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Single-crystal elastic constants have been derived by lattice strain measurements

using neutron diffraction on polycrystalline Ti-6Al-4V, Ti-6Al-2Sn-4Zr-6Mo and

Ti-3Al-8V-6Cr-4Zr-4Mo alloy samples. A variety of model approximations for

the grain-to-grain interactions, namely approaches by Voigt, Reuss, Hill,

Kroener, de Wit and Matthies, including texture weightings, have been applied

and compared. A load-transfer approach for multiphase alloys was also

implemented and the results are compared with single-phase data. For the

materials under investigation, the results for multiphase alloys agree well with

the results for single-phase materials in the corresponding phases. In this

respect, all eight elastic constants in the dual-phase Ti-6Al-2Sn-4Zr-6Mo alloy

have been derived for the first time.

1. Introduction

Single-crystal elastic constants are essential material para-

meters in fundamental materials science as well as in engi-

neering. In particular, the elastic properties of any

polycrystalline bulk material are based on its single-crystal

elastic constants. A variety of micromechanical models have

been established to describe the relations between the elastic

properties of a polycrystalline bulk material and the single-

crystal elastic constants, the most common applied approaches

being those introduced by Voigt (1928), Reuss (1929), Hill

(1952), Kroener (1958), de Wit (1997) and Matthies et al.

(2001).

In classical stress analysis using diffraction, the residual

stresses of alloys are determined by measuring the lattice

strains for different sample orientations. Lattice strains and

stresses are related by the diffraction elastic constants

(DECs), which depend on the direction in the crystal as

described by the lattice planes (hkl) of the corresponding

Bragg reflections. DECs in turn are based on the single-crystal

elastic constants. Thus, knowledge of the single-crystal elastic

constants is essential for diffraction-based stress analysis.

The conventional stress analysis can be modified in such a

way as to apply a defined external stress on the sample (by

tensile load or compression) while the lattice strains are

measured under various sample orientations. The single-

crystal elastic constants of any polycrystalline material

may then be determined by an inversion of the usual

calculations applied in the residual stress analysis and fitting

by a �2-minimization technique. The feasibility of such an
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approach was demonstrated by Hauk & Kockelmann (1979)

and later applied by various authors (Gnäupel-Herold et al.,

1998; Kisi & Howard, 1998; Singh et al., 1998; Howard & Kisi,

1999; Matthies et al., 2001; Fréour et al., 2005; Stebner et al.,

2013; Lunt et al., 2014; Kim et al., 2016) for alloys and ceramics

by diffraction under tensile stress or compression. This tech-

nique is of particular relevance for any engineering material

which cannot be obtained as a single crystal, especially

multiphase or highly twinned materials.

In this contribution, we will first review the background to

this technique, with particular focus on the measurement

geometry and data evaluation. For the validation of our data

collection and evaluation procedure, face-centred cubic (f.c.c.)

and body-centred cubic (b.c.c.) phases in steels and cast iron

samples were studied. The results are compared with literature

data on single-crystal elastic constants and bulk properties.

Approaches for the modelling of grain-to-grain interactions by

Voigt (1928), Reuss (1929), Hill (1952), Kroener (1958), de

Wit (1997) and Matthies et al. (2001) are applied in the

calculations. Since in earlier work the influence of the texture

was not investigated in detail, we systematically examine here

the influence of texture weightings compared with a quasi-

isotropic approach. In addition, a load-partition model is

included in the modelling approaches.

Despite the fact that titanium alloys are important high-

performance alloys, few data are available concerning DECs

or single-crystal elastic constants. Howard & Kisi (1999)

obtained the single-crystal elastic constants in the near �-alloy

Ti-6Al-4V by diffraction on a polycrystalline specimen. In a

similar way, Fréour et al. (2005) determined the elastic

constants of the b.c.c. phase in the dual-phase alloy Ti-17.

As the main part of this study, we present the results for the

alloys Ti-6Al-4V (Ti64, near �-alloy), Ti-3Al-8V-6Cr-4Zr-4Mo

(Ti38644, �-alloy) and Ti-6Al-2Sn-4Zr-6Mo (Ti6246, �- and

�-alloy). The elastic constants of both phases in Ti6246 are

compared with the results for the single-phase materials.

Ti64 is a high-strength titanium alloy and is considered as

the ‘workhorse’ alloy for aerospace applications. It offers

excellent strength and toughness up to 673 K combined with

good fabricability. As a ‘near �-alloy’ it consists mainly of the

hexagonal � phase and low amounts of a cubic � phase.

Ti6246 is a very high strength titanium alloy but with lower

toughness and weldability than Ti64, although it can be

operated at higher temperatures. It consists of two phases, one

hexagonal � phase and one b.c.c. � phase.

In general, �-alloys have high corrosion resistance and very

high strength but a lower elastic modulus than �-alloys.

2. Theory

In the following, a general derivation of the current methods is

provided. This includes the single-crystal elastic constants,

their relation to the crystal lattice and their significance for the

DECs. For multiphase alloys, a method of quantifying the load

transfer from one phase to another as described by Behnken

(2003) is implemented in the evaluation process. A fitting

routine for the elastic constants based on the approach by

Gnäupel-Herold et al. (1998) is applied to different micro-

mechanical models.

� ¼ A�; � ¼ C�; A ¼ C�1: ð1Þ

The well known Hooke’s law (1) provides the relation

between the second-rank tensors of strains � and stresses � for

any material under elastic strain. The proportional constants

are given by the fourth-rank tensors of elastic compliances A

and elastic constants C.

