predictor component with controller and 
control applications



 SN Computer Science (2020) 1:278278 Page 10 of 16

SN Computer Science

conflict (cf. Sects. 1.1 and 3.2.3). Without loss of generality, 
we assume that: priorityi > priorityj, matchi ⊆ matchj.

The experiments in "Empirical examination" section 
show that hidden conflicts occur as one of the control appli-
cation is deprived of the events it requires to function. These 
events are expected to be generated for the traffic being 
matched against the more general rule (rule j). This obser-
vation indicates that the candidate traffic for generating the 
fake event to probe hidden conflicts must belong to the set 
difference of the set created from the matching scope of rule 
i and the set from that of rule j, as illustrated in Fig. 6.

An exemplary candidate packet to probe hidden conflicts 
deduced from rules 2 and 6 in Table 7 would have header 
fields:

Note that a packet for the fake event generation must be com-
plete, i.e, the above candidate packet requires layer 2 head-
ers. Assuming it is an Ethernet frame, this includes source 
and destination MAC addresses and the EtherType value. 
The MAC addresses can be set to arbitrary values or given 
correct values obtained from an ARP cache control program 
such as the one described in [13].

Interception of Methods

The predictor has to supervise the rule deployment of the 
control applications as a result of its fake event generation 
in order to intercept this action and determine the presence 

L3 ∶ src = 192.168.1.1, dst = 192.168.1.3,

Prot = UDP,L4 ∶ src = 50000, dst = 5001

of hidden conflicts. For this reason, we have implemented 
the predictor as an application integrated in the control-
ler and providing the add-flow interface for other control 
applications to instal their rules in data plane devices. We 
notice another possibility in deploying the predictor as an 
independent program like any other control application, 
which appears more elegant but causes more overhead in 
communication between the rule deployment module of 
the controller and the predictor and higher latency in rule 
installation process. Besides, the predictor may well be part 
of an orchestrator who logically situates centrally below 
all control applications and moderates their actions, which 
advocates our choice.

The pseudo-code sketching the prediction procedure is 
shown in the Algorithm 1. The predictor uses the control-
ler interfaces to regularly pull the data plane’s flow tables 
every interval period, analyses them to detect conflicts 
based on the provided conflict patterns (e.g. redundancy, 
generalization). If conflicts exist, a conflict_flag is set and 
the predictor will choose and create candidate packets to 
generate fake events associated with them. For each gen-
erated event, there may be multiple reactions from differ-
ent control applications. During the conflict_flag_time-
out period when the conflict_flag is set, all calls to the 
add-flow function by control applications will be checked 
if their rules to be installed correspond to the generated 
fake events and whether installing these rules in the data 
plane would cause conflicts there; if yes, an alarm of the 
likelihood of the hidden conflicts relevant to the chosen 
candidate packets is raised. A rule to be installed in the 
data plane is asserted to be corresponding to a generated 
fake event if its matching scope covers the chosen packet 
for that event. Thus, the predictor can decide whether a 
method issuing a rule will create a conflict. This is the case 
if the new rule would contradict one of the existing rules 
in the device where it would be installed, i.e. they have 
overlapping matching scope but different actions.

Fig. 6  Candidate traffic for probing hidden conflicts
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Discussion

The experiments presented in "Empirical examination" 
section were selected as to show the independence of hid-
den conflicts from those between rules, that have been 
described in literature. Fig. 7 illustrates the combination 

of single cause–effect pairs of hidden conflicts from the 
experiments correlated with named conflicts between 
rules. The arrangement shows the same hidden conflict 
for two conflicts between rules, in cases 1 and 2 in Fig. 7, 
described in "EpLB and SPF1" and "EpLB and TE1" sec-
tions, respectively. It also shows, that the effect reverts 
to that of the conflict between rules if the cause for the 
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hidden conflict is removed, as illustrated by cases 3 and 4, 
described in "TE2 and SPF2" section. This indicates, that 
hidden conflicts form a dimension of their own, i.e. they 
are orthogonal to the classes of conflicts between rules. 
The independence of the two dimensions raises interest-
ing questions.

