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LETTER TO EDITOR

Tumor microenvironment characterization in head and
neck squamous carcinoma reveals distinct genomic
alterations and clinical outcomes

Dear Editor,
Head and neck squamous carcinoma (HNSC) is one of

themost commonmalignanciesworldwide. Despite recent
advances in HNSC treatment, the prognosis remains
unfavorable.1 Given the poor outcomes after standard
treatment in HNSC, immunotherapy, such as anti-PD-1
therapy, is a promising alternative.2 However, due to the
tumor heterogeneity and complexity of tumor microenvi-
ronment (TME),3,4 immunotherapy benefits only a sub-
set of HNSC patients, hence, the issue of patient selec-
tion becomes a critical challenge. Thus, a comprehensive
understanding of HNSC needs to focus not only on tumor
cells but also on TME. In this study, we aimed to character-
ize different TME landscapes by analyzing the infiltrating
patterns of various TME cells, and to develop an individu-
alized TME-related scoring tool to predict cancer-specific
survival (CSS) in HNSC.
Normalized RNA-seq data, somatic mutation data, and

CSS information were obtained from The Cancer Genome
Atlas (TCGA) portal (https://portal.gdc.cancer.gov/).
xCell5 was used to quantify the abundance of immune
and stroma cells involved in TME, and the immune,
stroma, and TME scores of each sample were computed,
respectively. The non-negative matrix factorization (NMF)
consensus clustering was used to identify different TME
clusters. Principal coordinates analysis (PCoA) was
used to visualize dissimilarity of different TME clusters
based on their Bray–Curtis distance. Different immune
responses were quantified using a single-sample gene set
enrichment analysis (ssGSEA)6 algorithm based on the
transcriptome profiling data and corresponding gene sets
retrieved fromMolecular Signatures Database (MSigDB),7
and depicted by a radar chart with Z-score normalization.
ImmuCellAI8 was used to predict the response to immune
checkpoint blockade (ICB) therapy. Using R package
“maftools,” an oncoplot was generated to display the
somatic mutation landscape in different TME clusters,
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and tumor mutational burden (TMB) was computed for
each sample. The weighted gene coexpression network
analysis (WGCNA)9 was used to identify a TME-related
genemodule.Metascape10 was used to visualize the results
of enrichment analysis. Subsequently, univariate and least
absolute shrinkage and selection operator (LASSO)
Cox regression analyses were step wisely performed to
screen for the most robust prognostic genes. Finally, a
formula which calculates TME-related risk score (TMErs)
was established to quantify the risk of cancer-specific
death: 𝑇𝑀𝐸𝑟𝑠 =

∑
𝑖
LASSO Cox Coef f icient(mRNA𝑖) ×

Expression(mRNA𝑖). A total of 171 HNSC raw CEL files
with CSS information produced from a same chip platform
(Affymetrix HG-U133 Plus 2.0) were downloaded from two
Gene Expression Omnibus (GEO) datasets (GSE41613&
GSE42743),and integrated to a singular cohort using a
robust multiarray average (RMA) method, with Combat
algorithm eliminating the batch effects. The prognostic
capacity of TMErs was further validated in the indepen-
dent GEO cohort. The Kaplan–Meier method was used
to draw survival curves, and the log-rank test was used to
evaluate survival difference. The X-tile software was used
to select the most optimal cut points with the maximum
of log-rank statistics.11 Student’s t-test, one-way ANOVA,
or chi-square test was used to evaluate the significance,
and P value less than .05 was considered statistically
significant.
Based on the abundance matrix of 36 cell types involved