Diffraction studies under the influence of an applied

mechanical load enable investigation of the strains perpendi-

cular to particular (hkl) lattice planes, i.e. strains in different

crystallographic directions. As outlined in detail by Gnäupel-

Herold et al. (1998), one needs to consider the relations

between three coordinate systems. The measurement frame is

defined by the scattering vector Q coinciding with the

reciprocal-lattice vector h for each lattice plane (hkl). The

load axis determining the applied stress defines the sample

frame, while the single-crystal elastic compliances are

expressed in the crystal frame. As illustrated in Fig. 1, the

measurement frame L is defined in such a way that the L3 axis

is parallel to Q. In the sample frame S3 is oriented along the

load axis in the case of uniaxial tensile (or compression)

experiments. As shown in Fig. 1, the orientation between the

scattering vector Q and the load axis (S3) is given by the angles

 and �. S can be transformed into L via the rotation ! as

given in equation (2):

! ¼

�cosð Þ cosð�Þ sinð’Þ �cosð Þ sinð�Þ sinð’Þ sinð Þ sinð’Þ

þ sinð�Þ cosð’Þ þ cosð�Þ cosð’Þ

�cosð Þ cosð�Þ cosð’Þ �cosð Þ sinð�Þ cosð’Þ sinð Þ cosð’Þ

þ sinð�Þ sinð’Þ þ cosð�Þ sinð’Þ

sinð Þ cosð�Þ sinð Þ cosð�Þ sinð Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð2Þ

The transformation from the crystal frame into the measure-

ment frame is done with the rotation � (Behnken, 2003):
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Figure 1
(Left) The different angles for transformation from the sample (Si, i = 1–
3) to the measurement frame (Li, i = 1–3). (Right) The transformation
from the crystal (Ci, i = 1–3) to the measurement frame.



� ¼

�sinð’2Þ cosð�2Þ cosð 2Þ cosð’2Þ cosð�2Þ cosð 2Þ cosð�2Þ sinð 2Þ

þ cosð’2Þ sinð�2Þ þ sinð’2Þ sinð�2Þ

�sinð’2Þ sinð�2Þ cosð 2Þ cosð’2Þ sinð�2Þ cosð 2Þ sinð�2Þ sinð 2Þ

�cosð’2Þ cosð�2Þ sinð’2Þ cosð�2Þ

sinð’2Þ sinð 2Þ � cosð’2Þ sinð 2Þ cosð 2Þ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

ð3Þ

In order to ensure the correct orientations of L3 to the crystal

frame, the rotations are defined by the Euler angles

f�þ 	=2;  ; ’g and f’2;  2; 	=2� �2g (Gnäupel-Herold et al.,

1998; Brakman, 1983).

From equation (1) the lattice strains in the measurement

frame for a Bragg reflection (hkl) under orientations ’ and  
are given by

�ð’; ; hklÞ ¼
P
i;j

Fijð’; ; hklÞ �ij; ð4Þ

with the stress factor Fij given by

FijðQ; hÞ ¼
X
u;w

R
hjjQ A0uwijðgÞmumw f ðgÞ dgR

hjjQ f ðgÞ dg
: ð5Þ

A0uwijðgÞ are the general single-crystal compliances expressed

in the measurement frame. Therefore A from equation (1) is

transformed from the crystal into the measurement frame by

the rotation matrix � in the following way:

A0uwijðgÞ ¼ �umðgÞ �wnðgÞ �ioðgÞ �jpðgÞAmnop: ð6Þ

The function f(g) describes the orientation distribution of the

grains (ODF) and is typically related to the sample frame

(Behnken, 2003), i.e. in equation (5) the integrals are eval-

uated over all grains contributing to the diffraction signal.

In equation (4) the strains are measured along Q, and the

only observed component of the strain tensor is �33.

�ð’; ; hklÞ ¼
1

2	

X
i;j

Z
hjjQ

A033klðgÞ dg �ij; ð7Þ

hA0ir ¼
R

hjjQ

A0ðgÞ dg: ð8Þ

Equation (7) can be transformed with the knowledge of the

rotation symmetry of the average tensor and the measurement

direction in the measurement frame, yielding

�ð’; ; hklÞ ¼ hA03311i
r tr �0ð Þ

þ hA03333i
r
� hA03311i

r
ð Þ

P
i;j

�ijm
0
im
0
j: ð9Þ

Equation (9) can be transformed into the sample reference

frame, which leads to the general equation of stress analysis

(Behnken, 2003)

�33 ¼ s1ð�11 þ �22 þ �33Þ

þ 1
2 s2 cos2ð’Þ�11 þ sin2

ð’Þ�22

� �
sin2
ð Þ þ �33 cos2ð Þ

� �
;

ð10Þ

with the DECs s1(hkl) and 1
2 s2ðhklÞ

s1ðhklÞ ¼ hA03311i
r; ð11Þ

1
2 s2ðhklÞ ¼ hA03333i

r
� hA03311i

r: ð12Þ

An analytical solution of DECs from the single-crystal elastic

constants can be calculated for different crystal symmetries

using a model assumption for the grain-to-grain interaction.

In order to establish relationships between bulk and single-

crystalline properties, Voigt assumed that in all grains homo-

geneous strains appear as a function of an external stress. In

this case the general elastic compliances are calculated from

the averaged elastic constants hc(g)i�1 (Voigt, 1928). Later,

Reuss (1929) assumed homogeneous stress in grains; thus A

depends on the elastic compliances. Kroener (1958) developed

a model based on Eshelby’s assumption of spherical elastic

inclusions in an isotropic matrix (Eshelby, 1957), which was

extended by de Wit (1997). Thus,

AðgÞ ¼
hcðgÞi�1 Voigt,

sðgÞ Reuss,

sðgÞ þ tðgÞ Eshelby/Kroener.

8<
: ð13Þ

The DECs based on the Voigt (1928) model for any crystal

symmetries are given in equations (14) and (15):

s1 ¼
xþ 4y� 2z

2ðx� yþ 3zÞ ðxþ 2yÞ
; 1

2 s2 ¼
15

2x� 2yþ 6z
; ð14Þ

x ¼ c11 þ c22 þ c33;

y ¼ c12 þ c13 þ c23;

z ¼ c44 þ c55 þ c66:

ð15Þ

In equation (15) the single-crystal elastic constants are

represented in Voigt’s notation.