Challenges to Hidden Conflict Detection

One important question is whether the presence of a con-
flict between rules is necessary at all in order for applica-
tions to exhibit a hidden conflict. If so, the detection of 
the conflict pattern specified for the rules can be used as a 
starting point of the search for an associated hidden con-
flict, even if the effect of the conflict between rules were 
negligible. If not, then the abnormal behaviour can be said 
to represent a hidden conflict purely between the assump-
tions of applications on their environment, that occurs 
depending on the type of side-effect present.

Properties of the Hidden Conflict Predictor

The detection of hidden conflicts represents a different 
challenge from the detection of the conflict classes hitherto 
described in literature. Given that some of the mechanisms 
leading to abnormal behaviour in the network are hidden 
within the application code (hence, hidden conflict), we 
require a black-box analysis approach of the applications 
as a prerequisite of conflict detection. Our hidden conflict 
predictor described in "Hidden conflict predictor" section 
follows such a black-box approach. As such, it is initially 
agnostic of the behaviour of the control application for 
which it tries to predict. This allows the approach to be 

employed with any control application, while also intro-
ducing inaccuracy and risks of interference.

Accuracy

The predictor cannot conclude the existence of a hidden 
conflict with absolute certainty as detection is contingent 
on the prospective state of the data plane. Hidden conflicts 
manifest only if the anticipated events and/or the chosen 
candidate packets (cf. Sect. "Choice of candidate traffic") 
occur. The results of the predictor can be improved by pro-
viding it with management information regarding the data 
plane. For example, to leverage hidden conflict prediction 
during maintenance, a predictor could make use of the main-
tenance schedule, the concrete maintenance activities and 
the target state of the data plane. It can then be used to pre-
dict the reaction of control applications in response to the 
planned management activities. The predictor can acquire 
information about end-points (necessary for the packet-in 
event) from the data plane’s flow tables or by consulting end-
point discovery applications such as an address resolution 
proxy [13] if available.

Discrimination of Reactions from Fake Events and Genuine 
Events

The predictor issues fake events to a control application and 
records its reaction. However, the application may concur-
rently receive genuine events and exhibit a reaction to them, 
as well. Thus, the predictor must be able to differentiate 
between reactions from fake and genuine events in order 
to intercept the former and ignore the latter ones. As a par-
tial solution, we have demonstrated the association of an 
issued rule with a previously generated fake packet-in event 
by matching its scope to that of the candidate packet for that 
event. A comprehensive solution to this problem remains 
for further study. We note that a wrong association of a rule 
installation request due to a genuine event to a fake event 
will lead to a benign effect in our current demonstrating 
predictor prototype: that rule is checked for possible con-
flict consequence in the data plane and an alarm is raised if 
conflict may arise.

In cases where the need for discrimination is to be 
avoided, the race condition between events can be eliminated 
by mutual exclusion of genuine and fake events.

Poisoning of Control Application State

Our prediction approach makes the quiet assumption that an 
application exhibits idempotent behaviour. The assumption 
is not unreasonable, given the reactive nature of many net-
work functions formulated as applications. However, more 

Fig. 7  Orthogonality between hidden conflicts and those described in 
literature
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sophisticated network software may be designed to hold and 
evaluate network state separate from the controller’s. Also, 
it may change its behaviour in response to the frequency of 
certain events. In such cases, attempting to provoke reactions 
from the application by issuing it surrogate or “fake” events 
may cause the corruption of its internal state or a change in 
the strategy used by the application to perform its functions.

For example, a round-robin end-point load balancer bal-
ancing traffic between two servers may assume that it has 
directed flow to the first server in response to a fake event 
from the predictor. Consequently it will assign the next flow 
to the second server in response to the next genuine event, 
thus creating an imbalance. Similarly, an ARP cache appli-
cation may cache the wrong association of an IP address to 
a MAC address present in the fake packet-in event.

Applications can avoid state poisoning by verifying that 
the intended change has been implemented in the data plane. 
For instance, the above-mentioned load balancer may check 
if its rule to forward the traffic is present in the data plane’s 
flow tables and rectify its state accordingly, the ARP cache 
may reexamine the existence of the end-point via its discov-
ery mechanism before putting its information into use.

However, we cannot rely on such verifications being 
included in the applications’ behaviour. Hence, if such issues 
are diagnosed, it may be prudent to record the results of the 
provoked reactions and re-use them in subsequent executions 
of the application in question.