in TME, a fan phylogram was generated to show their
similarity and distance (Figure 1A), and NMF consen-
sus clustering was performed to divide 520 TCGA HNSC
samples into three clusters (C1-3) with an optimal k
value of 3 (Figure 1B). A stacked barplot depicts the dis-
tinct patterns of the relative proportion of TME cells in
the three identified clusters (Figure 1C). PCoA demon-
strated that 520 samples were clearly separated into three
distinct TME clusters (Figure 1D). Immune, stroma, and
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F IGURE 1 Different genomic alterations and clinical outcomeswere observed in threeNMF-identified TME clusters. (A)A fan phylogram
was generated to show the similarity and distance among the 36 cell types involved in TME. (B) NMF consensus clustering was performed to
divide 520 TCGAHNSC samples into three clusters. (C) A stacked barplot depicts distinct TME patterns in the three clusters. (D) PCoA analysis
demonstrated the three TME clusters were clearly separated. (E-G) Immune, stroma, and TME scores varied markedly among the three TME
clusters (all, P < .001). (H) A radar chart depicts the performances of different immune responses from C1 to C3. (I) Important inhibitory
immune receptors and ligands, including PD-1, PD-L1, CTLA4, and TIGIT, were progressively downregulated from C1 to C3 (all, P < .001). (J)
Potential responses to ICB therapy differed significantly among the three clusters (P = .002). (K) Different CSS was observed among the three
clusters (P = .008). (L) Landscape of somatic mutations in the three clusters. (M) Summarization of 10 top mutated genes in each cluster. (N)
Significant difference of TMB was observed in the three clusters (P = .001)
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F IGURE 2 An individualized TME-related prognostic signature was established and validated. (A) The flowchart. (B) A total of 34 mod-
ules were generated, and the blue module was selected due to its highest correlation with the TME score (r = 0.85, P = 3e-140). (C) Gene
Ontology enrichment analysis confirmed the blue module is involved in TME-related biological processes. (D) Volcano plot shortlisted 141
promising candidates with a threshold P less than .001. (E) An optimal λ of 0.0318 was selected in the LASSO Cox algorithm. (F) LASSO Cox
coefficients of the nine remaining genes. (G) In the TCGA training cohort, HNSC patients in different TMErs groups exhibited significant dif-
ference in CSS (P < .001), and (H) the similar result was also observed in the GEO validation cohort (P < .001). (I) Results of log-rank tests
between different TMErs groups in TCGA and GEO cohorts

TME scores varied markedly among the three clusters
(all, P < .001; Figure 1E-G). Moreover, a radar chart
demonstrated that the performances of different immune
responses, such as humoral, adaptive, and innate immune
responses, shrink progressively from C1 to C3 (Figure 1H).
Accordingly, important inhibitory immune receptors and
ligands, including PD-1, PD-L1, CTLA4, and TIGIT, were
progressively downregulated from C1 to C3 (all, P < .001;
Figure 1I). Furthermore, potential responses to ICB ther-
apy differed among the three clusters (P= .002; Figure 1J).

The Kaplan–Meier analysis showed that C1 exhibited best
CSS, while C3 exhibited worst CSS (P = .008; Figure 1K).
Landscape of somatic mutations was depicted in the three
clusters (Figure 1L). Summarization of top mutated genes
in each cluster showed the frequency of TP53 mutation
in C1 is significantly lower than C2 and C3 (Figure 1M).
In addition, significant difference of TMB was observed
among the three clusters (P = .001; Figure 1N).
To quantify the risk assessment, we developed a TME-

related signature for CSS. The flowchart was presented in
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Figure 2A. With a power of 8 as the optimal soft thresh-
old (Supporting information Figure S1), a total of 34 mod-
ules were generated using WGCNA, and the blue module
was considered as “TME-related module” due to its high-
est correlation with the TME score (r = .85, P = 3e-140;
Figure 2B).Gene Ontology enrichment analysis confirmed
the blue module is involved in TME-related biological pro-
cesses (Figure 2C). Volcano plot shortlisted 141 promising
candidates with a threshold P of univariate Cox regres-
sion analysis less than .001 (Figure 2D). Subsequently,
LASSOCox algorithmwas used to identify themost robust
prognostic genes. Tenfold cross-validation was applied to
overcome overfitting effect (Supporting information Fig-
ure S2), and an optimal λ of 0.0318was selected (Figure 2E).
Finally, nine genes remained, and the distribution of their
LASSO Cox coefficients iss shown in Figure 2F. TMErs
was calculated for each sample, and the entire cohort was
divided into three parts: TMErs-low, TMErs-intermediate,
and TMErs-high groups. In the TCGA training cohort,
HNSC patients in different TMErs groups exhibited signif-
icant difference in CSS (P < .001; Figure 2G), and the sim-
ilar result was also observed in the GEO validation cohort
(P < .001; Figure 2H). The results of log-rank test between
different TMErs groups in TCGA and GEO cohorts are
summarized in Figure 2I.
In this study, we systematically evaluated the infiltrat-

ing abundance of various TME cells and compared clinical
outcomes and genomic alterations in different TME clus-
ters. Using NMF consensus clustering, 520 HNSC samples
were divided into three distinct TME clusters. As well as
TME score, potential response to ICB, CSS, and somatic
mutation profile differed markedly among the three clus-
ters. These findings demonstrated that the TME landscape
could serve as a promising biomarker to discriminate high-
risk subset and guide patient selection for immunotherapy.
To quantify the risk assessment, an individualized TME-
related prognostic signature was established, and further
validated in an independent GEO HNSC cohort. The nov-
elty of this study is the integration of TME gene coexpres-
sion network into the establishment of prognostic signa-
ture, which might increase the robustness of the present
TMErs model.
The limitations should be acknowledged. First, this is

a retrospective study based on public databases, thus, the
sampling bias could not be completely excluded.Moreover,
the sample size is relatively small. In summary, the clini-
cal usefulness of TME should be further validated in a large
prospective study.
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