The solutions for Reuss’s approximation have been devel-

oped by Behnken (2003) for arbitrary crystal symmetries:

s1ðhklÞ ¼ 1
2 
m
nð�pq � 
p
qÞAmnpq; ð16Þ

1
2 s2ðhklÞ ¼ 1

2 
m
nð3
p
q � �pqÞAmnpq; ð17Þ


1 ¼
h

h2 þ k2 þ l2ð Þ
1=2
;


2 ¼
k

h2 þ k2 þ l2ð Þ
1=2
;


3 ¼
l

h2 þ k2 þ l2ð Þ
1=2
:

ð18Þ

On the basis of these equations, one can derive the DECs for

different crystal symmetries. In the special case of cubic crystal

symmetry the DECs can written as

s1ðhklÞ ¼ A1122 þ A0�; ð19Þ
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1
2 s2ðhklÞ ¼ A1111 � A1122 � 3A0�; ð20Þ

with A0 = A1111 � A1122 � 2A1212 and the crystal-orientation

parameter �:

� ¼
h2k2 þ h2l2 þ k2l2

ðh2 þ k2 þ l2Þ
2
: ð21Þ

It has been shown by Hill (1952) that the assumptions made by

Voigt (1928) and Reuss (1929) are only valid in specific cases,

giving an upper and lower limit for the bulk elastic properties

for most materials. Therefore, the arithmetic average of the

bulk moduli obtained by both models was proposed for more

realistic values. However, due to the tensor nature of the

elastic constants, the physical relation A = C�1 is not granted

in this case. Matthies et al. (2001) showed that a geometric

average between Voigt (1928) and Reuss (1929) calculations

obeys the physical relation A = C�1.

Kroener (1958) introduced a self-consistent model to solve

the case of spherical inclusions in a matrix for cubic symme-

tries where the shear modulus G of the matrix is compared

with the shear modulus G0 of the inclusion:

G ¼
�2G2

0 þ �2G0 þ 


G2
0 þ �1G0 þ �1

; ð22Þ

with the parameterization

�1 ¼ 3=40ð15�þ 120 þ 800Þ;

�2 ¼ 1=5ð20 þ 300Þ;

�1 ¼ 3=20�ð30 þ 200Þ;

�2 ¼ 1=40ð6�0 þ 9�00 þ 20000Þ;


 ¼ 3=4�000;

� ¼ 1=3ðc11 þ 2c12Þ;

0 ¼ 1=2ðc11 � c12Þ;

00 ¼ c44;

ð23Þ

and DECs

s1 ¼
1

9�
þ

1

6G
; 1

2 s2 ¼
1

G
: ð24Þ

de Wit (1997) modified Kroener’s approach, recognizing

that, by applying statistical averages, the stress is averaged

over all spatial directions, whereas the strain is only measured

in the direction normal to the diffraction planes. This leads to a

slight modification in the description of the parameters (de

Wit, 1997):

�1 ¼ 3=8 3�þ 4 0 þ 3ð0 � 00Þ�½ �
� �

;

�1 ¼ 3=4� 00 þ 3ð0 � 00Þ�½ �:
ð25Þ

In a multi-phase alloy subjected to elastic strain, a load

transfer towards stiffer phases is expected. Diffraction studies

reveal the effective elastic constants of the individual phases

due to their interactions with the other phases present.

Behnken (2003) derived an approach to quantify the load

transfer in multiphase systems with different elastic properties.

The mean phase stress � consists of a macro stress-dependent

contribution and an independent part denoted by the index 0.

�� ¼ ��0 þ f � �L þ �I
� �

: ð26Þ

f � is the fourth-rank tensor of the stress transition factors for

phase �, �L is the applied load to the sample and �I are the

residual stresses. To calculate the transition factors, the

following equation is derived for an inclusion in a homo-

geneous matrix (Behnken, 2003):

f � ¼ �Cðw�1
� IÞ ðC� � CÞw

�1
þ C

� ��1
ðC� � CÞ S þ I: ð27Þ

In the fourth-rank tensor equation (27), C� are the single-

crystal elastic constants of the phase � (in this case the

inclusions), I is the unity tensor, and C and S are the macro-

scopic elastic moduli and compliances, respectively, based on

the following equation:

1

E

� �Reuss

¼
p�

E�
þ

p�

E�
; �Voigt ¼ p��� þ p���; ð28Þ

where the phase fractions of phases � and � are denoted by

p�, �, Young’s modulus is denoted by E and � is a Lame

constant. w�1 depends on the shape of the inclusions and is

often called the Eshelby tensor. An analytical solution has

been found by Kneer (1965) for spherical and ellipsoidal

inclusions:

w�1
1111 ¼

7� 5�

15ð1� �Þ
;

w�1
1122 ¼

�1þ 5�

15ð1� �Þ
;

w�1
1212 ¼

4� 5�

15ð1� �Þ
:

ð29Þ

In the case of spherical inclusions, w�1 is isotropic and

depends only on the Poisson ratio � (Kneer, 1965). The

stresses of the matrix can be calculated either via the transi-

tion factors of the matrix which are obtained via p�f � + p�f� =

I or via the condition ð1� pÞh�mi + p�i = �, where the index m

represents the matrix and i the inclusion, and p is the phase

fraction of the inclusion.

One needs to address the minimization problem to obtain

the single-crystal elastic constants from diffraction on poly-

crystalline materials. We choose the method of least squares

(�2 minimization) to optimize the elastic compliances by

minimizing the sum of squares between deviations of

measured and calculated observables.

The first possibility is to derive the DECs from the

measured data and subsequently minimize the differences

between them and the computed elastic constants (Gnäupel-

Herold et al., 1998),

Sðhkl;AijklÞ ¼
S1ðhkl;AijklÞ

1
2 S2ðhkl;AijklÞ

� �
: ð30Þ

In equation (30), S is a two-dimensional quantity and the total

length must be minimized.
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�2
ðAijklÞ ¼

Xn

i

S1ðhklÞmeas � S1ðhkl;AijklÞcalc

� S1ðhklÞmeas

� �
( )2

þ

1
2 S2ðhklÞmeas �

1
2 S2ðhkl;AijklÞcalc

� 1
2 S2ðhklÞmeas

� �
( )2

: ð31Þ

The technique for obtaining the values of S1(hkl)meas and
1
2 S2ðhklÞmeas is explained in the following section.

S1(hkl, Aijkl)calc and 1
2 S2ðhkl;AijklÞcalc are computed with the

help of equations (16), (18), (14) or (24), depending on the

model used.