Hidden Conflict Prediction within Control 
Applications

A predictor can be integrated in a control application to 
detect hidden conflicts possibly impacting its behaviour. Our 
predictor (Sect. "Hidden conflict predictor") functioning as 
a black-box analysis approach probes for control applica-
tions’ reactions to determine their behaviour. In contrast, a 
predictor integrated within the control application has the 
advantage of full knowledge of the application’s behaviour 
and the state it holds. Hence, it can predict hidden conflicts 
with higher certainty, though in narrower scope pertaining 
only to that application, without the risk of state poisoning.

Our experiments have shown that hidden conflicts may 
render the control application inactive in the data plane, 
leading to severe network faults. At the same time, the 
drawbacks of external prediction pose risks for malfunction, 
as well. Hence, we recommend that the design of control 
applications includes an integrated hidden conflict predic-
tion specific to the application. We envision that the func-
tional primitives necessary for such prediction (conveying 
the fake events to internal application code, evaluating the 
resulting reaction) may be collected in a common library 
shared between application developers.

Hidden Conflict Handling

Our work focuses on detection and eschews handling strate-
gies for the time being. Therefore, we refrain from specify-
ing concrete measures as a reaction to positive results from 
the predictor. Although automated handling of conflicts is 
desirable, it is impossible to determine the importance to a 
rule being issued or the “reason” of the application for issu-
ing it. Thus, the obvious alternatives for conflict resolution 
appear unsatisfactory. The conflict may be avoided if

• the creation of rules is suppressed, or if the existing rules 
they conflict with are removed or altered. However, the 
effects of such changes cannot be evaluated with respect 
to their impact on the compliance with network manage-
ment policy.

• the application provoked into issuing conflicting rules is 
disabled. Similarly to the removal of rules, the effects on 
network service cannot be determined beforehand.

Alerting the network administrator delegates the problem of 
understanding the conflict to a human, but it does not consti-
tute actual handling of the conflict. In addition, the handling 
of the conflict is relegated to a much wider time-frame, com-
pared to an attempt at automatic handling. However, until 
reliable resolution strategies are available, warning network 
management seems the most responsible manner of react-
ing to a potential conflict. It is conceivable that applications 
will incorporate probing for potential conflict situations 
themselves.

Limitations

The study of the dynamic and distributed aspects of con-
flicts within rule sets introduced in this paper aims to go 
beyond the existing local and static view of conflict detec-
tion. However, there remain dynamic aspects of SDN which 
we have not taken into account. Philosophically, conflicts 
occur because of different assumptions in concurrent appli-
cations. Therefore, any violation of such assumptions bears 
the risk of conflict. The basis for such assumptions is tied to 
the behaviour or the state of an application, i.e. the program 
being executed as an application or the information about 
the network that the application may hold itself.

Topology Change

It seems plausible that if switches or links are added or 
removed from the network or if they fail, then the resulting 
change in topology may either trigger new conflicts or render 
the existing rules conflicting, as the assumptions possibly 
made by the issuing application are invalidated. This may 
be an interesting topic for future study.



 SN Computer Science (2020) 1:278278 Page 14 of 16

SN Computer Science

Matching Policy

OpenFlow SDN devices employ a first-match policy when 
choosing which rules to apply to a packet. In principle, SDN 
devices could employ other strategies as an alternative or 
as an option, e.g. exact matching or most-specific-first. To 
some degree, the conflict instances we study are tied to the 
first-match policy employed by the devices in our experi-
mental setup. Thus, the conflict patterns we find and the 
detection code created from it is dependent on a first-match 
processing of the rule tables. We consider this to be a minor 
limitation, technologically, as first-match appears to be the 
most common policy in rule-based packet processing.

It is an interesting question whether a different match-
ing policy may influence the occurrence of conflicts: first, 
whether conflict classes can be independent of matching pol-
icy, i.e. they would occur in some form under any choice of 
policy; and second, if the choice of matching policy would 
reduce the propensity for conflict in SDN. When comparing 
the results of the first-match and most-specific-first policies 
in the cases exemplified in this text, we find the conflict 
occurring in both cases. One would expect that the local 
generalization conflict would be eliminated by using a most-
specific-first policy, as that policy would ensure the applica-
tion of the less general rule irrespective of the rules’ priority 
values. However, any packet not matching the more specific 
rule would, under a most-specific-first policy, be handled 
by the general rule, leading to the same effect as under the 
first-match policy.