The second possibility is to express �2 directly in terms of

the measured strains �33, leading to the following expression

for �2:

�2
ðAijklÞ ¼

Xk

i

�33ðhklÞmeas � �33ðhkl;AijklÞcalc

� �33ðhklÞmeas

� �
( )2

: ð32Þ

In principle, both techniques will lead to similar results, but

there are important differences between them. Equation (31)

is a more specialized form of equation (32), which leads to a

large reduction in the summation terms of �2, e.g. k � n

because the Si are combined values from the different

measurement directions and only depend on the scattering

planes.

Additionally, in both cases the texture of the sample can be

taken into account through weightings of either the DECs or

the strains directly, based on the multiples of random distri-

bution (m.r.d.) values from the ODF of the different scattering

planes involved.

3. Experimental setup

Diffraction studies were carried out using both neutron and

high-energy X-ray diffractometers. The large gauge volume in

neutron experiments yields higher grain statistics compared

with X-ray studies. On the other hand, high-energy (short-

wavelength) X-ray experiments enable the recording of

complete Debye–Scherrer rings under a continuous increase

of the applied load.

A load frame especially designed for elastic anisotropy and

texture measurements was used, allowing the load axis to be

oriented with respect to the incident beam by a � rotation as

on an Eulerian cradle (Hoelzel et al., 2013).

Neutron diffraction experiments were performed on the

high-flux powder diffractometer D20 at the Institut Laue–

Langevin in Grenoble, France (Hansen et al., 2008) and the

high-resolution powder diffractometer SPODI at the Heinz

Maier-Leibnitz Zentrum (MLZ) in Garching near Munich,

Germany (Hoelzel et al., 2012). Both instruments operate at a

constant wavelength and offer a broad scattering angle range

up to 160� in 2�. In this setup the position of the sample frame

with respect to the measurement frame is given by � (tilt axis

of the load frame) and � (rotation axis of the sample table), as

shown in Fig. 2. This setup allows a simultaneous analysis of

various (hkl) reflections, while the individual orientations

between the scattering vectors Q(hkl) and the load axis need

to be considered in the data analysis for each reflection indi-

vidually. By changing the orientation of the load axis by � and

�, different angles  and ’ can be obtained for each (hkl)

reflection. In addition, measurements at different � angles can

be used to account for possible texture effects.

The experiments were done using standard tensile samples

of 6 or 8 mm in diameter under uniaxial tension; no shear or

bending forces were applied, nor did they occur on the sample

during the tensile experiments. The macroscopic strain was

measured along the load axis using a strain gauge (clip-on

extensometer Sandner EXA-15). For each sample composi-

tion, tensile tests were carried out prior to the neutron

diffraction studies to determine Young’s modulus and the

yield stress. Diffraction patterns were collected at a minimum

of three and up to five stress levels, up to a maximum value of

about 70% of the yield stress. At each load step, measure-

ments at a minimum of five and up to ten � angles were

performed.

To validate our method for data collection and analysis,

ferritic (b.c.c.) and austentic (f.c.c) phases in steels and cast

iron samples were studied on the SPODI diffractometer at a

monochromator angle of 155� using Ge(551) for a wavelength

of 1.5483 Å. The instrument offers a good angular resolution

to separate the ferrite and austenite peaks and to observe their

shifts under load at high precision. The investigations were

carried out on ferritic structural steel S235JR, an austenitic

stainless steel of AISI type 304 (X5CrNi 18-10), duplex steel

(X2CrNiMoN 22-5-3) and an austempered ductile iron (ADI)

sample consisting of ferrite, austenite and graphite.

The neutron scattering power of titanium alloys is quite

poor. This is particularly the case for the � phase of titanium

owing to the negative scattering length of Ti and a significant

quantity of alloying elements (with positive scattering

lengths). Therefore, the investigations on titanium alloys
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Figure 2
A schematic view of the rotatable tensile rig. The orientation between the
sample and the incident beam is given by the angles �, � and ’.



Ti-6Al-4V (Ti64, near �-alloy) and Ti-3Al-8V-6Cr-4Zr-4Mo

(Ti38644, �-alloy) were performed on the D20 high-flux

instrument at a monochromator angle of 90� using Ge(115) to

achieve a wavelength of 1.544 Å. This setup offers a good

angular resolution, sufficient for the analysis of strains.

Samples of 8 mm diameter were measured under uniaxial

tension at 0, 10, 20 and 30 kN.

X-ray diffraction experiments were carried out on Ti-6Al-

2Sn-4Zr-6Mo on the High Energy Materials Science beamline

(HEMS) at the synchrotron facility DESY in Hamburg,

Germany (Schell et al., 2014). An energy of 98.25 keV

(corresponding to a wavelength of 0.12619 Å) was used to

investigate tensile samples of 6 mm diameter. Since full

Debye–Scherrer rings were obtained, no � rotation was

necessary to cover the different orientations of the load axis,

which was kept perpendicular to the incident beam, i.e. � =

90�. The data were collected in 10 N steps up to 30 kN.

For texture analysis, neutron pole-figure measurements

were carried out on the STRESS-SPEC instrument at the

MLZ (Brokmeier et al., 2011) using a Ge(311) mono-

chromator for a wavelength of 1.68 Å. Bragg reflection

intensities were measured from 0 to 360� in 5� steps in ’ in

seven different orientations in �.

Preparation for electron backscatter diffraction (EBSD)

and energy-dispersive X-ray diffraction (EDX) was

performed by mechanical cutting and polishing. After cutting,

plane grinding was performed with an MD-Mezzo surface

followed by a single fine grinding with a 9 mm diamond

suspension abrasive on an MD-Largo surface. The first

polishing was performed with an MD-Chem surface and a

0.04 mm collodial silica abrasive and a final step of ion

polishing with a Hitachi IM4000PLUS cross section ion

polisher operated at 5 kV and 200 mA for 60 min with sample

oscillation. The sample was cut along the cylinder axis, such

that the sample normal is the transverse direction of the

cylinder. EBSD maps were measured on a Hitachi SU5000

field-emission scanning electron microscope equipped with an

Oxford Instruments NordlysII EBSD detector and an ULTIM

MAX EDX detector. The employed acceleration voltage was

20 kV. EBDS and EDX signals were collected simultaneously

with the sample inclined by 70� towards the EBSD detector.

Data evaluation was performed with the Oxford Instruments

AZTec and CHANNEL5 software. The EDX analysis was

carried out in standardless mode.

4. Data evaluation

For the data evaluation, a software package was developed

enabling the choice of all mentioned models and, optionally,

the texture implementation. For dual-phase alloys, a possible

load transfer from one phase to the other can be quantified.

The hkl-dependent strains �ðhklÞ = ½dðhklÞ � d0�=d0 were

obtained from the changes in the reflection positions under

load in a set of diffraction patterns. An example diffraction

pattern for Ti64 measured on D20 is shown in Fig. 3. To fit all

free variables, at least three or five different Bragg peaks are

needed for the cubic and hexagonal symmetries, respectively.

The Bragg reflections were chosen to cover the maximum

range of crystal directions to track the dependencies of the

compliance tensor components.

For the ferritic phase (Im3m) of the different iron and steel

alloys, reflections {110}, {200}, {211}, {220} and {310} were

evaluated, and for the austenitic phase (Fm3m) reflections

{111}, {200}, {220}, {311} and {222}. For the hexagonal phase in

the titanium alloys, all 16 reflections between {100} and {203}

were evaluated, and for the cubic phase the {110}, {200}, {211},

{220} and {310} reflections were used for the evaluations.

In uniaxial tension or compression experiments only the �33

component remains nonzero. In this case, equation (10) is

simplified to

�33ðhkl;  Þ

�33

¼ s1 þ
1
2 s2 cos2ð Þ: ð33Þ

The equation shown above can be used to fit the DECs if the

existing stresses are known or are given by an externally

applied stress. The occurring strains for the lattice planes are

derived from the shift of the corresponding Bragg peaks (i.e.

relative changes in d spacing), while  is determined for every

Bragg reflection separately by the � and � orientations of the

load axis of the tensile rig with respect to the measurement

research papers

J. Appl. Cryst. (2019). 52, 1144–1156 Alexander Heldmann et al. � Elastic constants of polycrystalline titanium alloys 1149

Figure 3
A diffraction pattern for Ti64 measured on D20 at � = 45� and � = 90�.
The artifact seen near 2� = 80� is caused by the detector and does not
influence the results, since no hkl reflection is affected.

Figure 4
The linear relationship between the strain divided by the applied stress
and cos2( ) is used to fit the DEC of the (220) plane of Ti38644.



vector Q. An example fit of the (220) DEC of Ti38644 is given

in Fig. 4.

It should be emphasized that this evaluation is not affected

by intergranular residual stresses, as long as they do not

change during the elastic loading, because the lattice strains

are given by shifts of the reflections under load rather than by

absolute d values.

The evaluation of the pole figures measured on STRESS-

SPEC were done on the reflections {110} and {200} for Im3m,

{111} and {200} for Fm3m, and {002}, {100}, {101}, {103}, {112}

and {201} for the hexagonal phase. The pole figures of the first

three planes are shown in Fig. 5.

The load transfer is calculated by a self-consistent scheme

until the change in the transition factors after an iteration is

smaller than a given limit. The initial values for the elastic

constants are used in this approach, with no consideration of

the load transfer. The stress factors for the inclusion are

calculated with equation (27) defining the stress factors for the

matrix. The parameters ��0 and �I in equation (26) are zero in

our case, as the effects of residual stresses cancel out during

the evaluation procedure as mentioned earlier:

�� ¼ f ��L: ð34Þ

By means of equation (34) the associated stress for each Bragg

reflection can be updated and the adjusted elastic constants

are calculated. This iteration is repeated until the change in

the stress factors is smaller than 10�5.

5. Results

All obtained data were fitted with all available models except

the Voigt (1928) model. The calculations based on the

approach by Voigt showed large instabilities concerning the

fitting routine, led to multiple results or did not converge.

Therefore the results for Voigt (1928) are only shown once, for

the structural steel S235JR.

The values for the single-phase alloys agree well with

available literature data. The results for the ferritic phase are

listed in Table 1. Finkel (2016) and Gnäupel-Herold et al.

(1998) used Hill’s approach and obtained values of c11 =

232.0 GPa, c12 = 125.8 GPa and c44 = 115.2 GPa, and c11 =

224.9 GPa, c12 = 122.2 GPa and c44 = 120.7 GPa, respectively.

Our results of c11 = 230.0 GPa, c12 = 121.0 GPa and c44 =

120.8 GPa using Hill’s approximation show good agreement

with the literature data. Table 2 illustrates the results for the

austenitic phase calculated for different models compared

with the literature data. The data published by Ledbetter

(1985) yielding c11 = 209.0 GPa, c12 = 133.0 GPa and c44 =

121.0 GPa were predicted on the basis of Kroener’s model.

Comparison with our values for Kroener’s model of 208.0,

135.7 and 116.3 GPa for the isotropic approximation and
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Table 1
The single-crystal elastic constants and bulk properties for S235JR measured on SPODI.

The anisotropy A is calculated after Zener (1948). For the Voigt model, the fitting routine does not converge to a single solution.

Model c11 (GPa) c12 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) � A c12/c11

Im3m
Voigt 199 142 90 235 82 �12.10 0.436 3.1 0.71
Reuss 240 118 106 214 84 �7.51 0.276 1.7 0.49
Hill† 230 121 121 210 82 �7.57 0.278 2.2 0.53
Kroener 229 129 109 207 80 �7.86 0.288 2.2 0.56
de Wit 184 89 120 203 84 �5.51 0.219 2.5 0.49
Matthies† 224 129 112 216 85 �7.24 0.27 2.5 0.57
Finkel (2016) 232 126 115 220 86 �8.20 0.289 2.2 0.54
Gnäupel-Herold et al. (1998) 225 122 121 217 86 �8.05 0.283 2.4 0.54
Adams et al. (2006) 240 136 121 2.3 0.60
Kim & Johnson (2007) 232 135 116 212 82 0.289 2.4 0.58

† The anisotropy was fixed for these fits.

Figure 5
Pole figures of the Ti64 alloy. From left to right are shown the pole figures for the (002), (100) and (101) reflections, respectively.