While this observation is hardly conclusive on its own, a 
more in-depth study of the influence of matching policy on 
conflict emergence may yield insights regarding data and 
control plane design as well as the improvement of predic-
tion techniques.

Related Work

Where contention between multiple management entities 
exists, conflicts are potential. Research on conflicts in SDN 
and in traditional network environments shares certain 
similarity.

Al-Shaer et  al. introduced noticeable results in their 
research on conflicts in security applications, specifically 
with firewall policies  [2, 3], and generalized them to a 
conflict taxonomy differentiating between various conflict 
classes for filtering-based network security policies [10]. We 
refer to two of their conflict class definitions, namely gen-
eralization and redundancy, in this paper. While our experi-
ments show conflicts falling within these classes, the side-
effects and thus the hidden conflicts that are our focus have 
not been described in the taxonomy. This is unsurprising, 
given that the operation mechanism of firewalls in traditional 

networks is different from that of SDN, which encompasses 
interaction between applications, the SDN controller and 
network devices.

Conflicts in SDN have been extensively studied, e.g. [1, 
4, 8, 11, 12, 19, 23–25], albeit with focus on contradictions 
within the rule set in the data plane. Side-effects affecting the 
interactions seem to be a new, unexplored topic. Pisharody 
et al. extended the conflict taxonomy mentioned above [10] 
in SDN by a new conflict class, namely imbrication, which 
considers conflicts between rules with matching fields repre-
senting different OSI layers [21, 22]. They assumed conflict 
effects corresponding to those stated by Hamed, e.g. for the 
generalization conflict class, the effect is assessed to be a 
“warning” since “the specific rule just makes an exception of 
the general rule” [3]. Conflicts were considered on the basis 
of rules in the data plane only, which precludes the examina-
tion of anomalies originating from side-effects.

Chowdhary et al examined conflicts in the SDN-based 
Cloud networks [5, 6] and put their focus, similar to other 
research, on conflicts between rules in the data plane. 
Zarca et  al developed a framework relying on seman-
tic technologies for policy-based security orchestration 
in SDN/NFV-enabled IoT systems  [30], some conflict 
classes established their similarity to those categorized 
in the research group of Sloman [14, 15, 18], e.g. con-
flict of priorities, conflict of duties, multiple managers. 
Their studies appear also orthogonal to hidden conflicts 
presented in our work.

Similar to hidden conflicts caused by side-effects, race 
conditions can lead to unexpected effects in SDN and are 
also hard to catch. Race conditions have been studied sep-
arately in SDN in the control plane [29] and in the data 
plane [17]. They appear to be a disjoint problem domain to 
the side-effects examined in this paper, due to the necessary 
temporal relationships between the participants of a race 
condition. However, it might be interesting to learn if the 
combination of concurrency in both control and data planes 
of SDN might cause side-effect conflicts.

Conclusion

Hidden conflicts are a new conflict type that occurs due to 
side-effects or unfulfilled expectations of control plane ele-
ments. From the starting point of a conflict instance discov-
ered in our experiments, we have presented a systematic 
analysis of the propensity of SDN interaction primitives to 
be disrupted so as to expose hidden conflicts. We comple-
mented the analysis with experiments demonstrating the 
same side-effect cause and effect in the presence of differ-
ent conflicts from existing taxonomies. This suggests that 
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the dimension of hidden conflicts is orthogonal to that of 
hitherto described patterns of conflicts between rules.

We found that hidden conflicts are contingent on the 
forthcoming data plane traffic and hence, cannot be detected 
with certainty. In response, we have developed a hidden 
conflict predictor that speculatively provokes action from 
control applications to acquire the information necessary 
for the detection of hidden conflicts. Our current predictor 
design is application independent but, as a corollary, intro-
duces the risk of changing application state and behaviour 
in an undesired manner. Hence, in future research we pro-
pose to isolate prediction primitives in order to make them 
available to application developers for use at design time, 
allowing hidden conflict prediction to be an integral part of 
applications.
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