204.8, 138.9 and 124.2 GPa for the texture adaptation shows

good agreement in both cases.

The results for the duplex steel and ADI are shown in

Tables 3 and 4, respectively. Both consist of austenitic and

ferritic phases. However, ADI contains a large amount of

graphite of approximately 10 vol.% in the form of nodules

with Young’s and shear moduli of essentially zero. For c11 and

c12 the deviation is of the same order of magnitude as the

uncertainty in the values, but for c44 the observed deviation is

higher. In tensile experiments the parameter c44 is related to

the shear stresses/strains and is therefore only indirectly

accessible with the different orientations covered during the

measurements. This leads to higher uncertainties for c44 during

the determination in the fitting process. The accuracy for c44

may be improved by including torsion experiments, as

suggested by Woracek et al. (2012).

The tables also reveal larger discrepancies between the

models in the Zener anisotropy defined by A = 2c44=
ðc11 � c12Þ (Zener, 1948) and the c12=c11 ratio. In a systematic

study of the single-crystal elastic constants of different

monocrystals of austenitic stainless steels and Fe–Cr–Ni alloys,

Ledbetter (1985) found that both ratios remain nearly
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Table 2
The results for AISI type 304 (X5CrNi 18-10), a single-phase stainless steel, measured on SPODI; the texture data were measured on STRESS-SPEC.

The anisotropy A is calculated after Zener (1948).

Model c11 (GPa) c12 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) � A c12/c11

Fm3m
Reuss 226 108 100 202 80 �7.85 0.271 1.7 0.48
Reuss† 225 107 100 202 80 �7.77 0.269 1.8 0.47
Hill 210 115 138 202 80 �7.85 0.271 2.9 0.55
Hill† 209 114 140 202 80 �7.77 0.269 3.0 0.55
Kroener 208 136 116 192 74 �8.97 0.300 3.2 0.65
Kroener† 205 139 124 194 75 �8.89 0.299 3.8 0.68
de Wit 212 130 121 204 80 �8.30 0.284 2.9 0.61
de Wit† 212 130 122 204 80 �8.27 0.284 3.0 0.61
Matthies 214 121 135 202 80 �7.85 0.271 2.9 0.56
Matthies† 213 120 136 202 80 �7.80 0.270 2.9 0.56
Finkel (2016) 207 121 119 202 79 �9.76 0.296 2.8 0.59
Ledbetter (1985) 209 133 121 197 76 �8.27 0.290 3.2 0.64
Ledbetter (1984) 205 138 126 3.8 0.67

† For the fitting of the elastic constants the DEC texture adaptation was used.

Table 3
The single-crystal elastic constants for X2CrNiMoN 22-5-3 duplex steel, the dual-phase stainless steel alloy, measured on SPODI; the texture data were
measured on STRESS-SPEC.

The anisotropy A is calculated after Zener (1948).

Model c11 (GPa) c12 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) � A c12/c11

Im3m
Reuss 227 121 70 165 63 �11.7 0.323 1.3 0.53
Reuss† 228 121 70 165 62 �11.8 0.324 1.3 0.53
Hill 218 125 81 165 63 �11.7 0.323 1.8 0.58
Hill† 219 125 79 165 62 �11.8 0.324 1.7 0.57
Kroener 221 126 76 167 63 �11.5 0.324 1.6 0.57
Kroener† 210 137 87 164 62 �12.1 0.331 2.4 0.66
de Wit 214 126 79 165 63 �11.7 0.323 1.8 0.59
de Wit† 206 117 78 164 62 �11.4 0.314 1.8 0.57
Matthies 217 126 82 166 63 �11.7 0.322 1.8 0.58
Matthies† 219 125 79 165 63 �11.8 0.324 1.7 0.58
Finkel (2016) 210 108 83 177 69 �9.9 0.296 1.6 0.51
Kim et al. (2016) 222 144 114 194 74 �11.8 0.317 2.9 0.65
Fm3m
Reuss 203 103 89 177 70 �9.62 0.284 1.8 0.51
Reuss† 208 107 88 178 70 �9.75 0.288 1.7 0.51
Hill 189 110 129 177 70 �9.62 0.284 3.3 0.58
Hill† 194 114 125 178 70 �9.75 0.288 3.1 0.58
Kroener 198 109 105 190 75 �7.85 0.272 2.4 0.55
Kroener† 189 120 120 190 74 �8.17 0.279 3.5 0.63
de Wit 222 154 112 186 71 �1.10 0.324 3.3 0.70
de Wit† 221 156 110 183 69 �11.40 0.328 3.4 0.70
Matthies 197 117 119 178 70 �9.66 0.286 3.0 0.59
Matthies† 201 119 116 179 70 �9.74 0.290 2.8 0.59
Finkel (2016) 189 110 125 198 79 �9.61 0.285 3.2 0.58
Kim et al. (2016) 207 134 114 188 72 �12.29 0.311 3.1 0.65

† For the fitting of the elastic constants the DEC texture adaptation was used.



constant at A = 3.53 and c12=c11 = 0.635 (Ledbetter, 1985).

Owing to the low variance in the values of A and c12=c11 in

Ledbetter’s study, we believe these ratios can be used to

estimate the best model for the material under investigation.

In all models it turns out that the texture does not influence

the results above their uncertainties. This is most likely due to

the elastic measurements being performed on single-crystal

domains and therefore not directly affected by the texture.

The only parameter affected is the average strain measured

via diffraction. Matthies et al. (2001) concluded that just a

couple of thousand grains are enough to ensure the statistical

significance of the average strains. Therefore, the isotropic
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Table 4
The single-crystal elastic constants for austempered ductile iron consisting of ferrite, austenite and graphite measured on SPODI; the texture data were
measured on STRESS-SPEC.

The anisotropy A is calculated after Zener (1948).

Model c11 (GPa) c12 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) � A c12/c11

Im3m
Reuss 232 107 88 195 76 �8.24 0.281 1.4 0.46
Reuss† 218 103 92 191 75 �8.23 0.274 1.6 0.47
Hill 220 113 104 76 195 �8.24 0.281 2.0 0.51
Hill† 204 110 120 191 75 �8.23 0.274 2.6 0.54
Kroener 228 104 90 197 77 �7.67 0.274 1.5 0.46
Kroener† 231 90 101 200 79 �7.24 0.266 1.4 0.44
de Wit 217 116 102 198 78 �8.00 0.279 2.0 0.53
de Wit† 216 115 102 198 78 �7.98 0.278 2.0 0.53
Matthies 220 114 105 195 76 �8.16 0.280 2.0 0.52
Matthies† 202 126 112 192 76 �8.06 0.270 2.8 0.56
Finkel (2016) 201 124 108 185 72 2.8 0.62
Fm3m
Reuss 203 92 85 179 71 �8.59 0.269 1.6 0.46
Reuss† 204 94 85 179 71 �8.73 0.272 1.5 0.46
Hill 190 99 109 179 71 �8.59 0.269 2.4 0.52
Hill† 191 100 108 179 71 �8.73 0.272 2.4 0.52
Kroener 200 88 85 182 72 7.65 0.259 1.5 0.44
Kroener† 205 91 84 182 72 �7.93 0.266 1.5 0.45
de Wit 184 105 103 179 71 �8.84 0.273 2.6 0.57
de Wit† 183 104 103 178 70 �8.82 0.272 2.6 0.57
Matthies 193 101 105 179 71 �8.48 0.268 2.3 0.52
Matthies† 195 102 104 179 71 �8.62 0.271 2.3 0.53
Finkel (2016) 192 102 96 180 71 2.1 0.53

† For the fitting of the elastic constants the DEC texture adaptation was used.

Figure 6
An overview of the single-crystal elastic constants of the h.c.p. phase in Ti64 and Ti6246.



grain orientation assumption is considered to be adequate for

the investigated materials as the texture is assumed not to

change significantly in the elastic regime with the applied load.

Further, our diffraction data show no changes in the Bragg

intensities in the elastic regime.

The elastic properties of both phases in duplex steel are

very similar, resulting in a load transfer of about 0.3%. Thus,

the load transfer approach reveals practically the same elastic

constants. A similar behaviour would be expected for ADI but

was not investigated further here as the additional graphite

phase could not be taken into account.

The results for the obtained elastic constants in the hexa-

gonal � phase in Ti64 and Ti6246 are shown in Fig. 6, while

Fig. 7 illustrates the corresponding values for the � phase in

Ti38644 and Ti6246. To the best of our knowledge, the analysis

of Ti6246 is the first example of deriving all elastic constants in
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Figure 7
An overview of the single-crystal elastic constants of the b.c.c. phase in Ti38644 and Ti6246.

Table 5
The single-crystal elastic constants and macroscopic values for Ti38644 measured on D20.

The anisotropy A is calculated after Zener (1948).

Model c11 (GPa) c12 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) � A c12/c11

Im3m
Reuss 125 70 38 86 32 �23.91 0.337 1.4 0.56
Hill 120 73 45 86 32 �23.91 0.337 1.9 0.61
Kroener 120 69 88 39 33 �22.39 0.329 1.5 0.58
de Wit 117 72 43 32 �23.63 0.334 86 1.9 0.62
Matthies 120 73 45 86 33 �23.76 0.336 2.0 0.61

Table 6
The single-crystal elastic constants for Ti64 measured on D20; texture data were measured on STRESS-SPEC.

Model c11 (GPa) c33 (GPa) c12 (GPa) c13 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) �

P6(3)/mmc
Reuss 149 142 81 54 42 104 40 �16.9 0.303
Reuss† 150 137 83 53 42 103 40 �17.0 0.302
Hill 168 144 108 39 44 104 40 �16.9 0.303
Hill† 176 134 118 38 46 103 40 �17.0 0.302
Matthies 160 148 99 45 44 104 40 �16.9 0.302
Matthies† 173 136 113 41 45 103 40 �16.9 0.299
Howard & Kisi (1999) 154 173 82 61 45 114 43 �15.9 0.307
Fisher & Renken (1964) 162 181 92 69 47 116 44 �16.6 0.319

† For the fitting of the elastic constants the DEC texture adaptation was used.



a dual-phase (� + �) titanium alloy. Tables 5, 6 and 7 reveal

quite similar results for the different model assumptions. In

addition, the values obtained for the � + � alloy Ti6246 agree

quite well, especially if the load transfer is taken into account,

with the corresponding data for the � phase in Ti64 and the

� phase in Ti38644, respectively. Table 6 also includes the

results of Howard & Kisi (1999) on the Ti64 alloy determined

by the Reuss (1929) approach, as well as values obtained by

ultrasonic studies on single crystals of pure Ti (Fisher &

Renken, 1964).

Good agreement with ultrasonic data was found in the

hexagonal phases for c11 and c44. The largest deviation

between our results and earlier work is found for c33, and

minor deviations in the c12 and c13 elastic constants. In hexa-

gonal systems the behaviour in the ab plane is completely

isotropic owing to the requirement for the c66 = ðc11 � c12Þ=2

elastic constant. As we are able to determine c11 and c12

accurately, this also gives access to the shearing parameter c66.

On the other hand, hexagonal systems show additional

anisotropies regarding the c axis which influence the precision

of parameters c12 and c13.

Macroscopic Young’s moduli were measured in a series of

tensile tests to 106.6 (2.1) GPa for Ti64, to 88.5 (1.6) GPa for

Ti38644 and to 113.6 (2.6) GPa for Ti6246. Tables 5, 6 and 7

indicate that there is very good agreement for Ti64 and

Ti38644 between these and the values calculated on the basis

of the diffraction studies, while somewhat higher values were

obtained for Ti6246.

The phase fractions of the dual-phase Ti6246 alloys were

evaluated from the obtained diffraction patterns using Riet-

veld analysis (MAUD and FullProf suite) (Lutterotti et al.,

1997; Rodriguez-Carvajal, 1993). For the alloy, phase fractions

of 78 and 22% were found for the � and � phases, respectively.

The results of phase distribution versus phase composition

obtained by EBSD and EDX are shown for the Ti6246 alloy in

Fig. 8. The phase fractions determined by EBSD amount to 78

and 22%, the same as for the Rietveld analysis. The main

chemical difference between the two phases resides in the Mo

content and the compositions are tabulated in Table 8. While

the doping elements Sn, Zr and Al are relatively homo-

geneously distributed, Mo shows an inhomogeneous distri-

bution with elliptical Mo-poor regions in the 5–10 mm range

(Fig. 8).

The load partitioning applied to the Ti6246 sample indicates

a significant load transfer from the � phase to the � phase. The

stress in the � phase is reduced by 11.01% and transferred to

the � phase, increasing its stress by 3.10% (note that the

smaller increase is mainly due to the ratio of phase fractions of

around 1:4). The single-crystal elastic constants corrected for

load transfer are shown in Table 7. They reveal a clear shift

from the uncorrected values towards the corresponding values

of the single-phase samples. The impact of the load transfer in

the � phase for the Reuss (1929), Hill (1952) and Matthies et

al. (2001) models yields a change of about 10% in most cases,

whereas for the Kroener (1958) and de Wit (1997) models the

changes in the elastic constants remain below 5%. c11 of the

� phase was shifted from 143.8 to 124.3 GPa, c12 from 78.9 to

66.3 GPa and c44 from 43.1 to 37.8 GPa for the Reuss model.
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Table 7
The single-crystal elastic constants for Ti6246, which consists of a hexagonal � phase and a b.c.c. � phase, measured on P07 HEMS.

Model c11 (GPa) c33 (GPa) c12 (GPa) c13 (GPa) c44 (GPa) E (GPa) G (GPa)  (TPa�1) �

P6(3)/mmc
Reuss 146 139 76 49 43 103 39 �17.7 0.311
Reuss† 150 144 78 51 46 106 41 �17.2 0.311
Hill 164 140 103 35 48 103 39 �17.7 0.311
Hill† 168 146 105 35 50 106 41 �17.2 0.311
Matthies 157 143 96 39 48 103 39 �17.5 0.309
Matthies† 162 149 98 40 50 106 41 �17.0 0.309
Im3m
Reuss 144 79 43 99 37 �20.5 0.335
Reuss† 124 66 38 88 33 �22.6 0.329
Hill‡ 138 82 50 99 37 �20.5 0.335
Hill† 120 69 43 88 33 �22.6 0.329
Kroener 132 72 44 99 38 �19.0 0.320
Kroener† 129 74 37 88 32 �23.7 0.342
de Wit 128 75 48 99 37 �19.6 0.323
de Wit† 125 78 43 91 34 �22.6 0.338
Matthies‡ 138 81 50 100 37 �20.4 0.335
Matthies† 119 69 43 88 33 �22.6 0.329

† Calculated with load partitioning. ‡ The anisotropy was fixed for these fits.

Figure 8
EDX and EBSD results for the Ti6246 alloy. (Left) The molybdenum
distribution (0–9 wt%). (Right) The distribution of cubic (green) and
hexagonal (purple) phases. Black pixels on the EBSD are not indexable.



The single-phase values of 124.9, 69.9 and 38.0 GPa for the

same model almost match the ‘load-transfer-corrected’ ones.

Similar behaviour is also observed for all other models. Owing

to the lower increase in stress in the � phase the changes

remain rather small, but the results achieved with the load-

transfer model match the single-phase values more consis-

tently. The comparatively small changes in the elastic

constants when using the Kroener (1958) and de Wit (1997)

models are supposedly due to the assumption of inclusions in a

matrix, which is essentially the same assumption as used for

the load transfer.

Similar elastic constants for � phases in different titanium

alloys can be expected owing to the low quantity of alloying

elements, shown already by the comparison of Howard & Kisi

(1999) with pure titanium. Significant variations in the elastic

constants for � phases in different alloys can be found in the

literature (Hounkpati et al., 2016; Fréour et al., 2005). This may

result from the fact that �-alloys contain a large number of

different �-stabilizing elements in contrast with the � phase.

However, our investigations show a larger impact of the

modelling between the two investigated � phases.

6. Conclusions

Diffraction experiments are a feasible and powerful route to

determine single-crystal elastic constants from polycrystalline

multiphase alloys due to the phase selectivity, as shown in the

case of Ti6246.

The data-evaluation procedure included several approx-

imations to consider grain-to-grain interactions in polycrystals

based on the approches by Voigt (1928), Reuss (1929), Hill

(1952), Kroener (1958), de Wit (1997) and Matthies et al.

(2001). In terms of computational stability, the Reuss (1929),

Hill (1952) and Matthies et al. (2001) assumptions were the

most stable in our data analysis. Concerning the approaches of

Kroener (1958) and de Wit (1997), not all possible combina-

tions of the elastic constants led to a solution of the self-

consistent equation (22). The Voigt equations could only be

used for the evaluation with very limiting constraints. Good

indicators of which models will suit best are the anisotropy

values and the c12/c11 ratios obtained for the different models.

We systematically investigated the effects of the texture on the

modelling and find its influence to be smaller than the

differences observed for different grain-to-grain interaction

models.

For the first time a full analysis of the load transfer has been

included in the evaluation of the elastic constants from

diffraction data for the example of Ti6246.

For the dual-phase alloy Ti6246, the load-transfer approach

allows a direct comparison of measured ‘effective’ elastic

constants with ‘load-transfer-corrected’ elastic constants. In

this alloy, a significant load relocation of about 14% was found

from the � to the � phase. By including the load transfer, the

evaluations of the constants of the � phase in the dual-phase

alloy were significantly shifted towards those of the single-

phase alloys, while the effect of the load transfer on the

� phase was significantly smaller. In particular, the load-

transfer-corrected elastic constants in the � phase of Ti6246

show good agreement with the corresponding values for the

near �-alloy in Ti64. In addition, for the � phase the load-

transfer-corrected constants are in excellent agreement with

the corresponding single-phase result for the pure �-alloy.
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Kornmeier, J. & Hofmann, M. (2011). Nucl. Instrum. Methods Phys.
Res. A, 642, 87–92.

Eshelby, J. D. (1957). Proc. R. Soc. London Ser. A, 241, 376–396.
Finkel, M. (2016). Master’s thesis, Technische Universität München,

Germany.
Fisher, E. S. & Renken, C. J. (1964). Phys. Rev. 135, A482–A494.
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Table 8
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